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Abstract—Channel quality feedback is crucial for the operation
of 4G and 5G radio networks, as it allows to control User
Equipment (UE) connectivity, transmission scheduling, and the
modulation and rate of the data transmitted over the wireless
link. However, when such feedback is frequent and the number of
UEs in a cell is large, the channel may be overloaded by signaling
messages, resulting in lower throughput and data loss. Optimizing
this signaling process thus represents a key challenge. In this
paper, we focus on Channel Quality Indicator (CQI) reports that
are periodically sent from a UE to the base station, and propose
mechanisms to optimize the reporting process with the aim of
reducing signaling overhead and avoiding the associated channel
overloads, particularly when channel conditions are stable. To
this end, we apply machine learning mechanisms to predict
channel stability, which can be used to decide if the CQI of
a UE is necessary to be reported, and in turn to control the
reporting frequency. We study two machine learning models
for this purpose, namely Support Vector Machines (SVM) and
Neural Networks (NN). Simulation results show that both provide
a high prediction accuracy, with NN consistently outperforming
SVM in our settings, especially as CQI reporting frequency
reduces.

Index Terms—5G, signaling overhead, CQI optimization, ma-
chine learning, SVM, NN.

I. INTRODUCTION

5G mobile networks [1] are designed to provide new and
enhanced services that make life easier in several areas intro-
duced in the Internet of Things (IoT), such as smart cities,
health care, agriculture, transportation, and manufacturing. To
accommodate these services, 5G has to meet critical require-
ments in terms of low latency, high reliability, high bandwidth,
and the support for massive numbers of connected devices.

Providing a reliable communication technology represents
a key challenge for 5G systems in both Core Network [2] and
Radio Access Network (RAN) levels. In order to achieve relia-
bility at the RAN level, a base station (eNodeB or gNodeB, in
4G and 5G terminology, respectively) should allocate a suffi-
cient amount of radio resources per UE, and appropriately se-
lect the modulation and coding scheme (MCS) in order to meet
the requirements of each considered application. The amount
and configuration of these resources, i.e., physical Resource
Blocks (pRB), are directly related with the channel conditions
at the UE end. For this reason, the base station should ideally
know in real time the quality of the channel of each device,
which allows it to properly schedule the necessary number of
physical resources (NpRB) for transmission [3]. In 4G and

5G networks, this number depends on the Channel Quality
Indicator (CQI) value, which is periodically reported by UEs
to the base station, and conveys their current communication
channel quality [4]. Nevertheless, the periodic transmission of
CQI information incurs signaling overhead; this may overload
links and negatively impact RAN performance. Therefore, it
is important to optimize this signaling process, in order to be
able to improve on Quality of Service (QoS).

This work is put in the context of our 5G RAN slicing
design presented in [5], including a slice orchestrator respon-
sible for cross-slice resource sharing [6]. Our architecture
requires accurate channel quality information per UE at the
gNodeB and at the slice orchestrator level, in order to be
able to estimate and dynamically adjust the radio resource
allocation to satisfy the heterogeneous requirements of coex-
isting network slices. This information is reported by UEs via
standard procedures, and propagates to the slice orchestrator
via a southbound protocol by base stations. The challenge that
we face and the particular motivation for this paper is to reduce
this reporting overhead.

The key element responsible for fluctuations in CQI values
are the changes in the radio environment which may be due
to user mobility, multi-path effects, and other phenomena. We
introduce the term channel mobility to denote time-varying
changes in the radio environment of a UE: On the one hand,
the channel is considered static if its conditions are mostly
stable, when typically the UE is static or low-mobility for a
period of time. Thus, the reported CQI values remain constant
or show minimal variation, which does not impact radio re-
source allocation. On the other hand, the channel is considered
mobile when it varies significantly due to factors such as
UE mobility and other effects. In this case, the CQI values
exhibit significant fluctuations. Consequently, it is crucial that
the base station is informed about the changed channel quality
information, in order to determine the appropriate amount of
resources to be allocated, and update the NpRB values for the
different UEs.

