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Abstract

We present a novel method – libre – to learn
an interpretable classifier, which materializes
as a set of Boolean rules. libre uses an en-
semble of bottom-up, weak learners operat-
ing on a random subset of features, which
allows for the learning of rules that general-
ize well on unseen data even in imbalanced
settings. Weak learners are combined with
a simple union so that the final ensemble is
also interpretable. Experimental results in-
dicate that libre efficiently strikes the right
balance between prediction accuracy, which
is competitive with black-box methods, and
interpretability, which is often superior to al-
ternative methods from the literature.

1 INTRODUCTION

Model interpretability has become an important factor
to consider when applying machine learning in critical
application domains. In medicine, law, and predictive
maintenance, to name a few, understanding the out-
put of the model is at least as important as the output
itself. However, a large fraction of models currently
in use (e.g. DeepNets, svms) favor predictive perfor-
mance at the expenses of interpretability.

To deal with this problem, interpretable models have
flourished in the machine learning literature over the
past years. Although defining interpretability is dif-
ficult (Miller, 2017; Doshi-Velez and Kim, 2017), the
common goal of such methods is to provide an expla-
nation of their output. The form and properties of the
explanation are often application-specific.

In this work, we focus on predictive rule learning for
challenging applications where data is imbalanced. For
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IF mean corpuscular volume ∈ [90, 96)
OR gamma glutamyl transpeptidase ∈ [20, max]
THEN liver disorder = True
ELSE liver disorder = False

Figure 1: Example of rules learned by libre for Liver.

rules, interpretability translates into simplicity, and it
is measured as a function of the number of rules and
their size (average number of atoms): such proxies are
easy to compute, understandable, and allow compar-
ing several rule-based models. The goal is to learn a set
of rules from the training set that (i) effectively predict
a given target, (ii) generalize to unseen data, (iii) and
are interpretable, i.e., a small number of short rules
(e.g., fig. 1). The first objective is particularly diffi-
cult to meet in presence of imbalanced data. In this
case, most rule-based methods fail at characterizing
the minority class. Additional data issues that hinder
the application of rule-based methods (Weiss, 2004)
are data fragmentation (especially in case of small-
disjuncts (Holte et al., 1989)), overlaps between im-
balanced classes, and presence of rare examples.

Many seminal rule learning methods come from the
data mining community: cba (Liu et al., 1998),
cpar (Yin and Han, 2003), and cmar (Li et al., 2001),
for example, use mining to identify class association
rules and then choose a subset of them according to a
ranking to implement the classifier. In practice, how-
ever, these methods output a huge number of rules,
which negatively impacts interpretability.

Another family of approaches includes methods like
cn2 (Clark and Niblett, 1989), foil (Quinlan and
Cameron-Jones, 1993), and ripper-k (Cohen, 1995),
whereby top-down learners build rules by greedily
adding the condition that best explains the remaining
data. Top-down learners are well suited for noisy data
and are known to find general rules (Fürnkranz et al.,
2014). They work well for the so called large disjuncts,
but have difficulties to identify small-disjuncts and
rare examples, which are quite common in imbalanced
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settings. In contrast, bottom-up learners like mod-
lem (Grzymala-busse and Stefanowski, 2001), start
directly from very specific rules (the examples them-
selves) and generalize them until a given criteria is
met. Such methods are susceptible to noise, and tend
to induce a very high number of specific rules, but are
better suited for cases where only few examples char-
acterize the target class (Fürnkranz et al., 2014).

Hybrid approaches such as bracid (Napierala, 2012)
take the best from both worlds: maximally-specific
(the examples themselves) and general rules are used
together in a hybrid classification strategy that com-
bines rule learning and instance-based learning. Thus,
they achieve better generalization, also in imbalanced
settings, but still generate many rules, penalizing in-
terpretability. Other approaches to tackle data-related
issues include heuristics to inflate the importance of
rules for minority classes (Grzymala-Busse et al., 2000;
Nguyen and Ho, 2005; Blaszczynski et al., 2010).

Recent work focus on marrying competitive predic-
tive accuracy with high interpretability. A popular
approach is to use the output of an association rule
discovery algorithm (like FP Growth) and combine
the discovered rules in a small and compact subset
with high predictive performance. The rule combina-
tion process can be formalized either as an integer opti-
mization problem or solved heuristically, explicitly en-
coding interpretability needs in the optimization func-
tion. Such approaches have been successfully applied
to rule lists (Yang et al., 2017; Chen and Rudin, 2018;
Angelino et al., 2018) and rule sets (Lakkaraju et al.,
2016; Wang et al., 2017). Alternatively, rules can be
directly learned from the data through an integer opti-
mization framework (Hauser et al., 2010; Chang et al.,
2012; Malioutov and Varshney, 2013; Goh and Rudin,
2014; Su et al., 2016; Dash et al., 2018).

