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Abstract—We consider a mobile network with users seeking
to engage in a device-to-device (D2D) communication. Two D2D
users (DUEs), a transmitter and a receiver, compose one D2D
pair. We assume that the D2D pairs reuse a single communication
channel to increase the spectral efficiency. Thus, a power control
is needed to manage interference among the D2D pairs and
to maximize capacity. We address the problem of D2D power
control in the case when only standard cellular channel gains
between the DUEs and base stations (BSs) are known while
channel gains among DUEs are not available at all. We exploit
supervised machine learning to determine transmission powers
for individual D2D pairs. We show that the cellular channel
gains can, in fact, be exploited to predict the transmission power
setting for D2D pairs and, still, close-to-optimum sum capacity of
the D2D pairs is reached. Moreover, even if our proposed power
control requires no knowledge of the channel gains among DUEs
and, thus, introduces no additional signalling, the sum capacity
can be increased by 16% to 41.9% with respect to no power
control, as demonstrated via simulations.

Index Terms—Device-to-device; Power control; Deep neural
networks; Supervised machine learning

I. INTRODUCTION

Device-to-Device (D2D) communication is one of the
promising technologies to provide higher data rates and
spectral efficiency in future mobile networks [1]. In D2D
communication, data is transmitted directly between two user
equipment (UEs) in proximity of each other to offload the
legacy cellular links relayed via a base station (BS) [2].
Each pair of D2D UEs (denoted as DUEs) is composed of a
transmitter (DUET) and a receiver (DUER).

Various important problems arise when considering the use
of D2D communication, including the question of resource
allocation across both D2D pairs and legacy cellular links to
maximize D2D capacity or to minimize negative impact to the
cellular links [3]-[4]. Pursuing the goal to increase the spectral
efficiency of the system, multiple D2D pairs can reuse the
same channel [3]-[4]. However, mutual interference among
the D2D pairs accessing the same channel occurs inevitably.
The mutual interference can be, fortunately, efficiently sup-
pressed by a power control [3].

The power control as a resource allocation problem to
maximize spectral efficiency of D2D (or ad-hoc) networks
has been considered extensively [5]-[14]. In general, sum
capacity-oriented power control over D2D pairs is a non-
convex optimization problem. Thus, various iterative meth-

ods with different levels of complexity are presented in
the literature such as, binary power control [5], weighted
minimum mean square error [6], or water-filling algorithm [7],
to name a few. However, iterative methods can pose latency
issues. As an alternative, researchers have focused recently
on exploiting deep neural networks (DNN) for instantaneous
power control in D2D communication [8]. The DNN highly
reduces power control complexity via either supervised [9]-
[10] or unsupervised [11]-[14] learning, which is based on
offline training (i.e., the DNN is firstly trained offline and
then exploited for power control). Crucially, power control
techniques utilizing the DNN with unsupervised learning are
able to outperform the existing iterative methods in terms of
sum capacity. However, the unsupervised learning needs a
DNN loss function that connects the input and the output of
the DNN, e.g., the sum capacity as a function of channel gains
among DUEs and DUEs transmission powers.

A significant drawback of all above-mentioned, both con-
ventional and DNN-based approaches is that they typically
consider full (centralized) knowledge of all the D2D channel
gains (i.e., channel gains among all DUEs). In machine learn-
ing methods, the D2D channel gains are placed as an input for
the neural network in order to set the transmission powers.
In some cases, the full knowledge can be relaxed to limit
the channel state information (CSI) requirement to a subset
of distributed D2D channel gain values. Still, even partial
knowledge of the D2D channel gains implies a substantial
cost in terms of additional channel estimation and signaling
compared with the signaling involved in classical cellular
communications. In contrast, the channel gains over the
cellular links (i.e., linking DUEs to BSs) are typically de-facto
estimated by a default design of the network. An interesting
question then arises as to whether the cellular channel gains
(i.e., channel gains between DUEs and BSs) carry information
that somehow relates to the D2D channel gains themselves
and could be exploited as a low-cost replacement of the
D2D channel gains for the D2D power control prediction.
The intuition behind this idea is that, while cellular channel
gains exhibit fading coefficients that are independent of those
measured among the DUEs, and also constitute a far smaller
dimensional object (only M cellular gains for one cell with M
users, in contrast with M(M−1) direct and interference D2D
gains), there is actually much common information between



these data at the statistical level. In fact, it is clear that both
statistical cellular gains and statistical D2D gains could be
predicted from DUEs’ location information if this information
would be assumed available (which is not the case here).
Hence, the existence of common information between the
cellular and D2D gains suggests the use of a machine learning
approach so as to implicitly extract the D2D channel gains
and exploit it for the power control.