Our work is in the direction of reducing the signaling
overhead by optimizing the reporting of CQI information via
limiting the amount of unnecessary transmitted messages, at
the same time ensuring that the e/gNodeB has an accurate
view of the channel conditions at the UE end. Ideally, the
UEs should notify the base station only when their channel
conditions have actually changed.



Detecting whether the channel is static or mobile over time,
though, is challenging, and this is the main issue we address
in this paper. To this end, we apply machine learning (ML)
techniques in order to be able to detect channel variations.
Our approach involves collecting data from the system in
order to study, analyze and extract the information needed
to make a decision. In fact, having a lot of different types
of data about per-UE channel quality, complemented with
other information such as user mobility patterns, fine-grained
geographical locations, etc. would assist in getting a more
accurate view from the output of the ML algorithm, to properly
identify the stability of the channel. However, this may not be
feasible for technical and privacy reasons.

In this paper, we make the following contributions: We
propose a ML-driven methodology to predict channel mobility
and accordingly adapt the CQI reporting frequency, aiming to
reduce signaling overhead while maintaining an accurate view
of channel conditions per UE to appropriately allocate radio
resources. We study, analyze and predict the channel’s state
using two different machine learning algorithms to evaluate
their suitability and select the more accurate one for our
purposes. Our first design goal is to avoid the collection of
many data metrics, thus focusing only on the CQI parameter;
the features we have selected for training and classification
can be calculated solely by the statistical processing of the
collected CQI values. Our second design goal is to avoid
the collection of large volumes of CQI data; to this end, we
evaluate different frequencies to collect these data and their
impact on the accuracy of identifying channel mobility.

The remainder of this paper is organized as follows: Sec-
tion II discusses some of the relevant works in the literature
which focus on reducing the CQI signaling overhead. Our pro-
posed ML-based method is described in detail in Section III.
Section IV presents performance evaluation results, where
we quantitatively compare candidate ML algorithms for our
purposes. Finally, Section V concludes the paper and reports
on our plans for future work.

II. RELATED WORK

Several research works in the literature have been elaborated
in order to control the transmission of CQI information,
allowing the optimization of the signaling overhead. Two
families of such control techniques have been devised.

A. Techniques based on frequency

Techniques of this kind are based on compression models.
Indeed, the idea to reduce the signaling overhead consists
in sending a compressed CQI value of a series of pRBs,
instead of sending a CQI value for each one. In this context,
three categories were proposed as follows [7]: i) Broadband
compression, where a single CQI value transmitted refers to
all pRBs of the bandwidth, ii) sub-band compression, where
the bandwidth is divided into multiple sub-bands with the
same size, and the UE selects only one CQI value to be
transmitted to the base station, and iii) full band compression,
where the base station estimates the total bandwidth quality,

using mathematical transformations such as the discrete cosine
transform and the Haar wavelet transform.

Sivridis and He [8] presented a non-predictive signaling re-
duction scheme, where users with high signal-to-interference-
plus-noise ratio (SINR) transmit only broadband information,
while users with low SINR are allowed to return on-demand
instant CQI information at high rates. Therefore, a technique
was proposed to determine the threshold that separates users
required to use full-band feedback from users required to use
compression in the wide-band frequency domain.

The work of Kang and Kim [9] is based on the sub-band
compression method, allowing to analyze and select the best
M-feedback for orthogonal frequency division multiple access
(OFDMA) systems. In addition, a combined optimization was
applied to minimize feedback overhead costs based on the
number of reported resource blocks per user and the signal to
quantization noise ratio bits.

Abdulhasan et al. [10] presented a compression scheme
for CQIs in a 3GPP-LTE and LTE-A system, where CQI
values are communicated to eNodeBs based on a defined
threshold. A trade-off was presented to select the appropriate
threshold, since a high threshold is recommended for high
speed conditions, whereas a low threshold is recommended to
ensure reliable transmission mainly in an overloaded network.