Both rule-mining and integer-optimization based ap-
proaches underestimate the complexity and impor-
tance of finding good candidate rules, and become ex-
pensive when the input dimensionality increases, un-
less some constraints are imposed on the size and sup-
port of the rules. Although such constraints favour
interpretability, they have a negative impact on the
predictive performance of the model, as we show em-
pirically in our work. Additionally, these methods do
not consider class imbalance issues.

The key idea in our work is to exploit the known ad-
vantages of bottom-up learners in imbalanced settings,
and improve their generalization and noise-tolerance
through an ensembling technique that does not sac-
rifice interpretability. As a result, we produce a rule-
based method that is (i) versatile and effective in deal-
ing with both balanced and imbalanced data, (ii) in-

terpretable, as it produces small and compact rule sets,
and (iii) scalable to big datasets.

Contributions. (i) We propose libre, a novel en-
semble method that, unlike other ensemble proposals
in the literature (W. Cohen and Singer, 1999; Fried-
man and Popescu, 2008; Dembczyński et al., 2010) is
interpretable. Each weak learner uses a bottom-up ap-
proach based on monotone Boolean function synthesis
and generates rules with no assumptions on their size
and support. Candidate rules are then combined with
a simple union, to obtain a final interpretable rule set.
The idea of ensembling is crucial to improve general-
ization, while using bottom-up weak learners allows to
generate meaningful rules even when the target class
has few available samples. (ii) Our base algorithm for
a weak learner, which is designed to generate a small
number of compact rules, is inspired by Muselli and
Quarati (2005), but it dramatically improves compu-
tational efficiency. (iii) We perform an extensive ex-
perimental validation indicating that libre scales to
large datasets, has competitive predictive performance
compared to state-of-the-art approaches (even black-
box models), and produces few and simple rules, often
outperforming existing interpretable models.

2 BACKGROUND AND
DEFINITIONS

Our methodology targets binary classification, al-
though it can be easily extended to multi-class set-
tings. For the sake of building interpretable models,
we focus on Boolean functions for the mapping be-
tween inputs and labels, which are amenable to a sim-
ple interpretation.

Boolean functions can be used as a model for binary
classifiers f(x) = y, where x ∈ {0, 1}d, y ∈ {0, 1}. The
function f induces a separation of {0, 1}d in two sub-
sets F and T , where F = {x ∈ {0, 1}d : f(x) = 0} and
T = {x ∈ {0, 1}d : f(x) = 1}. We call such subsets
positive and negative subsets, respectively. Clearly,
F ∪ T = {0, 1}d corresponds to the full truth table of
the classification problem. We restrict the input space
{0, 1}d to be a partially ordered set (poset): a Boolean
lattice on which we impose a partial ordering relation.

Definition 2.1. Let
∧

,
∨

, ¬ be the and, or, and
not logic operators respectively. A Boolean lattice is a
5 tuple ({0, 1}d,

∧
,
∨
, 0, 1). The lack of the ¬ operator

implies that a lattice is not a Boolean algebra. Let ≤
be a partial order relation such that x ≤ x′ ⇐⇒
x
∨

x′ = x′. Then, ({0, 1}d,≤) is a poset, a set on
which a partial order relation has been imposed.

The theory of Boolean algebra ensures that the class
Bd of Boolean functions f : {0, 1}d → {0, 1} can be re-
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alized in terms of
∧

,
∨

, and ¬. However, if {0, 1}d is a
Boolean lattice, ¬ is not allowed and only a subsetMd

of Bd can be realized. The classMd coincides with the
collection of monotone Boolean functions. The lack
of the ¬ operator may limit the family of functions
we can reconstruct. However, by applying a suitable
transformation of the input space, we can enforce the
monotonicity constraint (Muselli, 2005). As a conse-
quence, it is possible to find a function f̃ ∈ Md that
approximates f ∈ Bd arbitrarly well.

Definition 2.2. Let (X ,≤) and (Y,≤) be two posets.
Then, f : X → Y is called monotone if x ≤ x′ implies
f(x) ≤ f(x′).

Definition 2.3. Given x ∈ {0, 1}d, let Im be the set
of the first m positive integers {1, . . . ,m}. P(x) =
{i ∈ Im : x(i) = 1}. The inverse of P is denoted as
p(P(x,m)) = x.

Definition 2.4. Let f̃ ∈Md be a monotone Boolean
function, and A be a partially ordered set. Then, f̃
can be written as: f̃(x) =

∨
a∈A

∧
j∈P(a) x(j).

The monotone Boolean function f̃ is specified in dis-
junctive normal form (DNF), and is univocally deter-
mined by the set A and its elements. Thus, given F
and T , learning f̃ amounts to finding a particular set
of lattice elements A defining the boundary separat-
ing positive from negative samples.

