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Abstract

Cooperative transmission between different nodes is expected to be one of the main

tools towards managing interference in the increasingly complex and cluttered wireless

networks. Network cooperation is known to bring multiplicative gains under certain ideal

assumptions, such as having perfect information about the propagation channel towards

the users at every cooperating node. However, those ideal assumptions are not feasible

in many of the current network settings and applications. There exist several reasons

whereby the desired hypotheses do not hold. In order to achieve the promised gains,

the network should be able to perfectly share all the information –in a timely manner–

among the different cooperating nodes, which can be non co-located. Yet, current wireless

transmissions cope with many challenging constraints, as tight delay constraints, fast-

changing channels or rate-limited backhaul links –to name just a few–, that impede the

perfect sharing of the locally collected information. The topic of analyzing how the

non-fulfillment of the ideal hypotheses impacts the performance of cooperative settings

has generated great interest in the research community. Nevertheless, the main focus

has been concentrated on scenarios in which, although the channel state information is

imperfectly or only partially collected, all the nodes share the same information. This

last assumption is neither feasible in many current wireless networks scenarios, as stated

by the previously described constraints.

This thesis aims for shedding light on the performance of decentralized cooperative

settings in which the information available at each node may be different and potentially

of different accuracy. In particular, we focus on the so-called distributed Network MIMO,

in which a set of transmitters jointly serve a set of users. The setting considered is

characterized by two main aspects: The perfect sharing of the user’s information data

and the imperfect sharing of the channel state information. We analyze the distributed

Network MIMO setting so as to characterize its fundamental limits and provide novel

algorithms.

Specifically, the analysis is carried out from two different perspectives. We start by

characterizing the Degrees-of-Freedom metric of the setting. The Degrees-of-Freedom

is an approximation of the capacity at high signal-to-noise ratio that allows to identify
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insightful understandings of the network behavior. The contribution is twofold, as we

provide both achievable schemes that increase considerably the performance with respect

to the solutions available in the literature, and upper-bounds that illustrate up to which

scale the distributed setting performance is harmed with respect to the perfect-sharing

setting. It turns out that, in some configurations, the distributed setting is able to attain

the Degrees-of-Freedom performance of the ideal setting with perfect sharing of the

channel information. The second perspective consists in restricting the transmission to

the conventional paradigm of Zero-Forcing and studying whether the performance losses

from decentralized information can be precisely calculated. More precisely, we analyze

the achievable rate at high signal-to-noise ratio with the goal of quantifying the rate loss

from decentralization, i.e., we compute the difference of rate between the distributed

setting and the ideal centralized setting with perfect sharing. We propose a novel zero-

forcing scheme tailored to the decentralized configuration that asymptotically attains

the centralized rate. On the basis of the aforementioned analysis, we also tackle related

challenges such as the best channel information allocation, the impact of instantaneous

power constraint and other challenges arising from the setting considered.
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Abrégé

La transmission coopérative entre différents nœuds devrait être l’un des principaux

outils de gestion des interférences dans des réseaux sans fil de plus en plus complexes et

encombrés. La coopération en réseau est connue pour apporter des gains multiplicatifs

sous certaines hypothèses idéales, telles que le fait de disposer d’informations parfaites

sur le canal de propagation vers les utilisateurs à chaque nœud coopérant. Toutefois,

ces hypothèses idéales ne sont pas réalisables dans bon nombre des paramètres et des

applications réseau actuels. Il existe plusieurs raisons pour lesquelles les hypothèses

souhaitées ne peuvent pas être considérées. Afin de atteindre les gains promis, le réseau

devrait être en mesure de partager parfaitement toutes les informations –dans un délai

convenable– entre les différents nœuds de coopération, qui peuvent être situés dans

des lieux différents. Pourtant, les transmissions sans fil actuelles doivent faire face à de

nombreuses contraintes, comme des délais serrés, des canaux en évolution rapide ou des

liaisons de retour à débit limité, pour n’en nommer que quelques-unes, qui empêchent le

partage parfait des informations recueillies localement. Le sujet de l’analyse de l’impact

de la non-réalisation des hypothèses idéales sur la performance des scénarios coopératifs a

suscité un grand intérêt dans le milieu de la recherche. Néanmoins, l’accent a surtout été

mis sur des scénarios dans lesquels, bien que les informations sur l’état des canaux soient

imparfaites ou seulement partiellement collectées, tous les nœuds partagent les mêmes

informations. Cette dernière hypothèse n’est pas réalisable dans de nombreux scénarios

actuels de réseaux sans fil, comme l’indiquent les contraintes décrites précédemment.

Cette thèse vise à mettre en lumière la performance des scénarios coopératifs dé-

centralisés dans lesquels l’information disponible à chaque nœud peut être différente et

potentiellement d’une précision différente. En particulier, nous nous concentrons sur ce

qu’on appelle le réseau distribué MIMO, dans lequel un ensemble d’émetteurs servent

conjointement un ensemble d’utilisateurs. Le cas considéré se caractérise par deux aspects

principaux : Le partage parfait des données d’information de l’utilisateur et le partage

imparfait des informations sur l’état du canal. Nous analysons le réglage distribué du

réseau MIMO afin de caractériser ses limites fondamentales et de fournir de nouveaux

algorithmes.

iii



Abrégé

Plus précisément, l’analyse est effectuée sous deux angles différents. Nous commen-

çons par caractériser les Degrés de Liberté du scénario. Les Degrés de Liberté est une

approximation de la capacité à un rapport signal/bruit élevé qui permet d’identifier des

aperçus perspicaces du comportement du réseau. La contribution est double puisque nous

fournissons à la fois des schémas réalisables qui augmentent considérablement la perfor-

mance par rapport aux solutions disponibles dans la littérature et des limites supérieures

qui illustrent jusqu’à quelle échelle la performance du scénario distribué est affectée par

rapport au réseau avec du partage parfait. Il s’avère que, dans certaines configurations, le

réglage distribué est capable d’atteindre les performances de Degrés de Liberté du réglage

idéal avec un partage parfait des informations du canal. La deuxième perspective consiste

à limiter la transmission au paradigme conventionnel du Zéro-Forçage et à étudier si les

pertes de performance à cause de la décentralisation peuvent être calculées avec précision.

Particulièrement, nous analysons le débit réalisable à un rapport signal/bruit élevé dans

le but de quantifier la perte de débit due à la décentralisation, c’est-à-dire que nous

calculons la différence de débit entre le réglage distribué et le réglage centralisé idéal

avec un partage parfait. Nous proposons un nouveau système de zéro-forçage adapté à la

configuration décentralisée qui atteint asymptotiquement le débit centralisé. Sur la base

de l’analyse susmentionnée, nous nous attaquons également à des défis connexes tels que

la meilleure allocation de l’information de canal, l’impact de la contrainte de puissance

instantanée et d’autres défis découlant du contexte considéré.
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Chapter 1

Introduction

Wireless communications technologies have considerably evolved in the past decade.

It is expected that the imminent deployment of the fifth generation cellular network

technology (5G) [1] will bring not only several order higher data rates, but also a collection

of new and diversified use cases. Indeed, this diversification of services is one of the

main targets of the 5G development [2]. Three main use cases are contemplated in

the upcoming nascent generation: Ultra-Reliable Low-Latency Robust Communications

(URLLC) [3–5], Enhanced Mobile Broadband (eMBB) [6], and Massive Machine-type

Communication (mMTC) [7,8]. The conjunction of those three aspects is intended to

contribute to the blossoming of unseen functionalities such as tactile Internet [9, 10],

UAV-aided networks [11, 12], vehicular networks [13, 14], or Internet-of-Things (IoT) [15].

In order to be able to provide these new applications, the network will leverage innovative

technologies [16], such as millimeters-wave communications [17–19], caching [20, 21],

device-to-device communications [22], or massive-MIMO [23–26]. Furthermore, the

expected higher network density –in terms of cells and devices– makes interference

management one of the essential problems for wireless transmissions [2].

One consequence that arises from the network portrayal previously described is the

increase of the heterogeneity in the network, both between nodes communicating with

each other and between different networks sharing the same resources. This heterogeneity

also affects the backhaul capabilities of the different nodes. Moreover, the situations in

which the communicating nodes are moving around at high speed are burgeoning. Both

heterogeneity and high mobility impede the possibility of a centralized management of

the wireless communications, and hence the necessity of understanding how distributed

systems behave and what are their fundamental limits.
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1.1 Cooperative Transmission

The notable densification of the network results in a necessity of cooperation to avoid

the congestion of the wireless medium. Multi-user cooperative networks and the extend

of its theoretical capabilities have been thoroughly analyzed in the literature [27–31].

Network cooperation can take shape in many different forms. Originally, cooperation

was reduced to static policies that ensured a certain functioning, e.g. partial frequency

reuse. With the escalation of the network complexity, cooperative methods evolved to

address the soaring requirements [32]. Intuitively, the cooperation gains are subordinated

to which information is shared among the cooperating nodes. We can distinguish two

categories of essential information: The system –or channel– information and the user’s

data information.

Considering the user’s data information, the cooperation mechanisms depend on

whether this information is available at all the nodes or not. If the user’s data are not

shared, such that each cooperative node is endowed with different data information, the

cooperation can be carried through coordinated beamforming [33, 34] or coordinated

scheduling [35]. In the opposite scenario, with sharing of the user’s data, we can apply

strategies with stronger cooperation along with the previous ones. One of the main

cooperative strategies is the Coordinated Multipoint (CoMP) transmission [36]. This

configuration, also known as Cooperative Multiple-input multiple-output (MIMO), joint

transmission, or Network MIMO, benefits from the data sharing so that the interference

can be canceled or even turned into useful signal.

Multi-user joint transmission in wireless networks is known to bring multiplicative

improvements in network rates [37], but only under the assumption of perfect Channel

State Information (CSI). This perfect CSI scenario has been profoundly studied [37–41].

Unfortunately, perfect CSI acquisition is not possible in most of the current network

applications because of its complexity and resource consumption. Consequently, the

literature has striven to unravel how imperfect or quantized CSI at the transmitters

(CSIT) affects the performance.

1.2 Precoding Under Non-Ideal Backhaul and CSI

1.2.1 Imperfect Channel State Information

Motivated by the infeasibility of the previous ideal assumption, settings in which the

information available at the communicating nodes does not meet the perfect CSI assump-

tion were thoroughly investigated. Thereby, the community focused on settings where

the information available is timely but imperfect [31,42–50], or where the information
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is delayed [51–57]. This research topic has kept active during the last decade, and

a large number of works have developed generalized schemes for the case of partially

outdated [54,58,59], alternating [60], or evolving CSIT [61]. The attempt to comprehend

the behavior of the current networks has led to the study of elaborated and complex

settings. For example, the Cognitive Interference Channel, in which only some nodes

have access to the other nodes’ information [62,63], or the relay network [64–68].

Significantly, even though the aforementioned works assumed an imperfect acquisition

or estimation of the CSI, they consider that all the cooperating nodes share the same

imperfect information. Hereinafter, we refer to the setting where the transmission is

optimized on the basis of a single imperfect/outdated channel estimate being common

at every transmit antenna as Centralized CSIT (C-CSIT) setting. Nevertheless, current

and upcoming wireless networks characteristics make this assumption of perfect sharing

impractical in many applications. This is due to, for example, the proliferation of

heterogeneous networks for which some of the nodes have a wireless, fluctuating, or

limited backhaul [69–71], or URLLC applications [3,4,72], in which the perfect sharing of

the information would result in an inoperable delay. Settings in which simple devices with

low capabilities aim to communicate in a dense environment –as in IoT applications– also

fall into the use cases in which the sharing of information is both desirable and challenging.

This evolution of different use cases boosts the interest of distributed information settings,

in which the information available at the communicating nodes is not only imperfect

but different from one node to another. This type of settings can be included in the

so-called Team Decision problems [73,74], in which different agents aiming at the same

goal attempt to cooperate in the absence of perfect communication between them.

Recently, the increasing importance of cooperation of non-collocated transmitters

–as, for example, in Unmanned Aerial Device (UAV) aided networks [11]– has led to an

increasing number of works challenging this assumption of centralized CSIT. In [75,76],

methods have been developed to reduce the CSIT required to achieve MIMO Interference

Alignment (IA), and the high-SNR regime with delayed and local CSIT in the Interference

Channel (IC) is also studied in several works [77–79]. The assumption of centralized

CSIT has also been challenged in capacity analysis for the Multiple Access Channel [80]

and the Relay Channel [81], among others.

1.2.2 Precoding Under Distributed Channel State Information Setting

The C-CSIT model assumption can model a multi-antenna transmitter or a joint trans-

mission from different non-colocated transmitters in the case where we assume a ideal

Cloud Radio Access Network (C-RAN) [16]. In these cases, it is feasible to assume that

the imperfect information is perfectly shared between the non-colocated transmitting
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antennas. Nevertheless, upcoming heterogeneous networks include a huge variety of

devices, such as user terminals, drone-enabled relays, pico base stations, etc., seeking

to cooperate for transmission despite the lack of an ideal backhaul linking them. Other

scenarios featuring existing backhaul links may favor local processing over centralized

one in order to meet the tight latency constraints derived from 5G and tactile internet

applications [9].

This aspect fosters analyzing what happens when this CSI is not perfectly shared

among the devices, i.e., when each node may have a different CSI. This new setting is

called Distributed CSIT (D-CSIT) setting [82]. In this network configuration, each node

is endowed with an imperfect information about the system state. This information can

be different from node to node, and moreover the accuracy at one node can differ from

one parameter to another. Hence, the heterogeneity of the current wireless networks is

correctly contained in this model. In this thesis, we focus on the distributed Network

MIMO setting to study the impact of those discrepancies between cooperating nodes.

While it was suggested in the past literature that Distributed CSIT scenarios can severely

impact on the network performance in comparison with classical limited-yet-centralized

CSIT ones [82], a crucial problem is how transmitters can cooperatively combat the lack

of mutual CSI consistency in order to reduce the gap with respect to the centralized

system performance.

Several works have focused on this Distributed CSIT setting [83], e.g., analyzing

Interference Alignment performance [76] or studying the Regularized Zero-Forcing per-

formance in the large system limit [84]. However, many of the issues and challenges

introduced by this setting are still open problems. As a result, there is a clear interest in

looking at the scenario in which each transmitter may have a different information about

the channel [85]. There exists a great number of different distributed settings [83, 86–91].

Nonetheless, this thesis is aimed at the so-called Distributed Network MIMO, wherein

the transmitters have access to all the information symbols of the users, yet do not share

the same CSIT [82]. This model arises in scenarios in which the data can be buffered

or cached [92–94], but the CSI needs to be available with very small delay, such as

high-mobility scenarios, or IoT or V2X networks with fast channel varying but low data

rate [15, 95, 96]. In general, any use case in which latency constraints impede efficient

CSIT sharing within the channel coherence time.

1.3 Thesis Outline and Main Contributions

This thesis is divided into three parts. Prior to present the contributions of this thesis,

we introduce its motivation and scope in the first part, that is composed of two chapters.
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1.3. Thesis Outline and Main Contributions

The current chapter is committed to motivating the study of the topic considered in this

thesis, as well as providing an overview of the state of the art and the main contributions.

The other introductory chapter, Chapter 2, comprises a comprehensive description of the

model and tools considered. In particular, it describes the mathematical model for the

assumption of decentralized information, the figures of merit and the notations employed.

Besides that, Chapter 2 also discloses some practical scenarios that motivate and bring

about the theoretical model.

In each of the two other parts we aim to shed light on the fundamental limits of

cooperative and decentralized communication from a different perspective. Part II seeks

to characterize the optimal Degrees-of-Freedom (DoF) of the decentralized Network MISO

setting, whereas Part III confronts the problem from a different point of view. In this

part, we analyze the performance of Zero-Forcing precoding schemes in the distributed

cooperative setting. The choice of Zero-Forcing is motivated by its simplicity and the

fact that it is prevalently employed in practical transmissions with spatial multiplexing.

Let us discuss these sections in more detail.

The DoF characterization carried through Part II usually requires a twofold analy-

sis: The achievability analysis, in which we develop schemes that can attain a certain

performance, and the converse, in which we establish upper-bounds on the attainable

performance. We tackle both aspects in Part II, which comprises the following chapters:

• Chapter 3: In this chapter, we consider the simple single-antenna setting with 2

transmitters (TXs) and 2 receivers (RXs) and we study the Generalized Degrees-of-

Freedom (GDoF) metric of a joint transmission in which the two TXs are endowed

with a different channel information. Recently, the GDoF of the centralized setting

in which both TXs share the channel information has been obtained in [50]. The

main contribution of this chapter is the characterization of the sum GDoF for the

decentralized counterpart setting in which each TX may have a different channel

estimation. We show that the centralized GDoF performance is attained for any

path-loss topology and whichever TX has the best estimate for each channel

coefficient. This interesting result is obtained thanks to a novel precoding scheme

that adapts to the setting configuration, and which is built on the idea that a TX

only uses its instantaneous channel information if that information is the most

accurate one among the TXs.

The work presented in this chapter has resulted in the following publications:

[97] Antonio Bazco, Paul de Kerret, David Gesbert, and Nicolas Gresset,

“Generalized Degrees-of-Freedom of the 2-user MISO Broadcast Channel with

Distributed CSIT,” in Proc. IEEE International Symposium on Information
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Theory (ISIT), June 2017, pp. 1092–1096.

[98] Antonio Bazco-Nogueras, Paul de Kerret, David Gesbert, and Nicolas

Gresset, “Distributed CSIT does not reduce the Generalized DoF of the 2-user

MISO Broadcast Channel,” in IEEE Wireless Communications Letters, June

2019, pp. 685-688.

• Chapter 4: The previous chapter benefits from the structure of the setting

considered inasmuch as there exists only one interfered RX, and thus a single TX

can manage the interference if we design a suitable scheme. Hence, the extension

of those results to an expanded setting with more nodes is not straightforward.

In this chapter, we study the K × K Network MISO with distributed CSIT so

as to determine to what extent the previous results are generalizable. Our main

contributions are twofold: First, we derive an intuitive centralized upper-bound

for the setting with distributed CSIT. This upper-bound is based on a genie-aided

setting in which the TXs are allowed to share their local CSIT with the other TXs.

Consequently, the genie-aided setting is a centralized scenario in which every TX

obtains K different estimates. We show that this setting attains the same DoF as

a centralized setting in which the TXs are only endowed with the most accurate

estimate among the K available estimates. Second, we develop an achievable

scheme that increases considerably the DoF performance with respect to the known

approaches in the literature. In a similar manner as in the previous chapter, the

transmission scheme varies accordingly to the CSI configuration. This scheme shows

that, for a certain CSI accuracy regime, it is still possible to attain the DoF of

the genie-aided setting for any size of the network. The key to achieve this result

is to capitalize on the idea that the unavoidable interference can be exploited as

side information at the receiver. This approach was aptly applied in the literature

related with delayed CSIT. However, here it is employed in a different manner, as

it is retransmitted before its actual generation. Moreover, the achievable scheme

illustrates how important is to choose appropriately who transmits and to whom it

transmits in cooperative decentralized settings, as it turns out that the maximum

DoF is sometimes obtained only if a part of the TXs do not transmit any signal.

These results have led to the following publications.

[99] Antonio Bazco, Paul de Kerret, David Gesbert, and Nicolas Gresset,

“Méthode de transmission robuste au partage imparfait de l’information de

canal entre transmetteurs,” in Proc. Colloque GRETSI, September 2017.
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[100] Antonio Bazco-Nogueras, Paul de Kerret, David Gesbert, and Nicolas

Gresset, “On the Degrees-of-Freedom of the K-user Distributed Broadcast

Channel,” submitted to IEEE Transactions on Information Theory, 2018.

• Chapter 5: The two previous chapters are more focused on the achievability

analysis, as the upper-bound is obtained from a centralized genie-aided setting. In

Chapter 5 we turn our attention to distributed upper-bounds. In particular, we

consider the Network MIMO setting, in which M transmit antennas jointly serve 2

multi-antenna RXs. Previously, we have assumed that the TXs are endowed with

different CSI which can also be of different accuracy. In order to distinguish between

the impact of imperfect CSI and distributed CSI, we simplify the CSIT configuration

in this chapter, such that we consider that m transmit antennas have access to

perfect CSI of the whole channel matrix, whereas the M −m transmit antennas

have only access to finite precision CSI. We present a distributed upper-bound

for this regime, which is shown to be tight a certain regime. Specifically, for the

regime in which the number of informed transmit antennas is bigger or equal than

the minimum number of antennas at the users. We provide also a transmission

scheme attaining the said upper-bound, and we generalize it to obtain a general

lower-bound applicable at any regime. This chapter is composed of partial results

that are not published yet.

The analysis of Part III is motivated by the results of Part II, as one of the main questions

arising from the previous chapters is if those results extend to finer metrics than DoF and

GDoF. In order to answer this question, we restrict our analysis to simple zero-forcing

transmission schemes. The objective is to disclose the loss of performance on account

of not sharing perfectly the CSIT. Therefore, we study the rate gap of the decentralized

scenario with respect to the centralized setting in which the channel information at the

transmitters is perfectly shared. We consider in this part that the precoder satisfies an

instantaneous power constraint. This is important due to the decentralized structure of

the network considered, since a transmitter cannot know the power normalization applied

at the other transmitter because each one computes it on the basis of its own channel

information, which can be different. Part III comprises two different chapters.

• Chapter 6: In this chapter, we consider the simple single-antenna setting with

2 TXs and 2 RXs as in the initial chapter of Part II. However, we analyze now

the rate gap of the distributed setting when the joint transmission makes use of

zero-forcing schemes to attenuate the interference. The contribution of this chapter

is manifold. First, we show that the rate achieved with zero-forcing transmission

in the distributed CSIT setting converges at high SNR to the rate attained in the

9



Chapter 1. Introduction

centralized genie-aided setting where the best channel estimate is shared between

the transmitters. This result implies that there is not rate gap on the asymptotic

regime. Second, we develop a zero-forcing-type precoding scheme tailored for the

distributed setting. This precoding scheme builds on the main insights of Chapter 3

for the DoF analysis. Third, we propose novel precoding strategies that allow

to increase considerably the performance at low-to-medium SNR. Among these

strategies, it is noteworthy the fact that reducing the accuracy of the channel

information at one TX can improve the performance. This behavior arises from

an implicit compromise between the accuracy of the decision locally taken by a

certain transmitter and the consistency –or agreement– between the decisions of

both transmitters.

The work presented in this chapter has produced the following publications:

[101] Antonio Bazco-Nogueras, Lorenzo Miretti, Paul de Kerret, David Ges-

bert, and Nicolas Gresset, “Achieving Vanishing Rate Loss in Decentralized

Network MIMO,” in Proc. IEEE International Symposium on Information

Theory (ISIT), July 2019, pp. 1457-1461.

[102] Antonio Bazco-Nogueras, Lorenzo Miretti, Paul de Kerret, David Ges-

bert, and Nicolas Gresset, “Transmission Robuste de Zéro-Forçage Asympto-

tiquement Optimale pour Coopération Imparfaite de Transmetteurs,” in Proc.

Colloque GRETSI, August 2019.

• Chapter 7: We extend the analysis of the previous chapter for the general M ×K
Network MISO setting with multiple-antenna transmitters. In a similar vein as

in Chapter 4, the goal of this chapter is to comprehend the main insights of the

results of the simple setting by confronting the analysis to a more general case. The

contribution of this chapter is to show that the rate of the centralized genie-aided

setting is asymptotically reached for all the channel information configurations

for which the distributed setting attains the centralized DoF. In other words, the

decentralized setting not only achieves the same multiplexing gain as the centralized

setting, but also the beamforming gain. We futher study how this result extends

to the non-asymptotic SNR regime. We develop a transmission scheme to achieve

these results. This scheme also makes use of the idea that reducing the accuracy of

information at some nodes improves the agreement between all the transmitters.

However, it differs from the scheme of the 2×2 case in the fact that the transmitters

with more accurate information now attempt to correct the interference generated

by the other transmitters.
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These results have been submitted to the following publication.

[103] Antonio Bazco-Nogueras, Paul de Kerret, David Gesbert, and Nicolas

Gresset, “Asymptotically Achieving Centralized Rate on the M ×K Decentral-

ized Network MISO,” submitted to IEEE Transactions on Information Theory,

2019.

To finalize, we discuss in Chapter 8 the main conclusions that emerge from the work

developed during this thesis.

11



Chapter 1. Introduction

12



Chapter 2

Problem Statement and System

Model

We consider a cooperative wireless network in which several transmitters aim to jointly

serve several users. In order to apply this Cooperative Multi-point transmission (CoMP),

all the transmitting nodes share the information data symbols destined to be decoded

at the receivers. Hence, the joint transmission is intended to cancel or avoid that the

interference from other users impacts the performance. The main particularity of our

model is the assumption of decentralized channel state information. Consequently, each

transmitter owns a particular channel estimate, possibly different with respect to the one

available at the other transmitters. We motivate in the following this scenario, and we

define the mathematical model that we assume.

2.1 Motivation and Practical Examples of the Distributed

CSIT setting

2.1.1 Perfect User Data Sharing

In order to account for TX-dependent limited feedback in the network MIMO channel,

we focus in this thesis on a wireless configuration in which the user’s data symbols

are available and jointly transmitted from all the TXs, whereas the channel estimates

could only be imperfectly obtained at the TXs. Such assumptions, although seemingly
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Chapter 2. Problem Statement and System Model

contradictory at first sight, are actually very relevant in current wireless networks, and

even more in future 5G-and-beyond wireless networks. The main reason is that, in many

scenarios of interest, the latency constraint for data delivery is significantly looser than

the CSI outdating constraint, as the later is related to the coherence time and hence

very short in many relevant mobility scenarios. This property has for consequence that

the data sharing (or caching) between TXs can be achieved in practice while timely CSI

acquisition and sharing becomes the main bottleneck.

Our assumption that the user’s data symbols are available at all the TXs is made

possible without putting in question the scenario described above because of two recent

major techniques envisioned for future 5G-and-beyond wireless networks: Caching [92,

104,105] and Cloud-Ran/Fog-Ran [106,107].

