
Service-Oriented MEC Applications Placement in a
Federated Edge Cloud Architecture

Bouziane Brik‡, Pantelis A. Frangoudis§, and Adlen Ksentini‡
‡EURECOM, Sophia Antipolis, France

§Distributed Systems Group, TU Wien, Vienna, Austria
Email: ‡name.surname@eurecom.fr, §pantelis.frangoudis@dsg.tuwien.ac.at

Abstract—Multi-access Edge Computing (MEC) is one of the
key enablers in 5G, where the objective is to bring computation
very close to the end users. MEC, as defined by ETSI, introduces
several services that can be exposed to MEC applications
regarding the mobile users, such as the Radio Network Infor-
mation Service (RNIS) and the Location Service, which provide
low-level information on mobile users (e.g., Channel Quality In-
dicator - CQI), allowing the development of context-aware edge
applications. In this paper, we address the challenging question
of where to deploy a set of MEC applications on a federated
edge infrastructure so as to meet the applications’ requirements
in terms of computing resources and latency, while ensuring
that the MEC platform services required by each application
are available at the selected edge locations. We formulate this
service placement problem as an Integer Linear Program, which
aims at balancing the computing load between available Mobile
Edge Platforms (MEP), while respecting application latency and
MEP service availability constraints. This problem is shown to
be NP-hard. To solve it computationally efficiently, we propose
an algorithm based on the Tabu-Search (TS) meta-heuristic.
Via simulation, we demonstrate the efficiency of our scheme in
balancing computational load among available MEPs and its
ability to optimize service placement.

Index Terms—5G, Multi-access Edge Computing (MEC),
MEC application placement, MEC Orchestrator, MEC service

I. INTRODUCTION

5G is expected to support a huge number of new services
related to different vertical industries [1]. These services
are coming with different requirements in terms of network
performance, such as access latency, bandwidth, communica-
tion reliability, the support for massive numbers of devices,
etc. Among these new services, Ultra Reliable Low Latency
Communications (URLLC) are the most challenging to sup-
port, as they need reliability with very low-latency access
(around 1ms at the Radio Access Network - RAN) [2].
Many efforts have been put on leveraging the RAN in 5G to
guarantee low latency, such as the reduction of Transmission
Time Interval (TTI) to 0.5ms or less, and the usage of small
packets for uRLLC services. However, this may not be not
enough if the remote application (connected to the URLLC
users) is deployed at remote centralized clouds. In this
context, Multi-access Edge Computing (MEC) is considered
as a complementary solution to sustain low latency for critical

This work has been partially supported by the European Union’s H2020
5G-Transformer (grant no. 761536) and 5G!Drones (grant no. 857031)
projects.

URLLC services [3]. In addition to providing an execution
environment for running applications at the edge, MEC ex-
poses services that provide information on end user and base
station (eNodeB) context, such as the radio channel quality
of users and their location in the network, allowing 3rd-
parties to build context-aware applications. MEC services are
available by the MEC platform (MEP), which is connected
to a set of eNodeBs and an Edge Virtualization Computing
Infrastructure (EVCI). In a mobile network, one MEP/EVCI
may cover a set of eNodeBs according to the operator’s
policy. Furthermore, a MEC application is run as a Virtual
Machine (VM) or a container on top of the EVCI, similarly
to a Virtual Network Function (VNF). The main difference is
that a MEC application specifies in its descriptor (AppD) [4]
some MEC-specific fields, such as the maximum tolerated
latency, the set of required MEC platform services, traffic
rules that allow to redirect the traffic to the MEC application,
and the preferred deployment location.

When deploying a MEC application at the edge, the MEC
orchestrator (MEO) has to select the optimal MEP/EVCI
components that satisfy a number of criteria, such as latency,
capacity (CPU, storage, etc.) and the availability of specific
MEC services.

However, some MEP/EVCIs may not be able to host a
MEC application, as: (i) the EVCI computation capacity is
limited compared to the centralized cloud; (ii) the latency
to access the user data plane from the EVCI may not be
respecting the stringent application constraint; (iii) the MEP
does not offer one of the MEC services required by the
MEC application. Therefore, the challenging question that is
raised is where to execute MEC applications so as to better
meet their application requirements in terms of computing
resources, latency and MEC service availability, at the same
time serving as many requests as possible.