Definition 2.5. Given a ∈ {0, 1}d = T ∪ F , if a ≤ x
for some x ∈ T , and @y ∈ F : a ≤ y, and ∃y ∈ F :
b ≤ y ,∀b < a, then a is a boundary point for (T ,F).
The set A of boundary points defines the separation
boundary. If a′ � a′′ and a′′ � a′ ,∀a′,a′′ ∈ A,a′ 6=
a′′, then the separation boundary is irredundant.

In other words, a boundary point is a lattice element
that is smaller than or equal to at least one positive
element in T , but larger than all negative elements
F . In practical applications, however, we usually have
access to a subset of the whole space, D+ ⊆ T and
D− ⊆ F . The goal of the algorithms we present next
is to approximate the boundary A, given D+ and D−.
We show that boundary points, and binary samples
in general, naturally translate into classification rules.
Indeed, let R be the set of rules corresponding to the
discovered boundary. R(·) represents a binary classi-
fier: R(x) = {1 if ∃r ∈ R : r(x) = 1; 0 otherwise}.
Then, x is classified as positive if there is at least one
rule in R that is true for it.

3 BOOLEAN RULE SETS

We presented a theoretical framework that casts bi-
nary classification as the problem of finding the bound-
ary points for D+ ⊆ T and D− ⊆ F . Next, we use such
framework to design our interpretable classifier.

First, we describe a base, bottom-up method – which
will be later used as a weak learner – that illustrates
how to move inside the Boolean lattice to find bound-
ary points. However, the base method does not scale to
large datasets, and tends to overfit. Thus, we present
libre, an ensemble classifier that overcomes such limi-
tations by running on randomly selected subset of fea-
tures. libre is interpretable because it combines the
output of an ensemble of weak learners with a sim-
ple union operation. Finally, we present a procedure
to select a subset of the generated points – the ones
with the best predictive performance – and reduce the
complexity of the boundary.

We assume that the input dataset is a poset and
that the function we want to reconstruct is monotone.
This is ensured by applying inverse-one-hot-encoding
on discretized features, and concatenating the result-
ing binary features, as done in Muselli (2006). Given
z ∈ Im = {1, ...,m}, inverse-on-hot encoding produces
a binary string b of length m, where b(i) = 1 for i 6= z,
b(i) = 0 for i = z. More details can be found in the
supplementary material.

Example 3.1. Consider a dataset with two con-
tinuous features, f1 and f2, both taking values in
the domain [0, 100]. Suppose that, a discretiza-
tion algorithm outputs the following discretization
ranges for the two features: [[0, 40), [40, 100]] and
[[0, 30), [30, 60), [60, 100]] respectively. Once all records
are discretized, we apply inverse one-hot encoding, as
previously defined. For example, f1 = 33.1, f2 = 44.7
is first discretized as f ′1 = 1, f ′2 = 3, and then binarized
as 01 101. In other words, each feature of a record is
encoded with a number of bits equal to its discretized
domain, and can have only one bit set to zero.

3.1 The Base, Bottom-up Method

We develop an approximate algorithm that learns the
set A for (D+,D−). The algorithm strives to find lat-
tice elements such that both |A| and |P(a)| ,∀a ∈ A
are small, translating in a small number of sparse
boundary points (short rules).

Algorithm Design. To proceed with the presenta-
tion of our algorithm, we need the following definitions:

Definition 3.1. Given two lattice elements x,x′ ∈
{0, 1}d, we say that x′ covers x, if and only if x′ ≤ x,

Definition 3.2. Given a lattice element x ∈ {0, 1}d,
flipping off the k-th element of x produces an element
z such that z(i) = x(i) for i 6= k and z(i) = 0 for i = k.

Definition 3.3. Given a positive binary sample x ∈
D+, we say that a flip-off operation produces a conflict
if the lattice element z resulting from the flip-off is such
that ∃x′ ∈ D− : z ≤ x′.
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Then, a boundary point is a lattice element that covers
at least one positive sample, and for which a flip-off
operation would produce a conflict, as defined above.

Algorithm 1: FindBoundary
Set A = ∅ and S = D+;
while S 6= ∅ do

Choose x ∈ S;
Set I = P(x), J = ∅;
FindBoundaryPoint(A, I,J );
Remove from S the elements covered by a, ∀a ∈ A;

end

Algorithm 1 presents the main steps of our algorithm,
where A is the boundary set and S = {s ∈ D+ : @a ∈
A,a ≤ s} is the set of elements in D+ that are not
covered by a boundary point in A. I is the set of in-
dexes of the components of the current positive sample
x that can be flipped-off, and J is the set of indexes
that cannot be flipped-off to avoid a conflict with D−.
Until S is not empty, an element x is picked from S.
Then, the procedure FindBoundaryPoint is used to
generate one or more boundary points by flipping-off
the candidate bits of x. According to definition 3.2, a
boundary point is generated when an additional flip-
off would lead to a conflict, given definition 3.3. When
the FindBoundaryPoint procedure completes its op-
eration, both A and S are updated.