B. Techniques based on timing

Chiumento et al. [11] proposed an estimation method of the
channel quality based on Gaussian Process regression at the
base station. This is achieved thanks to an adaptive and online
CQI prediction scheme allowing estimation of the channel
quality variations, and the behavior monitoring of each user.

In [12], the authors dealt with the CQI aging problem, which
could be defined by the mismatch between the CQI used for
the channel adaptation and the current state of the channel.
This problem is caused due to processing delays or because of
infrequent CQI reporting. To overcome this problem, authors
proposed a comparison study of various signal-to-noise ratio
prediction algorithms, such as Kalman filters, among others.

In [13], an algorithm is presented for dynamic CQI resource
allocation using ARQ information, Doppler mobility monitor-
ing, and the MAC layer service classifier. The idea consists in
the combination of information from the physical and MAC
layers, providing an additional information about the channel
quality and its effect on MAC frames in terms of delay, packet
error rate, etc. This approach allows tuning the periodicity of
the feedback window in order to address QoS, robustness, and
feedback overhead tradeoffs.

The proposed methods to optimize signaling overhead pro-
vided relatively interesting results. However, almost all of
them consisted in the prediction of channel quality based on
complex optimization algorithms, as well as required several
input parameters that are often not feasible to acquire, nor ac-
curate in some conditions. Our approach is inspired from these
schemes, but it is based on a simpler intelligent mechanism,
which only requires as input CQI information for accurate
channel mobility prediction.



III. CHANNEL STABILITY PREDICTION USING MACHINE
LEARNING

This section focuses on the description of the proposed con-
cept to predict channel stability based on ML. This mechanism
can then be used to optimize the transmission of CQI data
messages and thus reduce the associated signaling overhead.

A. Overview and objectives

CQI messages are sent periodically from UEs to the
e/gNodeB, in order to provide it information about the channel
quality allowing it to appropriately allocate resources. When
channel quality is relatively stable, the CQI values do not vary
a lot. Therefore, an increased CQI reporting frequency does
not contribute to the view the base station has on the actual
radio conditions of a UE link, and does not affect the quality of
the radio resource allocation. We thus thus take advantage of
channel stability to avoid transmitting unnecessary CQI reports
and aleviate the associated overhead.

Our approach consists in monitoring the channel state for a
period T . If channel mobility is identified by the predictor,
a new CQI value is required to adjust resource allocation.
Otherwise, there is no need to receive new CQI values;
the e/gNodeB allocates radio resources considering the last
received CQI value as accurate and stable, and the CQI
reporting frequency can be reduced. The different steps of this
concept are illustrated in Fig. 1.
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Fig. 1: Our concept and methodology to reduce CQI monitor-
ing overhead.

The proposed monitoring phase is based on a machine
learning algorithm, which helps predict the channel state. In
this paper, we have tested some ML algorithms, then we
have selected Support Vector Machines and Neural Networks
as they offer better accuracy.The next section focuses on
describing how these two ML schemes are applied in our
network settings in order to predict channel mobility based
on different frequencies of collected data.

B. Steps to predict the channel’s state

In this section, we present in detail the steps involved
in our ML-based methodology, and the metrics we use to
evaluate the performance of the candidate algorithms for chan-
nel mobility prediction. Indeed, there are different machine
learning approaches [14]. The most commonly used are: i)
Supervised learning, which consists in training the algorithm
using a set of data consisting of an input and a desired output.
Then, a function that maps an input to an output is inferred
based on the training data. This function allows the mapping
of new unseen data instances to output values, which may
correspond to distinct classes; ii) Unsupervised learning, which
consists in learning in a self-organized way allowing to find
an unknown sample from a set of data without being based
on an existing label; and iii) Reinforcement learning, which
allows to decision making by interacting with an environment,
formulated as a Markov decision process. It has similarities
with supervised learning, but without the need for labelled
input/output pairs.