In this paper, our focus is mainly on the deployment of
MEC applications in line with the ETSI MEC model [5]. We
propose a new deployment algorithm that decides the place-
ment of a MEC application among the available MEP/EVCIs
based on the requirements extracted from each MEC ap-
plication’s descriptor, i.e., AppD, ensuring that the pro-
posed solution is fully ETSI MEC-compliant. Our algorithm
aims to balance the computing load between the avail-
able MEP/EVCIs, while ensuring the constraints posed by



MEC. It relies essentially on an Integer Linear Programming
formulation and heuristic solutions. Our contributions are
summarized as follows:

• We study a MEC applications placement problem in
line with the MEC ETSI architecture. The problem is
formulated as an Integer Linear Program (ILP) whose
objective is to balance the computing load among
MEP/EVCIs.

• We show the problem to be NP-hard and propose a new
Tabu Search-based (TS) algorithm to find near-optimal
solutions. This is important when the number of MEC
applications and MEP/EVCIs is large and exact solu-
tions are computationally expensive. We also resolve our
ILP using Python’s PuLP optimization package [6].

• We demonstrate the performance of the proposed algo-
rithm via simulation, showing our scheme to succeed
in balancing the load among the existing MEP/EVCIs
while ensuring MEC applications’ requirements.

The remainder of this paper is organized as follows. § II
gives a literature review about MEC application placement.
§ III presents an overview on the MEC architecture as defined
by ETSI. § IV describes our application placement scheme.
We discuss the obtained experimental results in § V and
conclude the paper in § VI.

II. RELATED WORK

Only few works have addressed the problem of the place-
ment of MEC applications at the Edge Cloud. Indeed, most
of the existing works have proposed algorithms in the context
of mixed edge and central cloud such as [7] [8], [9]. Usually,
VNFs are placed either in physical machines within central
cloud infrastructures only [10], or in MEC servers [11],
[12]. Other works [13], [14] investigate the placement in
the context of a hybrid federated cloud, using a combination
of different cloud infrastructures, without however involving
the edge. In this context, the authors in [9] also propose a
VNF placement solution that captures the trade-off between
cost efficiency and Quality of Experience (QoE) in a multi-
cloud environment. However, all these works do not consider
MEC placement in a full federated edge architecture where
the availability of MEC services is as important as latency
to allow context-aware MEC applications. Moreover, these
solutions are not fully compliant with the ETSI MEC archi-
tecture.

III. MEC ARCHITECTURE

Since its creation in 2013, the ETSI ISG MEC group
has been working on the development of standardization
activities around MEC. The first released document of the
group covers the reference architecture [5], which aims to
specify the different necessary components. It introduces
three main entities:

• The MEC host or EVCI, which provides the virtual-
ization environment to run MEC applications, while
interacting with mobile network entities via the MEC
platform (MEP) to provide MEC services and data

offload to MEC applications. Two EVCIs can communi-
cate together aiming at managing user mobility via the
migration of MEC applications among MEC hosts.

• MEP acts as an interface between the mobile network
and the MEC applications. It has an interface (Mp1)
with MEC applications, so that the latter can expose and
consume MEC services, and another interface (Mp2) to
interact with the mobile network. The latter is used to
obtain statistics from the RAN on UEs and eNBs, e.g., in
order to provide the Radio Network Information Service
(RNIS) and the Location Service, and to appropriately
steer user-plane traffic to MEC applications.

• MEC applications that run on top of a virtualized
platform.

Another concept introduced by ETSI MEC is the MEC
service, which is either a service provided natively by
the MEC platform, such as the RNIS and traffic control,
or a service provided by a MEC application, e.g., video
transcoding. MEC services provided by third-party MEC
applications should be registered with the MEP and made
available over the Mp1 reference point. Once registered, a
service may be discovered and consumed by other MEC
applications. Regarding the management plane, ETSI MEC
introduced the Mobile Edge Orchestrator (MEO), which is in
charge of the life-cycle of MEC applications (instantiation,
orchestration and management), and acts as the interface
between the MEC host and the Operations/Business Support
System (OSS/BSS). The MEO is also in charge of the place-
ment of MEC applications on the appropriate MEP/EVCI by
executing a placement algorithm, which relies on the latency
and region information to decide if a MEC application has
to be placed at a MEP/EVCI in a specific region. In this
paper, we assume that the MEO has a global picture on the
availability of virtual resources that can satisfy the latency
requirements of a MEC application in a specific region or
location, as well as the availability of a MEC service on the
MEP covering that region/location.