Example 3.2. Let D+ = {11001} and D− =
{01101, 01101}. Take the positive sample 11001, for
which I = {1, 2, 5} and J = ∅. Suppose that
FindBoundaryPoint flips-off the bits in I from left
to right. Flipping-off the first bit generates 01001 ≤
01101 ∈ D−. The first bit is moved to J and kept
to 1. Flipping-off the second bit generates 10001 ≤
10101 ∈ D−. Also the second bit is moved to J . We
finally flip-off the last bit and obtain 11000 that is not
in conflict with any element in D−. 11000 is therefore
a boundary point for (D+,D−).

If we think about binary samples in terms of rules,
a positive sample can be seen as a maximally-specific
rule, with equality conditions on the input features
(the value that particular feature takes on that partic-
ular sample). Flipping-off bits is nothing more than
generalizing that rule. Our goal is to do as many flip-
off operations as possible before running into a conflict.

Retrieving the complete set of boundary points re-
quires an exhaustive search, which is expensive, re-
stricting its application to small, low-dimensional
datasets. It is easy to show that the computational
complexity of the exhaustive approach is O(n22d),
where n is the number of distinct training samples,
and d is the dimension of the Boolean lattice. In
this work, we propose an approximate heuristic for the
FindBoundaryPoint procedure.

Finding Boundary Points. The key idea is to find
a subset of all possible boundary points, steering their
selection through a measure of their quality. A bound-
ary point is considered to be “good” if it contributes
to decreasing the complexity of the resulting bound-
ary set, which is measured in terms of its cardinality
|A| and the total number of positive bits

∑
a∈A |P(a)|.

In practice, |A| can be decreased by choosing bound-
ary points that cover the largest number of elements
in S. To do this, we iteratively select the best can-
didate index i ∈ I according to a measure of poten-
tial coverage. Decreasing

∑
a∈A |P(a)| implies finding

boundary points with low number of 1s.

Before proceeding, we define a notion of distance be-
tween lattice elements:

Definition 3.4. Given x,x′ ∈ {0, 1}d, the distance
dl(x,x

′) between x and x′ is defined as: dl(x,x
′) =∑d

i=1 |x(i)−x′(i)|+, where | · |+ is equal to 1 if (·) ≥ 0,
0 otherwise.

Definition 3.5. In the same way, we can define the
distance between a lattice element x and a set V as:
dl(x,V) = minx′∈V dl(x,x

′).

Every boundary point a for (D+,D−) has distance
dl(a,D−) = 1; in fact, boundary points are all lattice
elements for which a flip-off would generate a conflict.
In the iterative selection process of the best index i ∈ I
to be flipped-off, indexes having high dl(p(I∪J ),D−0

i )
are preferred, where D−0

i = {x ∈ D− : x(i) = 0}, be-
cause they are the ones that contribute most to reduce
the number of 1s of a potential boundary point.

Algorithm 2: FindBoundaryPoint(A, I,J )

For each i ∈ I compute |S0
i |, |D+

0
i |, dl(p(I ∪ J ),D−0

i );
while I 6= ∅ do

Move from I to J all i with dl(p(I ∪ J ),D−0
i ) = 1;

if I = ∅ then
break;

end
Choose the best index i ∈ I;
Remove i from I;
For each i ∈ I update dl(p(I ∪ J ),D−0

i );

end
if there is no a ∈ A : p(J ) ≥ a then

Set A = A ∪ p(J );
end

Algorithm 2 illustrates our approximate procedure,
where S0i = {s ∈ S : s(i) = 0} and D+

0
i = {t ∈

D+ : t(i) = 0} are proxies for the potential cover-
age of flipping-off a given bit i. The first step of
the algorithm computes, for each index i ∈ I, the
terms |S0i | and |D+

0
i | indicating its potential cover-

age, and dl(p(I ∪ J ). Until the set I is not empty,
indexes inducing a unit distance to D− are moved
to J . Then, we choose the best index ibest among
the remaining indices in I, using our greedy heuris-
tics: we can chose to optimize either for the tuple
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H1 = (|S0i |, |D+
0
i |, dl(p(I ∪ J ),D−0

i )) or for the tuple
H2 = (dl(p(I ∪J ),D−0

i ), |S0i |, |D+
0
i |). H1 prioritizes a

lower number of boundary points, while H2 tends to
generate boundary points with fewer 1s.

When I is empty, p(J ) is added to the boundary set
A if it does not contain already an element covering
p(J ). Note that, in algorithm 2, the distance is com-
puted only once, and updated at each iteration. This
is because only one bit is selected and removed from
I; then, p(I ∪ J )new = p((I ∪ J )old \ {i}). Formally,
we apply definition 3.4 exclusively for i = ibest.