In this paper, we apply supervised learning techniques and
define two classes (static and mobile) based on the CQI
parameter. We evaluate two supervised learning algorithms
in order to predict the channel state and assign it to the
appropriate class:

• Neural Network (NN) [15]: This mechanism is modelled
and inspired from the human brain, aiming to create an
artificial neural network. The concept consists in learning
the machine by incorporating new data. The machine
typically consists of different layers of interconnected
neurons, each one of which interprets the input data
through a kind of machine perception and sends an output
to a connected neuron, until the last layer provides the
output of the system.

• Support Vector Machine (SVM) [16]: This approach
consists in learning from a set of multi-dimensional data
vectors labelled by their category (class), and creating a
model used to classify new data by finding the hyperplane
that separates the training data by the optimal (maximum)
margin. SVM is a binary linear classifier.

Fig. 2 presents the different steps involved in the channel
state prediction process.

1) Feature vector creation and labeling phase: This phase
involves the collection of data and their processing in order to
extract specific features and create feature vectors (also called
characteristic vectors) that will be used for training a classifier.
Raw data are collected in the form of vectors for different
channels during a period T . A feature vector is then created
for each data vector (i.e, for each channel).

In fact, different types of data representing the channel state
may be used, such as SNIR, CQI, and others [17]. We select
the CQI parameter for the proposed predictive system, as this
parameter provides sufficient information on the channel state
and is used by the MAC scheduler to allocate resources and
decide on parameters such as the MCS. We extract a feature
vector from each CQI data vector after a preprocessing step,
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Fig. 2: ML-driven channel stability prediction.

in order to have the relevant data for the predictive system to
identify the channel state (mobile or static).

Preprocessing is carried out on the data vector CQIT =
[cqi1, cqi2....cqin] of n CQI values collected during a period
T in order to extract the characteristic vector F= [F1 F2 F3].
The extracted features are the following.

• F1: The difference between the maximum and minimum
values of collected CQIs in the data vector CQIT .

F1 = cqimax − cqimin (1)

The channel may be static if F1 is small or zero, which
might mean that the UE is static and the environment is
stable (there are no significant effects that cause a drastic
change in the CQI value). This feature can provide an
idea of the channel state, but it is not sufficient to make
a decision.

• F2: Variance.

F2 =
1

n

n∑
n=1

(cqii − CQIT ) (2)

This feature measures the dispersion of CQI values rela-
tively to the average CQIT , which characterizes the level
at which the CQI can have a value more or less far from
its expectation.

• F3: The vertical change of the CQI curve slope, repre-
senting the CQI change in different samples in period
T .

F3 =| CQI(ti+∆)− CQI(ti) |, (3)

where CQI(ti) and CQI(ti+∆) are the CQIs collected
at ti and ti+∆ respectively, where these two times are
inside the sample (∆=5 in our case). Multiple F3 values
are extracted for each sample. Thus, the size of F depends
on the number of F3.

After the creation of vector F , a known label (static or
mobile) is assigned to it, in order to be used for the training
phase.

2) Creation of a machine learning-based predictive system:
To create the predictive system, a machine learning algorithm
operates in two phases as follows.

a) Training phase: 70% of the feature vectors with their
labels (representing the real classes) are used to train the
classifier. During this training phase, the ML algorithm creates
a function that maps inputs (feature vectors) to outputs (labels),
used then to classify new vectors. In this stage, the SVM
algorithm learns a linear function, while the NN algorithm
also supports non linear functions.

b) Test and validation phase: This phase uses the rest of
the feature vectors (30%). It consists in checking the predicted
classes of these vectors against their assigned labels. The
validation of the predictive system is based on a confusion
matrix [18], which consists of the number correctly and incor-
rectly classified samples per class. Performance is evaluated
in terms of the following metrics:

• Accuracy, i.e., the ratio of the number of correctly pre-
dicted vectors to the total number of vectors.

Accuracy =
# correctly predicted

# feature vectors
(4)

• F1-score, which is defined by the weighted average of
precision and recall, where, precision is the ratio of the
number of correctly predicted mobile class instances to
the total number of predicted mobile class ones (i.e.,
false and correct), and recall, also called sensitivity, is
the ratio of the number of correctly predicted instances
of the mobile class to the number of all true mobile class
ones.