IV. MEC APPLICATIONS PLACEMENT SCHEME

A. MEC Applications Placement Formulation

We assume that each region is covered by several MEPs
and EVCIs. Each MEP is associated with only one EVCI.
Each region may correspond to a set of Tracking Areas (TA),
as defined by 3GPP. Each TA includes several eNBs. Fig. 1
depicts the envisioned architecture.

We assume that E MEC services exist based on the
ETSI MEC specifications. These include the Radio Network
Information Service (RNIS), traffic redirection, DNS, etc. We
note by Msi = {s1, s2, . . . , sn} the set of MEC services
supported by MEPi, Avg delayi the average delay of a
MEPi to access the user data plane (i.e., eNodeB), and
Ci the capacity in terms of CPU of the EVCI associated
to the MEPi. We assume that MEO receives a request to
deploy a set of MEC applications from the OSS/BSS in a
specific region. The MEC application is described by the



TA2TA1

Region 1

MEP/EVCI MEP/EVCI

TA4TA3

Region 2

MEP/EVCI MEP/EVCI

TA5

MEP/EVCI MEP/EVCI

…

Fig. 1: Envisioned system architecture.

AppD. We note l, r and {s1, s2, . . . , sn} as the maximum
tolerated latency by the MEC application, the requested
resources in terms of CPU, and the requested MEC services,
respectively. All this information is derived from the AppD,
which is communicated by the OSS/BSS when requesting
the onboarding and instantiation of a MEC application.
Indeed, the AppD includes fields that indicate these vari-
ables, such as appServiceRequired, appLatency,
and virtualComputeDescriptor, while location in-
formation can be encoded in the userDefinedData field
or specified in the selectedMEHostInfo field of the
instantiation request. The proposed model aims to select the
MEP/EVCI, where to deploy each MEC application. To do
so, we propose the following formulation:

Min

i=N−1∑
i=1

k=N∑
k=i+1

(|
j=M∑
j=1

X(i, j) ∗ rj−

j=M∑
j=1

X(k, j) ∗ rj |)

i=N∑
i=1

X(i, j) = 1, ∀j = 1, . . . ,M

i=N∑
i=1

j=M∑
j=1

X(i, j) ∗ rj ≤ Ci

∀i ∈ {1, N}, j ∈ {1,M}, k ∈ {1, E}, X(i, j) ∗ S(j, k) =
Msi(k)

∀i ∈ {1, N}, j ∈ {1,M}, X(i, j) ∗Avg delay(i) ≤ l(j)

∀i ∈ {1, N}, j ∈ {1,M}, X(i, j) ∈ {0, 1}
(1)

X(i, j) is a binary decision matrix, where X(i, j) = 1 if
application j is hosted at the EVCI i; otherwise X(i, j)=0.
The vector l(j) represents the maximum latency supported by
the MEC applications. The matrix S corresponds to the MEC
services required by the MEC applications. S(i, k)=1 means
that application i requires MEC service k.The objective
function aims to balance the load among the MEP/EVCIs
covering a geographical area. The first constraint ensures that

a MEC application is placed in one and only one MEP/EVCI.
The second constraint guarantees that the capacity in terms
of CPU of an EVCI is not exceeded. The third constraint
aims to ensure that a MEC application is hosted at a
MEP/EVCI that provides the required MEC services. The
fourth constraint ensures that a MEC application is placed at
a MEP/EVCI, which does not violate its latency constraint.
The last constraint ensures that the variable X(i, j) is binary.
In fact, the MEC application placement problem (1) is NP-
hard where the proof can be done by reduction from the
partition problem, which is known to be NP-complete.
To remove absolute value in the objective function, least
absolute deviation is employed; it adds two new constraints
to the problem, which now becomes:

Min

i=N−1∑
i

k=N∑
k=i+1

Tj(i, k)

i=N∑
i=1

X(i, j) = 1, ∀j = 1, . . . ,M

i=N∑
i=1

j=M∑
j=1

X(i, j) ∗ rj ≤ Ci

∀i ∈ {1, N}, j ∈ {1,M}, k ∈ {1, E}, X(i, j)× S(j, k) =

Msi(k)