Example 3.3. Let D+ = {10101, 01101, 01110} and
D− = {10110, 11010}. We describe the procedure for
few steps and only for the first positive sample 10101.
Suppose to optimize the tuple (|S0i |, |D+

0
i |, dl(p(I ∪

J ))). For 10101 we have I = {1, 3, 5} and J = ∅.
At the beginning S = D+. |D+

0
1| = 2, |D+

0
3| =

0, |D+
0
5| = 1. D−0

1 = ∅,D−0
3 = {11010},D−0

5 =
{10110, 11010}. Consequently: dl(p(I ∪ J ),D−0

1) =
undefined, dl(p(I∪J ),D−0

3) = 2, dl(p(I∪J ),D−0
5) =

1. Bit 5 is moved to J . Bit 1 has the higher value of
|D+

0
i | and is selected as best candidate to be flipped-

off. The distance is recalculated and the procedure
continues until the set of candidate bits I is empty.

The algorithmic complexity of algorithm 1, when it
runs algorithm 2, is O(n2d2). This is faster than the
exhaustive algorithm, and better than the O(n2d3)
complexity of Muselli and Quarati (2005). We refer
the reader to the supplement for additional details
on the difference between our proposal and Muselli
and Quarati (2005). We also point out that most
sequential-covering algorithms repeatedly remove the
samples covered by the new rules, forcing the induc-
tion phase to work in a more partitioned space with
less data, especially affecting minority rules, which al-
ready rely on few samples. The problem is mitigated
in our solution: despite S cannot avoid this behavior,
our heuristics keep a global and constant view of both
D−, in the conflict detection, and D+, in the discrim-
ination of the best bits to flip.

From Boundary Set To Rules. Each element a
of the boundary set A can be practically seen as the
antecedent of an if-then rule having as target the pos-
itive class. When a binary sample x is presented to a,
the rule outputs 1 only if x has a 1 in all positions
where a has value 1, that is if a ≤ x. Then, the an-
tecedent of the rule is expressed as a function of the
input features in the original domain.

Example 3.4. Consider a dataset with two con-
tinuous features, f1 and f2, discretized as follows:
[[0, 40), [40, 100]] and [[0, 30), [30, 60), [60, 100]] respec-
tively. Let’s assume that our algorithm outputs a
boundary set A = {01 100}. From the boundary point

we obtain a rule as follows: the first two bits referring
to feature f1 – 01 – are mapped to “if f1 ∈ [0, 40)”,
while the bits referring to f2 – 100 – are mapped to
“if f2 ∈ [30, 100]”, where the two consecutive inter-
vals have been combined. The zeros determine the
ranges in the if conditions. The final rule is therefore
“if f1 ∈ [0, 40) and f2 ∈ [30, 100] then label = 1”.

3.2 The LIBRE Method

The base approach generates boundary points by gen-
eralizing input samples, i.e., by flipping-off positive
bits if no conflict with negative samples is encountered.
The hypothesis underlying this procedure is that when
no conflicts are found, a boundary point induces a valid
rule. However, such rule might be violated when used
with unseen data. Stopping the flipping-off procedure
as soon as a single conflict is found has two main ef-
fects: i) we obtain very specific rules, that might be
simplified if the approach could tolerate a limited num-
ber of conflicts; ii) the rules cover no negative samples
in the training set and tend to overfit.

To address these issues, a simple method would be to
introduce a measure for the number of conflicts and
use it as an additional heuristic in the learning pro-
cess. However, this would dramatically increase the
complexity of the algorithm.

A more natural way to overcome such challenges is to
make the algorithm directly work on (random) sub-
sets of features; in this way, the learning process pro-
duces more general rules by construction. Randomiza-
tion is a well-known technique to implement ensemble
methods that provide superior classification accuracy,
as demonstrated, for example, in random forests (Ho,
1998; Breiman, 2001). By using randomization, we can
directly use the methodology described in the previous
sections, without modifying the search procedure. The
new approach – libre – is an interpretable ensemble of
rules that operates on a randomized subset of features.

Formally, let E be the number of classifiers in the en-
semble. For each classifier j ∈ {1, . . . , E}, we ran-
domly sample kj features of the original space and
run algorithm 1 to produce a boundary set Aj for the
reduced input space. Aj can be generated in parallel,
since weak learners are independent from each other.
At this point, to make the ensemble interpretable, we
crucially do not apply a voting (or aggregation) mech-
anism to produce the final class prediction, but we do
a simple union, such that A =

⋃E
j=1Aj .

We note that libre addresses the problems outlined
above, as we show experimentally. By training an en-
semble of weak learners that operate on a small sub-
set of features, we artificially inflate the probability
of finding negative examples. Each weak learner is
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constrained to run on less features not only reducing
the impact of d on the execution time, but also hav-
ing an immediate effect on the interpretability of the
model that is forced to generate simpler rules, exactly
because it operates on fewer input features.

Note that there are no guarantees that elements of
Aj will actually be boundary points in the full feature
space: weak learners have only a partial view of the
full input space and might generate rules that are not
globally true. Thus, it is important to filter out the
points that are clearly far from the boundary by using
the selection procedure described in the next section.