This is the core idea of this paper, where we propose a
novel DNN learning-based power control scheme for the D2D
communication that needs absolutely no additional knowledge
of the D2D channel gains. Hence, no signaling overhead is
generated at all, since the channel quality to all BSs in the
user vicinity is reported during a common network operation
notwithstanding [15]. First, our proposed DNN aims to find
a relation between the cellular and D2D channel gains. This
relation is, then, exploited for the transmission power setting
of the D2D pairs to maximize the sum capacity. It is worth
to mention that there is no known function that captures
the relation between the cellular channel gains and the sum
capacity of D2D pairs. Thus, it is difficult to propose a proper
loss function for an unsupervised learning-based DNN. Due
to this fact, we follow a supervised learning approach, where
the targeted DUEs transmission powers maximizing the sum
capacity are derived first. Subsequently, the DNN is trained
to build a mapping between cellular channel gains and the
targeted transmission powers with an aim to reach targeted
power setting. The whole training process is done offline and
the trained DNN is used for immediate power control decision
in the real network without any training needed during the
communication.

The rest of the paper is organized as follows. First, in
Section II, system model is described and optimization prob-
lem is formulated. Then, Section III presents the principle of
power control based on cellular channel gains, illustrates the
architecture of the proposed DNN for power control, and gives
detailed description regarding training process. In Section IV,
simulated scenarios are described and results are discussed.
Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model is described and the
optimization problem is formulated.

A. System model

We consider a model with L BSs and M DUEs forming
N D2D pairs (i.e., N = M/2 assuming M is even number)
deployed within a square area. The distance between the
transmitter DUET and the receiver DUER composing the D2D
pair is limited by a maximum distance dmax to guarantee fea-
sibility of the D2D communication similarly as in [16],[17].
The D2D pairs are assumed to share the same channel. As the
channel is occupied by multiple D2D pairs, the pairs interfere

mutually with each other. Thus, the capacity of the n-th D2D
pair is defined as:

Cn = B log2
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where B is the channel bandwidth, pn is the transmission
power of the n-th DUET, gn,n is the channel gain between the
n-th DUET and the n-th DUER of the n-th D2D pair, σo is the
noise power spectral density on the carrier frequency, pj is the
transmission power of the j-th DUET, and gj,n is the channel
gain between the j-th DUET and the n-th DUER. Note that
contrary to state-of-the-art works (e.g., [9]-[14]), a channel
between any DUET and DUER (gn,n and gj,n) is supposed
to be unknown due to the difficulty of D2D channel gains
estimation and its high cost in terms of signaling overhead.

Since the DUEs continuously monitor channels to the
serving BS (for estimation, decoding, etc.) and to the neigh-
boring BSs (for handover, interference management, etc.), the
information on channel quality between each DUE and the
surrounding BSs is assumed to be measured and reported
periodically to the serving BS [15]. The corresponding es-
timated channel gain between the m-th DUE and the l-th BS
is denoted as Gm,l.

B. Problem formulation

The objective of this paper is to set the transmission power
pn for each n-th D2D pair in such a way that the sum capacity
of D2D pairs is maximized. In [5], it has been proven that a
binary power control, in which every D2D pair transmits at
either maximal or minimal transmission power level, reaches
close-to-optimal performance. Therefore, we also adopt the
binary power control so that pn ∈ {pmin, pmax}, where
pmin and pmax are the minimal and maximal transmission
powers, respectively. Consequently, the problem of setting the
transmission power of the D2D pairs to maximize the sum
capacity of D2D pairs is written as:

P = argmax
∑n=N

n=1 Cn (2)

s.t. pn ∈ {pmin, pmax}, ∀n ∈ {1, 2, ...N} (a)

where P = {p1, . . . , pN} is the vector containing the
transmission powers of all D2D pairs maximizing the sum
capacity of D2D pairs and constraint (a) guarantees that the
transmission power of each D2D pair is set either to pmin or
pmax.