∀i ∈ {1, N}, j ∈ {1,M}, X(i, j) ∗Avg delay(i) ≤ l(j)

∀i ∈ {1, N}, j ∈ {1,M}, X(i, j) ∈ 0, 1

∀i ∈ {1, N − 1},∀k ∈ {i+ 1, N}, j > i,

Tj(i, k) ≥
j=M∑
j=1

X(i, j) ∗ rj −
j=M∑
j=1

X(k, j) ∗ rj

∀i ∈ {1, N − 1},∀k ∈ {i+ 1, N}, j > i,

Tj(i, k) ≥ −(
j=M∑
j=1

X(i, j) ∗ rj −
j=M∑
j=1

X(k, j) ∗ rj)

B. Tabu-Search for solving our problem
The complexity of the problem can make its solution

prohibitively expensive computationally for large problem



instances. In such cases, the use of meta-heuristics to find
a sub-optimal solution, such as Tabu search [15] [16], is
primordial. Before we proceed further, we give a general
view of the Tabu Search method.

1) Overview of Tabu Search: Tabu Search (TS) is a meta-
heuristic method that finds good solutions to large combina-
torial problems, in many practical scenarios. The basic idea
of TS is the use of short-term memories to avoid cycles and
hence returning to already visited solutions “Tabus”. These
memory structures compose the Tabu List (TL) which con-
tains a set of recently visited locations. Thus, a local search
algorithm is used to move from a solution to another in the
neighborhood solution space, until a termination condition.
Usually, termination condition is a fixed number of algorithm
iterations or a threshold value.

The TS algorithm starts with an initialization step to
generate an initial potential solution Xinit. We note that the
farther this solution is from the optimal solution, the greater
is the overall execution time.

2) TS-based MEC application placement: In this section,
we describe how we use TS to optimize the placement of
MEC applications. We first present the main elements of TS:

• For a MEC application, and as a first step, we filter
the available MEP/EVCIs such that we delete the ones
that do not provide the required services by the MEC
application.

• A potential solution X is a (N×M) assignment matrix
that ensures all the constraints in our formulation

X =

1 · · · 0
... xij

...
0 · · · 1


• To move from a solution to another, we consider swap-

ping the assignment of two MEC applications to two
EVCIs, selected randomly. Thus, a move m(N,M) is a
matrix where its elements are equal to zero except for
the elements corresponding to the positions of the new
and old assignment, which are set to one.

• A neighborhood of a solution X , or a new solution X ′,
can be reached through a simple XOR operation: X ′ =
X ⊕m.

• We consider the objective function value of each solu-
tion as its attribute. We then update the TL by adding
the attribute of the best achieved solution Xbest.

In fact, adding the attribute of the best-achieved solution,
among all explored solutions, to the TL will enable to avoid
returning to already visited solutions. Hence, we reduce both
the time of computation and the required memory for TL.
We use a simple “greedy-based” algorithm, to generate an
initial potential solution ensuring all our problem constraints.
To this end, and for each application, we select randomly an
EVCI verifying both latency and computing constraints. We
repeat this procedure until we assign all MEC applications.

Once an initial solution is reached, we apply the TS-based
algorithm in order to explore the solution space, as illustrated
in Algorithm 2.

Algorithm 1 Tabu Search-based to optimize the MEC appli-
cations placement

Require: An initial solution Xinit (Algorithm 1), num-
ber of EVCIs N , number of applications M , of-
fered CPU(N ), required CPU (M ), offered Latency
(N ), required Latency (M ), and Maxiter.

Ensure: An optimal (sub-optimal) assignment matrix Xbest.
1: Xbest ← Xinit

2: Attributebest ← Attributeinit
3: while iter ≤Maxiter do
4: Move procedure: generate a neighbor, X ′, of the

current solution Xbest by applying a move m ∈
Neighbors(Xbest).

5: Attribute procedure: compute the attribute of the new
solution X ′ (Objective function value)

6: if (Attributebest > AttributeX′) then
7: Xbest ← X ′

8: Attributebest ← AttributeX′

9: Update the TL: add the AttributeX′ to the TL.
10: end if
11: iter ← iter + 1
12: end while
13: return Xbest

V. SIMULATION AND RESULTS

In this section, we present results of experiments we
performed to evaluate our placement scheme.