3.3 Producing The Final Boundary

The model learned by our greedy heuristic material-
izes as a set A, which might contain a large number of
elements and, in case of libre, it might also contain
elements that cover many negative samples. In this
section, we explain how to produce a boundary set A∗
with a good tradeoff between complexity and predic-
tive performance. This can be cast as a weighted set
cover problem. Since exploring all possible subsets of
elements in A can be computationally demanding, we
use a standard greedy weighted set cover algorithm.

Each element a ∈ A is intially assigned a weight
w(a) = α|P(a)|− (1−α)|N (a)| that is proportional to
the number of positive and negative covered samples,
|P(a)| and |N (a)| respectively. The importance of the
two contributions is governed by a parameter α. At
each iteration, the element a with the highest weight
is selected; if there is more than one, the element with
the highest number of zeros is preferred. All samples
that are covered by the selected element are removed,
and the weights are recalculated. The process contin-
ues until either all samples are a covered or a stopping
condition is met. In imbalanced settings, α will be
close to 1 to increase the strength of minority rules.

Before running the selection procedure, with the aim
of speeding up execution times, we eventually apply a
filtering procedure to reduce the size of the initial set
to a small number of good candidates: as proposed by
Gu et al. (2003), we select the top K rules according to
exclusiveness and local support, that are more sensible
than confidence and support for imbalanced settings.

4 EXPERIMENTS

We evaluate libre in terms of predictive performance,
interpretability, and scalability, and compare it with
other rule-based and black-box methods.

Datasets. We report the results for seven publicly
available datasets from the UCI repository and two

Dataset #records #features imbalance ratio

Adult 48’842 14 .23
Australian 690 14 .44
Bank 45’211 17 .12
Ilpd 583 10 .28
Liver 345 5 .51
Pima 768 8 .35
Transfusion 748 5 .24
Sap-Clean 287’031 45 .01
Sap-Full 1’554’227 45 .01

Table 1: Characteristics of evaluated datasets.

real industrial IT datasets – proprietary of Sap. Re-
sults on other UCI datasets are in the supplemen-
tary material. These datasets cover several domains,
have different imbalance ratios, number of records and
features, as summarized in Table 1. Some of these
datasets have been used to evaluate methods for class
imbalance (Van Hulse et al., 2007) and present charac-
teristics that make them difficult to learn: overlapping
classes, noisy and rare examples. The Sap datasets
consist of monitoring data collected across database
systems. They have 45 features, hand-crafted by do-
main experts based on low-level system metrics. Sap
runs a predictive maintenance system on this data and
notifies customers who confirm or discard the warn-
ings: we use these as binary labels. Sap-Clean is the
clean version of Sap-Full, where we removed records
with at least one missing value. We refer the reader to
the supplement for details on data preprocessing.

Comparison With Other Methods. We compare
libre with two recent works: Scalable Bayesian Rule
Lists (s-brl) (Yang et al., 2017) and Bayesian Rule
Sets (brs) (Wang et al., 2017). We also report the
results for a weka implementation of ripper-k (Co-
hen, 1995) and modlem (Grzymala-busse and Ste-
fanowski, 2001) – as representative of top-down and
bottom-up approaches – and scikit-learn imple-
mentations of Decision Tree (dt) (Breiman et al.,
1984), Support Vector Machine with RBF kernel (rbf-
svm) (Cortes and Vapnik, 1995)), and random forests
(rf) (Breiman, 2001). rbf-svm and rf are selected
as popular black-box models; rf is also a representa-
tive ensemble method. Other relevant methods are not
publicly available (cg (Dash et al., 2018)), do not work
properly (ids (Lakkaraju et al., 2016)), or are only par-
tially implemented (bracid (Napierala, 2012)).

Parameter Tuning. The initial set of candidate
rules for s-brl and brs is generated by running FP
Growth with a minimum support of 1 and a maxi-
mum mining length of 5. We also optimize brs and
s-brl’s prior hyperparameters by cross validation. For
brs, we run 2 chains of 500 iterations. For ripper-
k, we change the number of optimization steps be-
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Dataset rbf-svm rf dt ripper-k modlem s-brl brs libre libre 3

Adult .62(.01) .68(.01) .68(.01) .59(.02) .66(.01) .68(.01) .61(.01) .70(.01) .62(.01)
Australian .83(.02) .86(.02) .84(.02) .85(.02) .68(.28) .82(.03) .83(.03) .84(.03) .84(.03)
Bank .46(.01) .50(.01) .50(.01) .44(.04) .50(.03) .50(.02) .32(.05) .55(.01) .44(.01)
Ilpd .47(.02) .44(.08) .42(.10) .20(.11) .48(.08) .14(.13) .09(.08) .54(.06) .52(.04)
Liver .58(.08) .58(.07) .56(.10) .59(.04) .58(.07) .54(.03) .61(.05) .60(.07) .63(.06)
Pima .61(.04) .63(.04) .60(.01) .60(.03) .38(.18) .61(.07) .03(.03) .64(.05) ..64(.05)
Transfusion .41(.07) .35(.06) .35(.05) .42(.10) .42(.08) .05(.10) .04(.05) .49(.12) .49(.12)
Sap-Clean .93(.02) .93(.01) .85(.03) .86(.02) .88(.01) .90(.01) .68(.03) .95(.02) .72(.03)
Sap-Full - - - - - .81(.02) - .89(.03) .68(.04)