Through caching, the user’s data symbols are pre-fetched at the TX nodes before

the transmission occurs [92]. Caching is an increasingly important feature that already

exists in many scenarios [20, 94] and is envisioned in many more [21]. With the user’s

data symbols available at the TXs, even at mobile and cost-efficient ones, the accurate

and timely acquisition of the multi-user channel becomes the main bottleneck for efficient

interference reduction. This leads to a D-CSIT configuration wherever the cooperation

links are not obtained with sufficient accuracy.

In the Cloud-RAN paradigm, the centralization of the processing of all nodes is

envisioned so as to gain full benefits of cooperation. This centralization is however

limited by its cost and its delay, such that partial centralization is considered a promising

solution [108]. Considering decentralized precoding at the TXs allows to reduce the delay

in CSI acquisition. In that case, the backhaul links are solely used to convey the user’s

data since, for many data-oriented applications, the application’s latency requirements

are orders of magnitude slower than the rate at which the fading channel evolves. The

CSI estimates are directly exchanged between the TXs through direct links, thus reducing

the delay of the complete CSI acquisition at the TXs. This CSI exchange between TXs

through limited resources leads to a D-CSIT configuration.

2.1.2 Imperfect CSI Acquisition and Sharing

Although the assumption of having decentralized channel state information may seem

contradictory with the assumption of perfect sharing of user data symbols, both aspects co-

exist in many scenarios of interest. This model is motivated by the different timescales of

latency that information data and CSI may experience in a range of emerging applications.

Indeed, CSI sharing is constrained by the channel coherence time, which can be very

short in mobility scenarios (ms). This, together with the fact that the communication link

between TXs is usually latency-limited backhaul implies that perfect CSI sharing is hard

14



2.1. Motivation and Practical Examples of the Distributed CSIT setting

to achieve. On the other hand, many data applications have delivery time restrictions

which are orders of magnitude weaker, such that it can be pre-fetched or cached at the

various TXs and ready to be synchronously transmitted.

To convey the main idea, a non-limiting practical scenario is depicted in Fig. 2.1.

In this 2×2 scenario, under the assumption of centralized configuration, both TXs are

connected via an ideal –no rate-limited, instantaneous– backhaul, e.g. an optic fiber

connection. Conversely, in the distributed setting, the TXs are connected by an imperfect,

rate-limited or delayed link –e.g., wireless link–, such that they may share some CSI.

Then, if we assume a short channel coherence time, the TXs will not be able to perfectly

share its CSI, although they may transmit some noisy, quantized or compressed version

of the locally available information.

Perfect backhaul (Centralized)

TX 1

TX 2

Figure 2.1 – Distributed vs Centralized CSIT example.

In the scenario described, depending on the CSI acquisition protocol, the CSI

allocation will be different. For example, if we assume a Time Division Duplexing (TDD)

setting in which the TX is estimating the uplink channel to make use of the reciprocity

property, each TX will have a probably good estimate of its own local links towards

both users. This implies that, in Fig. 2.1, TX 1 would obtain a fed-back estimate of the

solid-line links and TX 2 would obtain a fed-back estimate of the dashed-line links. Then,

the TXs could acquire a coarse estimate of the other TX’s information via the TX-TX

link. If Frequency Division Duplexing (FDD) is used, such that the RX sends to the TXs

a quantized version of the channel, we can have: a) If the user is connected to only one

TX, each TX will have good CSI of a single user –e.g., if TX 1 is connected with RX 1 it

will obtain the dark red links, if it is connected to RX 2, the light blue links–; b) if the RX
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Feedback links

(a) Multiple Base-Stations. Each one knows
better the CSI of a subset of RXs. They obtain
a less accurate estimate of the other RXs via
the wireless TX-TX links.

limited links (Distributed)

(b) Master Base Station with remote radio-
heads. It obtains an estimate of the whole
channel matrix, then it transmits noisy or
compressed CSI to the auxiliary TXs.

Figure 2.2 – Distributed CSIT setting use cases.

is connected to both, he may use a different feedback rate to adapt to the link capacity

towards each of the TXs. Finally, TX 2 could also be a remote radio-head to enhance

downlink transmission such that the RXs feed back the whole channel matrix to TX 1,

and TX 1 attempts to send the most appropriate information to TX 2 via the limited

wireless link. In this way, many different CSI configurations can appear as function of

the system characteristics, all of them enclosed in the Distributed CSIT setting, that is

rigorously defined in the following section.

We assume that a limited cooperation between TXs has taken place before the

transmission phase, leading to a certain CSI accuracy configuration. Hence, we assume

hereinafter that the average CSIT accuracy remains constant for a certain time. The

problem of studying the best strategy of CSI sharing in a limited and constrained

communication is a very interesting research problem per-se, but it is outside the scope of

this work. Thus, we do not discuss the exact CSI acquisition mechanism. The generality

of our model is exactly meant to adapt to any CSI sharing scenario.

The extension of the example for an arbitrary number of nodes follows easily. For

instance, the model encloses a setting in which the RXs feed back their channel vectors

to the TXs and 1) either a RX i sends the CSI to a TX j, and TX j shares a noisy

or compressed information to the other TXs, or 2) each RX i sends a CSI of different

accuracy towards each TX, depending on the link quality. The scenario is depicted

in Fig. 2.2a. Furthermore, we can also model a scenario in which a main, multi or

massive antenna base station serves a set of users with the help of some single or multi

antenna remote radio-head or simple TXs, as depicted in Fig. 2.2b. We present a more

comprehensive discussion about the possible network configurations in Chapter 4.
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2.2 Downlink Transmitter Cooperation

In this thesis, we focus mainly on the downlink (DL) transmission, although most of the

findings could be also applicable for the uplink (UL) transmission. The main reason to

consider DL transmission is that it is a more challenging and pertinent case concerning

the problem of CSI acquisition and sharing [109]. We consider the Network MISO setting

in which M TXs jointly serve K single-antenna receivers (RXs), and where TX j has Nj

antennas. We denote the total number of transmit antennas as

NT ,
M∑
j=1

Nj . (2.1)

The TXs seek to deliver a certain message Wi to each RX i. The messages Wi are inde-

pendent and identically distributed (i.i.d.), each one drawn from a circularly-symmetric

complex Gaussian distribution NC(0, 1). Those messages are mapped into data symbols si,

and the vector s , [s1, . . . , sK ]T is assumed to be known by all the TXs.

The channel from the M TXs to the K RXs is represented by the channel matrix H ∈
CK×NT . Since we will make extensive use of several sub-matrices of H, we appropriately

define them in the following. Therefore, the channel coefficient from the n-th antenna of

TX k to RX i is denoted as hi,k,n, and the vector of channel coefficients from TX k to

RX i is represented by hH
i,k ∈ C1×Nk , where (·)H denotes the conjugate transpose. For the

cases in which we assume single-antenna TXs, hH
i,k matches hi,k,n and thus we will denote

it as hi,k. The vector of channel coefficients from all the TXs to RX i is represented by

hH
i ∈ C1×NT . Similarly, the sub-matrix of channel coefficients from TX k towards all the

RXs is denoted by H∗,k ∈ CK×Nk ; in the case of single-antenna TXs, H∗,k is a vector

and hence it is denoted as h∗,k. Consequently, we can write the channel matrix as

H ,


hH

1
...

hH
K

 , [H∗,1 . . . H∗,M

]
,


hH

1,1 . . . hH
1,M

...
. . .

...

hH
K,1 . . . hH

K,M

 . (2.2)

The channel coefficients are assumed to be drawn from a distribution with density such

that all the channel sub-matrices are full rank with probability one. We will consider

sharper assumptions on the channel distribution within each chapter. We assume that

all the TXs are endowed with the data symbols vector s. They precode the vector s with

a precoder T. The received signal at the RXs is then given by

y ,
√
PHTs + n, (2.3)
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where P is transmit power, y , [y1, . . . , yK ]T is the received signal vector and yi is the

received signal at RX i. The vector n ∈ CK stands for the Additive White Gaussian

Noise (AWGN) distributed as NC(0, 1).

In a similar manner as for the channel matrix, the precoding matrix T can be

decomposed in several sub-matrices of interest. Hence, Tk ∈ CNk×K denotes the precoding

matrix applied at TX k; in case of single-antenna TXs setting, TX k applies a precoding

vector and hence we denote it as tTX k ∈ C1×K . The global precoding vector applied to

the data symbols of RX i is denoted as ti ∈ CNT×1. The precoding vector applied at

TX k for the data symbol of RX i is represented by ti,k and, in case of single-antenna

TXs setting, ti,k is scalar and hence we denote it as ti,k. Consequently, we can write that

T ,


T1

...

TM

 , [t1 . . . tK

]
,


t1,1 . . . tK,1

...
. . .

...

t1,M . . . tK,M

 . (2.4)

Throughout this manuscript, we assume different power constraints for the transmit signal.

In particular, we consider a average power constraint from Chapter 3 to Chapter 5, such

that there exists a constant c ∈ R+ satisfying E
[
‖Tk‖2

]
≤ c. However, for Chapter 6 and

Chapter 7 we assume that the precoding vector has a per-TX instantaneous unit-norm

constraint, such that

‖Tk‖ ≤ c. (2.5)

Note that, even if we set ‖Tk‖ = c, the transmit power varies over the time as the power

of the data symbols si varies. With a huge abuse of notation, and for sake of concision,

we refer hereinafter to the constraint in (2.5) as instantaneous power constraint, although

strictly speaking it is an instantaneous power constraint on the precoding vector. This is

done in opposition to the less restrictive average power constraint on the precoder.

2.3 System Figures of Merit

We present the main metrics used throughout this manuscript to characterize and compare

the performance of the different scenarios and settings. Since this thesis is aimed at the

high-SNR regime, the figures of merit considered are tailored to this regime.

2.3.1 Average Rate

The main performance metric considered is the expected value of the user rate. We

assume that every user i ∈ NK wishes to receive a message Wi ∈Wi. After n channel

uses, the rate Ri(P ) is achievable for RX i if Ri(P ) = log |Wi|
n and the probability of
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wrong decoding goes to zero as n goes to infinity. Then, the expected sum rate is defined

as R(P ) ,
∑K

i=1Ri(P ). The sum capacity C(P ) is defined as the supremum of the sum

of all achievable rates [110]. In particular, under the assumption that the data symbols

are i.i.d. NC(0, 1), the expected rate for RX i is given by

Ri(P ) , E

[
log2

(
1 +

P
K |h

H
i ti|2

1 +
∑

`6=i
P
K |h

H
i t`|2

)]
. (2.6)

In the following, we may omit the explicit reference to the transmit power P . Importantly,

due to the unit-norm AWGN assumption, the average Signal-to-Noise ratio (SNR)

coincides with the transmit power. Accordingly, the nominal parameter P will be likewise

referred as nominal SNR.

Finding fundamental limits of the rate in complex multi-user systems, such as the

Network MISO setting with imperfect or distributed CSIT, has been shown to be an

elusive problem. For this reason, several asymptotic metrics has been widely used in the

literature. Such metrics have been proven instrumental to improve the understanding of

multi-user networks. We present in the following the asymptotic metrics that we consider.

2.3.2 Degrees-of-Freedom

The DoF metric, also known as multiplexing gain or pre-log factor, is defined as [111]

DoF , lim
P→∞

C(P )

log2(P )
. (2.7)

In a similar way, the DoF for a particular RX is denoted as DoFi. Intuitively, the DoF

is the first order approximation of the capacity, and it represents the slope of the rate

as a function of the logarithm of the SNR P when P approaches to infinity. Fig. 2.3

illustrates its meaning. The DoF of a point-to-point single-antenna transmission is equal

to 1. Hence, the intuition behind this metric is that a setting with a DoF=D is equivalent

in the asymptotic regime to D independent point-to-point channels.

Despite the fact that DoF presents several limitations as figure of merit –we discuss

them in the following–, it has been key in the characterization of complex problems, e.g.

delayed CSIT [31,112], distributed CSIT [113,114], mixed CSIT [59,115], Interference

Alignment (IA) [40,116], caching [94,117–119], etc.

2.3.3 Generalized Degrees-of-Freedom

One of the weakness of DoF is that it does not take into account the network topology

–we refer to network topology as the path-loss characterization of the system–. This

condition comes from its limiting nature. Indeed, as P grows, the possible impact of
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finite path-loss differences between links vanishes. This behavior is clear by analyzing

the limit in (2.7), since any finite path-loss can be expressed as a multiplicative constant

inside the logarithm such that it does not affect the limit. This issue is not relevant if the

channel links are in the same order of magnitude. However, it implies that DoF analysis

does not ensure truthful insights when the difference between channel strengths becomes

significant. The following example illustrates this behavior.

Example 2.1. Suppose a setting in which 2 single-antenna TXs jointly transmit

towards 2 single-antenna RXs, with no CSI at the TXs. Consider that the channels

TX 1-RX 1 and TX 2-RX 2 have a unit variance, whereas the channels TX 1-RX 2

and TX 2-RX 1 have variance γ ∈ (0, 1] that does not depend on P .

In this scenario, the DoF analysis provides that the DoF is equal to 1 indepen-

dently of the value of γ [120], i.e., it only attains the DoF of a single-RX transmission.

This result comes from the fact that, for any γ > 0, all the channel strengths scale

proportionally to P . Nevertheless, if the value of γ is very small, for example

γ = 10−10, the network topology is almost equivalent to two parallel independent

channels, and hence the achievable rate is almost twice the rate of a single-RX

transmission. Therefore, in this example, DoF analysis does not provide a truthful

characterization of the sum-rate behavior in realistic transmissions.

The fact that DoF analysis does not take the network topology into account implies that

it may not be the right metric for large networks analysis [121] or unbalanced network

topologies. One of the solutions to overcome this limitation is to consider the so-called

locally-connected networks [122], in which the channel links are supposed to be non-zero

only for a local neighborhood of the considered node. Although this assumption allows

for insightful analysis for large networks, it does not avoid the problem highlighted in

Example 2.1.

The Generalized Degrees of Freedom (GDoF) concept was introduced in [41] with

the purpose of overcoming this limitation and taking into account the path-loss topology.

GDoF is an extension of the DoF model where the path-loss is modeled as a function

of the SNR. Hence, the network structure and its topology impact the analysis. Indeed,

GDoF has the same definition of DoF, i.e.,

GDoF , lim
P→∞

C(P )

log2(P )
. (2.8)

Nevertheless, the difference lies in the channel model: Let us consider an arbitrary channel
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coefficient hi,k. In the GDoF channel model, it is defined as

hi,k ,
√
P γi,k−1gi,k, (2.9)

where gi,k is drawn from a distribution that does not depend on the parameter P , i.e., as

hi,k in the previous channel model. The parameter γi,k ∈ [0, 1] represents the relative

channel strength for the link. In particular, γi,k = 1 can be seen to be equivalent to have

negligible path-loss; moreover, if γi,k = 1 for all links, we recover the DoF model. On

the other side, γi,k = 0 is equivalent to have a blocked link, in the sense that any signal

received from that channel link lies under the noise floor even if P →∞.

GDoF has been proven an interesting approach since optimal achievable schemes for

GDoF analysis also achieve capacity within a constant number of bits [41,123,124], and it

has been extensively used in the literature for characterizing complex settings [125–129].

We consider that the parameters γik are known by anyone, since they are assumed to be

long-term coefficients that vary slowly.

Remark 2.1. In the GDoF analysis, the nominal parameter P does not represent the

transmit power, as for every value of P the setting changes. Conversely, it allows to

group the configurations that have the same capacity when it is normalized by log2(P ).

In other words, the GDoF analysis keeps constant the ratio of capacities between the

channel link: A link with γi,k = 1
2 has half of the capacity of a link with γi,k = 1, for any

value of P . �

2.3.4 Affine Approximation of the Rate

Although GDoF overcomes the lack of sensitivity of DoF regarding the path-loss topology

and, in some cases, it allows to achieve capacity within a known number of bits, it still

undergoes the other main limitation of DoF: The metric does not provide any bounded

knowledge about the achievable rate. Indeed, the definition of DoF in (2.7) implies that

the rate can be written as

R = DoF log2(P ) + o
(

log2(P )
)
, (2.10)

and the term o
(

log2(P )
)

is not bounded. In Fig. 2.3, we show how two settings with

the same DoF –which represents the slope of the rate– can achieve considerably different

rates. Nevertheless, the metric can be refined to offer results of achievable rate with a

bounded gap. In particular, we consider the affine approximation of the rate at high

SNR, introduced in [130]. According to this approximation, the achievable rate can be

expressed as [130]
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Figure 2.3 – Qualitative illustration of the affine approximation of two different setting
with the same DoF (slope) but different rate offset R∞ = DoFL∞.

R = DoF log2(P )−R∞ + o(1), (2.11)

where R∞ denotes the rate offset –or vertical offset–. The approximation in (2.11) can

also be written in terms of the power offset –horizontal offset– L∞, where R∞ = DoFL∞.

An illustrative visualization is shown in Fig. 2.3. The term L∞ represents the zero-

order term with respect to a reference setting with the same slope but whose affine

approximation intersects the origin. Note that the rate offset is defined as

R∞ , lim
P→∞

DoF log2(P )−R(P ), (2.12)

where R(P ) represents the rate as function of the SNR P . This measure has shown

instrumental in several findings. In [29], Lozano et al. analyze the multiple-antenna

point-to-point scenario, revealing that some system features which do not impact the

DoF (as antenna correlation, fading...) do considerably impact the zero-order term,

affecting the performance of the system at any possible SNR. In addition to expose

the limitations of having only information about the DoF, [29] also reveals that the

affine expansion offers appreciably tight approximations also at medium-to-low SNR.

This characterization has been also established for the Broadcast Channel (BC) with

perfect CSIT using Dirty-paper coding and linear precoding [131], and for the BC with
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imperfect CSIT [132]. In [132], the quantized feedback scenario was studied under the

assumption of Zero-Forcing (ZF) schemes, showing that the channel-to-estimation-noise

ratio must be proportional to SNRα in order to attain a DoF per user of DoFRX i = α.

Furthermore, having a ratio of SNRα was shown to be equivalent to send a quantized

feedback of α log2(SNR) bits, what could be attained if the feedback resources scale as

the capacity of the channel. In the same vein as in [29], this approximation is expected

to be adequate also to characterize the performance below the high-SNR regime for a

broad set of configurations and settings.

2.4 Distributed CSIT Model

The main particularity of this thesis is the consideration that the TXs do not share

perfectly their CSI. In this section, we present the general mathematical model and

the assumptions that hold throughout the entire thesis. This scenario can be seen as a

multi-agent cooperative decision with common goal, where each node knows the structure

of the system but not the information that the others have received [73]. Further details

and considerations are included in the corresponding chapters. We start by introducing

the imperfect CSIT model for the centralized CSIT setting.

2.4.1 Centralized CSIT Model

In the Centralized CSIT setting (C-CSIT), there is a single estimate of the channel

matrix H ∈ CK×NT , shared by all the TXs. We denote the estimate of a certain channel

submatrix with a hat (̂·), i.e., Ĥ, ĥi, Ĥ∗,k, denote the estimate of H, hi, H∗,k, respectively.

Let us first consider a single channel coefficient for a single-antenna TX setting. Then,

the imperfect CSIT assumption is modeled such that

ĥi,k ,
√

1− Zi,k hi,k +
√
Zi,k δi,k, (2.13)

where δ i,k is the additive noise variable and Z denotes the variance scaling of that noise.

Let 1n×m, 0n×m, denote respectively the all-ones matrix and the all-zeros matrix of size

n×m. Based on (2.13), the channel matrix estimate can be written as

Ĥ ,
√

1K×NT − Z�H +
√

Z�∆, (2.14)

where � represents the Hadamard –element-wise– product and ∆ is a noise random matrix

that encloses the additive estimation noise and whose covariance matrix is bounded. The

variance scaling of the estimation noise is provided by the deterministic matrix Z. Thus,

23



Chapter 2. Problem Statement and System Model

Z encloses the average accuracy of the estimates. Intuitively, if Z = 0K×NT , the estimate

is perfect, since Ĥ = H. Conversely, if Z = 1K×NT , the estimate is composed only of

random noise. We further define the i-th row of ∆ as δi, such that ∆ , [δ1, . . . , δK ]T.

This setting provides a great generality, as it comprises cases where each channel coefficient

is known with a different accuracy and with any possible correlation, incorporating any

heterogeneous scenario.

2.4.2 Distributed CSIT Model

The Distributed CSIT (D-CSIT) model is characterized by the consideration that each

TX is endowed with a possibly different estimate. Thus, the key singularity of this setting

is that, for any channel coefficient, there exist as many estimates as TXs, each one of

them locally available at a single TX. The extension from the centralized model in (2.14)

is direct. Let us denote the estimate at TX j as Ĥ(j)1. Then, Ĥ(j) is defined as

Ĥ(j) ,
√

1K×NT − Z(j) �H +
√

Z(j) �∆(j). (2.15)

Hence, each TX has a different estimation noise (∆(j)) with a a different power (Z(j)).

Furthermore, we define the distributed estimate counterpart of the different sub-matrices

defined in Section 2.2 consistently. For example, the estimate of the vector channel

towards RX i (hi) is denoted as ĥ
(j)
i .

Remark 2.2. It is critical to understand well how the Distributed CSIT setting differs from

the many different heterogeneous CSIT configurations studied in the literature. Indeed, a

heterogeneous CSIT configuration typically refers to a centralized CSIT setting (i.e., with

a channel estimate common to all TXs), where each element of the channel is known

with a different quality owing to specific feedback mechanisms [49,133–135]. In contrast,

the distributed setting considered here has as many different channel estimates as TXs,

where each TX does not have access to the CSIT knowledge at the other TXs. �

2.4.3 Estimation Noise Scaling

The main reason why we consider the model of (2.15) with the variance of each noise

coefficient explicitly indicated with the element-wise product is that our analysis is mainly

dependent of the scaling of that variance. In particular, we only require from ∆(j) that

it is a random variable with bounded covariance matrix and density (although further

assumptions are considered for certain chapters). In turn, we analyze the impact of

1Henceforward, and as a general rule, we consistently use the sub-index i to refer to RXs, the sub-index
k to refer to channels or parameters asociated to TXs, and the super-index (j) to indicate where the term
is known. Hence, x

(j)
k denotes the estimate at TX j of a parameter xk of TX k (channel coefficient, power

normalization, etc.).
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the value Z(j) when it is modeled as a function of the SNR. It is known that, for the

centralized CSIT case, the signal-to-noise ratio of the estimate should scale as Pα, with

α > 0, in order to avoid the collapse of the multiplexing gain [50,132]. Then, we consider

an exponential scaling with P also for the D-CSIT setting. Consequently, we assume

that the matrix Z(j) is defined such that its (i,k) coefficient is given by

Z
(j)
i,k = P−α

(j)
i,k , (2.16)

where 0 ≤ α(j)
i,k ≤ 1. The coefficient α

(j)
i,k is the accuracy scaling parameter that measures

the quality of estimation of the channel matrix at TX j. The CSI accuracy at the TXs

is characterized throughout this thesis with these parameters α
(j)
i,k . We define the set of

accuracy scaling parameters as α, such that

α , {α(j)
i,k}i∈NK , j,k∈NM . (2.17)

The parameters α
(j)
i,k are assumed to be long-term coefficients that vary slowly. Based

on that, it is assumed that every TX knows the full set α, as it only requires to share

few bits over a long period of time. Moreover, we will refer to the TX with the greatest

parameter α
(j)
i,k as the “most-informed” or the “best-informed” TX. In the following, we

present some intuitions and justifications of the exponential model.

Limited Feedback

This scaling model arises when we consider a setting in which the RXs quantize their

perfect channel information and feed that quantization back to the TXs. Jindal demon-

strated in [132] that, in the (centralized) MISO BC setting, if the channel vector is

quantized with B bits, the estimation noise variance scales as 2−
B

M−1 . Hence, letting the

number of quantization bits scale as B = (M − 1)α log2(P ), the estimation noise scaling

becomes

2−
B

M−1 = P−α, (2.18)

which matches the model in (2.16). Note that the assumption that the number of bits

is proportional to log(P ) is a feasible assumption since it is equivalent to say that the

feedback rate scales linearly with the capacity of the channel link.

Multiplexing Gain

It is known that, if the noise variance does not scale as P−α, for α > 0, the multiplexing

gain (DoF) of the setting is lost with respect to the case with no CSIT [120,132]. Since

our analysis is focused on the high-SNR regime, this CSIT accuracy model enables us
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to obtain a comprehensive characterization of the network behavior in the asymptotic

regime. On this basis, the parameter α
(j)
i,k can be restricted to the interval [0, 1]. This is

due to the fact that, with α
(j)
i,k = 1, the estimation error lies on the noise floor –since it

has a scaling that does not grow with P– and hence it is negligible in the asymptotic

regime. In particular, for the GDoF channel model, α
(j)
i,k can be restricted to [0, γi,k], for

the reason previously exposed.

2.4.4 Sorted CSIT Setting

There exists a particular case that is of significant relevance on its own: The CSIT config-

uration in which the TXs can be ordered by their CSIT accuracy. In this configuration,

so-called sorted CSIT setting, we can write w.l.o.g. that

1 ≥ α(1)
i,k ≥ α

(2)
i,k ≥ · · · ≥ α

(M)
i,k ≥ 0. (2.19)

For the sake of concision and readability, we consider also a simplified version of this

setting in which a given TX has the same accuracy scaling parameter for any channel

coefficient, i.e., that α
(j)
i,k = α(j), ∀i ∈ NK , k ∈ NM . Hence, (2.19) becomes

1 ≥ α(1) ≥ α(2) ≥ · · · ≥ α(M) ≥ 0, (2.20)

which implies that TX 1 is the best-informed TX, i.e, whose CSI has the highest accuracy.

This model encloses for example a scenario in which a main, multi or massive antenna

base station serves a set of users with the help of some single or multi antenna remote

radio-heads or simple TXs, as depicted in Fig. 2.2b. Moreover, it can be seen as a

simplification for a more decentralized setting, in which each TX obtains the channel

information of its attached users. Then, a TX gathers the information from all the other

TXs but, due to the tight latency constraints or the limited capacity of the backhaul

links, can only send back a compressed version of the channel matrix. This configuration

is represented by Fig. 2.2a.