A. Simulation Setup

First, we solved the ILP using Python via the linear
programming optimization package PuLP [6]. We also used
Python to implement our TS-based algorithm. We varied the
number of MEC applications as well as the EVCIs in order
to evaluate our placement algorithm in terms of both: (i) the
average latency offered by the selected EVCI, and (ii) the
average number of offered computing resources (CPUs). We
note that we generated randomly the Ci, r, Avg delayi, and
l values.

Moreover, to validate the performance of our scheme, we
compared it with another scheme that does not aim to balance
the load among the MEPs, but, instead, to maximize the
offered computing resources by the selected EVCI. There-
fore, we define the objective function of this second scheme
as follows:Max

∑i=N
i=1

∑j=M
j=1 (X(i, j)× Ci) We note that

this scheme shares the same constraints with our proposed
solutions.

B. Performance evaluation of our Integer Linear Program

TABLE I shows the percentage allocation of MEC appli-
cations to six available EVCIs, when comparing our scheme
to the no-load-balancing scheme. As we can see, our scheme
succeeds in balancing the load among the existing EVCIs
while ensuring our formulation constraints. For instance,
when the number of applications is 9, our scheme hosts the
applications at the EVCI 1, 2, 3, 5, 6 with a percentage



TABLE I: MEC Applications Load Balancing among six MEP/EVCIs.

1 2 3 4 5 6

Our
Scheme

3 33.33% 33.33% 33.33%
6 16.66% 16.66% 33.33% 33.33%
9 11.11% 11.11% 22.22% 22.22% 33.33%
12 8.33% 16.66% 33.33% 25% 16.66%

No Load
Balancing

3 33.33% 66.66%
6 66.66% 33.33%
9 55.55% 44.44%
12 91.66% 8.33%

(A) (B)

(C) (D)

Fig. 2: Performance evaluation of our scheme in terms of our placement scheme. (A) The average offered latency while varying
the number of applications. (B) The offered computing resources while varying the number of applications. (C) The average
offered latency while varying the number of EVCIs. (D)The offered Computing resources while varying the number of EVCIs.

(A) (B)

Fig. 3: Performance evaluation of our TS-based scheme in terms of the average offered latency (A) and computing resources
(B), while varying the number of algorithm iterations and fixing the number of EVCIs and MEC applications to 50 and 100,
respectively.



of 11.11%, 11.11%, 22.22%, 22.22%, 33.33%, respectively.
We note that it did not assign any application to the EVCI
4, as the latter cannot ensure the problem constraints (la-
tency and/or computing resources). However, for all cases,
we observe that the no-load-balancing scheme hosts the
applications at a maximum of two EVCIs. It is clear that
this scheme aims only at maximizing the number of offered
computing resources (CPUs), which results in not balancing
the applications load between the EVCIs.

Fig. 2-(A) depicts the average latency offered by the
selected EVCI when we increase the number of applications.
Our scheme outperforms the other scheme by minimizing the
offered latency whatever the number of applications. In fact,
balancing the load among the MEPs enables also to improve
the latency, as it will be possible to make more in parallel
connections, which improves the connection delay to access
to the user data plane (i.e., eNodeB). However, both schemes
generate the same performance in terms of offered computing
resources, when varying both the number of applications
(cf. Fig. 2-(B)) and EVCIs (cf. Fig. 2-(D)). This is mainly
because the no-load-balancing scheme also aims to maximize
the available computing resources. In addition, we observe
that both schemes provide a stable number of computing
resources when we keep the number of EVCIs fixed (equal
to 6, cf. Fig. 2-(B)), while it increases as we increase the
number of EVCIs (cf. Fig. 2-(D)). This is a reasonable result
as the offered computing resources depends strongly on the
number of available EVCIs and not the applications.

Fig. 2-(C) shows the average offered latency while varying
the number of EVCIs and fixing the number of applications
to 6. As for Fig. 2-(A), our scheme improves latency when
compared to the other scheme, as the latter focuses more on
the computing resources. Moreover, the generated latency by
our scheme decreases as we increase the number of EVCIs.
It is clear that providing more EVCIs and balancing the load
between them will enable to improve the application latency
through the parallel connections, as we mentioned before.