F1.score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(5)

3) Application phase: This step consists in classifying a
new CQI data set over different frequencies of collecting data
(i.e., sample size variation). To evaluate this phase, we use the
True Positive Rate (TPR) and the True Negative Rate (TNR)
metrics, where the positive class refers to the mobile class and
the negative one refers to the static class. TPR and TNR are
defined as follows:

TPR =
# correctly classified as mobile

# mobile
(6)

TNR =
# correctly classified as static

# static
(7)

IV. PERFORMANCE EVALUATION

This section focuses on the performance evaluation of the
channel mobility predictive system provided by the two ML
algorithms (NN and SVM). We first create our dataset by
generating CQI values for different channel mobility states
using the ns3 simulator. Then, we use MATLAB [19], [20]
to train and test ML algorithms based on the provided data
set, as well as to evaluate new CQI data sets with different
CQI collection frequencies. For the NN case, we trained a
neural network with a single hidden layer using the Levenberg-
Marquardt algorithm. We experimented with different layer



sizes and found that using 10 neurons in the hidden layer
provided the best accuracy among the options that we tested.
Performance is evaluated first for the test and validation phase,
and then for the application phase for both ML algorithms.

1) Test and validation phase evaluation: In order to create
a data set with realistic CQI values corresponding to different
degrees of user mobility, we simulated an LTE cell using
ns3, where UEs move with different constant velocities. We
thus generated approximately 15, 500 vectors of CQI values
with different channel mobility states and extracted a feature
vector for each CQI vector as described in Section III-B1,
which we labelled either as static or mobile, depending on the
level of UE mobility. Note that a feature vector is calculated
on a sequence of CQI values collected during a time period
T = 400 ms. For both ML algorithms considered, we use 70%
of our data for training and the remaining 30% for test and
validation. Table I presents the results of the validation phase
in terms of accuracy and F1-score for the two candidate ML
mechanisms.

TABLE I: Accuracy and F1-score of NN and SVM algorithm

NN SVM
Accuracy 96.43% 92.86%
F1-score 96.29% 92.30%

As shown in this table, both algorithms are able to learn
and predict the channel state with high performance, as they
provide an accuracy and F1-score of more than 90%. We
notice, though, that the NN scheme outperforms SVM in terms
of accuracy and F1-score by approximately 4%.

This can be explained by the fact that SVM is based on
the margin maximization of the linear hyperplane separator
between the two classes (static and mobile) [16]. That is why
it is not able to well classify vectors close to this separation.
Contrariwise, NN is based on a non-linear function to separate
between classes allowing it to better handle such cases.

2) Application phase evaluation: After the test and vali-
dation of the predictive system, we use ns3 simulations in a
similar way to create a new CQI dataset for the application
phase, in order to evaluate the efficiency of our classifiers
and evaluate their behavior for different CQI collection fre-
quencies. The generated feature vectors are created from raw
data that correspond to two types of UE mobility (mobile
and stable) and are labelled as such. Four groups of test data
were generated, each for a different CQI reporting frequency,
namely every 2, 10, 50 and 100 ms. Performance is evaluated
in terms of TPR for the mobile class and TNR for the static
class. The obtained results are as follows:

• The static channel state obtains TNR performance be-
tween 99% and 100% for any CQI collection frequency
and for both NN and SVM algorithms. In fact, for
this class, all CQI values are relatively close to each
other. This is why the selected samples with the different
frequencies provide a small variation in the features of
the vector F, allowing to identify the channel as static.

Therefore, it is evident that both algorithms succeed in
correctly predicting channel mobility in the static case.

• The prediction of the mobile channel state is harder, as
CQI values are highly varied. Therefore, the predictive
system should detect the variation of the CQI values
with different data collection frequencies, as well as,
appropriately select samples (with the varied CQI values)
on which it is based to select the appropriate class. The
obtained results of TPR performance for the different
reporting periods are illustrated in Fig. 3.
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Fig. 3: TPR of mobile channel for different CQI reporting
frequencies. The x-axis represents the period between two
consecutive CQI reports by a UE.