2.4.5 Hierarchical CSIT Model

Another important case which belongs to the D-CSIT setting is the so-called Hierarchical

CSIT (H-CSIT) setting: Consider the D-CSIT setting with M TXs in which each TX

owns a different channel estimate of the coefficient hi,k, denoted as ĥ
(j)
i,k . The setting

follows a Hierarchical CSIT configuration if and only if each TX knows the estimate at

the TXs whose estimate is less accurate. That is, for each channel coefficient, we can

order the TXs such that TX 1 is the best-informed TX and TX M is the TX with the
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least accurate estimate. Then, the estimate of TX j + 1 is included in the information

available at TX j such that TX j knows

ĥ
(M)
i,k , . . . , ĥ

(j+1)
i,k , ĥ

(j)
i,k . (2.21)

This CSIT structure appears in many heterogeneous networks, in which e.g. a main

TX shares with the other TXs its channel estimate but has to compress it to transmit

through a rate-limited link, or in cases in which there exits multi-level quantization

schemes. Several works in the literature have focused on such setting [83,136–138]. with

the aftermath that the explicit structure of the CSIT enables important gains with respect

to the fully distributed setting.

2.4.6 CSIR Model

In this work, we focus on the impact of the imperfect CSI on the TX side as the CSI

acquisition is widely acknowledged to be more challenging on the TX side than on the

RX side. For example, in FDD, due to the need to feed back the CSI that has been

estimated at the RX towards the TX. Therefore, we consider that every RX has perfect

knowledge of its own channel.

2.5 Genie-aided Centralized CSIT Setting

Finding purely distributed upper-bounds is a challenging subject that remains open for

most of the settings. We tackle this problem in Chapter 5. However, any decentralized

scenario with distributed estimates has an ideal centralized counterpart in which a genie

provides the best estimate of each parameter to every node. Based on that, we introduce

the notion of “genie-aided centralized scenario” that will be used all over this thesis. A

genie-aided centralized scenario is a C-CSIT setting –in which all the TXs are endowed

with the same CSI– that is obtained from a D-CSIT setting by means of providing the

TXs with CSI available at other TXs. We must note that we consider two possible

genie-aided settings, each one for a different part of this thesis.

1. The first genie-aided scenario, considered for the DoF analysis, is such that each

TX shares its CSI with any other TX. Thus, every TX owns the set of M estimates.

2. The second genie-aided scenario, less loosened, considers that all the TXs are

endowed only with the estimate of best average accuracy.

This ideal setting provides us with a benchmark for the performance on the D-CSIT

setting. In this way, we are able to analyze which is the impact of having distributed
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information or, in other words, the cost of not sharing the CSI. In general, the genie-aided

centralized setting is represented by a MISO BC setting with NT transmit antennas.

Remark 2.3. It is important to observe that in the first genie-aided model every TX

owns the set of M estimates of the M TXs, whereas in the second one each TX owns

only the best estimate among all the TXs, instead of its own estimate. The later model

allows a fairer comparison between the D-CSIT and the C-CSIT scenarios. The former

would benefit from the fact that the knowledge of M estimates allows to reduce the

noise variance by a factor proportional to M . However, it proves useful as achieving the

performance of such an ideal setting strengthens the results of the D-CSIT setting. �

2.6 Asymptotic Notation

This thesis is mainly focused on the asymptotic analysis of the rate in the high-SNR

regime. In the interest of clarity, we specify in the following the notation considered to

express certain asymptotic properties. In particular, we base our notation in the prevalent

Bachmann–Landau notation [139]. As lucidly summarized in [140], mathematicians

and researchers have applied different notations to refer to the asymptotic behavior or

scaling of functions, e.g. relational notation as ≺,�,� or the dot-notation
.
=, ≤̇, but also

set-notations as the Bachmann–Landau notation. In this thesis, we make use of the later

because it can be placed inside the mathematical derivations and offers a more flexible

handling. Specifically, we follow the limit interpretation given below [140].

Definition 2.1. Let g be a real valued function. Let f be a real or complex valued

function. One writes2

f(x) = O(g(x)) (2.22)

if and only if lim supx→∞
|f(x)|
g(x) <∞.

Definition 2.2. Let g be a real valued function. Let f be a real or complex valued

function. One writes

f(x) = o(g(x)) (2.23)

if and only if limx→∞
f(x)
g(x) = 0.

2The “=” sign in f(x) = O(g(x)) is an abuse of notation that actually means f(x) ∈ O(g(x)). Indeed, it
is a one-way equality [140] since O(x) = O(x2) but O(x2) 6= O(x). This “=” notation has been extensively
used in the literature and we use it for convenience. However, its exact meaning must be clear.
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Note that f(x) = o(g(x))⇒ f(x) = O(g(x)), but the converse is not true. We present in

the following another asymptotic notation that is disjoint with o(g(x)) and which was

firstly introduced by Knuth in [140].

Definition 2.3. Let g be a real valued function. Let f be a real or complex valued

function. One writes

f(x) = Θ(g(x)) (2.24)

if and only if there exist positive constants C1 > 0, C2 <∞, such that

lim sup
x→∞

|f(x)|
g(x)

< C2 <∞, and lim inf
x→∞

f(x)

g(x)
> c1. (2.25)

The previously enunciated O-notations are defined for limits of function when their

arguments approaches infinity. Besides this notation, we introduce also equivalent

asymptotic notations for random variables –see [141] for a detailed discussion about the

different probabilistic versions of asymptotic notations–. This notation will be very useful

throughout the rest of the manuscript.

Definition 2.4. Let χ be a random variable with probability density function that

depends on a parameter θ and is denoted by fχ|θ. Let g be a real valued function.

Consider the random variable χ∞ whose probability density function is given by

fχ∞(x) , lim
θ→∞

fχ|θ

(
x

g(θ)

)
. (2.26)

One writes

χ = Θρ(g(θ)) (2.27)

if and only if the limiting probability density function is bounded, i.e.,

max
x

fχ∞(x) = fmax
χ

<∞, (2.28)

and there exist positive constants C1 > 0, C2 <∞, such that

C1 < E[‖χ∞‖
2] < C2. (2.29)

The notation Θρ(g(θ)) is the equivalent of Θ(f(x)) for random variables. Intuitively, it

implies that the random variable χ can be decomposed as

χ = g(θ)χ̃, (2.30)
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such that the random variable χ̃ is a “normalized” variable for which the peak of the

Probability Density Function (PDF) does not scale with θ. As a matter of example,

consider a transmission of data symbols drawn from a complex Gaussian random variable

h ∼ NC(0, 1). Suppose that we transmit those data symbols with a power P , such that

the transmitted signal x is given by

x ,
√
P︸︷︷︸

g(P )

h︸︷︷︸
x̃

. (2.31)

Then, it follows that x = Θρ(
√
P ). Moreover, Definition 2.4 leads to the following

corollary.

Corollary 2.1. Let x = Θρ(
√
P ). Then,

E[‖x‖2] = Θ(P ). (2.32)

Corollary 2.1 sets a relation between both functional and probabilistic notations (Defi-

nition 2.3 and Definition 2.4, respectively). Therefore, a random variable in Θρ(y) has

an expected squared norm in Θ(y2). We similarly define the probabilistic equivalent

of O(f(x)) in Definition 2.1.

Definition 2.5. Let χ be a random variable with probability density function that

depends on a parameter θ and is denoted by fχ|θ. Let g be a real valued function.

Consider the random variable χ∞ whose probability density function is given by

fχ∞(x) , lim
θ→∞

fχ|θ

(
x

g(θ)

)
. (2.33)

One writes

χ = Oρ(g(θ)) (2.34)

if and only if the limiting probability density function is bounded, i.e., if fmax
χ
,

maxx fχ∞(x) satisfies that fmax
χ

<∞, and there exists a positive constant C1 <∞,

such that

E[‖χ∞‖
2] < C1. (2.35)

Together with the previous notations, it is normally assumed that f(x) ∼ g(x) denotes

that limx→∞
f(x)
g(x) = 1. However, throughout this manuscript we use ∼ to denote that a

random variable has a certain distribution, i.e., we write X ∼ F if and only if the random

variable X is distributed as F . Besides the standard O-notations and their probabilistic
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counterparts, we make use of another asymptotic notation that will prove useful in the

DoF analysis. This last notation is a relaxation of Definition 2.3.

Definition 2.6. Let g be a real valued function. Let f be a real or complex valued

function. One writes

f(x) = Θlog(g(x)) (2.36)

if and only if

lim
x→∞

log(|f(x)|)
log(g(x))

= 1. (2.37)

Why is this last notation interesting? As previously mentioned, it can be seen as a

relaxation of Θ
(
g(x)

)
, i.e.,

Θlog

(
g(x)

)
⊂ Θ

(
g(x)

)
. (2.38)

It turns out that, for DoF analysis, it is enough to satisfy Θlog

(
g(x)

)
. As a matter

of example, let us denote the expected SINR as f(P ) = E[SINR] and suppose that

f(P ) = Θlog(P d), for any 0 ≤ d ≤ 1. By upper-bounding the rate through Jensen’s

inequality, the DoF is given by

lim
P→∞

log2(1 + f(P ))

log2(P )
= d. (2.39)

From Definition 2.6, the assignment f(P ) = Θlog(P d) is equivalent to

lim
P→∞

log(f(P ))

log(P d)
= 1. (2.40)

Hence, we can see that (2.39) and (2.40) are equivalent expressions. For this reason, in

the remaining of the document, a scenario in which the SINR term scales as Θlog(P d)

can be understood as having a DoF = d.
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Chapter 3

GDoF Analysis of the 2x2

Distributed Network MISO

In this chapter we analyze the GDoF of the 2× 2 setting under the D-CSIT assumption.

It is known that, in the specific case where each TX has an homogeneous estimate of

the whole channel matrix (such that every channel coefficient is estimated at a given TX

with the same average accuracy), the DoF of the D-CSIT setting matches the DoF of the

genie-aided C-CSIT setting [82]. In this chapter, we extend the analysis to the general

case with arbitrary accuracy parameters and arbitrary path-loss scaling, so as to answer

the question:

For the 2×2 setting, when does the D-CSIT setting achieve the GDoF of the C-CSIT?

This generalization of the initial result of [82] is far from trivial, as the outcomes could be

due to several particularities of the setting assumed in [82]; namely, the master-slave-type

configuration –with one TX having a better information about the whole system–, the

homogeneous accuracy assumption, or the absence of path-loss differences.

3.1 Preliminaries

As previously mentioned, Etkin et al. introduced the GDoF metric in [41]. The GDoF is

a generalization of the DoF metric that provides a finer characterization of the setting

capacity, offering in some cases capacity results within a constant number of bits [41].
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Among the vast literature on GDoF analysis, one work is of particular consideration

because of its complementarity with this chapter. Davoodi, Yuan, and Jafar presented

in [50] the GDoF of the MISO BC with imperfect, yet centralized1, CSIT. Thus, we can

obtain from [50] the GDoF of the genie-aided C-CSIT setting described in Section 2.5

that we employ as reference setting.

3.1.1 System Model

The transmit signal is defined as in Section 2.2. We recall that hH
i , [hi,1, hi,2] denotes

the multi-TX channel to RX i and hi,k denotes the fading channel coefficient from TX k

to RX i. The transmit signal x = P̄Ts ∈ C2×1 fulfills the average power constraint

E[‖x‖2] = P . Following the GDoF model of Section 2.3.3, the channel coefficients are

defined as

hi,k , P̄
γi,k−1gi,k, (3.1)

where P is the nominal SNR parameter. The parameter γi,k ∈ [0, 1] is the relative

channel strength exponent between TX k and RX i. Finally, the normalized channel

parameters gi,k are mutually independent and drawn from a generic (in the sense that

any matrix formed by i.i.d. elements according to this distribution will be full rank)

continuous distribution with density and whose density peak does not scale with P .

3.1.2 Distributed CSIT Model

The D-CSIT model is slightly simplified with respect to the general model described in

Section 2.4. In particular, instead of defining the estimate of gi,k at TX j as (2.13), i.e.,

ĝ
(j)
i,k ,

√
1− Z(j)

i,k gi,k +

√
Z

(j)
i,k δ

(j)
i,k , (3.2)

we omit the term
√

1− Z, as it does not impact the GDoF metric due to the fact that

the term is Θ(1). Moreover, we model the noise variance scaling as Z
(j)
i,k = P−α

(j)
i,k . Hence,

the channel estimate at TX j is written as

ĝ
(j)
i,k , gi,k + P̄−α

(j)
i,kδ

(j)
i,k , (3.3)

and ĥ
(j)
i,k , P̄ γi,k−1ĝ

(j)
i,k . This simplified model is the conventional DoF model used in

the literature [54, 58, 59, 120, 142] to shape the dependency of the CSIT accuracy as a

function of the SNR. The estimation noise terms δ
(j)
i,k are drawn from a generic continuous

distribution with density, independent of P , and independent from TX to TX. We limit

1Centralized refers to a logically centralized setting where all the TXs have access to the same, possibly
imperfect, CSI.
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P̄ γ1,1−1

P̄ γ1,2−1 P̄ γ2,1−1

P̄ γ2,2−1

Ĥ(1) =

ĥ
(1)
1,1 ĥ

(1)
1,2

ĥ
(1)
2,1 ĥ

(1)
2,2


ĥ

(1)
i,k = P̄ γi,k−1ĝ

(1)
i,k

ĝ
(1)
i,k = gi,k + P̄−α

(1)
i,k δ

(1)
i,k

{α(j)
i,k , γi,k} Ĥ(2) =

ĥ
(2)
1,1 ĥ

(2)
1,2

ĥ
(2)
2,1 ĥ

(2)
2,2


ĥ

(2)
i,k = P̄ γi,k−1ĝ

(2)
i,k

ĝ
(2)
i,k = gi,k + P̄−α

(2)
i,k δ

(2)
i,k

{α(j)
i,k , γi,k}

RX 1 RX 2

TX 1 TX2

Figure 3.1 – 2×2 Network MISO with distributed CSIT. The “bubble” contains the
information available at each TX. The accuracy of the estimate can be different from TX
to TX and from one link to another. The parameters γi,k represent the path-loss scaling
at each link.

the values of the CSIT quality exponent to α
(j)
i,k ∈ [0, γi,k]. Note that, in terms of GDoF,

an estimate with CSIT exponent α
(j)
i,k = γi,k can be intuitively understood as being

perfect [50], since the error generated by the estimation noise lies on the noise floor.

Conversely, α
(j)
i,k = 0 is intuitively understood as being useless from a GDoF perspective.

Our upper-bound analysis of the D-CSIT setting makes use of the results of Davoodi

and Jafar for the C-CSIT setting in [50]. Consequently, we recall here the Bounded Density

assumption usually considered in the Aligned Image Set approach [50,120].

Definition 3.1 (Bounded Density Coefficients [120]). A set of random variables, A,

is said to satisfy the bounded density assumption if there exists a finite positive

constant fmax,

0 < fmax <∞, (3.4)

such that for all finite cardinality disjoint subsets A1, A2 of A, with A1 ⊂ A, A2 ⊂
A, A1 ∩A2 = ∅, |A1| <∞, |A2| <∞, the conditional probability density functions

exist and are bounded as follows

∀A1, A2, fA1|A2
(A1|A2) ≤ f |A1|

max . (3.5)
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We assume hereinafter that all channel realizations gi,k and estimation noise variables δ
(j)
i,k

satisfy the bounded density property. This assumption excludes the cases where a channel

coefficient is function of others or the CSIT is perfectly known, and it is equivalent to

the restriction in [143] that the differential entropy must be greater than −∞ [120].

3.1.3 Review of the Results for the Centralized CSIT Setting

As mentioned in Section 2.5, the setting in which the CSIT is perfectly shared between

the TXs plays a mayor role in our analysis of the upper-bound as a reference setting

with which we can compare the performance. This comparison allows us to bring out

the impact of having discrepancies between TXs. In this centralized setting all the TXs

share the exact same, potentially imperfect, channel estimate. Hence, there is a single

channel estimate and we can remove the TX index and consider just Ĥ. The GDoF of

the 2-user MISO BC with centralized CSIT has been derived in [50]. We state in the

following their main result for sake of completeness.

Theorem 3.1. [50] In the 2-user MISO BC with centralized CSIT, the optimal sum

GDoF, denoted as GDoFCCSIT(α), satisfies

GDoFCCSIT(α) = min(D1, D2), (3.6)

where we have defined D1 and D2 as

D1 , max (γ1,2, γ1,1) + max
(
(γ2,1 − γ1,1 + α1)+, (γ2,2 − γ1,2 + α1)+

)
,

D2 , max (γ2,2, γ2,1) + max
(
(γ1,1 − γ2,1 + α2)+, (γ1,2 − γ2,2 + α2)+

)
,

(3.7)

(3.8)

with the short-hand notations

α1 , min (α1,1, α1,2) ,

α2 , min (α2,1, α2,2) .

(3.9)

(3.10)

Interestingly, depending on the network geometry, the path-loss can be either advantageous

(since they reduce the interference power received) or detrimental (since they reduce the

intended signal power received in the same level that the interference). Moreover, the

GDoF performance only depends on the weakest CSIT parameter for each receiver.

Remark 3.1. This optimal sum GDoF is achieved by superposition coding, rate splitting

and ZF precoding [132,144]. A detailed discussion about the GDoF expression in (3.6)-

(3.10) is provided in [50]. �
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3.2 GDoF of the Distributed CSIT Setting

3.2.1 Centralized Upper-Bound

We can obtain an intuitive upper-bound for the D-CSIT setting by assuming a genie-aided

centralized setting in which each TX has access to the estimates of all the TXs.

Lemma 3.1. In the 2×2 D-CSIT single-antenna Network MISO, the optimal GDoF

is upper-bounded by the GDoF of a C-CSIT scenario in which the channel estimates

of both TXs are perfectly shared, such that each TX accesses to the set of estimates

{Ĥ(1), Ĥ(2)}. Let us define the set of accuracy scaling parameters of the D-CSIT and

C-CSIT settings as

α , {α(j)
i,k}i,j,k∈N2 and α? , {max

j∈N2

α
(j)
i,k}i,k∈N2 , (3.11)

respectively. Then,

GDoFDCSIT(α) ≤ GDoFCCSIT(α?). (3.12)

Proof. It is clear that the genie-aided C-CSIT setting is an upper-bound of the

D-CSIT setting, as providing with extra information can not hurt the performance.

It remains to prove that the GDoF of the genie-aided CSIT setting is given by

GDoFCCSIT(α?). Such setting corresponds to a (logically) centralized scenario with

a shared CSI composed by {Ĥ(1), Ĥ(2)}. The particularity of having several estimates

at a single node is a novel assumption that is not contemplated in the literature.

However, the following proposition allows us to link this particular setting with the

commonly used centralized setting.

Proposition 3.1. Let ĥ(1) and ĥ(2) be two random variables defined as ĥ(j) ,

h+P̄−α
(j)
δ(j), where h and δ(j) are independent continuous random variables sat-

isfying the Bounded Density assumption of Definition 3.1. Then, the conditional

probability density function fh|ĥ(1),ĥ(2) satisfies that

max
h

fh|ĥ(1),ĥ(2) = Θ
(
P̄max(α(1),α(2))

)
. (3.13)

The proof of Proposition 3.1 is relegated to Appendix D for clarity. Actually, this

proposition is a particular case of Lemma 4.1, which covers the general K×K setting
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and will be presented in Chapter 4. Using Proposition 3.1, we obtain that the peak of

the probability density function of this genie-aided scenario with multiple estimates

has the same scaling as the centralized setting with only a single estimate Ĥ?, whose

accuracy scaling coefficients are given by α? in (3.11). It was shown in [120, Section

V.8] that the DoF is characterized by the peak of the probability density function,

and hence we obtain Lemma 3.1. �

3.2.2 Distributed Lower-Bound

We have introduced in the previous section an intuitive upper-bound for the D-CSIT

setting. Now, we show that this genie-aided upper-bound is achievable.

Theorem 3.2. In the 2×2 single-antenna Network MISO with D-CSIT exponents α,

the sum GDoF denoted by GDoFDCSIT(α) satisfies

GDoFDCSIT(α) ≥ GDoFCCSIT(α?), (3.14)

where GDoFCCSIT(α?) is the GDoF of the C-CSIT scenario with a single shared

estimate of accuracy scaling parameters

α? =
{
αi,k = max

(
α

(1)
i,k , α

(2)
i,k

) ∣∣i, k ∈ N2

}
. (3.15)

Proof. The achievability proof relies on a proposed transmission scheme so-called

Sliced ZF (S-ZF) which is presented in Section 3.3. �

The lower-bound of Theorem 3.2 and the upper-bound of Lemma 3.1 coincide and thus

GDoFDCSIT(α) = GDoFCCSIT(α?). (3.16)

Remarkably, the achieved GDoF is only limited by the most accurate estimate of each

link, no matter which TX has it.

3.2.3 DoF Results

The DoF scenario models a network in which the path-loss does not scale exponentially

with P . That is, where γi,k = 1 for any i, k ∈ N2. In this simplified scenario, the DoF

(GDoF) result from Theorem 3.2 becomes

DoFDCSIT(α) = 1 + min
i,k∈N2

(
max
j∈N2

(α
(j)
i,k )
)
, (3.17)
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Considering α
(j)
i,k = α(j), ∀i, k ∈ N2, we recover the results from [82].

3.2.4 An Illustrative Case

We introduce in the following a simple example to convey the main intuition behind

Theorem 3.2, and to illustrate how the CSIT configuration –what CSI is known with

which quality at which TX– impacts the GDoF performance. As aforementioned, each

TX has its own estimate of the channel coefficient between TX k and RX i, with an error

scaling as P̄−α
(j)
i,k . In the following example, we consider the conventional DoF, i.e., that

the channel path-loss does not scale as the SNR P (γi,k = 1 for any i, k ∈ N2). Moreover,

we consider a CSIT allocation such that, for ρ ∈ [0, 1],

TX 1→
{
α

(1)
1,1 = 0.25, α

(1)
1,2 = 0.25, α

(1)
2,1 = 0.5, α

(1)
2,2 = 0.5

}
,

TX 2→
{
α

(2)
1,1 = ρ, α

(2)
1,2 = ρ, α

(2)
2,1 = 1− ρ, α(2)

2,2 = 1− ρ
}
.

Note that as ρ increases, TX 2 becomes better informed about the links towards RX 1

and less about the links towards RX 2, while TX 1 keeps a fixed estimation quality for

each user. In Fig. 3.2 we show the DoF achieved by the proposed S-ZF scheme as a

function of ρ. We compare this DoF with a centralized CSIT setting with CSIT quality

αi,k = max(α
(1)
i,k , α

(2)
i,k ), ∀i, k ∈ N2, whose DoF is computed in [50], as well as with the

scheme based on conventional ZF and Time Division Multiplexing (TDM).

As stated in Theorem 3.2, the proposed scheme attains the DoF of the genie-aided

centralized case, whereas the standard scheme based on conventional ZF, which is optimal

in the C-CSIT setting, performs poorly when confronted with CSI discrepancies between

TXs. Note that the only case where the conventional ZF scheme is performing as the

proposed scheme is for ρ = 0.25, as both TXs have the same accuracy for the worse RX.

3.2.5 Implications on CSIT Allocation

Theorem 3.2 shows that, in terms of GDoF, the D-CSIT setting is not sensitive to who

has the channel estimate. In the following, we illustrate this aspect from the point of

view of limited-budget CSI feedback from the RXs. In settings in which the CSIT is

obtained by quantized feedback from the RXs, it was shown in [132] that there exists a

linear relation between the number of feedback bits per user (B) and the multiplexing

gain (GDoF). Specifically, a quality exponent α
(j)
i,k models a feedback quantized with

B
(j)
i,k = α

(j)
i,k log2(P ) bits [132].

Let us consider for simplicity the DoF model, such that γi,k = 1 for any i, k ∈ N2.

Suppose also that α
(1)
1,k = 1, α

(2)
1,k = 0, for all k ∈ N2. Thus, TX 1 knows the vector channel

of RX 1 perfectly in terms of DoF. Now, let us assume that the maximum feedback rate
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Figure 3.2 – DoF of the illustrative example setting as function of ρ.

from RX 2 towards the TXs, B2,k = B
(1)
2,k +B

(2)
2,k, is equal to B2,k = log2(P ), and therefore

α
(1)
2,k + α

(2)
2,k = 1, ∀k ∈ N2. (3.18)

We vary the number of bits that RX 2 sends to each TX, and thus also α
(j)
2,k. In particular,

we suppose that RX 2 first transmits all the feedback bits to TX 1 (what implies that

α
(1)
2,k = 1 and α

(2)
2,k = 0). Then RX 2 starts sending gradually more feedback bits to TX 2,

reducing at the same time the rate towards TX 1 because of the constraint in (3.18). We

can model the feedback allocation shift through a parameter β ∈ [0, 1] satisfying

α
(1)
2,k = 1− β, ∀i ∈ N2,

α
(2)
2,k = β, ∀i ∈ N2.

(3.19)

(3.20)

In Fig. 3.3, the sum DoF of the proposed scenario is shown as function of the feedback

allocation parameter β. We can see that the sum DoF decreases as the CSI becomes more

evenly distributed. This property is a direct aftermath of the DoF expression, which

depends on mini,k(maxj(α
(j)
i,k )), what in our case is equivalent to max(1− β, β). Thus,

up to β = 0.5 the DoF decreases to DoF = 1.5. If β keeps increasing beyond β = 0.5, the

DoF raises gradually. Finally, for β = 1 we recover the maximum DoF of DoF = 2. Two
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Figure 3.3 – Sum DoF as function of the CSIT allocation at the TXs.

main insights arise from Fig. 3.3. The first one is the explicit symmetry, which implies

that it does not matter which TX owns the CSIT. (For β = 1, each TX owns the CSIT

of one RX.) The second insight is that in the 2-user D-CSIT setting, under a maximum

feedback rate constraint for each RX, the optimal CSIT allocation decision in terms of

GDoF is to transmit the CSI of a certain link only to one of the two TXs. Moreover,

the CSI of different links does not need to be sent to the same TX. This insight follows

from (3.15) in Theorem 3.2.