C. Performance evaluation of our Tabu Search-based scheme

Fig. 3-(A) and (B) illustrate the average offered latency
and computing resources of the selected solution using our
TS-based algorithm. We clearly remark that our scheme
minimizes the applications latency as compared to the no-
load-balancing scheme. In addition, we see that the provided
computing resources of our scheme’s solution are a little bit
more than that of the other scheme. These results demonstrate
the efficiency of our Tabu Search algorithm to find an optimal
(sub-optimal) solution that improves both the application
latency and offered computing resources.

Therefore, our scheme achieves a better and stable per-
formance compared to the no-load-balancing scheme. This
shows not only the utility of balancing the applications load
among EVCIs to provide the required computing resources
and to achieve a good application latency, but also the
efficiency of our TS-based algorithm to select and find a
high-quality solution.

VI. CONCLUSION AND FUTURE WORK

In this paper, we devised a new MEC application place-
ment scheme in a full federated edge architecture following
the ETSI model. Our scheme is based on both a linear
program for a low number of applications as well as
EVCIs, and on the meta-heuristic Tabu-Search when the
number of applications and EVCIs is increased. It allows the
MEO to decide which MEP/EVCI has to host the instance
of a MEC application by considering ETSI MEC related
constraints: computing resources, latency and MEC service
availability. Experimental results showed the efficiency of our
scheme in balancing MEC applications load among available
MEP/EVCIs, as well as the ability of our TS-based algorithm
to find sub-optimal, or optimal, solutions. As a future work,
we are aiming to evaluate more thoroughly the performance
of our TS-based scheme by comparing it with other meta-
heuristics and considering other performance indicators.

REFERENCES

[1] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and
emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.

[2] A. Ksentini et al., “Providing low latency guarantees for slicing-ready
5G systems via two-level MAC scheduling,” IEEE Network, 2018, in
press.

[3] T. Taleb et al., “On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestration,” IEEE
Communications Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681,
thirdquarter 2017.

[4] Mobile Edge Computing (MEC); Mobile Edge Management; Part
2: Application lifecycle, rules and requirements management, ETSI
Group Specification MEC 010, 2017.

[5] Mobile Edge Computing (MEC); Framework and Reference Architec-
ture, ETSI Group Specification MEC 003, 2016.

[6] S. Mitchell, S. M. Consulting, and I. Dunning, “Pulp: A linear
programming toolkit for python,” 2011.

[7] L. Yala et al., “Latency and availability driven vnf placement in a
mec-nfv environment,” in Proc. IEEE GLOBECOM, 2018.

[8] F. B. Jemaa, G. Pujolle, and M. Pariente, “QoS-aware VNF placement
optimization in edge-central carrier cloud architecture,” in Proc. IEEE
GLOBECOM, 2016.

[9] I. Benkacem et al., “Optimal VNFs placement in CDN slicing over
multi-cloud environment,” IEEE Journal on Selected Areas in Com-
munications, vol. 36, no. 3, pp. 616–627, 2018.

[10] F. Bari et al., “Orchestrating virtualized network functions,” IEEE
Transactions on Network and Service Management, vol. 13, no. 4,
pp. 725–739, 2016.

[11] S. Wang et al., “Dynamic service migration in mobile edge-clouds,”
in Proc. IFIP Networking, 2015.

[12] K. Katsalis et al., “SLA-driven VM scheduling in Mobile Edge
Computing,” in Proc. 9th IEEE International Conference on Cloud
Computing (CLOUD), 2016, pp. 750–757.

[13] Z. Wen et al., “Cost effective, reliable and secure workflow deployment
over federated clouds,” IEEE Transactions on Services Computing,
vol. 10, no. 6, pp. 929–941, 2017.

[14] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-
optimal scheduling in hybrid IaaS clouds for deadline constrained
workloads,” in Proc. IEEE 3rd International Conference on Cloud
Computing (CLOUD), 2010, pp. 228–235.

[15] H. Kamal, M. Coupechoux, and P. Godlewski, “A tabu search dsa
algorithm for reward maximization in cellular networks,” in 2010
IEEE 6th International Conference on Wireless and Mobile Computing,
Networking and Communications, Oct 2010, pp. 40–45.

[16] R. B. Messaoud and Y. Ghamri-Doudane, “Qoi and energy-aware
mobile sensing scheme: A tabu-search approach,” in 2015 IEEE 82nd
Vehicular Technology Conference (VTC2015-Fall), Sept 2015, pp. 1–6.