The optimization problem in (2) aims to maximize the
sum capacity of D2D pairs. However, from (1), we see that
Cn depends on D2D channel gains. Unlike existing schemes,
where the authors assume full or at least partial knowledge of
the D2D channel gains, we focus on the case when these gains
are not known at all. Thus, in the next section we propose a
power control scheme based solely on the common knowledge
of the cellular channel gains while no knowledge of the D2D
channels among the DUEs is required whatsoever.



III. POWER CONTROL FOR D2D PAIRS BASED ON
CELLULAR CHANNEL GAINS

The optimization problem in (2) relies on the fact that a
mathematical relation exists between the D2D channel gains
and the cellular channel gains. However, the relation between
D2D channel gains and cellular channel gains is not known
for mobile networks and cannot be even analytically derived
from any known parameters of the mobile network. Thus,
we propose to use a Deep Neural Networks (DNN) to learn
this relation on its own and to set transmission power of the
D2D pairs accordingly. More to the point, the DNN can be
seen as a ‘black box’, which is able to set transmission power
of the D2D pairs based simply on the knowledge of cellular
channel gains from the DUEs to the BSs. The proposed DNN
architecture and the learning process itself are thoroughly
described in the following subsections.

A. Architecture of DNN for power control

Considering the binary power control, the optimization
problem in (2) is to set the transmission power of each D2D
pair either to pn = pmin or to pn = pmax. Thus, setting the
transmission power for N D2D pairs can be presented as N
identical binary classification problems. Hence, we propose
a fully-connected DNN to build up the mapping between
the cellular channel gains and the proper binary transmission
power setting for any n-th D2D pair maximizing the sum
capacity of D2D pairs.

Fig. 1 shows the proposed fully-connected DNN for binary
classification. The proposed DNN is composed of an input
layer (X0), H hidden layers (X1,. . . ,XH ), and an output
layer (XH+1). The DNN input layer contains an input vector,
and thus, the cellular channel gains from the DUEs to the
BSs are aligned as an input vector in the input layer of the
proposed DNN (see Fig. 1). The output of the input layer
out0 is a vector of the cellular channel gains between the
DUEs and the BSs out0 = {G1,1, G1,2, . . . , GM,L} with a
length of M ×L. Every hidden layer Xh has an input vector
inh equivalent to the output of the previous layer outh−1

(i.e., inh = outh−1, ∀h ∈ {1, . . . , H}). Each hidden layer
Xh is composed of Vh neurons. In this respect, each i-th
input element in inh is fed to every neuron v in the hidden
layer Xh with a weight wh−1,h

i,v . Consequently, every neuron
v performs dot product between the input elements in inh

and the corresponding weights. The result of the dot product
is added to a corresponding bias bh−1,h

0,v and processed by
commonly used sigmoid activation function, giving the output
of the neuron. Hence, the hidden layer Xh (with Vh neurons)
and its input vector inh serve to determine the hidden layer
output vector outh of the length Vh as:

outh = Sig(Wh−1,hinh + bh−1,h)

= Sig(Wh−1,houth−1 + bh−1,h)
(3)

where Sig is the sigmoid function Sig(Z) = 1
1+exp(−Z) ,

Wh−1,h is the matrix of weights of the links between every
input element of Xh (i.e., equivalent to the output of Xh−1)

Fig. 1: Proposed architecture of DNN for binary classification
corresponding to the transmission power of a single D2D pair.

and every neuron in Xh, and bh−1,h is the vector of biases
attached to the neurons in the layer Xh.