3.3 Sliced Zero-Forcing Precoding

The proof of Theorem 3.2 is presented in the next section. Prior thereto, we present a

novel precoding scheme, coined as Sliced Zero-Forcing (S-ZF), which is essential in that

proof. The D-CSIT setting is characterized by its flexibility, in the sense that it comprises

different CSIT configurations for which the transmission scheme must be adapted. Indeed,

S-ZF uses different precoder expressions –slices– depending on the CSI allocation.

As usual in interference minimizing schemes, the designs of the precoding vectors

towards the different RXs can be decoupled [50, 137]. Consequently, we present here the

precoding vector for the data symbols of RX 1, designed to cancel the interference at

RX 2. The precoder for RX 2 will be obtained by a permutation of the user indexes. We

decompose the precoding vector such as tSZF
1 , λ1w1 and

tSZF
1 ,

[
t
(1)
1,1

t
(2)
1,2

]
, λ1

[
w

(1)
1,1

w
(2)
1,2

]
, (3.21)
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where λ1 is a power normalization constant and w
(j)
1,k denotes the precoding coefficient

applied at TX k and computed locally at TX j, before the power normalization. Note

that the super-index (j) is used to highlight which TX owns that information, and which

estimate Ĥ(j) has been used to compute it. Following the ZF approach [145], the vector

w1 = [w
(1)
1,1, w

(2)
1,2]T is designed so as to satisfy2

ĥH
2 w1 = 0, (3.22)

although each TX computes (3.22) based on its own available CSIT. This aspect will be

discussed in more detail in the following. It is important to mention that one TX does

not need to compute or know the coefficient applied at the other TX. The normalization

constant λ1 is chosen to fulfill the average power constraint and is then given by

λ1 ,
1√

E
[
‖w1‖2

] (3.23)

for the constraint E[‖tSZF
1 ‖2] = 1. The normalization constant λ1 only depends on

statistical information and can hence be computed at both TXs. Regarding the possible

CSI allocation, the channel vector hH
2 is composed of two coefficients, such that we can

distinguish four different CSI regimes depending on which TX has better knowledge of

each link. Those four regimes are shown in Table 3.1 and they can be reduced to three

cases by symmetry between the TXs. For each of these regimes, we will now describe the

S-ZF precoding scheme. We restrict ourselves to the precoder for the data symbols of

RX 1, and then only the channel vector of RX 2 is relevant. The key intuition of this

scheme is that a TX only uses its own estimate if it is the most accurate among the two

TXs, as it will become clear in the following.

Locally Informed TXs

In this case, each TX has the best estimate of its own channel coefficient towards RX 2.

The precoding coefficient at each TX is then given by

w
(1)
1,1 , (ĥ

(1)
2,1)H

(
|ĥ(1)

2,1|
2 +

1

P̄

)−1
,

w
(2)
1,2 , (−1) (ĥ

(2)
2,2)H

(
|ĥ(2)

2,2|
2 +

1

P̄

)−1
.

(3.24)

2If we consider Regularized ZF instead of conventional ZF, the ZF condition in (3.22) is only fulfilled
asymptotically. At a certain finite transmit power, Regularized ZF does not focus only on interference
cancellation ((3.22)), but it also takes into account the impact of noise.
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3.3. Sliced Zero-Forcing Precoding

Table 3.1 – CSI Allocation Regimes

α2,1

α2,2
α

(1)
2,2 ≥ α

(2)
2,2 α

(1)
2,2 < α

(2)
2,2

α
(1)
2,1 > α

(2)
2,1 Most-informed TX (TX 1) Locally Informed TXs

α
(1)
2,1 ≤ α

(2)
2,1 Non-locally Informed TXs Most-informed TX (TX 2)

Non-locally Informed TXs

In this case, each TX knows more accurately the channel coefficient from the other TX

towards RX 2. The precoding coefficient at each TX is given by

w
(1)
1,1 = ĥ

(1)
2,2,

w
(2)
1,2 = ĥ

(2)
2,1.

(3.25)

Most-informed TX

In this last case, there exists one TX that has the best estimate of both coefficients. The

S-ZF precoding is then based on the AP-ZF scheme introduced in [82]: The TX with less

accurate CSIT (e.g., TX 2) transmits with a constant precoder while the most-informed

TX (TX 1) tries to correct the interference generated by TX 2. As a matter of example,

let us consider that the constant precoder at TX 2 is given by w
(2)
1,2 , −1. Thus,

w
(1)
1,1 = (ĥ

(1)
2,1)H

(
|ĥ(1)

2,1|
2 +

1

P

)−1
ĥ

(1)
2,2. (3.26)

In order to convey the main intuition behind the precoder expressions, Table 3.2 shows

the simplified expression –with non-regularized inverses– of the precoders in (3.26)-(3.25).

Remark 3.2. The S-ZF precoding is designed so that the interfered RX receives two equal

signals with opposite phase and hence the interference is canceled. The precoder allows

to use only the most accurate estimate of each link. Table 3.2 shows that all the choices

of w1 solve (3.22) with the highest possible accuracy. �

Normalization Constant

The value of the normalization constant λi varies accordingly to the precoder expression.

The next proposition discloses the asymptotic scaling of λ1 for each one of the possible

precoders, whereas λ2 follows from a permutation of the RX indexes. We analyze the

normalization constant with Rayleigh fading in detail in Section 3.6.
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Table 3.2 – Simplified precoder w1 = [w
(1)
1,1, w

(2)
1,2]T for the data symbols of RX 1 according

to the CSIT configuration. “Main TX j” denotes the “Most-informed TX” (TX j) case.

Main TX 1
- - - - - - - - - - -
α

(1)
2,1 > α

(2)
2,1

α
(1)
2,2 ≥ α

(2)
2,2

Main TX 2
- - - - - - - - - - -
α

(1)
2,1 > α

(2)
2,1

α
(1)
2,2 ≥ α

(2)
2,2

Local CSIT
- - - - - - - - - - -
α

(1)
2,1 > α

(2)
2,1

α
(1)
2,2 < α

(2)
2,2

Non-local CSIT
- - - - - - - - - - -
α

(1)
2,1 ≤ α

(2)
2,1

α
(1)
2,2 ≥ α

(2)
2,2

w1

(ĥ(1)
2,1

)−1
ĥ

(1)
2,2

−1

  1

−
(
ĥ

(1)
2,2

)−1
ĥ

(1)
2,1

  (
ĥ

(1)
2,1

)−1

−
(
ĥ

(2)
2,2

)−1

  ĥ
(1)
2,2

−ĥ
(2)
2,1



Proposition 3.2. The normalization constant of the precoder for the data symbols

of RX 1, for the constraint E[‖tSZF
1 ‖2] = 1, satisfies that

λ1 =



Θlog(P̄ 1−max(γ2,1,γ2,2)) Non-locally Informed TXs (3.27a)

Θlog(P̄min(γ2,1,γ2,2)−1) Locally Informed TXs (3.27b)

Θlog(P̄−(γ2,2−γ2,1)+
) Most-informed TX (TX 1) (3.27c)

Θlog(P̄−(γ2,1−γ2,2)+
) Most-informed TX (TX 2) (3.27d)

Proof. The asymptotic scaling of λ1 is directly obtained from the precoding vector

definitions in (3.26), (3.24), and (3.25), and the fact that E[‖ĥ(j)
i,k‖] = Θ(P̄ γi,k−1). �

S-ZF Precoder: General Expression

The adaptive S-ZF precoder can be enclosed in a single precoding expression that

encapsulates the four possible precoding vectors summarized in Table 3.2 and described

in (3.24)-(3.26). Let us denote, for any index a ⊂ N2, the complementary ā , a (mod 2)+1,

such that a, ā ∈ N2, and a 6= ā. Therefore, we can write the S-ZF precoder for RX i as

w
(j)
i,k , (−1)j

(
1− c

(j)

ī,j
+ c

(j)

ī,j
(ĥ

(j)

ī,j
)H
(
|ĥ(j)

ī,j
|2 +

1

P

)−1
)(

1− c
(j)

ī,j̄
+ c

(j)

ī,j̄
ĥ

(j)

ī,j̄

)
, (3.28)

where c
(j)
i,k ∈ {0, 1} is defined as

c
(j)
i,k =

1 if α
(j)
i,k ≥ α

(j̄)
i,k ,

0 if α
(j)
i,k < α

(j̄)
i,k .

(3.29)
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1

P̄ γ−1 P̄ γ−1

1

RX 1 RX 2

TX 1 TX2

Figure 3.4 – Network topology for the Parallel Configuration.

The role of the parameters c
(j)
i,k is to allow to swift from one precoder to another according

to the CSI allocation at the TXs.

3.4 Achievability Example for a Simple Configuration

In this section, we illustrate the proposed precoding scheme for a simple CSIT and

path-loss configuration, so as to convey the main intuition while avoiding cluttered and

heavy notations. Specifically, we consider a particular path-loss configuration for the

sake of exposition –so-called Parallel Configuration, and represented in Fig. 3.4–, in

which γi,i = 1 and γi,k = γ for k 6= i. Besides this, we consider that each TX has an

homogeneous CSI accuracy, i.e., α
(j)
i,k = α(j), for any i, k ∈ N2, and that TX 1 is the best

informed TX, i.e., α(1) ≥ α(2). Suppose now that we aim to send information to both

users and satisfy that the interference lies on the noise floor (P 0).

Fig. 3.5 illustrates the different power levels for the transmission of the symbols of

RX 2 at RX 1. (Due to the symmetry of the configuration, the received signal at RX 2 is

equivalent.) We can observe several insights from Fig. 3.5: First, the transmitted power

scales as P̄ 1−γ+α(1)
. Thus, in this particular configuration, the path-loss is beneficial, as

it allows to increase the received power of the intended signal while keeping fixed the

interference power. Note that in other path-loss configurations this behavior is reversed

and the path-loss is detrimental. Second, it shows how TX 1 reduces his transmitted

power for s2 to compensate that the channel from TX 2 is weaker, so that the interference

power received at RX 1 from both TXs has the same scaling. Hence, the non-intended
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1 P̄ γ−1

RX 1

TX 1 TX 2

P̄ 1−γ+α(1)

P̄α
(1)

Path-loss (↓ P̄ 1−γ)

S-ZF precoding (↓ P̄α(1)

)

s1 s2 s1 s2

s1 s2 s1 s2

Figure 3.5 – Illustration of the different power scaling for the Parallel Configuration. At-
tenuation of the signal power due to the path-loss and the S-ZF precoding are emphasized
using arrows.

symbol scales in Pα
(1)

. Then, thanks to the S-ZF precoding, it is possible to entirely

cancel the interference (see Lemma 3.2).

3.5 Proof of Theorem 3.2

The achievability proof of Theorem 3.2 is based on the transmission scheme that attains

the centralized GDoF bound in the centralized MISO BC of [50], but they differ on the

precoding vector applied. The centralized scheme uses conventional ZF as the tool to

reduce the interference. However, the use of conventional ZF in the D-CSIT setting

leads to a degraded interference cancellation, such that the centralized GDoF cannot be

reached. We overtake the limitation of conventional ZF with the proposed S-ZF scheme

–introduced in Section 3.3– and achieve the centralized upper-bound. We present here
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the main structure of the transmission scheme, emphasizing the novelty with respect to

the centralized achievable scheme. A detailed description of the scheme, disclosing the

appropriate transmit power of each symbol for each CSI allocation regime is relegated to

Appendix A for the sake of conciseness.

3.5.1 Rate-Splitting Approach

The transmission scheme makes use of the rate-splitting approach [54, 146]. In this

technique, the messages intended by the RXs (Wi for RX i) are split in several data

symbols. The main idea is that each message Wi is divided in a private (si,p) and a

common (si,c) messages. Then, the private part is transmitted so as to be decoded by

the intended RX (RX i) and attenuated at the other RXs. Conversely, the common parts

of each message are gathered in a single data symbol

sc = {s1,c, . . . , sK,c}. (3.30)

This common symbol is broadcast so as to be decoded by all the RXs –and thus its rate

is limited by the worst RX channel quality–. For the decoding, each RX first decode the

common symbol sc. Then, the RX substracts the contribution of sc to the received signal,

and thus it can decode the intended private symbol si,p by treating the other sj,p, j 6= i,

symbols as noise. The general rate-splitting approach allows for an arbitrary number of

splittings, as well as common symbols for a sub-set of RXs.

3.5.2 Superposition Coding Transmission Scheme

Superposition coding schemes have been shown to achieve optimal DoF and GDoF for

multiple BC settings with imperfect CSIT [48,50,97,137]. In our setting, the transmission

scheme fits the expression

x = P̄BCtBCsBC + P̄ZF(tZF
1 sZF 1 + tZF

2 sZF 2) + P̄φtφsφ. (3.31)

The terms sBC, sZF 1, sZF 2, sφ denote four different information symbols that are

described in the following. Depending on the path-loss topology (i.e., the value of γi,k)

and the CSIT allocation (i.e., the value of α
(j)
i,k ), some of those four symbols may be

suppressed. In the general scheme, those symbols form a three-layer structure where each

layer has a different power scaling, given by P̄BC, P̄ZF, and P̄φ. Specifically:

1. Low-power layer: sφ is a non-zero-forced symbol transmitted with power such that

it is only received by the intended RX, if the path-loss topology allows for that.

2. Zero-Forcing layer: sZF i, i ∈ N2, is intended to RX i and canceled at the other
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RX using ZF-type precoding. A necessary condition for the optimality of the

scheme is that the interference generated by those symbols lies below the noise floor.

Therefore, they are transmitted with a power proportional to the CSI accuracy.

3. Full-power layer: sBC is a broadcast symbol transmitted with full power, intended

to be decoded at both RXs.

In order to decode every intended symbol, RX i applies successive decoding [97] to first

decode sBC, then its intended symbol sZF i and finally sφ, if it is intended to RX i. Note

that, in this case, the Full-power layer carries the common symbol sc introduced in the

previous section about the rate-splitting approach. Hence, this symbol sBC = sc may

carry information for all the RXs uniformly, but we can also adapt its composition such

that we balance the user rate accordingly to different considerations (e.g., max-min rate

optimization). Furthermore, the private message of one of the RXs may be further split

in two symbols: If we consider that sφ is intended to RX i, the private message si,p

previously described is divided into sZF i and sφ.

3.5.3 Interference Cancellation

Importantly, the precoders tBC and tφ depend only on the long-term statistical information

(α
(j)
i,k and γi,k) and are hence not affected by the instantaneous CSI discrepancies between

TXs. This implies that, in order to prove that it is possible to achieve the same GDoF as

in the centralized setting with αi,k = max(α
(1)
i,k , α

(2)
i,k ), we only need to show that S-ZF

achieves the same level of interference attenuation as ZF in the centralized setting of

reference. This is shown for the interference at RX 2 by means of the following lemma,

while the same result holds for RX 1 after a permutation of indexes.

Lemma 3.2. The S-ZF precoder achieves the same interference reduction scaling

as the conventional ZF precoder computed from the best estimate of each channel

coefficient, i.e., ∣∣hH
2 tSZF

1

∣∣ 2 = Θρ(P
min(γ2,1,γ2,2)−1−αopt

2 ), (3.32)

when E
[
‖tSZF

1 ‖2
]

= Θ(1), and where we have defined the short-hand notation αopt
2 as

αopt
2 , min

(
max
j ∈ N2

α
(j)
2,1, max

j ∈ N2

α
(j)
2,2

)
. (3.33)
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Proof. We prove separately each of the regimes of Table 3.1.

Non-locally Informed TXs: From the precoding vector expression in Table 3.2,

the interference term satisfies that∣∣hH
2 tSZF

1

∣∣2 = λ2
1

∣∣− h2,1ĥ
(1)
2,2 + h2,2ĥ

(2)
2,1

∣∣2
(a)
= λ2

1

∣∣− h2,1h2,2 − h2,1P̄
−α(1)

2,2+γ2,2−1δ
(1)
2,2

+ h2,2h2,1 + h2,2P̄
−α(2)

2,1+γ2,1−1δ
(2)
2,1

∣∣2
(b)
= λ2

1P
γ2,1+γ2,2−2

∣∣P̄−α(2)
2,1g2,2δ

(2)
2,1 − P̄

−α(1)
2,2g2,1δ

(1)
2,2

∣∣2,
(3.34)

where (a) holds because, by definition,

ĥ
(j)
2,k , h2,k + P̄−α

(j)
2,k+γ2,k−1δ

(j)
2,k, (3.35)

and (b) comes from h2,k , P̄ γ2,k−1g2,k. Focusing on the absolute value term in (3.34)

and recalling that αopt
2 = min(α

(1)
2,2, α

(2)
2,1), it holds that

∣∣P̄−α(2)
2,1g2,2δ

(2)
2,1 − P̄

−α(1)
2,2g2,1δ

(1)
2,2

∣∣2 = Θρ(P
−αopt

2 ). (3.36)

Including (3.36) in (3.34) and substituting λ1 with (3.27a) yields

∣∣hH
2 tSZF

1

∣∣2 = Θρ(P
min(γ2,1,γ2,2)−1−αopt

2 ), (3.37)

what proves Lemma 3.2 for the “Non-locally Informed TXs” case. The two other

regimes follow in a similar manner.

Locally Informed TXs: In this case, substituting tSZF
1 by its expression3 yields∣∣hH

2 tSZF
1

∣∣2 = λ2
1

∣∣−h2,1(ĥ
(1)
2,1)−1 + h2,2(ĥ

(2)
2,2)−1

∣∣2
(a)
= λ2

1

∣∣−ĥ
(1)
2,1

(
ĥ

(1)
2,1

)−1
+ P̄−α

(1)
2,1+γ2,1−1δ

(1)
2,1

(
ĥ

(1)
2,1

)−1

+ ĥ
(2)
2,2

(
ĥ

(2)
2,2

)−1 − P̄−α
(2)
2,2+γ2,2−1δ

(2)
2,2

(
ĥ

(2)
2,2

)−1∣∣2
(b)
= λ2

1

∣∣P̄−α(1)
2,1δ

(1)
2,1

(
ĝ

(1)
2,1

)−1 − P̄−α
(2)
2,2δ

(2)
2,2

(
ĝ

(2)
2,2

)−1∣∣2
(c)
= Θρ(P

min(γ2,1,γ2,2)−1−αopt
2 ),

(3.38)
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where (a) follows from h2,k = ĥ
(j)
2,k − P̄−α

(j)
2,k+γ2,k−1δ

(j)
2,k, (b) comes from applying

ĥ
(j)
2,k = P̄ γ2,k−1ĝ

(j)
2,k, and (c) is obtained after substituting λ1 with its value in (3.27b).

Most-informed TX: Let us consider w.l.o.g. the case in which TX 1 is the TX

with the most accurate CSI. Hence, following the same steps as in the previous cases,

we obtain∣∣hH
2 tSZF

1

∣∣2 = λ2
1

∣∣−h2,1(ĥ
(1)
2,1)−1ĥ

(2)
2,2 + h2,2

∣∣2
= λ2

1

∣∣P̄−α(1)
2,1+γ2,2−1δ

(1)
2,1

(
ĝ

(1)
2,1

)−1
g2,2 − P̄−α

(1)
2,2+γ2,2−1δ

(1)
2,2

∣∣2
= Θρ(P

min(γ2,1,γ2,2)−1−αopt
2 ),

(3.39)

what concludes the proof of Lemma 3.2. �

From the Corollary 2.1, Lemma 3.2 implies that

E[
∣∣hH

2 tSZF
1

∣∣ 2] = Θ(Pmin(γ2,1,γ2,2)−1−αopt
2 ), (3.40)

i.e., the average received power of the interference scales as in the centralized setting.

3.6 Normalization Constant with Rayleigh Fading

Proposition 3.2 establishes the asymptotic scaling of λi on the limiting high-SNR regime.

Hereunder, we extend the characterization of λi under the assumption of Rayleigh fading

by providing its exact value. Recalling (3.23), the constant λi is defined as

λi ,
1√

E[‖wi‖2]
. (3.41)

Let us assume that the channel is drawn from a complex gaussian distribution where

all the links are independent with different variance, i.e., hi,k ∼ NC(0, σ2
i,k). The GDoF

channel model is recovered if σ2
i,k = P γi,k−1. Therefore, we need to obtain E[‖wi‖2]. We

present in the following the expression of λi for each one of the regimes of Table 3.1. We

use the GDoF model as throughout the rest of the section, and we refer to Appendix B

for a general expression for any channel variance σ2
i,k and any regularization term, as well

as for a full characterization of the probability density function of λi. We further assume

that the estimate ĥ
(j)
i,k follows the same distribution as the channel coefficient hi,k.

3We have omitted the regularization of the inverse for simplicity, as it does not have any impact in
the asymptotic regime.
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3.6.1 Preliminaries: Statistics of the Regularized Inverse

The S-ZF precoder computes in several cases the regularized inverse of a channel coeffi-

cient ĥ
(j)
i,k , which is given by (ĥ

(j)
i,k )H(|ĥ(j)

i,k |
2 + 1/P )−1. We are interested in the expected

value of its squared absolute value.

Proposition 3.3. The regularized inverse of a channel coefficient satisfies that

E
[∣∣∣(ĥ(j)

i,k )H
(
|ĥ(j)
i,k |

2 +
1

P

)−1
∣∣∣2] = P 1−γi,1

(
eP
−γi,1

E1(P−γi,1)(1 + P−γi,1)− 1
)
, (3.42)

where E1(z) is the exponential integral defined as E1(z) ,
∫∞

1
e−zt

t dt.

Proof. The proof is relegated to Appendix B. �

3.6.2 Normalization Constant for the S-ZF Precoders

Non-locally Informed TXs: This case does not require inversion and λi is given by

λi =
1√

E
[
|w(1)
i,1 |2 + |w(2)

i,2 |2
]

=
1√

P γī,2−1 + P γī,1−1
.

(3.43)

Most-informed TX: Suppose that TX 1 is the Most-informed TX. From Proposi-

tion 3.3 and the definition of the precoder it follows that

λi =
1√

P γī,2−γī,1
(
eP
−γī,1

E1(P−γī,1)(1 + P−γī,1)− 1
)

+ 1

. (3.44)

Locally Informed TXs: In this case, each TX applies the regularized inverse as

precoder, and thus Proposition 3.3 yields

λi =
1√∑2

j=1 P
1−γī,j

(
eP
−γī,j

E1(P−γī,j )(1 + P−γī,j )− 1
) . (3.45)

3.6.3 Asymptotic scaling of the normalization constant

The asymptotic scaling of λi in the “Non-locally Informed TXs” case is directly obtained

from (3.43) and it matches (3.27a), as expected. For the other two cases, let us consider
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Figure 3.6 – Approximation of the E1( 1
P ) when P →∞.

the limit as P approaches to infinity. Consider γi,k > 0. Note that

lim
P→∞

1 + P−γi,k = 1

lim
P→∞

eP
−γi,k

= 1

lim
P→∞

E1(P−γi,k)
P→∞
≈ ln(P γi,k)− 0.57722.

(3.46)

(3.47)

(3.48)

The linear approximation of the exponential integral in (3.48) is shown in Fig. 3.6 to fit

almost perfectly. The Mean Square Error (MSE) of this approximation is ε = 1.8793∗10−11

for P > 10dB. Consider now the “Most-informed TX” case with TX 1 having more

accurate CSI. Then,

λi
P→∞
≈ 1√

P γī,2−γī,1 (ln(P γī,1)− 1.57722) + 1
. (3.49)

Interestingly, the logarithmic term ln(P γī,1) implies that λi = Θlog(P̄−(γī,2−γī,1)+
) but

conversely λi 6= Θ(P̄−(γī,2−γī,1)+
). This scaling justifies the defined notation Θlog(·).

3.7 Numerical Results

We consider a parallel path-loss topology as the one introduced in Section 3.4 and depicted

in Fig. 3.4, whose path-loss coefficients are given by γi,i = 1, γi,k = 0.8, ∀i, k ∈ N2, k 6= i.
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Figure 3.7 – Sum rate in terms of the SNR for the Parallel Configuration of Section 3.7,
with α(1) = 0.5, α(2) = 0, and γ = 0.8.

We further consider that the TXs have a homogeneous CSIT accuracy, such that

α
(1)
i,k = 0.5, α

(2)
i,k = 0, ∀i, k ∈ N2. (3.50)

In this case, the CSI accuracy at TX 2 does not scale with P and thus it is fruitless in

terms of GDoF. The S-ZF scheme has been simulated and compared with two different

schemes. The first one is the Centralized CSIT setting where both TXs share the CSIT

information, which has been shown in Lemma 3.1 to be an upper-bound for the D-CSIT

setting. The second one is the naive distributed ZF, where each TX implicitly assumes

that the other TX has the same channel estimate [82], and then applies conventional ZF.

In Fig. 3.7, the GDoF is equal to the slope at high SNR of the sum-rate function

over the SNR. It can be seen that S-ZF in the D-CSIT setting achieves the same GDoF

as the C-CSIT case. The naive distributed Zero-Forcing is limited by the worst CSIT

quality estimate, α(2) = 0, and thus the CSIT at the best TX is useless for this naive ZF

and it matches the performance of the setting with no CSIT [82].

3.8 Conclusions

We have shown that, remarkably, having different CSIT at each TX does not decrease

the GDoF of the 2-user Network MISO for any channel topology. Key to this surprisingly
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good performance is the adaptation of the role of each TX as a function of the multi-TX

multi-user CSIT configuration. The dimensionality of the setting provides the main

intuition of this result: For each precoding vector, the TXs need to cancel out only one

interference term. Then, having an accurate CSI at only one TX is enough to manage

the interference. Besides this, we develop an adapted transmit power scheme that attains

the GDoF of the ideal centralized setting with perfect CSIT sharing. Hence, this work

reveals that cooperative settings are much more resilient against CSI mismatches between

TXs than commonly thought in the community, what could impact the future design of

feedback mechanisms. The main question that follows from this analysis is if the result

can be extended to more general networks, with an arbitrary number of TXs and RXs.

This subject is investigated in the following chapter.
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Chapter 4

DoF Analysis of the K×K

Distributed Network MISO

In the previous chapter, we have analyzed the particular setting with 2 single-antenna

TXs and 2 single-antenna RXs, with the aftermath that having different CSIT scaling at

each TX does not reduce the GDoF of the system. Motivated by this result, we extend

the analysis to the K ×K setting, aiming at finding the fundamental limitations of the

distributed setting. In other words, at answering the question

To what extent can the D-CSIT setting retain the GDoF of the centralized setting?