Avg Rank 4.7(1.2) 3.3(1.6) 4.9(2.1) 5.3(2.1) 4.9(2.2) 5.2(2.8) 7.2(2.5) 1.4(0.8) 3.6(2.6)

Table 2: F1-score (st. dev. in parenthesis).

Dataset dt ripper-k modlem s-brl brs libre libre 3

Adult 287.8(6.5) 21.4(5.2) 4957.8(36.3) 71.4(2.1) 10.0(3.3) 14.0(2.1) 3.0(0.0)
Australian 4.0(0.0) 3.8(1.2) 86.6(3.2) 5.8(0.7) 1.8(0.4) 2.4(1.4) 2.2(0.7)
Bank 545.4(18.3) 9.0(1.8) 3722.6(25.5) 61.2(5.5) 4.8(1.2) 15.0(1.1) 2.0(0.6)
Ilpd 80.6(30.2) 1.0(0.6) 128.2(7.8) 4.8(0.7) 1.0(0.0) 4.4(2.3) 2.2(0.4)
Liver 84.4(15.2) 1.4(0.8) 98.4(1.6) 4.0(0.6) 1.0(0.0) 3.4(1.9) 2.8(0.4)
Pima 84.8(43.1) 2.4(2.4) 151.8(7.6) 8.4(0.5) 1.0(0.0) 1.6(1.0) 1.6(1.0)
Transfusion 100.2(48.4) 1.8(0.4) 125.8(6.1) 4.4(0.8) 1.0(0.0) 1.2(0.4) 1.2(0.4)
Sap-Clean 622.4(51.9) 19.3(3.6) 3944.5(18.8) 47.7(4.4) 20.2(3.5) 13.0(2.4) 3.0(0.0)
Sap-Full - - - 56.4(4.6) - 17.5(5.2) 3.0(0.0)

Avg Rank 5.7(0.7) 3.2(1.0) 6.7(0.9) 4.9(0.7) 1.9(1.2) 2.9(0.9) 1.8(0.8)

Table 3: #rules (st. dev. in parenthesis).

tween 1 and 5, and activate pruning. For modlem,
we try all available classification strategies and con-
dition measures. For rbf-svm, we optimize C and
γ. For dt and rf, we optimize the maximum depth
in {5, 10, 20, None}, we tried all possible options for
max features and use a number of trees in {20, 50, 100}
for rf. For libre, we vary the number of weak learn-
ers in E ∈ {5, 20, 50}. Each weak learner uses up to
5 features. Additionally, we try the two heuristics H1

and H2 to generate rules and vary α in {.5, .7, .9} for
weighted set cover. Parameters not reported above are
all fixed to recommended or default values.

Evaluation Metrics. All results refer to nested 5-
fold cross validation, where the same splits are used for
all methods. We use F1-score to compare the predic-
tive performance of the classifiers, as it is well-suited to
evaluate the capability to characterize the target class
both in balanced and imbalanced settings. For rule-
based methods, we use standard metrics from the lit-
erature to evaluate the interpretability of the rule sets,
namely the number of rules that implement a model,
and the average number of atoms per rule. For dt,
we extract the rules following the paths from root to
leaves: this captures the perception of a user who looks
at the tree to understand the output of the model. For
s-brl, the number of atoms in a rule is equal to the
sum of the atoms in the previous rules, highlighting the
fact that a user has to go through all the rules up to the
one that returns the label. For all rule-based methods,
we change inequalities (<,≤, >,≥) to ranges to have

a fair comparison. For example, f1 ≥ 3 is converted
to f1 ∈ [3,max].

Predictive Performance Evaluation. Table 2
shows the means and standard deviations of the F1-
score for the tested algorithms (best results in bold)
and the rank of their average performance, where the
same splits are used for all tested methods. We ad-
ditionally report the results for libre when it is con-
strained to generate at most 3 rules (libre 3).

If we look at the average rank, libre emerges as the
best method, beating both rbf-svm and rf, demon-
strating its versatility in both balanced and imbal-
anced settings. libre 3 is still better than the other
rule-based competitors, although being constrained to
generate at most 3 rules. dt, modlem, s-brl and
ripper-k show very similar performance, even if mod-
lem is usually worse for balanced settings. brs is the
worst method in terms of predictive performance.