The output of the last hidden layer outH is followed
by the output layer. The output layer in a DNN for binary
classification is composed of one neuron. The single neuron
of the output layer performs the dot product between outH
and the corresponding weights WH,H+1 (i.e., the vector of
weights related to the links between the outputs of the last
hidden layer XH and the single neuron in the output layer
XH+1). Then, the output layer neuron also sums its attached
bias scalar bH,H+1 and implements the sigmoid function
defining the output of the DNN as:

outH+1 = Sig(WH,H+1outh + bH,H+1) (4)

Note that the sigmoid function value is between 0 and
1, and thus, the output of our DNN is outH+1 ∈ [0, 1]
which presents the probability of pn = pmax. Hence, the
transmission power of the n-th D2D pair is set as:

pn =

{
pmax if outH+1 > 0.5

pmin otherwise
(5)

B. Offline learning and exploitation of the proposed DNN

There is no direct analytical function connecting the cellular
channel gains and the sum capacity of D2D pairs in order
to set the transmission power of the D2D pairs. Therefore,
we propose an offline supervised learning-based solution in
which the optimal binary transmission powers are derived by
an exhaustive search to maximize the sum capacity of D2D
pairs. Then, the transmission power of the n-th D2D pair
is fed to the proposed DNN as a targeted class attached to
the set of the cellular channel gains as features. The features
(i.e., cellular channel gains) and the targeted class (i.e., the
transmission power of the n-th D2D pair) compose together
a single learning sample. The learning samples are collected
and, then, split into a training set and a test set. While the
former is used to train the DNN the latter is run over the



trained DNN to show the accuracy on a set of cellular channel
gains samples that are not used for training.

During training process of the proposed DNN, a loss func-
tion is defined to evaluate the misclassifications between the
targeted transmission powers and the predicted transmission
powers (from (5)) after every training iteration. Our DNN
considers binary cross-entropy loss function written as:

ι = −�pT == pmax�log (outH+1)

− �pT == pmin�log (1− outH+1)
(6)

where pT is the targeted transmission power for the corre-
sponding sample.

The binary cross-entropy loss function is averaged out over
all training samples at the end of each iteration. Then, the
weights and biases of the proposed DNN are updated using
scaled-conjugate gradient backpropagation [18].

It is worth to mention that the whole learning phase
(i.e., including collecting samples, training, and testing the
proposed DNN) is done offline, i.e., before its application to
the real network (or before its testing by means of simula-
tions). Therefore, the cellular channel gains derived from the
simulations can be used for the offline training and testing of
the DNN, and then, the trained DNN is exploited directly in
the real network. The proposed DNN is able to predict the
transmission power of a single D2D pair in order to maximize
the sum capacity of D2D pairs. Thus, for N D2D pairs, the
trained and tested DNN is utilized to predict the transmission
power for each D2D pair independently maximizing the sum
capacity of D2D pairs.

IV. PERFORMANCE EVALUATION

In this section we describe simulation scenarios and param-
eters. Then, simulation results are discussed including offline
learning results and performance analysis related to D2D
communication with the proposed power control scheme.

A. Simulation scenarios

We consider six DUEs composing three D2D pairs (like in
[10]) deployed uniformly within an area of 250 × 250 m2.
Although the DUEs are uniformly distributed, the maximum
distance between the DUET and the DUER of the same D2D
pair is upper-bounded by a maximal distance of dmax = 50
m as in [16],[17]. Nevertheless, we also show the effect
of different values of dmax on the performance of our
proposal. Without loss of generality, we set the bandwidth
of the channel reused by the D2D pairs to 1 Hz [10] as
the capacity scales with the bandwidth (see (1)). Moreover,
for any D2D transmitter, the maximal transmission power
pmax is considered to be 24 dBm like in [3]; while the
minimal transmission power pmin is set to 1 dBm to guarantee
existence of data transmission.