However, the GDoF metric suffers from a curse of dimensionality, in the sense that the

number of parameters increases polynomially with respect to the size of the network. In

particular, in a D-CSIT K ×K network there are K2 path-loss parameters (γ) and K3

accuracy scaling parameters (α). Hence, the tractability of the analytical characterization

of the network becomes cumbersome. In the literature, many works that tackle this

challenge circumvent this difficulty by assuming simplified symmetric settings [50,147–151].

In a similar vein, we focus in this chapter on the DoF analysis, such that all the channel

coefficients undergo the same path-loss scaling and thus γi,k = 1 for any i, k ∈ NK . This

restriction allows us to direct the analysis on the impact of decentralized CSIT and to

abstract it from the path-loss topology leverage.
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Chapter 4. DoF Analysis of the K×K Distributed Network MISO

As a matter of example, the DoF of the 2× 2 C-CSIT setting is given by

DoF(α) = 1 + min
i,k∈N2

(αi,k). (4.1)

If we compare the simple expression in (4.1) with the GDoF expression for the same

setting in Theorem 3.1, we observe that the complexity of the expression already raises

considerably for the simplest network case.

Hereunder, we analyze the D-CSIT setting with K TXs and K RXs. We first compute

the DoF of the genie-aided C-CSIT setting where all TXs are given the knowledge of

all the channel estimates at all TXs. We also show that this bound is tight for a range

of D-CSIT configurations, coined the Weak-CSIT regime and defined rigorously further

down. Interestingly, the optimal DoF for such D-CSIT settings only depends on the CSIT

quality at the most informed TXs. Sharing the instantaneous CSIT among the TXs is

hence not necessary to achieve the genie-aided centralized DoF and does not improve

the optimal DoF. Building on previous fundamental principles, we also present a robust

transmission scheme adapted to any CSIT configuration and any number of users and

which significantly improve the achieved DoF with respect to state-of-the-art methods.

A byproduct of the content of this chapter, which completes its main contributions,

is the development of new methods used as building blocks to our main algorithm and

which are of interest by themselves for other applications. The first one is the idea that

increasing the number of TXs with no CSIT can increase the DoF performance, as they

turn out to be essential for transmitting multi-stream transmissions to a single-antenna

user, and hence create an overloaded transmission. The second method is the translation

to the distributed CSIT setting of the idea introduced by Maddah-Ali and Tse in [51],

consisting in estimating and retransmitting the interference generated. Interestingly, and

in contrast to [51], the interference terms are estimated before they even take place and

are retransmitted in the same time slot. This principle could be applied in other wireless

configurations where some nodes are more informed than others.

4.1 Preliminaries

4.1.1 Transmission Model

We focus in this chapter in a communications system where K TXs jointly serve K RXs

over a Network MISO channel. We consider that each node (TX or RX) is equipped with

a single-antenna. The assumption of single-antenna TX is done for ease of exposition, and

the extension to multiple-antenna TX is straightforward. The transmit and received signal

is defined as in Section 2.2. We assume that the transmitted multi-user signal satisfies an
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4.1. Preliminaries

average power constraint of P . The channel is assumed to be drawn from a continuous

distribution with density such that all the channel matrices and their sub-matrices are

full rank with probability one. Moreover, the channel coefficients are assumed to change

after one channel use and to be independent from one channel use to another.

The transmitted multi-user signal x is obtained from the symbol vector s ∈ Cb×1

having its elements i.i.d. according to NC(0, 1), where b is the number of independent

data symbols delivered. We will differentiate in this chapter between the private data

symbols, destined to be decoded at a particular user, and the common data symbols,

broadcast and destined to be decoded at all users. Note that the term private is used

only in contrast to common and does not refer to any privacy/secrecy constraint, but to

the fact that only one user will decode the symbol.

4.1.2 Distributed CSIT Model

We consider the D-CSIT model described in Section 2.4, such that TX j receives the

imperfect multi-user channel estimate Ĥ(j) = [ĥ
(j)
1 , . . . , ĥ

(j)
K ]H ∈ CK×K where (ĥ

(j)
i )H

refers to the estimate at TX j of the channel from all TXs towards RX i. TX j then

designs its transmit coefficients solely as a function of Ĥ(j) and the statistics of the

channel. Since this chapter is focused on the DoF analysis, we use the same model as in

the previous chapter, which has been described in Section 3.1.2, but with the particularity

that P̄ γi,k−1 = 1 for any i, k ∈ NK . Therefore, we write the channel estimate as

ĥ
(j)
i,k , hi,k + P̄−α

(j)
i,kδ

(j)
i,k . (4.2)

We consider in this chapter the particular Sorted CSIT setting introduced in 2.4.4, in

which we can order the TXs such that

1 ≥ α(1)
i,k ≥ α

(2)
i,k ≥ · · · ≥ α

(M)
i,k ≥ 0. (4.3)

This assumption is made so as to avoid the unmanageable increment of possible CSIT

regimes. Besides that, this regime is interesting also because it has proven to obtain

important gains with respect to the lower-bound. Since the sorted structure applies to

any channel coefficient in the same order, we can assume w.l.o.g. that α
(j)
i,k = α(j). Hence,

1 ≥ α(1) ≥ · · · ≥ α(M) ≥ 0, and the estimate matrix at TX j is given by

Ĥ(j) = H + P̄−α
(j)

∆(j), (4.4)

For later use, we also denote the i-th row of ∆(j) as (δ
(j)
i )H, such that it holds that

ĥ
(j)
i = hi + P̄−α

(j)
δ

(j)
i . The multi-user distributed CSIT configuration can be hence

59



Chapter 4. DoF Analysis of the K×K Distributed Network MISO

K  usersK users

K Transmitters
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s ∈ Cb

H ∈ CK×K

x ∈ CK

Ĥ(j) ∈ CK×K

Ĥ(1) Ĥ(2) Ĥ(j) Ĥ(K)

hH
i ∈ C1×K

Figure 4.1 – K ×K Network MISO setting with Distributed CSIT. The accuracy of the
channel estimate at TX j is modeled through the CSIT scaling coefficient α(j).

represented through the multi-TX CSIT scaling vector α ∈ RK defined as

α ,
{
α(1), . . . , α(K)

}
. (4.5)

The parameters α represent the average accuracy of the estimates. They are long-term

coefficients that vary slowly in time and can be easily shared to all TXs. Consequently,

the parameters α are assumed in the following to be fixed and known at all TXs. As in

the previous chapter, we assume that all channel realizations hi,k and estimation noise

variables δ
(j)
i,k satisfy the bounded density assumption of Definition 3.1. Furthermore, the

channel realizations and the estimation noise are mutually independent.

4.1.3 Imperfect CSI Acquisition and Sharing

We consider in this thesis that the TX-dependent local imperfect multi-user channel

estimate is obtained at the TXs from a CSI acquisition and sharing mechanism not dis-

cussed in this work. Yet, due to unavoidable delay and imperfections in the CSI sharing
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Figure 4.2 – Schematic illustration of three different example scenarios with distributed
CSIT. FDD transmission is assumed. hi denotes the (highly accurate) estimate of user i’s
channel that is fed back to the attached TX. H(j) denotes the CSI matrix obtained at
TX j after cooperation. Ȟ(j) and ȟi represent a quantized/coarse version of the respective
estimates, transmitted through limited backhaul communications.

mechanism, this CSI sharing step leads to a setting where the TXs have received different

imperfect estimates of the true channel. We provide below several practical examples

that illustrate different network configurations that lead to the D-CSIT configuration

introduced in 4.1.2.

Example 4.1. In a network with several Base Stations (TXs) cooperating to jointly

serve their users, each TX obtains a feedback from its attached user such that

each TX will know accurately only a part of the channel state information. For

example, in Time Division Duplexing (TDD) transmission with reciprocity, each

TX will obtain a good estimate of its local channel; instead, in Frequency Division

Duplexing (FDD) with user feedback, each TX will obtain a good estimate of the

whole channel vector towards its attached user. Considering a CSI exchange step

with heterogeneous links in the sense that one direction is of better quality, requires

less quantization, or introduces less delay (which is a very reasonable assumption

when considering heterogeneous networks where some of the TXs are UAVs [11,12]

or vehicles [152]), we obtain a setting where one of the TXs is uniformly more

informed that the other. A particular example is depicted in Fig. 4.2.a, in which the

link between TX 2 and TX 3 is a limited Device-to-Device (D2D) link.
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Example 4.2. In addition, considering the previous setting in the case where

CSI exchange is limited by a very restrictive delay, the sharing can be done by a

transmission of the accurate CSI to a specific –main– TX, which then forwards a

coarser version of the whole channel matrix to all TXs due to delay constraints. This

retransmission from the main TX could also be broadcast, such that the resources

spent on the sharing are reduced. Using layered encoding [153], every TX would

obtain an estimate with a different accuracy. This setting is shown in Fig. 4.2.b.

Example 4.3. In a wireless network with one principal TX receiving feedback from

all users to be served and several remote radio heads helping in the joint transmission,

a distributed CSIT configuration is obtained when the CSI sharing from the main TX

to the remote radio heads is done using limited and imperfect communication links,

as illustrated in Fig. 4.2.c. It could also be envisioned that the remote radio heads

directly acquire low precision channel state information from direct feedback from

the users using layered encoding [153] or analog feedback [154]. Due to the weaker

capabilities of the remote radio heads, a Distributed CSIT (D-CSIT) configuration

with homogeneous quality at each TX would then be obtained.

We assume in the following that the CSI acquisition step has already occurred through

limited and imperfect communication links and has led to each TX having access to its

own imperfect estimate of the multi-user channel state.

4.1.4 CSIR Model

As in the important literature on delayed CSIT [51,54,58–61] we assume that the RX has

been able to obtain perfect knowledge of the channel of the other RXs. This assumption

is key to the approach used in this chapter. However, it is important to note that this

assumption can be weakened as it is sufficient for the RXs to obtain the CSIT up to the

best CSIT quality across the TXs (not necessarily the same estimate, but of the same

quality). Furthermore, the estimate should be available at the RX for the decoding, such

that its latency constraint stems from the user’s data, not from the channel coherence.

4.2 DoF of the Distributed CSIT setting

As a preliminary, let us first state the optimal DoF of the centralized K-user BC setting

where there exists a single estimate with a CSIT scaling coefficient α that is perfectly

shared by all TXs. It was shown in [120] that the sum DoF in that configuration, denoted
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4.2. DoF of the Distributed CSIT setting

by DoFCCSIT(α), is equal to

DoFCCSIT(α) = 1 + (K − 1)α. (4.6)

We can now present our main results.

4.2.1 Centralized Upper-bound

In a similar manner as for the 2 × 2 setting of the previous chapter, we can obtain

an intuitive upper-bound for the K ×K setting with distributed CSIT by assuming a

genie-aided setting in which each TX has access to the estimates of all the TXs. The

following theorem is an extension of Lemma 3.1 for an arbitrary number of nodes.

Theorem 4.1. In the K ×K single-antenna Network MISO with distributed CSIT,

the optimal DoF is upper-bounded by the DoF of a C-CSIT scenario in which the

channel estimates of all the TXs are perfectly shared, such that each TX accesses to

the set of estimates {Ĥ(j)}j∈NK . Concretely, let us define the set of scaling parameters

of the D-CSIT and C-CSIT settings as

α , {α(j)
i,k}i,j,k∈NK and α? , {max

j∈N2

α
(j)
i,k}i,k∈NK , (4.7)

respectively. Then, DoFDCSIT(α) ≤ DoFCCSIT(α?).

Proof. The proof relies on the following important lemma.

Lemma 4.1. Let Ĥ(j) , H + P̄−α
(j)

∆(j), where H, ∆(j), ∀j ∈ NK , are inde-

pendent continuous random variables satisfying the Bounded Density assumption.

Then, the conditional probability density function fH|Ĥ(1),...,Ĥ(K) satisfies that

max
H

fH|Ĥ(1),...,Ĥ(K) = O
(
P̄maxj∈NK α(j)

)
. (4.8)

Proof. The proof is relegated to Appendix D for clarity. �

Let us now assume a genie-aided scenario where all channel estimates are exchanged

between all the TXs. Such setting corresponds to a (logically) centralized scenario
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with a shared CSI composed by {Ĥ(1), . . . , Ĥ(K)}. Using Lemma 4.1, we obtain that

the peak of the probability density function of this genie-aided scenario with multiple

estimates has the same scaling as the centralized setting with only Ĥ(1). It then

directly follows from the proof in [120, Section V.8] that the DoF of the genie-aided

scenario, denoted by DoFCCSIT
genie (α), is given by

DoFCCSIT
genie (α) = DoFCCSIT

(
α(1)

)
. (4.9)

From this equivalence, and the fact that providing with more information does not

hurt, the proof is concluded. �

Lemma 4.1 is expected to hold in a more general group of distributions, i.e., including

cases where the different noise variables are partially correlated. Indeed, for the Gaussian

case where the noise variables {∆(j)
i,k}∀j∈NK are drawn from partially correlated jointly

Gaussian distributions, it is easy to show analytically that (4.8) is also satisfied.

Proposition 4.1. Suppose that the estimation noise variables {∆(j)
i,k}∀j∈NK are

drawn from partially correlated jointly Gaussian distributions. Then, Lemma 4.1

holds and thus it follows that

DoFDCSIT(α) ≤ DoFCCSIT(α(1)). (4.10)

Proof. The proof is relegated to Appendix C.4 �

Interestingly, the upper-bounds of both Theorem 4.1 and Lemma 4.1 also hold for the

GDoF model, as the path-loss parameters do not affect the CSIT accuracy scaling, and

hence the result of Lemma 4.1 is independent of the path-loss.

4.2.2 Distributed Lower-bound

In the following, we present a DoF lower-bound for the K×K Network MISO setting with

distributed CSIT. We split the lower-bound in two different CSIT regimes, depending on

whether it matches the centralized upper-bound of Theorem 4.1 or not. The proposed

scheme achieving the lower-bound follows the same approach for both regimes.

a) Weak-CSIT Configuration

In this regime, defined rigorously in the following, the D-CSIT setting surprisingly attains

the DoF of the genie-aided C-CSIT setting, as shown in the following theorem.
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Theorem 4.2. Suppose that the m first TXs have the same CSIT accuracy scaling,

i.e., α(1) = · · · = α(m), m < K. Let us define αWeak
m as

αWeak
m ,

1

1 +K(K −m− 1)
. (4.11)

Then, if α(1) ≤ αWeak
m , the sum DoF of the K ×K Network MISO with Distributed

CSIT satisfies

DoFDCSIT(α) ≥ DoFCCSIT(α(1)). (4.12)

Proof. The result follows directly from the analysis of the proposed scheme presented

in detail in Section 4.4. �

The regime for which α(1) ≤ αWeak
m is called the “m-TX Weak-CSIT” regime. For

convenience, we simplify the notation and refer to it generally as the “Weak-CSIT regime”.

In the so-called Weak-CSIT regime, the upper-bound of Theorem 4.1 is tight. Surprisingly,

for m = 1, the most heterogeneous case, the DoF depends only on the CSI quality at

TX 1, although with the downside of reducing the range of possible CSIT configurations.

For m = K − 1 it holds that αWeak
K−1 = 1, and thus every CSIT configuration is included

in the Weak-CSIT regime, which is consistent with the simple use of single-stream

Active-Passive Zero-Forcing (AP-ZF) precoding presented in [82].

Remark 4.1. The fact that it is possible to achieve the DoF of the centralized upper-bound

with badly informed TXs is a surprising result which is not expected to extend to many

other CSIT configurations. Indeed, it can be intuitively seen using basic linear algebra

that at least K − 1 dimensions are necessary to cancel K − 1 ZF constraints. �

b) Extension to Arbitrary CSIT Configurations

Theorem 4.2 shows the CSIT configurations for which the upper-bound of Theorem 4.1

is tight. In the following, we present a robust transmission scheme that builds on the

transmission scheme attaining Theorem 4.2, which is extended to adapt to any CSIT

configuration without restriction. The main challenge comes from the large number of

CSIT scaling parameters, leading to an even larger (combinatorially large) number of

possible CSIT configurations depending on their relative values. First, we define three

terms that play an important role in the proposed transmission scheme.

Definition 4.1 (Transmitting TXs). A TX is said to be a “Transmitting TX” if it

sends information to the RXs. It may or may not use its instantaneous CSI.
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This definition is made necessary by the distributed nature of the CSIT. Indeed, in contrast

to the centralized setting where adding antennas cannot reduce the performance [49,128],

using additional antennas can decrease the achievable DoF in the distributed setting by

creating additional interference. Hence, although considering a setting with K TXs, it

may be beneficial in some CSI configurations to “turn off” some of the TXs and to use a

smaller number of “Transmitting TXs”.

Definition 4.2 (Active TXs). A TX is said to be an “Active TX” if it is a Trans-

mitting TX and it makes use of its instantaneous CSI.

Definition 4.3 (Passive TXs). A TX is said to be a “Passive TX” if it is a Trans-

mitting TX but it does not make use of its instantaneous CSI.

A more thorough explanation about these definitions is provided later on, along with the

description of the proposed scheme. Interestingly, it will become clear which parameters

are critical to optimize: Both the number of “Transmitting TXs” and the number of

“Active TXs”. In relation to these two notions, we present the following definition.

Definition 4.4 (Transmission Mode (n, k)). We define the Transmission Mode (n, k)

as the transmission with k Transmitting TXs and n ≤ k Active TXs.

Building on these definitions, the following lower bound is exactly obtained by optimizing

the performance of the proposed scheme over the different Transmission Modes.

Theorem 4.3. The sum DoF of the K ×K D-CSIT Network MISO with accuracy

scaling parameters α is lower-bounded by DoFAPZF(α), obtained by solving the

following linear program:

DoFAPZF(α)=maximize
γn,k

K∑
k=2

k−1∑
n=1

γn,k

(
1+(k−1)α(n)

)
subject to

K∑
k=2

k−1∑
n=1

γn,k = 1, γn,k ≥ 0,

K∑
k=2

k−1∑
n=1

dn,kγn,k ≥ 0,

(4.13)

(4.14)

(4.15)

where γn,k is a time-sharing variable representing the percentage of time allocated to

the Transmission Mode (n, k) and dn,k , 1− α(n) − k(k − n− 1)α(n).
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Proof. The transmission scheme for a particular Transmission Mode is described in

Section 4.4 and, building on this result, the explanation and proof of the theorem is

given in Section 4.5. �

The transmission scheme and the achieved DoF are obtained by solving a simple linear

programming problem with low complexity. Interestingly, the expression 1 + (k − 1)α(n)

in (4.13) corresponds to the DoF achieved in the k-user centralized setting with k TXs

sharing a CSIT of quality α(n) (See (4.6)).

Remark 4.2. The linear program of Theorem 4.3 depends only on the K − 1 best CSIT

coefficients and not on α(K). This property was already highlighted in [82] and follows

from the fact that it is possible to solve K − 1 linear equations with K − 1 Active TXs,

and thus serving K users at the same time. Consequently, it can always be assumed that

α(K) = 0 without reducing the DoF. �

Besides that, it is remarkable that time sharing between only two Transmission Modes is

sufficient,as presented in the following corollary.

Corollary 4.1. The linear program of Theorem 4.3 has always an optimal solution

with only two Transmission Modes (n1, k1) and (n2, k2), i.e.,

γn1,k1 > 0, γn2,k2 ≥ 0, γn,k = 0, ∀(n, k) /∈ {(n1, k1), (n2, k2)}. (4.16)

Proof. The proof is relegated to Appendix C.3. �

Intuitively, if there are two modes of transmission, the first one is a generator of interfer-

ence, i.e., it creates side-information at the RXs through the overloaded transmission, and

relies on a successive second Transmission Mode to retransmit some of this interference

–side information–, in order to decode the overloaded transmission. When only one

mode is used, the interference is directly retransmitted through rate splitting using the

common data symbol. Furthermore, the D-CSIT setting here assumed and the Delayed

CSIT setting presented in [112] share an important feature: The more you overload the

transmission, the better. This behavior arises as consequence of the fact that it is not

possible to cancel out all the interference.

We show in Fig. 4.3a the DoF as a function of α(1) for K = 4 TXs and α(2) = α(1).

We compare the achievable DoF with the centralized upper-bound for different values

of α(3). Up to αWeak
2 = 0.2, the centralized upper-bound is achieved for any value of

α(3) –as stated in Theorem 4.2–, as well as when α(3) becomes equal to α(1), which is

consistent with the results in [82].
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Figure 4.4 – Sum DoF for the 5× 5 setting with α(1) = α(2) = α, α(3) = α(4) = β, and
α(5) = 0.

In Fig. 4.3b, we show the DoF achieved by AP-ZF for K = 4 TXs when we fix the

number of Transmitting TXs (i.e., the value of k in Theorem 4.3) for the specific case

where α(1) = 1, α(3) = α(4) = 0, and α(2) varies from 0 to 1. Depending on the value of

α(2), it is optimal to use either 2 Transmitting TXs or 3 Transmitting TXs, but never

K = 4 Transmitting TXs.

Finally, we illustrate our results for the 5 × 5 setting in which the CSIT scaling

parameters are given by α(1) = α(2) = α, α(3) = α(4) = β, and α(5) = 0. We depict in

Fig. 4.4 the sum DoF region as function of α and β. Note that the metric is the sum

DoF, not the DoF region. This figure illustrates that, even for simple and homogeneous

cases, the sum DoF value does not follow a simple expression. It also shows how –in

some cases– providing a TX with better CSI accuracy does not always improve the DoF:

For α = 1, we obtain the same DoF = 3 if β < 13
30 .

4.3 Illustrative Toy Scheme

We start by presenting a simple transmission scheme in a toy setting to exemplify the

key features of our approach and convey the main intuition in a clear manner. The full

scheme achieving the DoF of Section 4.2 will be described in Section 4.4.
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We consider a 3-user setting with α(1) = 0.1, α(2) = 0, and α(3) = 0. The conventional

regularized Zero-Forcing would achieve a DoF of 1, which is the same as for the no CSIT

scenario. We will show how it is possible to achieve a DoF of 1 + 2α(1) = 1.2, which is

the value of the DoF that would be achieved in a centralized setting with TX 2 and TX 3

sharing the same estimate as TX 1 [120], such that there is no DoF loss from not sharing

the CSIT between the TXs.

4.3.1 Encoding

The transmission scheme consists in a single channel use during which 3 private data

symbols of α(1) log2(P ) bits are sent to each user –thus leading to 9 data symbols being sent

in one channel use–. Additionally, a common data symbol of rate (1− α(1)) log2(P ) bits

is broadcast from TX 1 to all users using superposition coding [110]. Note that the

information contained in this common data symbol is not only composed of “fresh”

information bits destined to one user, but is also composed of side information necessary

for the decoding of the private data symbols, as will be detailed below. The transmitted

signal x ∈ C3 is then equal to

x = s1 + s2 + s3 +

1

0

0

 s0 (4.17)

where

• si ∈ C3 is a vector containing the three private data symbols destined to RX i,

each one with power Pα
(1)
/9 and rate α(1) log2(P ) bits.

• s0 is the common data symbol transmitted only from TX 1 and destined to be

decoded at all users, with power P − Pα(1)
and rate (1− α(1)) log2(P ) bits.

The signal received at RX i, illustrated in Fig. 4.5, is equal to

yi= hi,1s0︸ ︷︷ ︸
Θρ
(
P̄
)+ hH

i s1︸ ︷︷ ︸
Θρ
(
P̄α

(1)
)+ hH

i s2︸ ︷︷ ︸
Θρ
(
P̄α

(1)
)+ hH

i s3︸ ︷︷ ︸
Θρ
(
P̄α

(1)
), (4.18)

where the power scaling is written under the bracket, and where the noise term has been

neglected for clarity. Note that in this illustrative example no precoding is applied. The

expression of the transmit signal in (4.17) enlightens two key features of the transmission

scheme: i) the overloaded transmission in which we send simultaneously several data

symbols to each RX, and ii) the use of superposition coding to transmit at the same time

–but different power layers– the common symbol s0 and the private symbols si.
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Figure 4.5 – Illustration of the received signals at every RX. Each RX receives its desired
private data symbols and interference scaling both in P̄α

(1)
. Through superposition

coding, it also receives the common data symbol s0 containing a mix of fresh desired data
symbols (illustrated in white), and side information to remove interference (illustrated
with the color of the relevant RX).

4.3.2 Interference Estimation and Quantization at TX 1

The key element of the scheme is that the common data symbol s0 is used to con-

vey side information, enabling each user to decode its desired private data symbols.

More specifically, TX 1 uses its local CSIT Ĥ(1) to estimate the interference terms

(ĥ
(1)
i )Hsk, ∀i, k with k 6= i, which will be generated by the first layer of transmission.

Then, TX 1 quantizes those (ĥ
(1)
i )Hsk terms and transmits them using the common data

symbol s0. Each interference term has a variance scaling in P̄α
(1)

and is quantized using

α(1) log2(P ) bits, such that the quantization noise can be made to remain at the noise

floor using an appropriate uniform or Lloyd quantizer [110]. In total, the transmission of

all the quantized estimated interference requires a transmission of 6α(1) log2(P ) bits.

These 6α(1) log2(P ) bits can be transmitted via the common data symbol s0 if it

holds that 6α(1) log2(P ) ≤ (1−α(1)) log2(P ), which is the case for the example considered

here since 6× 0.1 < 1− 0.1. If the inequality is strict (as it is in this case), s0 carries

some additional (1− 7α(1)) log2(P ) fresh information bits —0.3 log2(P ) bits here— to

any particular user.

4.3.3 Decoding and DoF Analysis

It remains to verify that this transmission scheme achieves the claimed DoF. Let us

consider w.l.o.g. the decoding at RX 1 as the decoding at the other users is the same up

to a circular permutation of the RX’s indexes. Note that signals at the noise floor are

systematically omitted.