As shown in this figure, for small periods (2ms and
10ms), both algorithms achieve a high TPR performance
(more than 95%). It can also be noticed that there is a
small increase with the NN algorithm. However, for low
CQI collection frequencies, TPR is significantly reduced
for both NN and SVM algorithms. For 50ms and 100ms,
TPR is respectively around 76.67% and 42% with NN,
compared to 65.5% and 19% respectively when using
SVM. These results show that the predictive system
provided by NN has the ability to detect channel mobility
more effectively and is more robust when CQI is reported
with a lower frequency (large periods). Although when
the reporting period is 100ms the TPR is relatively low
for NN, it still achieves a 2× increase in performance
compared to the TPR of the SVM algorithm. The NN
algorithm outperforms SVM, thanks to the non-linear
function used to separate between classes.

3) Prediction quality evaluation: This part focuses on eval-
uating the quality of the prediction of the NN and SVM-based
approaches relatively to different CQI collection frequencies.
To quantify it, we are relying on appropriate prediction quality
metrics for each ML scheme. In particular, the metric we use
for SVM is the prediction likelihood (also called prediction
probability), which is an expression of the certainty that a
feature vector is correctly classified. It is calculated by taking
into account how far the score returned by the SVM classifier
is from the threshold value that classifies a test vector. In a
similar sense, the metric we use for the NN classifier is the



Mean Squared Error (MSE), which conveys the uncertainty
about the correctness of the classification.
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Fig. 4: Prediction score for different CQI reporting frequen-
cies. The x-axis represents the period between two consecutive
CQI reports by a UE.

As illustrated in Fig. 4, when the CQI collection frequency
decreases, the likelihood to correctly predict the channel state
by the SVM algorithm reduces and the mean squared error of
the NN algorithm increases. These results are due to the fact
that when the CQI reporting frequency is smaller, there are
fewer raw CQI samples during the time window T = 400 ms
out of which a feature vector is created. This lost information
has often the effect that the variability of CQI values in a
window decreases. There are cases when the real value of
the CQI between consecutive samples in a window fluctuates
but this is not captured in the data samples, making the CQI
appear to remain mostly constant during the collection period
and, in turn, causing the algorithm to mis-classify the channel
as static. For these reasons, the prediction error rate impacts
the TPR as presented in Fig. 3, where the TPR drops as the
collection data frequency decreases.

V. CONCLUSION

We focused on ways to reduce the signaling overhead
caused by the periodic transmission of channel quality feed-
back in the form of CQI reports in 4G and 5G mobile
networks. Our approach consists in avoiding to transmit un-
necessary CQI messages by taking into account the stability of
channel conditions, i.e., reducing the amount of CQI reports
when the value of the latter does not change significantly
over time, as a result of a stable channel. To this end, we
addressed the challenge of predicting the channel’s stability,
proposing machine learning-based mechanisms that only re-
quire CQI information as input. Our mechanisms thus operate
in a standards-compliant way and require no cross-layer or
other external information, such as user locations or mobility
patterns. We compared two ML schemes for this purpose,
namely Support Vector Machines (SVM) and Neural Networks
(NN), evaluating and analyzing their prediction accuracy. We
further addressed the tradeoff between prediction accuracy and
data collection frequency, and experimentally showed neural
networks to consistently outperform SVMs in all our settings.

In this paper, we mainly focused on evaluating the predic-
tion accuracy of the candidate ML schemes. The next step is to
launch a deeper study on the impact of our proposed method-
ology and mechanisms, integrating them in the 5G network

slice management architecture that we have proposed in our
prior work. Our immediate goal is to evaluate the signaling
cost improvements that can be achieved, and the impact of
our proposed mechanisms on the allocated resources and the
attained performance in terms of latency and throughput for
heterogeneous 5G network slices.
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