We consider two different scenarios according to the signal
propagation between the DUEs and the BSs and among all
DUEs. The first scenario assumes an open rural area with
full availability of line-of-sight (LOS) for all channels (D2D
channels and channels to BSs). The second scenario, shown

Fig. 2: Example of simulation deployment with buildings
(pink rectangles) for urban area. Note that no buildings are
present in rural area.

in Fig. 2, presents an urban area (such as scenario C2 in
[19]) with building blocks forming a regular Manhattan-like
grid (see the pink rectangular building blocks in Fig. 2). The
BSs are deployed on the roof tops serving outdoor DUEs at
the street level. In the second scenario, the buildings lead
to a non-line-of-sight (NLOS) D2D and cellular channels. In
both rural and urban areas, the LOS path loss is generated
in line with 3GPP recommendations [20]. However, in the
urban scenario, we assume that the communication channel
intercepted by a single or more building walls is exposed to an
additional loss [21]. We set the value of the signal attenuation
induced by a single wall to 10 dB. Note that Fig. 2 presents
a 2D projection of the simulated urban area, while in our
simulations, building heights range uniformly from 20 to 30
m and, thus, affect NLOS and LOS probabilities.

For the training of DNN, 500 000 samples are collected and
70% of these samples are used for training (i.e., the training
set), while the remaining 30% are left for testing (i.e., the test
set). The proposed DNN exploits six hidden layers composed
of 24, 20, 18, 15, 12, and 8 neurons, respectively. Note that
the number of hidden layers and number of neurons in each
layer are set by trial and error approach.

For the evaluation of D2D communication with the pro-
posed power control scheme, the sum capacity of D2D pairs
(i.e., C =

∑n=N
n=1 Cn ) is averaged out over 1 000 drops.

Simulation parameters are summarized in Table I.

TABLE I: Simulation parameters.

Parameter Value
Carrier frequency fc 2 GHz
Bandwidth B 1 Hz [10]
Noise power spectral density σo −174 dBm/Hz
Number of D2D pairs N 3 [10]
Number of BSs L 3− 9
Maximal transmission power pmax 24 dBm[3]
Minimal transmission power pmin 1 dBm

B. Simulation results

In this subsection, we present first the offline learning
results, i.e., the accuracy of the learning process. Then, we
show the impact of the proposed power control scheme on
the performance of D2D communication.
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Fig. 3: Classification accuracy on the test set over number of
BSs L for dmax = 50m.

Rural

pmin pmax
������pT

pn
46.7% 5.4% pmin

3.6% 44.3% pmax

Acc. on Acc. on Total
pmin pmax accuracy
92.9% 89.2% 91.1%

Urban

pmin pmax
������pT

pn
44.4% 8.8% pmin

5.8% 41.0% pmax

Acc. on Acc. on Total
pmin pmax accuracy
88.4% 82.4% 85.4%

TABLE II: Confusion matrices for rural and urban areas for
9 BSs and dmax = 50m, showing learning accuracy.

1) Learning results: The proposed DNN is trained via
samples of cellular channel gains from the training set and
their corresponding targeted transmission powers. Then, the
trained DNN is tested on the test set to show the classification
accuracy on the set of samples with cellular channel gains that
are not used for the training to prevent overfitting.

Fig. 3 shows the total accuracy of the transmission power
prediction on the test set for the rural and urban areas over dif-
ferent numbers of BSs L. As expected, the prediction accuracy
increases with the number of BSs. This accuracy improvement
with more BSs is a result of knowing more information about
each DUE (i.e., knowing cellular channel gains to more BSs).
Furthermore, we can see that the prediction accuracy on the
test set for the rural area is higher than for the urban area.
This can be explained by the fact that the cellular channel
gains to the BSs are less random in the rural area with LOS
comparing to the urban area where the probability of NLOS
is high. Therefore, in the rural area, our proposed DNN is
able to build a better-performing mapping between the cellular
channel gains of the DUEs and the proper transmission power.

Table. II shows the confusion matrices for rural and urban
areas with L = 9 BSs. Considering that pT is the targeted
transmission power and pn is the transmission power pre-
dicted by the proposed DNN, there are four possible outcomes
of prediction result as the binary power control is applied.
Each confusion matrix in Table. II shows the probability of
each of the four possible cases. For rural area, the accuracy of
the correct prediction on pmin and pmax is 92.9% and 89.2%,
respectively. For urban area, the accuracy of correct prediction
is 88.4% and 82.4% for pmin and pmax, respectively. We can

also see that the total accuracy on both pmin and pmax is
91.1% and 85.4% for the rural and urban areas, respectively.