Using successive decoding [110], the common data symbol s0 is decoded first, followed

by the private data symbols s1. The data symbol s0 of rate of (1− α(1)) log2(P ) bits can
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be decoded with a vanishing probability of error as its effective SNR can be seen in (4.18)

to scale in P 1−α(1)
. Upon decoding s0, the quantized estimated interferences (ĥ

(1)
1 )Hs2

are obtained up to the quantization noise. As the quantization noise is at the noise floor,

it is neglected in the following. RX 1 has then decoded:

(ĥ
(1)
1 )Hs2︸ ︷︷ ︸

Θρ
(
Pα

(1)
) = hH

1 s2 + P̄−α
(1)

(δ
(1)
1 )Hs2︸ ︷︷ ︸

Θρ
(
P 0
) . (4.19)

This means that the interference terms hH
1 s2 can be suppressed up to the noise floor at

RX 1. By proceeding in the same way with (ĥ
(1)
1 )Hs3, the remaining signal at RX 1 is

y1 = hH
1 s1. (4.20)

This signal, in combination with the interference terms (ĥ
(1)
2 )Hs1 and (ĥ

(1)
3 )Hs1 obtained

through s0, allows RX 1 to form a virtual received vector yv
1 ∈ C3 defined as

yv
1 ,

 hH
1

(ĥ
(1)
2 )H

(ĥ
(1)
3 )H

 s1. (4.21)

Each component of yv
1 has an effective SNR scaling in Pα

(1)
such that RX 1 can decode with

a vanishing error probability its three data symbols of rate α(1) log2(P ) bits. Considering

the three RXs, 9α(1) log2(P ) bits have been transmitted through the private data symbols

and (1− 7α(1)) log2(P ) bits through the common data symbol s0, which yields a sum

DoF of 1 + 2α(1).

Remark 4.3. Interestingly, the above scheme is based on interference estimation, quantiza-

tion and retransmission, in a similar fashion as done in the different context of precoding

with delayed CSIT (see e.g. [54, 58, 59]). Yet, we exploit in this work the distributed

nature of the CSIT instead of the delayed knowledge of the CSIT such that in our scheme

the interference are estimated and quantized before even being generated. �

4.4 Transmission Mode (n, k) with n Actives TXs and k

Transmitting TXs

Leaving behind the toy example, we present in this section the Transmission Mode (n, k)

with n Active TXs and k Transmitting TXs. We split the description such that we

introduce the main structure of the transmission in Section 4.4.1. The precoding scheme
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is described in detail in Section 4.4.2. The received signal is then studied in Section 4.4.3

and to conclude we compute the achieved DoF in Section 4.4.4 and Section 4.4.5. Note

that in this section we enclose the transmit power in the data symbol vectors so as to

ease the readability. Hence, a vector sa ∈ C1×A said to be transmitted such that each

symbol is sent with power Pα satisfies that E[|sa|2] = APα.

4.4.1 Encoding

We assume that there are only k Transmitting TXs, and only k RXs are served at a given

transmission. Let U denote the set of RXs served and let us assume w.l.o.g. that the

served RXs are the k first users, such that U = {1, . . . , k}. Then, in the Transmission

Mode (n, k), the transmitted signal x ∈ Ck is given by

x =

[
1

0k−1×1

]
s0 +

k∑
i=1

TAPZF
i si, (4.22)

where

• si ∈ Ck−n contains k− n data symbols destined to RX i, which we hence denote as

private, each one of rate α(n) log2(P ) bits and power Pα
(n)
/(k(k−n)), distributed in

an i.i.d. manner. They are precoded with the AP-ZF precoder TAPZF
i ∈ Ck×(k−n)

with n active TXs as described in detail in Subsection 4.4.2.

• s0 ∈ C is a data symbol destined to be decoded at all users and that we hence

denote as common, of rate (1− α(n)) log2(P ) bits and power P − Pα(n)
.

Therefore, k − n data streams are sent to every RX but each RX has only one antenna.

This overloaded transmission is necessary to take advantage of the k − n− 1 interference

terms generated by the RX’s symbols at the other RXs, following the intuition from [51]

that interference can be used as side information. This is detailed in Section 4.4.3.

A total of k(k − n)α(n) log2(P ) bits are sent in one channel use through the private

data symbols. Furthermore, an additional data symbol of data rate (1−α(n)) log2(P ) bits

is broadcast from TX 1. We will show that this common data symbol s0 does not only

contain new information bits, but also side information to enable the successful decoding

of the private data symbols.

4.4.2 Precoding: AP-ZF with n Active TXs

The proposed precoder can be decoupled such that the precoder for each RX is computed

independently up to a power normalization. We describe now the AP-ZF precoder serving

a specific RX i with n Active TXs. This precoder allows to transmit k−n streams to RX i
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while reducing the interference at the n following RXs, i.e., at RXs (i+ t) mod [k] + 1,

∀t ∈ {1, . . . , n}. For ease of notation, we omit in the following the modulo operation as it

is clear what an index bigger than k refers to. The precoder is obtained from distributed

precoding at all TXs such that

TAPZF
i =


eT

1 T
APZF(1)
i

eT
2 T

APZF(2)
i
...

eT
kT

APZF(k)
i

 , (4.23)

where eT
` refers to the `-th row of the identity matrix Ik×k and T

APZF(j)
i denotes the

AP-ZF precoder computed at TX j. Thus, we consider the design of T
APZF(j)
i at TX j.

Remark 4.4. Note that although TX j computes the full precoder T
APZF(j)
i , only some

coefficients are effectively used for the transmission due to the distributed precoding

configuration, as made clear in (4.23). �

As a preliminary, let us define the Active Channel HA ∈ Cn×n as the channel

coefficients from the Active TXs (TX 1 to TX n) to the RXs whose received interference

is reduced (RX i+ 1 to RX i+ n), i.e.,

HA , Hi+1:i+n,1:n. (4.24)

Similarly, the Passive Channel HP ∈ Cn×(k−n) contains the channel coefficients from the

Passive TXs (TX n+ 1 to k) to the RXs with reduced interference (RX i+ 1 to i+ n):

HP , Hi+1:i+n,n+1:k. (4.25)

An illustration of the Active Channel and the Passive Channel is depicted in Fig. 4.6. The

Passive TXs do not use their instantaneous CSIT. Hence, the Passive Precoder used is

an arbitrarily chosen deterministic full rank matrix denoted by λAPZF
i TP

i ∈ C(k−n)×(k−n),

where λAPZF
i is a constant used to satisfy an average sum power constraint and is detailed

further down. On the other hand, every Active TX j, ∀j ∈ Nn, computes T
APZF(j)
i ∈

Ck×k−n on the basis of its own available CSIT Ĥ(j), such that

T
APZF(j)
i = λAPZF

i

[
T

A(j)
i

TP
i

]
. (4.26)

The active precoder T
A(j)
i is computed as

T
A(j)
i = −

(
(Ĥ

(j)
A )HĤ

(j)
A + 1

P In

)−1
(Ĥ

(j)
A )HĤ

(j)
P TP

i . (4.27)
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K-n-1 interfered RXs

Interference not reduced

AP-ZF reduces interference

HA ∈ Cn×n
HP ∈ Ck−n×n

H ∈ Ck×n

Figure 4.6 – AP-ZF illustration: The number n of Active TXs determines the number of
RXs at which the interference is reduced, whereas the number of Passive TXs (k − n)
determines the number of independent streams that each RX can receive.

Remark 4.5. The design of the active precoder in (4.27) is an extension of the AP-ZF

precoder introduced in [82]. Intuitively, the n Active TXs invert the channel to the n

chosen RXs so as to cancel the interference generated by the Passive TXs. Interestingly,

the number of Passive TXs limits the rank of the transmitted signal while the number of

Active TXs limits the number of users whose received interference is attenuated. �

The AP-ZF precoder TAPZF
i ∈ Ck×k−n actually applied in the transmission and

defined in (4.23), can be written as

TAPZF
i , λAPZF

i


eH

1 T
A(1)
i

...

eH
nT

A(n)
i

TP
i

 , (4.28)

where the normalization coefficient λAPZF
i is chosen as

λAPZF
i ,

√√√√√E

∥∥∥∥∥
[
−
(
HH

AHA + 1
P In

)−1
HH

AHPTP
i

TP
i

]∥∥∥∥∥
2

F


−1

. (4.29)
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This normalization constant λAPZF
i requires only statistical CSI and can hence be com-

puted at every TX, even the passive ones. It ensures that an average sum-power

normalization constraint is satisfied, i.e., that

E
[
‖TAPZF

i ‖2F
]

= 1. (4.30)

The fundamental property of AP-ZF is that it effectively achieves interference reduction

at the n RXs up to the worst accuracy across the Active TXs, as stated in the following

lemma.

Lemma 4.2. The AP-ZF precoder with n Active TXs satisfies

∥∥hH
` TAPZF

i

∥∥2

F
= Oρ

(
P−α

(n))
, ∀` ∈ {i+ 1, . . . , i+ n}. (4.31)

Proof. The proof of Lemma 4.2 is given in Appendix C.2 along with the derivation

of other important properties of AP-ZF precoding. �

4.4.3 Received Signals

Let us define the set IAPZF
i as1

IAPZF
i , {i+ 1, . . . , i+ k − n− 1} , (4.32)

Intuitively, the set IAPZF
i contains the RX indexes of the interfering signals that have

not been attenuated towards RX i. The signal received at RX i is thus given by

yi = hi,1s0︸ ︷︷ ︸
Θρ
(
P̄
) + hH

i TAPZF
i si︸ ︷︷ ︸

Θρ
(
P̄α

(n)
) + hH

i

∑
`∈IAPZF

i

TAPZF
` s`

︸ ︷︷ ︸
Θρ
(
P̄α

(n)
)

+ hH
i

∑
`∈U\IAPZF

i

TAPZF
` s`

︸ ︷︷ ︸
Θρ
(
P̄ 0
)

, (4.33)

where the noise term has been neglected for clarity. The last term in (4.33) scales as P 0

following the attenuation by P−α
(n)

due to AP-ZF precoding, as shown in Lemma 4.2.

In Fig. 4.7 we illustrate the received signal at every RX for k = 3 Transmitting TXs and

n = 1 Active TXs. We can see the improvement with respect to Fig. 4.5 since the number

of significant interference terms is reduced by half thanks to the AP-ZF precoding. Since

n = 1, the data symbol vector of a given RX can only be attenuated at a single RX. Note

1We omit the modulo operation.
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Figure 4.7 – Illustration of the received signals for the Weak-CSIT regime in the case
of k = 3 Transmitting TXs and n = 1 Active TXs. Due to the AP-ZF precoding, the
interference is reduced and thus extra new information can be sent through s0 (white).

that, if we select n = 2, the interference could be attenuated at both interfered RXs, but

with a level of attenuation proportional to the CSI accuracy of the second TX, which is

smaller than the accuracy at TX 1.

4.4.4 Decoding

TX 1 uses its local CSIT Ĥ(1) to estimate the interference terms hH
i TAPZF

` s`, ∀` ∈ IAPZF
i .

Each interference term scales in Pα
(n)

such that, by using α(n) log2(P ) bits, each term

can be quantized with a quantization noise that lies at the noise floor [110]. Considering

all users, this means that k(k−n−1)α(n) log2(P ) interference bits have to be transmitted.

In order to do so, we use the broadcast data symbol s0. If the quantity of information to

be retransmitted exceeds the data rate of s0, additional broadcast resources will need to

be find to enable the successful decoding of the private data symbol. Fig. 4.8 shows an

example of this problem. This is the essence of the linear optimization in Theorem 4.3

and will be discussed further in Section 4.5. We assume here that all the interference

terms could be transmitted using the common data symbol s0 and we will verify that it

is indeed possible for a given RX i to decode its (k − n)α(n) log2(P ) intended bits.

By using successive decoding, the data symbol s0 of rate of (1− α(n)) log2(P ) bits

can be decoded with a vanishing probability of error as its effective SNR can be seen

in (4.33) to scale as P 1−α(n)
. Upon decoding s0, we obtain the estimated interferences

(ĥ
(1)
i )HT

APZF(1)
` s`, for ` ∈ IAPZF

i , up to the quantization noise at the noise floor. It then

holds that

(ĥ
(1)
i )HT

APZF(1)
` s` =

(
hH
i + P̄−α

(1)
(δ

(1)
i )H

)
T

APZF(1)
` s`

= hH
i T

APZF(1)
` s` + P̄−α

(1)
(δ

(1)
i )HT

APZF(1)
` s`

= hH
i TAPZF

` s` + hH
i

(
T

APZF(1)
` −TAPZF

`

)
s`,

(4.34)
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where the last equality is obtained after omitting the term P̄−α
(1)

(δ
(1)
i )HT

APZF(1)
` s`, since

its power scales as P−α
(1)
Pα

(1)
= P 0 and thus it is negligible for the DoF analysis. Recall

that s` is transmitted with power scaling as Pα
(1)

. It holds that, ∀` ∈ Nk,∀j ∈ Nn, the

AP-ZF precoding satisfies the following property (see the proof in Appendix C.1):

‖TAPZF(j)
` −TAPZF

` ‖2F = Oρ
(
P−α

(j))
. (4.35)

It follows from (4.35) and the fact that s` = Θρ(P̄
α(j)

) that

hH
i

(
T

APZF(1)
` −TAPZF

`

)
s` = Θρ(P̄

0). (4.36)

After having subtracted the quantized interference terms, the remaining signal at RX i

up to the noise floor is

yi = hH
i TAPZF

i si. (4.37)

The key point of our approach is that RX i also receives through the broadcast data

symbol the interference created by its own intended symbols at the other RXs, i.e.,

the estimated interference terms (ĥ
(1)
` )HT

APZF(1)
i si, ∀` such that i ∈ IAPZF

` –note the

swap of indexes i-` with respect to previous expressions–. Each of those terms is an

independent linear combination of the symbols si, and thus RX i can form a virtual

received vector yv
i ∈ Ck−n equal to

yv
i ,


hH
i

(ĥ
(1)
i−1)H

...

(ĥ
(1)
i−(k−n−1))

H

TAPZF
i si. (4.38)

Each component of yv
y has a SINR scaling in Pα

(n)
and the AP-ZF precoder is of rank k−n

(See Lemma C.2 in Appendix C.1) such that RX i can decode its desired k − n data

symbols, each with the rate of α(n) log2(P ) bits.

Remark 4.6. The rank in (4.38) is ensured by the use of the Passive TXs. Hence, it is

interesting to observe how uninformed TXs prove to be instrumental in the proposed

scheme. �

4.4.5 DoF Analysis

We have considered the Transmission Mode (n,k) with n Active TXs and k Transmitting

TXs. In this case, the transmission to each RX i creates |IAPZF
i | = k− n− 1 interference
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4.4. Transmission Mode (n, k) with n Actives TXs and k Transmitting TXs

RX 1 RX 3RX 2

b1 c1 a1

f(b1)

—P̄α
(1)
–

s0
P̄—————–

h1,1s0 + hH
1 s1 + hH

1 s2 + hH
1 s3 h2,1s0 + hH

2 s1 + hH
2 s2 + hH

2 s3 h3,1s0 + hH
3 s1 +hH

3 s2 + hH
3 s3

Figure 4.8 – Illustration of the signals received with K = 3 Transmitting TXs for the case
where it is not possible to retransmit all the interference generated in the same channel
use. As depicted, s0 can not carry all a1, b1, c1 as desired.

terms which gives in total k(k − n− 1)α(n) log2(P ) bits that need to be retransmitted.

Consequently, we define DoF
Interf(-)
n,k as the DoF consumed in order to transmit these

interference terms and which is given by

DoF
Interf(-)
n,k , k(k − n− 1)α(n). (4.39)

In contrast, data symbol s0 carries (1− α(n)) log2(P ) bits, i.e., the DoF of the common

data symbol DoFBC
n,k is given by

DoFBC
n,k , 1− α(n). (4.40)

Finally, considering the (k−n)α(n) log2(P ) private bits for all k users leads to the private

DoF denoted by DoFPriv
n,k and defined as

DoFPriv
n,k , k(k − n)α(n), (4.41)

which is the DoF obtained from the private data symbols if all the interference is canceled.

Putting (4.39), (4.40), and (4.41) together, the total DoF is

DoFn,k = DoFPriv
n,k + DoFBC

n,k−DoF
Interf(-)
n,k (4.42)

at the condition that DoFBC
n,k −DoF

Interf(-)
n,k ≥ 0, i.e., that all interference terms could have

been retransmitted. If this condition does not hold, the retransmission of the interference

is managed through the time-sharing optimization of the different modes as discussed in

Section 4.5. Conversely, the optimal result of Theorem 4.2 is achieved if the condition
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DoFBC
n,k−DoF

Interf(-)
n,k ≥ 0 is true for the Transmission Mode (m,K), where m is the

number of TXs with α(j) = α(1). By solving the inequality DoFBC
n,k −DoF

Interf(-)
n,k ≥ 0, the

maximum value of αWeak
m is obtained from (4.39) and (4.40) as αWeak

m , 1
1+K(K−m−1) .

4.5 Proof of Theorem 4.3

Considering Transmission Mode (n, k), let us start by defining dn,k as the difference

between the DoF available in the broadcast symbol s0 and the DoF consumed by the

interference to be retransmitted (see Section 4.4 for more details), i.e.,

dn,k , DoFBC
n,k−DoF

Interf(-)
n,k

= 1− α(n) − k(k − n− 1)α(n).
(4.43)

In fact, it is not required that each Transmission Mode leads to the transmission of all

interference terms, it is only necessary that all interference terms were successfully trans-

mitted at the end of the time sharing between all Transmission Modes. Mathematically,

this interference retransmission constraint is written as

K∑
k=2

k−1∑
n=1

γn,kdn,k ≥ 0, (4.44)

with γn,k being the time sharing variable, such that γn,k ≥ 0 and
∑K

k=2

∑k−1
n=1 γn,k = 1.

Interestingly, with that constraint, the sum DoF can then be rewritten as

K∑
k=2

k−1∑
n=1

γn,k DoFn,k =

K∑
k=2

k−1∑
n=1

DoFPriv
n,k + DoFBC

n,k−DoF
Interf(-)
n,k

=

K∑
k=2

k−1∑
n=1

γn,k

(
1 + (k − 1)α(n)

)
.

(4.45)

The optimal time allocated to each Transmission Mode is obtained by maximizing the

DoF over the time-sharing variables, i.e., optimizing the percentage of time in which each

Transmission Mode is used. That problem leads to the following optimization problem.

maximize
γn,k

K∑
k=2

k−1∑
n=1

γn,k

(
1+(k−1)α(n)

)
subject to

K∑
k=2

k−1∑
n=1

γn,k = 1, γn,k ≥ 0,

K∑
k=2

k−1∑
n=1

dn,kγn,k ≥ 0.

(4.46)

(4.47)

which concludes the proof of Theorem 4.3. �
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It is important to optimize over both the number of Transmitting TXs and the number of

Active TXs. As shown in Fig. 4.3b, depending on the CSI allocation at each TX, using K

Transmitting TXs can be detrimental. The number of Active TXs n controls how many

RXs can have its received interference attenuated and up to which level that interference

is reduced while the number of Transmitting TXs k controls how many users are served.

4.6 Discussion

For a given CSIT configuration, the linear program of Theorem 4.3 –recalled in (4.46)-

(4.47)– has an immediate solution. Moreover, as stated in Corollary 4.1, the maximum

DoF can be obtained always by means of two Transmission Modes at most. We discuss

in the following several aspects of the previous results.

4.6.1 Number of Transmitting TXs

The first aspect is the fact that“turning-off” some TXs and multiplexing less RXs spatially

can be beneficial. This is a consequence of the CSIT heterogeneity among the TXs, and

it can be understood from the following example: Consider a setting with n TXs sharing

perfect CSIT of the whole channel matrix, and an arbitrarily large number of RXs. If

we start adding TXs to the joint transmission that do not have instantaneous CSIT,

the DoF can be increased –as shown by the previous results–, and we can serve more

RXs simultaneously. However, if the number of non-informed TXs keeps growing, at a

certain point those TXs will create more interference whereas the informed TXs will be

unable of canceling the interference out. Thus, after a certain total number of TXs k, it

can be beneficial to schedule a sub-set of RXs (a number smaller than k) so as to avoid

the collapse of DoF. This intuition shows why we consider also the Transmission Modes

with k < K Transmitting TXs. In order to highlight this property visually, we reuse the

network setting of Fig. 4.3a for the following example.

Example 4.4. Consider a network with K = 4 TXs and K = 4 RXs. Suppose that

the forth TX has a useless CSI in terms of DoF (α(4) = 0), that TX 1 and TX 2

have the same CSI accuracy (α(1) = α(2)), and TX 3 has a CSI accuracy that is a

fraction of the accuracy at TX 1, i.e., α(3) = µα(1), with 0 ≤ µ ≤ α(1). We show in

Fig. 4.9 the DoF achieved by means of our proposed scheme.

From the fact that α(4) = 0, applying conventional ZF in a naive manner will

produce a DoF of 1, as TDM. Conversely, if α(3) = α(1) (µ = 1), we attain the

centralized DoF of 1 + (K − 1)α(1). In Fig. 4.3a, we presented the DoF achieved by
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
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2.5

3

3.5

4

Weak-CSIT

Regime

Zero-Forcing ∀α(3)

α(1)

Centralized Upper-bound

α(3) = 0.99α(1)

α(3) = 0.75α(1)

α(3) = 0.50α(1) (k = 4)

α(3) = 0.25α(1) (k = 4)

α(3) = 0 (k = 4)

α(3) = 0 (k = 1,2,3,4)

Figure 4.9 – DoF obtained in the case with K = 4 TXs, for different values of α(3) as a
function of α(1), whereas α(2) = α(1), and α(4) = 0. The region with gray background is
the DoF gain obtained from “turning-off” some TXs and scheduling the RXs.

the linear program of Theorem 4.3, in which we consider any number of Transmitting

TXs. There, as well as in Fig. 4.9, it can be seen that the proposed scheme is robust

against the D-CSIT setting, as the DoF increases proportionally to α(1) even if

α(3) = 0 –represented by the dash-dotted line in Fig. 4.9–.

This information was already represented in Fig. 4.3a. Besides this, we have

depicted in Fig. 4.9 the maximum DoF performance if we fix the number of Trans-

mitting TXs to K = 4. We observe that the performance is under the minimum

performance of the general scheme for α(3) ≤ 1
2 . This shows how adding an extra

TX can harm the DoF performance of the joint transmission. The DoF gain that

is obtained from the generalization of the scheme when α(3) = 0 is shown in gray

background color. Importantly, this gap is significative, since for α(1) = 1 we double

the DoF (from 1.6 to 3).

4.6.2 Number of Active TXs

The other parameter optimized in Theorem 4.3 is the number of TXs that make use of

its instantaneous CSIT to compute the precoder –Active TXs–. This value is important
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as it controls two dimensions of the transmission: First, the spatial dimension, in the

sense that the number of RXs whose interference can be attenuated is equal to the

number of Active TXs. Second, the power dimension, since the interference is attenuated

up to a power that is proportional to the accuracy of the CSI at the last TX (α(n)).

Specifically, during a Transmission Mode with n Active TXs, the interference received

from the symbols of a certain RX i is attenuated at n RXs by a factor P̄α
(n)

.

Therefore, we can interpret this behavior as how many bits of interference terms can

we avoid to retransmit?. From this point of view, with n Active TXs, the quantity of

bits retransmitted is given by

DoF
Interf(-)
n,k = k(k − n− 1)α(n), (4.48)

what follows from (4.39). Hence, the quantity of bits retransmitted is reduced by

knα(n) bits with respect to the case with no interference cancellation through AP-ZF.

Unfortunately, the value obtained if we add one Active TX more, k(k− n)α(n+1) log2(P ),

can be either greater or smaller, and furthermore the rate obtained after correct decoding

also varies. This implies that there exists a compromise on the number of Active TXs

that is not straightforward. A qualitative illustration of this comments is depicted in

Fig. 4.10 in the following page.

4.6.3 CSIT Allocation

We consider now a different problem with respect to the previous part of the chapter,

where we have analyzed which is the best transmission scheme for a given distributed

CSIT allocation. In this section, we are interested in the dual analysis: Assume that we

use our proposed scheme, which is the best allocation for a given “budget” of CSIT?. Let

us introduce a value A such that the sum of scaling coefficients α satisfies that

K∑
j=1

α(j) = A. (4.49)

In a scenario in which the RXs quantize its channel information and feed it back to the

TXs, this is equivalent to say that there is a maximum number of quantization bits to be

transmitted.

In the problem considered in Theorem 4.3, both α(j) and dn,k are constant for any

j, n, k, and it is a simple linear program. In the problem considered here, α(j) becomes

a variable and there is an extra constraint as
∑K−1

j=1 α(j) = A. This problem is highly

complex. However, we can use Corollary 4.1 to simplify the expression.
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Noise

Passive TXs (fixed precoder)Active TX 

(a) Interference reduction for n = 1 Active TXs

Passive TXs (fixed precoder)

Noise

Active TXs (instantaneous CSIT)

(b) Interference reduction for n = 2 Active TXs

Active TXs (instantaneous CSIT) Passive TXs 

Noise

(c) Interference reduction for n = 3 Active TXs

Noise

Passive TX Active TXs (instantaneous CSIT)

(d) Interference reduction for n = 4 Active TXs

Figure 4.10 – Interference cancellation compromise as function of the number of Active
TXs. The Active TXs are highlighted, as well as the RXs whose interference is attenuated
through AP-ZF precoding. The first RX (blue) is the intended RX. The TX’s bar
represents the level of the estimation noise. The RX’s bar represents the level of remaining
interference. Note that increasing the number of Active TXs extend the number of RXs
whose interference is attenuated, but it decreases the accuracy of such attenuation.
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Lemma 4.3. For a given total amount of CSIT A, the best CSIT allocation using

the proposed scheme is given by solving the following program:

DoFAPZF(α) = maximize
k1,n1,
k2,n2,
α

1 + γ(k1 − 1)α(n1) + (1− γ)(k2 − 1)α(n2)

subject to k1, k2 ∈ {2, . . . ,K},

n1 ∈ {1, . . . , k1 − 1},

n2 ∈ {1, . . . , k2 − 1} | dn2,k2 ≥ 0,

K−1∑
j=1

α(j) = A.