Focusing more on the single datasets, we can see that,
except for Australian, libre obtains consistently
the highest F1-score. In Bank, Ilpd, and Transfu-
sion the gap between libre and the closest competi-
tor is significant; the gap is even larger in comparison
to alternative rule-based methods. For the remaining
datasets, the differences with the competitors are less
pronounced but still significant. In particular, Ilpd
seems to be very problematic for most of the tested
methods: ripper-k, brs and s-brl do not learn any-
thing useful about the positive class; modlem per-
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forms marginally better. From a deeper analysis, it
emerges that Ilpd is an imbalanced dataset with over-
lapping classes: rules learned by libre have an error
rate close to 50% on the training set, consequence of
the class imbalance. ripper-k is not able to learn
these rules, whereas the selection stage of brs and s-
brl does not include such rules in the final set even
when they are in the set of candidate mined rules.

With Sap-Clean, libre 3 performs better than brs
but limiting the number of rules to 3 causes a signif-
icant drop in F1-score w.r.t. libre. The situation
is different for Sap-Full, the original version of the
dataset containing also missing values. From table 1,
Sap-Full is more than five times bigger than Sap-
Clean, indicating that missing values are not a neg-
ligible problem in real scenarios. A method that runs
without additional preprocessing is thus truly desir-
able. Only libre and s-brl fit this requirement, while
ripper-k, brs, and modlem natively manage missing
values for categorical features only, but require an ad-
ditional preprocessing for continuous features. Despite
the huge number of missing values, results for libre
are comparable to other rule-based methods when ex-
ecuted on Sap-Clean.

Interpretability Evaluation. Next, using table 3,
we evaluate interpretability in terms of quantity and
simplicity of rules. In our analysis, we also refer to
table 2, to measure the trade-off that exists between
interpretability and predictive performance. We high-
light in bold the most interpretable results.

In terms of number of rules, libre is better than
ripper-k on average, indicating that it indeed over-
comes the limitations of bottom-up learners like mod-
lem, that is instead the worst method together with
dt. s-brl is competitive for small datasets, but
the number of rules increases considerably for bigger
datasets like Adult, Bank, and Sap. Overall, brs
generates compact rule sets, with only one rule for half
of the tested datasets. However, we should also notice
that, except for Liver, these are the same datasets
that give F1-score close to zero. libre 3 outperforms
other methods and produces the most compact rule
sets for the three larger datasets, with a small impact
on predictive performance.

All the tested methods have a similar average number
of atoms(results in the supplementary material). Only
s-brl has issues when the number of rules is significant
(like in Adult, Bank, and Sap datasets): indeed, in
rule lists every rule depends on the previous ones, and
the number of atoms easily explodes.

Scalability Evaluation. Table 4 shows the run time
for libre and three representative rule-based com-

#records ripper-k modlem brs libre

10’000 1(0) 14(0) 144(1) 5(0)
100’000 7(3) 2457(89) 2994(304) 44(5)
500’000 39(25) - - 209(7)
1’000’000 101(31) - - 399(8)

Table 4: Runtime in seconds (st. dev. in parenthesis).

petitors on synthetic balanced datasets with 10 fea-
tures and a varying number of records: from 10’000 to
1’000’000. For each configuration, we randomly gen-
erate the dataset 3 times and report the average run
time and standard deviation. All methods are tested
with their default parameters and run sequentially, for
a fair comparison. For libre, the time refers to one
weak learner, which is also a good approximation for
the computing time of E parallel weak learners. The
symbol “-” identifies out-of-memory errors.

modlem and brs fail with an out-of-memory error
with 500’000 and 1’000’000 records datasets. They
also show much higher run times for smaller datasets
w.r.t. ripper-k and libre, that are instead able to
complete their training in a few minutes also for the
large datasets. Note that each weak learner in libre
works with D+ and D− that consist of distinct records:
even if the original dataset has millions of entries, the
number of binary records processed by the algorithm
is much lower, especially when the number of input
features of each weak learner is relatively low. We also
point out that, for practical applications where inter-
pretability is needed, it is convenient to limit the num-
ber of features and train a bigger ensemble with more
learners to quickly generate understandable rules.

5 CONCLUSION

Model interpretability has recently become of primary
importance in many applications. In this work, we fo-
cused on the task of learning a set of rules which spec-
ify, using Boolean expressions, the classification model.
We devised a practical method based on monotone
Boolean function synthesis to learn rules from data.
Our approach uses an ensemble of bottom-up learn-
ers that generalizes better than traditional bottom-
up methods, and that works well for both balanced
and imbalanced scenarios. Interpretability needs can
be easily encoded in the rule generation and selection
procedure that produces short and compact rule sets.

Our experiments show that libre strikes the right
balance between predictive performance and in-
terpretability, often outperforming alternative ap-
proaches from the literature. For future work, we
will extend our model considering noisy labels and a
Bayesian formulation.
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