It is worth to remember that the proposed DNN predicts
the transmission power of a single D2D pair as explained
in Section III-A, and based on this predicted transmission
power, the shown accuracy is calculated. However, in the
next subsection, the trained DNN is exploited to predict the
transmission power of multiple D2D pairs (three D2D pairs
in this paper), each independently, aiming to maximize the
sum capacity of D2D pairs as clarified in Section III-B. Note
that as the DNN is trained to predict pn of the n-th D2D
pair, every D2D pair is considered to be the n-th D2D pair to
predict its transmission power, and the cellular channel gains
at the input of the DNN are sorted accordingly.

2) Evaluation of the proposed power control scheme: In
this subsection, we analyze the performance of D2D commu-
nication when the proposed DNN predicts the transmission
power of each D2D pair. Up to our best knowledge, there is no
work in the literature exploiting the cellular channel gains of
the DUEs for D2D power control. Thus, the proposed power
control scheme (denoted as proposal) is compared with two
other existing schemes. The first one is the optimal binary
power control derived by the exhaustive search. The optimal
binary power control (denoted as Target) corresponds to the
targeted transmission powers, which are used as the proposed
DNN benchmark and which the DNN tries to reach (see
Section III-B). The second scheme assumes that each D2D
pair transmits with the full power without power control
(denoted as No-PC). The perfect estimation of the cellular
channel gains is considered for the rural area. In the urban
area, an error in the estimation of the cellular channel gains
might occur in the real network. Thus, for any channel gain
between the m-th DUE and the l-th BS Gm,l, we add an
estimation error em,l as a percentage of the real channel gain
in the urban area. The error percentage for cellular channel
gain estimation is generated via the Gaussian distribution with
a mean of 0% and a standard deviation of 5%.

Fig. 4 shows the sum capacity of D2D pairs over the
number of BSs L for the rural and urban areas. Comparing
to the No-PC, our proposed DNN-based solution achieves a
gain ranging from 18.7% to 21.4% and from 16% to 18.7% for
the rural and urban areas, respectively. Moreover, we observe
that the sum capacity of D2D pairs of the proposal reaches
close-to-optimal sum capacity (i.e., close to Target) even for
a low number of BSs. The small loss of our proposal with
respect to the Target further decreases with the availability
of the cellular channel information to more BSs. To be more
specific, increasing the number of BSs from 3 to 9 decreases
the loss comparing to the Target from 3.5% to 1.6% and from
5.4% to 3.2% for rural and urban areas, respectively.

In Fig. 5, the effect of different values of dmax on the
sum capacity of D2D pairs is illustrated for L = 9 BSs.
The sum capacity of D2D pairs for all schemes decreases
with increasing dmax due to the corresponding increment in
the attenuation of signal between DUET and DUER. Fig. 5
shows that when compared to No-PC, our proposal introduces
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a gain up to 41.9% and 28.8% for rural and urban areas,
respectively. In addition, comparing to the Target, the loss in
the performance of the proposal ranges from 2.7% to 5.2% for
the urban area. Nevertheless, for the rural area, our proposal
loses only between 0.7% and 3.7%, depending on dmax, in
terms of the sum capacity.

It is worth to remind that with respect to existing schemes
that rely on the knowledge of the D2D channel gains, our
proposed scheme requires no additional signaling to set the
transmission power of the D2D pairs except the signaling that
is anyway available for classical communication via BS.

V. CONCLUSION

In this paper, we have proposed a new power control
scheme for D2D communication requiring absolutely no
knowledge of the D2D channel gains. The proposed scheme
relies on a deep neural network that exploits solely the cellular
channel gains between DUEs and neighboring BSs to set the
transmission power of each D2D pair. The key benefit of
the proposed scheme, comparing to existing works, is that
there is no additional signaling overhead to the network. Only
the cellular channel gains, reported anyway periodically for
multiple purposes related to conventional communication and
handover, are needed to be known. The proposed scheme
reaches close-to-optimal sum capacity of D2D pairs and
outperforms the case with no power control by 16% to 41.9%.

The future work should focus on generalization of the
proposed solution towards prediction of the D2D channel
gains that can be, then, exploited for any radio resource
management problem (e.g., power control, channel allocation,
D2D relay selection, etc.).
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