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

where we have defined the constants dn,k , 1− α(n) − k(k − n− 1)α(n) and

γ ,

 1 if dn1,k1 ≥ 0,
dn2,k2

dn2,k2
−dn1,k1

otherwise.
(4.55)

Since the DoF and the interference generated in mode (n, k) depend only on n, k and α(n),

the DoF will be improved if we allocate the CSIT in a homogeneous way. For example,

consider than n1 < n2. Then, the best interference cancellation accuracy is proportional

to the quality at TX n1. Hence, it is useless to have α(n) > α(n1), for any TX n such that

n < n1, since that extra information does not improve the DoF performance. Similarly,

we have that the optimal CSIT accuracy sharing for the TXs n1 < n < n2 would be

α(n) = α(n2), and intuitively α(n) = 0, for n > n2. Consequently, the best CSIT allocation

–when our proposed scheme is applied– follows always a layered structure. We extend the

discussion on CSI allocation in Appendix E.

4.7 Conclusions

We have analyzed the DoF of the K ×K Network MISO setting with distributed CSIT.

We have described a novel D-CSIT robust transmission scheme that significantly improve

the achieved DoF with respect to state-of-the-art precoding approaches when faced

with distributed CSIT. We have first derived an upper-bound coined as the centralized

upper-bound and consisting in a genie-aided setting where all the channel estimates are

made available at all TXs. Then, we have shown how this genie-aided upper-bound was

achieved by the proposed transmission scheme over a range of CSIT configurations, the
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so-called “Weak-CSIT” regime. Surprisingly, this upper-bound can even be achieved with

the CSI being handed at a single TX, i.e., with all other TXs having access to no CSIT.

The proposed robust precoding scheme relies on new methods such as the estimation

of the interference and their transmission from a single TX, as well as a modified ZF

precoding allowing for an overloaded transmission. These new methods have a strong

potential in other wireless configurations with TXs having access to different qualities of

CSI. Converting these new innovative transmission schemes into practical transmissions

schemes in realistic environments is an interesting and ongoing research direction. Such

a robust precoding scheme could yield important gains in practice and make advanced

precoding schemes more practical. Deriving tighter distributed upper-bounds is also an

interesting and challenging research problem.
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Chapter 5

DoF Analysis of the 2-user

Distributed Network MIMO

In this chapter, we focus on the Network MIMO with 2 multi-antenna RXs. We consider

that RX i has Ni antennas and that there are M transmit antennas. The transmit

antennas can enclose an arbitrary number of physical transmitters, such that we can

have M single-antenna distributed transmitters or 2 transmitters of M
2 antennas, for

example. The particularity of this chapter is the assumption that only m of the M

transmit antennas are endowed with accurate CSI. By analyzing this configuration, we

intend to answer the question

To how many transmit antennas do we need to provide CSI?

The solution to the previous question helps also to answer the question of how much an

extra informed antenna can help.

5.1 System Model

We analyze the 2-user Network MIMO where M transmit antennas jointly serve 2 RXs

of N1 and N2 antennas, respectively. We assume w.l.o.g. that N1 ≤ N2. Importantly, in

this chapter we slightly modify the signification of TX with respect to the rest of the

dissertation. Hereinafter, we refer to the i-th transmit antenna as TXi. This modification
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is motivated by the fact that in this chapter it is not relevant how many transmitters

there are. The received signal at RX i is modeled as

Yi(t) , P̄ Hi(t)X(t) + Ni(t), (5.1)

The parameter t represents the channel use, P is the nominal SNR parameter, Yi(t) ,

[Yi,1(t), Yi,2(t), . . . , Yi,Ni(t)]
T, and Hi ∈ RNi×M denotes the matrix of channel coefficients

for RX i. We define the global channel matrix as H , [H1, H2]T , H ∈ R(N1+N2)×M .

The vector X(t) , [X1(t), X2(t), . . . , XM (t)]T is the transmit signal with unitary power

constraint. Ni denotes the AWGN noise at RX i. We study here the scenario where the

first m antennas (TXs) have perfect CSIT of the whole multi-user channel matrix, whilst

the other M −m antennas have only finite precision CSIT. We define:

• TX? , [TX1, . . . ,TXm], the m transmit antennas with perfect CSI. Consequently,

we have that Ĥ(j) = H for any j ≤ m. The results of this chapter also hold if these

TXs are endowed with a CSI with accuracy scaling parameter α = 1.

• TX∅ , [TXm+1, . . . ,TXM ], the M −m transmit antennas with finite precision CSI,

i.e., α
(j)
i,k ≤ 0 for any m < j ≤M and for any i, k.

Similarly, we denote as Hi,∅ (resp. Hi,?) the channel coefficient matrix from TX∅
(resp. TX?), and as X∅ (resp. X?) the transmit signal from TX∅ (resp. TX?). The

superscript [n] in any variable X stands for {X(1), X(2), . . . , X(n)}. For any set of

variables S, H
(⋂

Si∈S Si
)

denotes the joint entropy of the elements in S.

In this chapter, we make use of the Aligned Image Set technique introduced by

Davoodi and Jafar [120] for the proof of the converse. For that, we need to consider the

same assumptions as in [120]. Hence, we consider that the channel satisfies the Bounded

Density assumption –presented in Definition 3.1–, and that the channel coefficients are

bounded away from 0 and infinity.

Definition 5.1 ( [155, Definition 4]). For real numbers x1, x2, . . . , xK , define the

notations Lbj(xi, i ∈ NK), and Lj(xi, i ∈ NK), as

Lbj(x1, x2, . . . , xk) =
∑
i∈NK

bgj,ixic

Lj(x1, x2, . . . , xk) =
∑
i∈NK

bhj,ixic

(5.2)

(5.3)

for distinct random variables gj,i ∈ G, and for some arbitrary real valued and finite

constants hj,i ∈ H, |hj,i| ≤ δz <∞. The subscript j is used to distinguish among

multiple sums.
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5.2 DoF Region of the (M,N1, N2) Network MIMO

The main goal of this chapter is to characterize the DoF region of the Distributed Network

MIMO with 2 multi-antenna RXs. For that purpose, we have considered a simple D-CSIT

configuration, in which the TXs have either perfect CSI or finite precision CSI. The

assumption of this particular configuration allows us to drop the impact of imperfect CSI

–in the sense of noisy CSI– and highlight the impact of Decentralized CSIT. In particular,

this analysis helps to understand the benefit of providing a TX with CSI. We present in

the following theorem an outer-bound of the DoF region of the setting considered.

Theorem 5.1. Suppose a 2-user Network MIMO in which N1 ≤ N2 and only m

antennas have perfect CSI of the whole channel matrix, whereas the other M −m
TXs are endowed only with finite precision CSI. Then, the DoF region is enclosed in

(d1, d2) ∈


d1 ≤ min(M,N1)

d2 ≤ min(M,N2)

d1 + d2 ≤ min(M,N1 +N2)

(5.4a)

(5.4b)

(5.4c)

if m ≥ N2 or M ≤ N2, and

(d1, d2) ∈



d1 ≤ min(M,N1)

d2 ≤ min(M,N2)

d1 + d2 ≤ min(M,N1 +N2)

d1

min(M,N1 +N2)−m
+

d2 −m
min(N2,M)−m

≤ 1

(5.5a)

(5.5b)

(5.5c)

(5.5d)

if m < N2 and M > N2.

The proof is relegated to Section 5.5. Note that the condition M > N2 is due to the

fact that M ≤ N2 implies that (5.5d) becomes (5.4c). As a direct consequence of the

previous theorem, we can infer the following sum DoF upper-bound.

Lemma 5.1. If m < N2 and M > N2, the sum DoF of the 2-user Network MIMO

(M,N1, N2,m) is upper-bounded by

d1 + d2 ≤ min
(
N1 +N2, M, N2 +N1

min(N1,M −N2)

min(N1 +N2,M)−m

)
. (5.6)
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For the regime of (5.4), the sum DoF is bounded by (5.4c), what matches the DoF of

the BC setting with perfect CSIT. We have presented the upper-bound results for the

considered setting. We introduce the achievability results hereinafter. The following

theorem shows the achievable DoF for the setting with m ≥ N1.

Theorem 5.2. The sum DoF of the 2-user Network MIMO (M,N1, N2,m) is lower-

bounded by

d1 + d2 ≥ min

(
N1 +N2, M, N2 +N1

min(N1,M −N2)

min(N1 +N2,M)−m

)
(5.7)

if m ≥ N1.

Proof. The proof follows from the transmission scheme and is given in Section 5.4. �

Thus, the sum DoF bound of Lemma 5.1 is tight for m ≥ N1. More importantly, this

result implies that the DoF region of Theorem 5.1 can be easily shown to be exact for

m ≥ N1. The transmission scheme achieving Theorem 5.2 is based on the Active-Passive

Zero-Forcing precoding introduced in Section 4.4. For the simple case where M = N1+N2,

d1 + d2 =

N2 +N1 if m ≥ N2

N2 +N1
N1

N1+N2−m if N1 ≤ m < N2.
(5.8)

Unfortunately, no tight general bound is known for the case m < N1, apart from particular

cases. Nevertheless, we can extend the achievable scheme that attains Theorem 5.2 to

obtain a general lower-bound.

Proposition 5.1. Consider m < N1. Then, the sum DoF of the 2-user Network

MIMO (M,N1, N2,m) is lower-bounded by

d1 + d2 ≥ max
(

min(N2,M), min(N2,M −m) +
m2

min(N2,M −m)

)
. (5.9)

Proof. The proof is relegated to Section 5.6. �

5.3 Discussion

The sum DoF of the 2-user MIMO BC with perfect CSIT is DoF? = min(M,N2 +N1) [96].

Hence, it holds that we only need perfect CSIT at m = min(N2,M − N1) to recover
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Figure 5.1 – DoF as function the number of transmit antennas with perfect CSIT (m)
for the case (M,N1, N2) = (9, 6, 3).

the maximum DoF. This aftermath extends the results of the previous chapters, in

which we have shown that having the most accurate CSI at only a subset of TXs is

–sometimes– enough to recover the DoF achieved with perfect CSI sharing. Moreover,

we have quantized the gain from providing perfect CSI to an extra transmit antenna

for the cases in which m > N1. An interesting question that arises from this analysis is

to determine whether adding a perfectly informed antenna can boost the DoF in more

than 1. Consider the setting with (M,N1, N2) = (2N,N,N). In this case, if m = N we

obtain that DoF = 2N , whereas if m = 0 we have that DoF = N . Thus, either the gain

is exactly 1 DoF for each extra perfectly-informed antenna, or providing perfect global

CSI to an extra antenna do increase the DoF in more than 1.

In Fig. 5.1, we show the sum DoF as function of m. We observe how for m ≥ N2 the

DoF with centralized perfect CSIT is attained, and that for N1 ≤ m ≤ N2 the bound is

tight. For the case m < N1, we can see that there exists a gap between the upper and

the lower bound. It is easy to infer that the upper-bound is loose from the fact that for

m = 0, we obtain that DoF = N2 + 1, but it is known that the DoF of a BC setting with

finite precision CSIT is DoF = N2. It is noteworthy that, the closer m is to the number

of antennas of any of the RXs, the bigger increment of DoF from m to m+ 1. In Fig. 5.2,

we illustrate the DoF as function of the repartition of antennas among the RXs, i.e., for

a fixed size setting with N1 +N2 = M = 20 and m transmit antennas with perfect CSIT,
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Figure 5.2 – DoF as function of N2 for the setting (M,m) = (20, 12) and N2 +N1 = M .

we plot the DoF as function of N2. N1 is then obtained as 20−N2.

Besides this, the DoF expression obtained for the D-CSIT setting has a noteworthy

similarity with the DoF expression of the C-CSIT setting with hybrid CSIT in which the

TX has perfect CSI for one RX and delayed CSIT for the other RX (denoted as “PD”

setting). We define

DoFDistr = (dDistr1 , dDistr2 ) DoF pair for the D-CSIT scenario considered.

DoFPD = (dPD1 , dPD2 ) DoF pair for Hybrid C-CSIT (Perfect-Delayed) scenario.

By way of example, consider the scenario in which the number of antennas at the TX (M)

is the same as the sum of receive antennas, i.e., M = N1 +N2. Furthermore, suppose that

the number of transmit antennas with perfect global CSIT (m) satisfies N1 ≤ m < N2.

This assumption is made so as to consider the interesting bound of

d1

min(M,N1 +N2)−m
+
d2 −m
N2 −m

≤ 1. (5.10)

We compare the D-CSIT setting with the MIMO BC with centralized CSIT when the TX

is endowed with perfect CSIT for RX 1’s channel and delayed CSIT for RX 2’s channel.
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The upper-bound for the PD case was found by R. Tandon in [60] and, for the case with

M = N1 +N2, it writes as
dPD1

N1 +N2
+
dPD2

N2
≤ 1. (5.11)

This weighted expression leads to a sum DoF of

dPD1 + dPD2 = N1 + N2 −N2
N1

N1 +N2
. (5.12)

On the other hand, we have obtained that dDistr1 + dDistr2 is given by

dDistr1 + dDistr2 = N1 + N2 − (N2 −m)
N1

N1 +N2 −m
. (5.13)

We can see that there exists an analogy between both settings. In particular:

1. In the PD setting, the loss of DoF due to having delayed CSIT at RX 2 instead of

perfect CSIT is −N2
N1

N1+N2
.

2. In the D-CSIT case, the loss of DoF due to having perfect CSIT only at m antennas

is −(N2 −m) N1
N1+(N2−m) .

Therefore, the D-CSIT is analogous to the PD case where only (N2 −m) have delayed

CSIT instead of perfect CSIT. An intuition behind this result is that, in the D-CSIT

setting, we can apply a change of basis at RX 2 so that the TXs with perfect CSIT are

only listened by m antennas of RX 2. Therefore, even if some of TXs have CSI for the

other N2 −m antennas, those N2 −m antennas receive only information for the finite

precision CSIT TXs. Hence, it is analogous to have a delayed CSI, as the CSI cannot be

used instantaneously even if it is already known.

5.4 Achievability for the Case m ≥ N1

We present here the DoF-optimal transmission scheme for N1 ≤ m < N2, i.e., the proof

of Theorem 5.2. The achievable scheme for the case M ≤ N2 (DoF = M) is trivial. For

M > N2, the scheme is composed of two phases. Given that the DoF does not increase

for M bigger than M = N1 +N2, we consider that N2 < M ≤ N1 +N2. The transmission

scheme is similar to the one derived in [156] for the centralized ‘PD’ setting in the sense

that the unavoidable interference is exploited as side information. Nevertheless, the

proposed scheme also exploits the instantaneous CSI available at TX? by means of the

Active-Passive ZF (AP-ZF) introduced in the previous chapter. The key of the use of

AP-ZF is the following lemma (cf. Chapter 4).
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Lemma 5.2 ( [100]). Consider m TXs with perfect CSI and M − m TXs with

finite precision CSI. By precoding with AP-ZF the interference can be canceled at m

different receive antennas.

We refer to Chapter 4 for details about AP-ZF.

The transmission lasts for M −m channel uses –or Time Slots (TS)– and it is divided

in two phases, the first one lasting N1 TS and the second one lasting M −m−N1 TS.

We transmit a set Si of Si , |Si| symbols to RX i. In particular, we send a total of

S1 = (M −m)N1 symbols to RX 1 and S2 = N2(M −m−N1) +mN1 symbols to RX 2

during the M −m TS. Let us start with the first phase. At each one of the N1 TS of the

first phase, we transmit:

• N1 independent linear combinations (i.l.c.) of the symbols in S1, which are canceled

at m antennas of RX 2 using AP-ZF precoding (cf. Lemma 5.2).

• m i.l.c. of the symbols in S2 that are canceled at RX 1 through AP-ZF precoding

(from Lemma 5.2 and the fact that m ≥ N1).

Then, at the end of the first phase,

• RX 1 has N2
1 i.l.c. of its S1 = (M −m)N1 symbols. Then, RX 1 needs another

(M −m−N1)N1 i.l.c. to decode all the symbols in S1.

• RX 2 has N2N1 i.l.c. of S2 desired symbols and (N2 −m)N1 interference variables,

since the symbols for RX 1 can be canceled only at m of the N2 antennas.

Let us denote the set of interference terms received at RX 2 during the first phase as I2,

|I2| = (N2 −m)N1. At TX?, we can reconstruct the set I2 thanks to the perfect CSI

available. Hence, TX? can create (M −m−N1)N1 i.l.c. of |I2| interference terms, which

are functions of the symbols of RX 1, because M −N1 ≤ N2. In the second phase, which

lasts M −m−N1 TS, we send at each TS:

• N1 of the (M −m−N1)N1 i.l.c. of I2 from TX?.

• N2 −N1 i.l.c. of the symbols in S2, which are canceled at RX 1 through AP-ZF

precoding (since m ≥ N1).

Consequently, at the end of phase 2,

• RX 1 has N2
1 + (M −m−N1)N1 i.l.c. of its (M −m)N1 symbols. Hence, RX 1

can decode all its symbols.
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• RX 2 has N2N1 +N2(M −m−N1) = N2(M −m) i.l.c. of S2 desired symbols and

(N2 −m)N1 interference variables, what makes N2(M −m) variables. Thus, RX 2

can decode its intended symbols.

Hence, we have successfully transmitted a total of S1 + S2 = (M −N2)N1 +N2(M −m)

symbols over M −m TS, what leads to a sum DoF of

dΣ = N2 +N1
M −N2

M −m
, (5.14)

what concludes the proof of Theorem 5.2. �

5.4.1 Achievable Scheme for M = N1 +N2

The transmission scheme lasts for N1 +N2 −m Time Slots (TS). During the first N1 TS

we transmit M = N1 +N2 symbols per TS. In particular, we transmit:

• m symbols to RX 2, which are canceled at RX 1 by using AP-ZF (since m ≥ N1).

• M −m symbols to RX 1 canceled at m antennas of RX 2 using AP-ZF. Thus:

– RX 2 can decode its own symbols since it has m antennas free of interference

and m symbols to decode.

– RX 2 can hence remove the contribution of its own symbols and obtain N2−m
independent linear combinations of the symbols intended by RX 1.

– By sending those N2−m linear combinations in a broadcast mode, we provide

RX 1 with all the equations that it needs to decode its M −m symbols, since

it has already N1 linear combinations.

– Since RX 2 already knows those retransmitted linear combinations, they do

not hurt its DoF because RX 2 can remove them from the received signal.

Note that RX 2 does not need to decode any message of RX 1. In the following N2 −m TS,

at each TS we send N2 symbols to RX 2 while retransmitting N1 symbols from the

interference received by RX 2 during the first phase.

• The interference retransmitted is removed perfectly at RX 2 because it is composed

of the previously listened signals. Then, RX 2 can decode perfectly its own symbols.

• The symbols transmitted to RX 2 are canceled at RX 1 by AP-ZF.

Consequently, we obtain a sum DoF of

1

N1 +N2 −m
(
N1(N1 +N2) +N2(N2 −m)

)
= N2 +N1

N1

N1 +N2 −m
. (5.15)
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5.4.2 Achievable Scheme for N2 < M < N1 +N2

We consider now the case for N2 < M < N1 +N2, with N1 ≤ m < N2. The transmission

scheme follows the same structure as the M = N1 +N2 case, but with a different number

of TS and transmitted symbols. Specifically, we first transmit M symbols per TS during

the first N1 TS. Thus, at each TS, we transmit:

• m symbols to RX 2, that are canceled at RX 1 using AP-ZF (since m ≥ N1).

• M −m symbols to RX 1, that are canceled at m antennas of RX 2 using A-PZF.

– RX 2 can decode its own symbols since it has m antennas free of interference

and m symbols to decode.

– RX 2 can then remove the contribution of its own symbols and obtain N2 −m
independent linear combinations of the symbols intended by RX 1.

– If RX 1 obtains M −N1−m independent linear combinations of those N2−m
interferences, RX 1 will be able to decode its M −m symbols, since it has

already N1 linear combinations.

– Since RX 2 already knows those retransmitted linear combinations, they do

not hurt its DoF because RX 2 can remove them from the received signal.

In the following M − m − N1 TS, we send at each TS N2 symbols to RX 2 while

retransmitting N1 symbols from the interference received by RX 2 during the first phase.

• The interference retransmitted is removed perfectly at RX 2 because it is composed

of the previously listened signals. Then, RX 2 can decode perfectly its own symbols.

• The symbols transmitted to RX 2 are canceled at RX 1 by AP-ZF.

We can reconstruct and retransmit the interference created during the first phase at

m ≥ N1 antennas. Therefore we can transmit N1 independent linear combinations of

them at each TS. Hence, we obtain a sum DoF of

1

M −m
(
(m+M −m)N1 + (N2)(M −m−N1)

)
= N2 +N1

M −N2

M −m
, (5.16)

what concludes the proof of Theorem 5.2. �

5.5 Converse of Theorem 5.1

We prove Theorem 5.1 for real channels. The extension to complex variables is intuitive

but cumbersome, and hence we omit it for sake of conciseness. In Theorem 5.1, the only
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particular bound is
d1

min(M,N1 +N2)−m
+
d2 −m
N2 −m

≤ 1, (5.17)

since the other expressions are directly obtained by considering a genie-aided setting with

perfect CSIT at every TX. This genie-aided scenario corresponds with the well-known

centralized Network MIMO with perfect CSIT [96]. Since providing with additional CSI

can not hurt, we obtain (5.4). Hence we consider only the case m < min(N2,M −N1).

We split the proof in two sub-regimes: M ≤ N1 +N2 and M > N1 +N2.

5.5.1 Converse for the case M ≤ N1 +N2

We start by discretizing the channel, what leads to a deterministic channel model

introduced in [124]. It has been shown in [120, Lemma 1] that the DoF of the deterministic

channel model is an upper-bound of the DoF of the general channel model.

Deterministic Channel Model

The discretized model is such that the input signals X̄j(t) ∈ Z and output signals

Ȳi(t) ∈ Z are given by

X̄j(t) ∈ {0, 1, . . . , dP̄ e}, ∀j ∈ NM ,

Ȳi(t) ,
M∑
j=1

bHi,jX̄j(t)c, ∀i ∈ {1, 2}.

(5.18)

(5.19)

In the following, we obtain an upper-bound for this channel model. From [120], it is also

an upper-bound for the general channel model that we have considered.

Weighted sum rate

We obtain (5.17) by means of bounding the weighted sum rate n(N2−m)R1+n(M−m)R2.

First of all, we present an instrumental lemma.

Lemma 5.3. Let the number of transmit antennas with perfect CSI (m) satisfy that

m < N2. Then,

(N2 −m)H(Ȳ
[n]
1 |H

[n],W2)− (M −m)H(Ȳ
[n]
2 |H

[n],W2) ≤ o(log P̄ ). (5.20)

Proof. The proof is relegated to Section 5.5.2. �
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We start from Fano’s inequality to obtain

n(R1 +R2) ≤ I(W1; Ȳ
[n]
1 |H

[n],W2) + I(W2; Ȳ
[n]
2 | H

[n])

= H(Ȳ
[n]
2 | H

[n])−H(Ȳ
[n]
2 |H

[n],W2) +H(Ȳ
[n]
1 |H

[n],W2)

−H(Ȳ
[n]
1 |H

[n],W2,W1)︸ ︷︷ ︸
= 0

.

(5.21)

We recall the fact that the entropy of a random variable is bounded by its support, i.e.,

H(Ȳ
[n]
2 ) ≤ nN2 log(P̄ ). (5.22)

Lemma 5.3 and (5.22) yield

n(N2 −m)R1 + n(M −m)R2 ≤ (M −m)
(
H(Ȳ

[n]
2 |H

[n])−H(Ȳ
[n]
2 |H

[n],W2)
)

+ (N2 −m)H(Ȳ
[n]
1 |H

[n],W2) + o(n)

≤ n (M −m)N2 log P̄ + n o(log P̄ ) + o(n).

(5.23)

We can divide by (M −m)(N2 −m) to write

nR1

M −m
+

nR2

N2 −m
≤ nN2

N2 −m
log P̄ + n o(log P̄ ) + o(n). (5.24)

From the definition of DoF, it follows that

d1

M −m
+

d2

N2 −m
≤ N2

N2 −m

⇒ d1

M −m
+
d2 −m
N2 −m

≤ 1

(5.25)

(5.26)

what concludes the proof of (5.5) for M ≤ N1 +N2.

5.5.2 Proof of Lemma 5.3

We prove in the following Lemma 5.3, i.e, that for m < N2,

(N2 −m)H(Ȳ
[n]
1 |H

[n],W2)− (M −m)H(Ȳ
[n]
2 |H

[n],W2) ≤ o
(

log P̄
)
. (5.27)

We recall that Ȳ
[n]
i = [Ȳ

[n]
i,1 , . . . , Ȳ

[n]
i,Ni

], where

Ȳi,j(t) = Li,j(t)(X̄1(t), . . . , X̄M (t)). (5.28)
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Note that the signals X̄1, . . . , X̄m are a function of the messages and the channel. We

can apply a rotation matrix at RX 2 such that the m first transmit antennas –(TX?)–

are only listened by m of the antennas of RX 2, that we choose w.l.o.g. to be the m first

antennas. Recall that X̄
[n]
∅ , {X̄

[n]
m+1, . . . , X̄

[n]
M } is independent from the channel. Hence,

for any m < j ≤ N2 we can define

Ȳ
[n]

2,j , L
b[n]

Ȳ ,j
(X̄∅), (5.29)

since TX∅ has only finite precision CSI. We omit hereinafter that j ≤ N2 for ease of

readability. From (5.29), we write that

H
( ⋂
j>m

Ȳ
[n]

2,j | H
[n],W2

)
= H

(⋂
j>m

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
. (5.30)

From (5.30) ant the fact that H(A,B) ≥ H(A), we continue as

(N2 −m)H(Ȳ
[n]
1 | H

[n],W2)− (M −m)H(Ȳ
[n]
2 | H

[n],W2)

≤ (N2 −m)
(
H(Ȳ

[n]
1 | H

[n],W2)−H
(
Ȳ

[n]
2 | H

[n],W2

))
− (M −N2)H

( ⋂
j>m

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
.

(5.31)

Let us first describe the intuition behind the proof before deriving the result. In (5.31),

there are N2 −m negative entropy terms, each one of N2 variables, and another M −
N2 negative entropy terms, each one of N2 −m variables. All the variables are linear

combinations of the M transmit signals (X̄i). Our goal is to show that all those negative

terms can be reordered so as to create N2−m terms of M independent linear combinations

(i.l.c.). If this statement is true, from the fact that H(A) −H(B) ≤ H(A|B), we can

remove the contribution of the N2 −m positive terms H(Ȳ
[n]
1 |H[n],W2), since we can

decode the M signals with high probability from M independent linear combinations. In

the following we show rigorously that the previous idea is indeed applicable. First, let us

note that

Ȳ
[n]
2 , {

⋂
k≤m

Ȳ
[n]

2,k ,
⋂
j>m

L
b[n]

Ȳ ,j
(X̄

[n]
∅ )}. (5.32)

Our proof is based on the following lemma that was introduced in [157] and that follows

from the AIS approach [120,155].

Lemma 5.4 ( [157, Lemma 2]). Consider β > 0 and random variables F
[n]
j , G

[n]
j , j ∈
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[J ] that satisfy the bounded density assumption. Let X̄
[n]
j be independent of F

[n]
j , G

[n]
j ,

for any j ∈ [J ]. Then, it holds that

H
( J∑
j=1

dP̄ βF [n]
j X̄

[n]
j e
)
≤ H

( J∑
j=1

dP̄ βG[n]
j X̄

[n]
j e
)

+ o(log P̄ ).

Hereinafter, we omit the o(log P̄ ) terms for ease of notation and because they are irrelevant

for the DoF metric. Lemma 5.4 and the fact that H(L(Xi)) ≤ H(Lb(Xi)) [155,157] yield

H
( ⋂
j>m

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
≥ H

(⋂
j>m+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ), L[n](X̄

[n]
∅ ) | H[n],W2

)
. (5.33)

Now, let us consider the sum H
(
Ȳ

[n]
2 | H[n],W2

)
+H

(⋂
j>m Ȳ

[n]
2,j | H[n],W2

)
. It follows

that

H
(
Ȳ

[n]
2 | H

[n],W2

)
+H

( ⋂
j>m

Ȳ
[n]

2,j | H
[n],W2

)
(a)
= H

(⋂
k≤m

Ȳ
[n]

2,k ,
⋂
j>m

L
b[n]

Ȳ ,j
(X̄∅) | H[n],W2

)
+H

( ⋂
j>m

L
b[n]

Ȳ ,j
(X̄∅) | H[n],W2

)
(b)

≥ H
(⋂
k≤m

Ȳ
[n]

2,k ,
⋂
j>m

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
+H

(⋂
j>m+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ), L[n](X̄

[n]
∅ ) | H[n],W2

)
(c)

≥ H
(⋂
k≤m

Ȳ
[n]

2,k ,
⋂
j>m

L
b[n]

Ȳ ,j
(X̄∅), L[n](X̄∅) | H[n],W2

)
+H

(⋂
j>m+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
(d)

≥ H
(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
+H

(⋂
j>m+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
, (5.34)

where (a) follows from (5.29) and (5.32), (b) from (5.33), (c) comes from the sub-

modularity property as H(A,B) +H(B,C) ≥ H(A,B,C) +H(B) [158, Theorem 1], and

(d) from (5.32) again. Recalling (5.31), we focus on its negative terms. It follows that

(N2 −m)H
(
Ȳ

[n]
2 | H

[n],W2

)
+ (M −N2)H

(⋂
j>m

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
(a)

≥ (N2 −m− 1)H
(
Ȳ

[n]
2 | H

[n],W2

)
+ (M −N2)H

(⋂
j>m+1

L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
+H

(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
(b)

≥ (N2 −m)H
(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
, (5.35)
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where L[n](X̄
[n]
∅ ) is composed of M −N2 independent linear combinations of X̄

[n]
∅ , (a)

comes from repeating (5.34) for each one of the M −N2 H
(⋂

j>m L
b[n]

Ȳ ,j
(X̄

[n]
∅ ) | H[n],W2

)
terms, and (b) follows after repeating (a) up to N2−m times for m+1,m+2, . . . , N2. Note

that the entropy terms H
(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
are composed of M independent

linear combinations of the transmitted signals {X̄ [n]
i }i∈[M ], such that it follows that

H
(
Ȳ

[n]
1 | H

[n],W2)−H
(
Ȳ

[n]
2 , L[n](X̄

[n]
∅ ) | H[n],W2

)
≤ H

(
Ȳ

[n]
1 | Ȳ

[n]
2 ,L[n](X̄

[n]
∅ ),H[n],W2

)
≤ o(n).

(5.36)

From (5.35) and (5.36), it holds that

(N2 −m)H(Ȳ
[n]
1 | H

[n],W2)− (M −m)H(Ȳ
[n]
2 | H

[n],W2)

≤ (N2 −m)H(Ȳ
[n]
1 | Ȳ

[n]
2 ,L[n](X̄

[n]
∅ ),H[n],W2)

≤ o(n),

(5.37)

what concludes the proof of Lemma 5.3. �

5.5.3 Converse for the case M > N1 +N2

We define N , N1 +N2. We can split the M transmit antennas as

TX ,
[

TX1, . . . , TXm︸ ︷︷ ︸
TX?

, TXm+1, . . . , TXM︸ ︷︷ ︸
TX∅

]
(5.38)

The channel H ∈ CN×M has M −N null space dimensions. Therefore, if we could apply

a rotation matrix R with unit determinant to make HR’s right M −N columns be zero,

it would lead to an equivalent channel where the RXs do not listen to the last (M −N)

TXs. Defining H′ , HR,

H′ =
[

H′[1:N,1:N ] 0N×(M−N)

]
. (5.39)

To obtain this equivalent channel, we apply an invertible linear transformation at the

transmit antennas by multiplying the transmit signal X by R. Hence, we transmit

X′ , RX in place of X. After this transformation, the equivalent transmitter TX′ is

TX′ ,
[

TX1, . . . , TXm︸ ︷︷ ︸
TX?

, TXm+1, . . . , TXN1+N2︸ ︷︷ ︸
TX′∅

]
(5.40)
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and we can derive the upper-bound by applying the same steps as in Section 5.5.1 for

M = N1 +N2, since the RXs only listen to N1 +N2 transmit antennas.

Channel Rotation with Distributed CSIT

Although the previous channel transformation is simply applied in a centralized scenario

where all the transmit antennas are seen as one single entity, it is not straightforward

that it can be applied in our distributed scenario, where every single transmit antenna is

isolated with respect to the others and has to act only based on his own local information.

Thereupon we show that the application of this channel transformation is indeed possible.

In the D-CSIT scenario considered, the matrix multiplication RX must be done

locally. Consequently, the equivalent transmitted signal at TXi, Xi, is obtained as

X ′i = RiX, (5.41)

where Ri is the i-th row of R. However, the M −m antennas with finite precision CSIT

are not able to obtain neither R nor the transmit signal from the TXs with CSIT. In

order to deal with this problem, we first let all the TXs in TX? cooperate among them.

Similarly, we let all the non-informed TXs in TX∅ cooperate among them. Since every TX

in TX? already had perfect information of the whole channel, assuming that they are a

unique TX with m antennas does not affect the analysis. In the same way, assuming that

the M−m TXs with finite precision CSI form a unique TX with M−m antennas does not

give to them any improvement, since they still have only finite precision CSI. Furthermore,

cooperation can not hurt. Therefore, we have an equivalent channel with two TXs, TX?

that transmits X?, and TX∅ that transmits X∅. The channel transformation is applied

as

X′? = R[1:m,1:M ]X

X′∅ = R[m+1:M,1:M ]X.

(5.42)

(5.43)

Composition of the Transformation Matrix

We aim to obtain a matrix R ∈ CN×M such that H′ , HR satisfies

H′ =
[

H′[1:N,1:N ] 0N×(M−N)

]
. (5.44)
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In order to obtain (5.44), we need h′i,j = 0, for any j ∈ {N + 1, . . . ,M}, and for any i. In

order to transform the j-th channel column, we solve the following linear system
h1,1 h1,2 . . . h1,N

...
...

. . .
...

hN,1 hN,2 . . . hN,N



r1,j

...

rN,j

 =


−h1,j

...

−hN,j

 . (5.45)

From the channel independence assumption, H[1:N,1:N ] is full rank almost surely, and

therefore the system has a solution. Hence, the matrix R is defined as

R ,

 IN×N

r1,N+1 . . . r1,M

...
. . . . . .

rN,N+1 . . . rN,M

0(M−N)×N I(M−N)×(M−N)

 . (5.46)

From (5.46), it holds that H′[1:N,1:N ] = H[1:N,1:N ]. Note that the antennas with finite

precision CSIT can obtain their equivalent transmit signals as

X′∅ =


Rm+1,m+1 . . . Rm+1,M

...
. . .

...

RM,m+1 . . . RM,M


︸ ︷︷ ︸

R∅

X∅.
(5.47)

Therefore, the transformation at the TXs with finite precision depends only on their own

transmit signals and they do not need to know X?. Thus, we can assume that TX∅ is

genie-aided and provided with the matrix R∅. Note that (5.45) and the finite precision

CSIT assumption imply that TX∅ can not infer any hi,j from the knowledge of R∅.

5.6 On the Achievability for the Case m < N1

In this section, we analyze the achievability results for the case in which m < N1. First,

we prove the achievable DoF presented in Proposition 5.1, which serves as lower-bound

for any configuration. After that, we present a particular case that shows that the

lower-bound can be improved.

5.6.1 Proof of Proposition 5.1

Let us consider the case with M = N1 + N2 for the sake of simplicity. We have seen

previously that the cases M 6= N1 +N2 follow after a direct generalization. In this case,
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we transmit m+N2 symbols per TS during the first m TS. We transmit:

• m symbols to RX 2, that are canceled at m antennas of RX 1 using AP-ZF.

• N2 symbols to RX 1, that are canceled at m antennas of RX 2 using AP-ZF .

– RX 2 can decode its own symbols since it has m antennas free of interference

and m symbols to decode.

– RX 2 can then remove the contribution of its own symbols and obtain N2 −m
independent linear combinations of the symbols intended by RX 1.

– If RX 1 obtains those N2 −m independent linear combinations of its own

symbols, RX 1 can decode all the N2 symbols, since it has already m linear

combinations free of interference.

– Since RX 2 already knows those retransmitted symbols, they do not hurt its

DoF because RX 2 can remove them from the received signal.

In the following N2−m TS, at each TS we send N2 symbols to RX 2 while retransmitting

m symbols from the interference received by RX 2 during the first m TS.

• The interference retransmitted can be removed perfectly at RX 2, then RX 2 can

decode perfectly its own N2 symbols.

• The symbols intended by RX 2 are canceled at m antennas of RX 1 thanks to

AP-ZF.

• RX 1 has m antennas free of interference and thus it can decode its own m symbols.

Consequently, we obtain a DoF of

1

m+N2 −m
(
m(m+N2) + (N2 −m)N2

)
= N2 +

m2

N2
. (5.48)

5.6.2 Achievability for the Case (M,N1, N2) = (6, 3, 3)

In this section, we consider a particular setting so as to illustrate some achievability results

in the regime with m < N1 transmit antennas with perfect CSIT, for which no tight

upper-bound is known. Let us consider a setting with M = 6 transmit antennas and two

RXs, with N1 = N2 = 3 antennas at each RX. Suppose that only one transmit antenna has

perfect CSI for the whole channel matrix, while the other 5 transmit antennas have only

finite precision CSI. Thus, m = 1. The setting, denoted as (M,N1, N2,m) = (6, 3, 3, 1),

is illustrated in Fig. 5.3. We present here a scheme that achieves a sum DoF of 4.
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M −m = 5

m = 1

TX∅

TX1

N1 = 3Y1

N2 = 3Y2

Figure 5.3 – Equivalent channel for the case (M,N1, N2,m) = (6, 3, 3, 1).

The scheme consists in two phases, each one of 2 Time Slots (TS), and it is presented

in Table 5.1, in which every row represents one antenna. The table is divided in three

horizontal parts: The top part represents the symbols transmitted from each antenna.

The middle part represents the received signal at RX 1 and the bottom part shows the

received signal at TX 2.

Let us disclose the previous table by describing the transmission scheme. We send

18 symbols (a1−8, b1−8, c, d). Symbols ai are intended to RX 1 and symbols bi are intended

to RX 2. The functions f, f ′, f ′′, f ′′′, are such that the corresponding symbols ai or bi are

canceled at the third antenna of the non-intended RX. The function f ij , g
i
j , are defined

such that they represent the received signal at RX i. The sub-index j is used to order

and identify the different received signals. f ij denotes the received signal during the first

two TS whereas gij denotes the received signal for the last two TS.

First, the messages a6−8 and b6−8 are easily obtained at the intended RX from the

received signal of t = 3 and t = 4 after decoding d. Furthermore, if RX 1 obtained

equations f2
1 and f2

2 , it would be able to decode all the a1−5. Similarly, if RX 2 obtained

equations f1
4 and f1

5 , it would be able to decode all the b1−5. Hence, we select c and d as

c = f2
1 ⊕ f1

4 ,

d = f2
2 ⊕ f1

5 .

(5.49)

(5.50)

Therefore, RX 1 can subtract f1
4 from c and f1

5 from d and obtain the necessary equations.

On the other hand, RX 2 can subtract f2
1 from c and f2

2 from d and obtain also the

necessary equations. Since we have causal CSIT, we can not encode the f1
4 of t = 2 in

c, but we can accept a one-block delay and transmit the received signal of the previous

transmission block. The DoF loss will be negligible if the time considered is long enough.

For t = 3 and t = 4, RX 1 obtains d in t = 4 and, after that, it can decode a6, a7, a8 from

t = 3. In the same way, RX 2 obtains d in t = 3 and thus it can decode b6, b7, b8 at t = 4.

Consequently, we transmit 16 information symbols in 4 TS, and thus DoF = 4. The
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Table 5.1 – Description of a transmission scheme achieving the optimal DoF = 4 for the
setting (M,N1, N2,m) = (6, 3, 3, 1).

t = 1 t = 2 t = 3 t = 4

TX1 c+ f(a1, a2, a3, a4, a5) c+ f ′(b1, b2, b3, b4, b5) d+f ′′(a6, a7, a8) d+f ′′′(b6, b7, b8)

TX∅,1 a1, a2, a3, a4, a5 b1, b2, b3, b4, b5 a6, a7, a8 b6, b7, b8

TX∅,2 a1, a2, a3, a4, a5 b1, b2, b3, b4, b5 a6, a7, a8 b6, b7, b8

TX∅,3 a1, a2, a3, a4, a5 b1, b2, b3, b4, b5 a6, a7, a8 b6, b7, b8

TX∅,4 a1, a2, a3, a4, a5 b1, b2, b3, b4, b5 a6, a7, a8 b6, b7, b8

TX∅,5 a1, a2, a3, a4, a5 b1, b2, b3, b4, b5 a6, a7, a8 b6, b7, b8

Y1,1 f11 (a1, a2, a3, a4, a5, c) f14 (b1, b2, b3, b4, b5, c) g11(a6, a7, a8, d) g14(b6, b7, b8, d)

Y1,2 f12 (a1, a2, a3, a4, a5, c) f15 (b1, b2, b3, b4, b5, c) g12(a6, a7, a8, d) g15(b6, b7, b8, d)

Y1,3 f13 (a1, a2, a3, a4, a5, c) c g13(a6, a7, a8, d) d

Y2,1 f21 (a1, a2, a3, a4, a5, c) f23 (b1, b2, b3, b4, b5, c) g21(a6, a7, a8, d) g23(b6, b7, b8, d)

Y2,2 f22 (a1, a2, a3, a4, a5, c) f24 (b1, b2, b3, b4, b5, c) g22(a6, a7, a8, d) g24(b6, b7, b8, d)

Y2,3 c f25 (b1, b2, b3, b4, b5, c) d g25(b6, b7, b8, d)

general achievable scheme presented in Section 5.6.1 only attains a DoF of 10
3 , whereas

the upper-bound of Lemma 5.1 yields DoF ≤ 4 + 4
5 . Interestingly, the DoF of the the

(M,N1, N2) = (6, 3, 3) setting is equal to

DoF = 3 if m = 0, 4 + 1
3 ≤ DoF ≤ 5 + 1

4 if m = 2,

4 ≤ DoF ≤ 4 + 4
5 if m = 1, DoF = 6 if m ≥ 3.

From the previous results for other settings and the intuition that one extra informed

antenna brings out one DoF, we could conjecture that DoF = 4 if m = 1 and DoF = 5 if

m = 2. However, this characterization remains an open and interesting problem.

5.7 Conclusion

In this chapter, we have analyzed the Network MIMO in which M decentralized trans-

mitted antennas jointly serve two multi-antenna users. We have considered the setting

in which m transmit antennas are endowed with perfect CSI while the other M −m
antennas only have access to finite precision CSI. We have studied the DoF performance

of this setting by deriving upper and lower bounds. Interestingly, we have proven that it

is not necessary to have perfect CSI at every transmit antenna, but only at the number of

antennas of the bigger user. We have derived a tight distributed CSIT upper-bound for
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the case of N1 ≤ m, characterizing the loss of DoF obtained from reducing the number of

informed antennas. Nevertheless, there exist many open problems regarding the MIMO

setting with distributed CSIT. Indeed, the upper-bound presented here is one of the first

for the setting considered. We have also shown achievable transmission schemes that

achieve the upper-bound for a certain regime. However, the gap between lower and upper

bound in the regime with m < N1 is not closed.
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Part III

Performance Analysis of

Distributed Zero-Forcing
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Chapter 6

Rate Gap of the Distributed

CSIT Setting with Random

Vector Quantization

In the previous part, we have analyzed the D-CSIT setting from the perspective of the

DoF and GDoF metrics. The objective was to uncover meaningful insights concerning

the fundamental limits of the D-CSIT setting and to derive optimal schemes. In the

following, we analyze the setting from a different angle. In particular, there are two

main differences with respect to the previous analysis: First, we focus on simple ZF-type

schemes; second, we go beyond the DoF interpretation and study the loss in achievable

rate on account of the distributed structure of the CSI. The emphasis on ZF-type schemes

is due to several considerations:

• ZF schemes represent an important and practical group of schemes that is known

to provide a good compromise between performance and complexity, specially at

the high-SNR regime.

• They allow for analytical tractability.

• As shown in the previous part, ZF precoding is one of the essential components

of the DoF-optimal transmission schemes for the D-CSIT setting. Hence, it is

interesting to analyze which is the aftermath of confronting those schemes to finer

metrics and more practical analysis.
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Due to the aforementioned points, we consider hereinafter a simple linear transmission

scheme without superposition coding or successive interference cancellation. The TXs

transmit a linear combination of the data symbols for all the RXs and aim to cancel the

interference out. Further details are provided in this chapter.

As for the rate loss analysis, we seek to overcome the inherent limitations of the

DoF metric –which were detailed in Section 2.3–. For this reason, we analyze hereinafter

the rate difference between the C-CSIT scenario and the D-CSIT setting. This part is

divided in two chapters, which differ in the size of the network considered and the CSIT

acquisition model:

• The current chapter considers the 2× 2 single-antenna setting. It also considers

that the CSIT is obtained by means of quantized feedback sent from the RXs. The

quantization at the RXs is carried out by applying Grassmanian Random Vector

Quantization, that will be later explained.

• The next chapter considers the M ×K setting with multi-antenna TXs. The CSIT

estimation noise is modeled as a Gaussian random variable.

This double distinction is made so as to convey in a compact manner the different

implications that each one of the cases entails. Indeed, assuming two different CSIT

models enables to provide two different approaches to obtain similar high-SNR regime

results, as well as to show that the results hold for a general set of models. The division

between the simple 2×2 case and the general case is interesting because the interpretation

and analysis for the 2×2 setting are specific.

6.1 Preliminaries

6.1.1 Affine Approximation of Rate at High-SNR

We recall that the affine approximation of the rate, introduced in Section 2.3, allows us

to write the rate as

R = DoF log2(P )−R∞ + o(1). (6.1)

We can observe that in the previous part we had focused on the characterization of the

DoF term. Hereinafter, we wish to characterize completely the expression in (6.1). The

term R∞ represents the rate offset, i.e., the rate gap with respect to capacity when

P → ∞. We recall in Fig. 6.1 the qualitative meaning of the approximation in (6.1).

Note that the rate offset is defined as

R∞ , lim
P→∞

DoF log2(P )−R(P ). (6.2)
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Figure 6.1 – Qualitative illustration of the affine approximation of two different setting
with the same DoF (slope) but different rate offset R∞.

As stated in Section 2.3.4, several works in the literature have focused on characteriz-

ing (6.1) for some settings. Namely, the multiple-antenna point-to-point scenario [29],

the BC with perfect CSIT using Dirty-paper coding and linear precoding [131], and the

BC with imperfect CSIT [132]. Those works are yet focused on the centralized scenario.

For the best of our knowledge, the analysis presented in the next two chapters is the first

attempt to characterize the affine approximation the a distributed setting.

6.1.2 Transmission Model

As in Chapter 3, we consider a single-antenna setting with 2 TXs jointly serving 2 RXs.

The signal received at RX i follows the notation of Section 2.2 such that

yi = hH
i x + zi, (6.3)

where hH
i ∈ C1×2 is the channel vector for RX i, x ∈ C2×1 is the transmitted multi-user

signal, and zi ∈ C is the Additive White Gaussian Noise (AWGN) at RX i, being

independent of the channel and the transmitted signal, and drawn as NC(0, 1). We

further define the channel matrix H ∈ C2×2 as H , [h1, h2]H, with its (i, k)-th element

representing the channel coefficient from TX k to RX i and being denoted as hik. The

channel coefficients are assumed to be i.i.d. as NC(0, 1) such that all the channel
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sub-matrices are full rank with probability one.

The transmitted multi-user signal x ∈ C2×1 is obtained from the precoding of the

symbol vector s , [s1, s2]T. The symbols si are i.i.d. as NC(0, 1) and si denotes the

symbol intended by RX i. Furthermore, the transmit signal can be written as

x ,
P̄√

2

[
t1 t2

] [s1

s2

]
. (6.4)

The vector ti ∈ C2×1 denotes the normalized precoding vector towards RX i, and thus

T , [t1, t2] ∈ C2×2. As introduced in Section 2.2, the precoder of TX j is denoted as

tTX j , [{t1}j , {t2}j ]. Importantly, we assume a per-TX instantaneous power constraint

for the precoder, i.e.,

‖tTX j‖ ≤ 1, ∀j ∈ N2, (6.5)

what also implies that E
[
‖x‖2

]
≤ P .

Remark 6.1. The assumption of a per-TX instantaneous power constraint for the precoder

is an important change with respect to Part II, since we had previously considered an

average power constraint. The reason why this modification is meaningful lies on the

distributed nature of our setting. Indeed, with an average power constraint, the power

normalization is based only on statistical information and thus it can be applied at all

the TXs in a coordinated manner. This fact allowed us to develop robust schemes, as the

interference cancellation can be carried out only by a subset of the TXs. However, with

an instantaneous power constraint, every TX has to compute the power normalization

values based on its own instantaneous CSI. Hence, the previous solutions are not sufficient

under the new assumption, and we need to develop more elaborated strategies to prevent

the performance from sinking. �

6.1.3 Grassmanian Random Vector Quantization

We are interested in analyzing the performance at the high-SNR regime. This regime

has been studied extensively for the centralized setting, for which the rate offset between

Dirty-Paper Coding (DPC), ZF with perfect CSIT, and ZF with imperfect CSIT has been

obtained [131,132]. Indeed, as aforementioned, there is a logical path from theoretical

models to more practical ones in which 1) first the perfect-CSIT setting is analyzed.

Then, 2) the impact of having imperfect –yet centralized– CSIT is studied, and 3) the

subsequent next setting to consider is the D-CSIT setting.

The first step, i.e., obtaining the rate offset on the BC with perfect CSIT using

linear precoding with respect to the capacity-achieving DPC, was studied in [131]. Jindal

tackled the the second step in [132]. In particular, the author investigated in [132] the
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performance of ZF for the case in which the CSIT is imperfect, assuming that the CSIT

is obtained from a quantized version of the channel vector sent from the RXs, and the

quantization is done through Grassmanian Random Vector Quantization (RVQ).

In this chapter we address the 3) step, i.e., we analyze the rate gap between the

BC with imperfect centralized CSIT and with distributed CSIT. Therefore, we follow

the same approach of the reference work [132] and study the performance when RVQ is

applied. For the sake of completeness, we will recall in the following some properties that

will be needed for the proof of our main results. For more details about RVQ, see [43,132].

Let M denote the number of transmit antennas. In RVQ, a unit-norm channel

vector h̃ ∈ CM is quantized using B bits to a codebook C containing 2B unit-norm vectors

isotropically distributed on the M -dimensional unit sphere. We consider a Grassmanian

quantization scheme such that the quantized estimate –which is denoted by ĥ ∈ CM– is

obtained to minimize the angle with the true channel, i.e.,

ĥ = argmax
w∈C

|h̃Hw|2

= argmin
w∈C

sin2(](h̃,w)),
(6.6)

where we have introduced the angle for unit-norm vectors in CM from

](x,y) , arccos |xHy|. (6.7)

We define the quantization error as

Z , sin2(h̃, ĥ). (6.8)

Since the elements of the codebook C are independent of h̃ and isotropically distributed,

the quantization error Z is obtained as the minimum of 2B independent beta (M − 1, 1)

random variables. Upon defining z =
√
Z, and z̆ ,

√
1− Z, we can write the true channel

as a function of its quantized version as

h̃ = z̆ĥ + zδ, (6.9)

where δ is a unit-norm vector isotropically distributed in the null space of ĥ, and δ and

Z are mutually independent. In this chapter, we consider that the vectors have M = 2

elements, and thus the quantization error Z is distributed as the minimum of 2B standard

uniform random variables [132]. We can see that the estimation model in (6.9) is included

in the general estimation model introduced in Section 2.4 and stated in (2.13).
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6.1.4 Distributed CSIT Model

In this chapter, we consider that the TXs acquire its CSIT from the RXs. Specifically,

we assume that the RXs have perfect and instantaneous knowledge of its own channel

vector. Each RX quantizes its normalized channel with a certain number of bits using

RVQ. In the D-CSIT setting, in contrast with the centralized setting of [132], each TX

receives a quantized version with different number of bits.

In particular, we consider that RX i feeds back to TX j a quantized version of the

normalized vector h̃i ,
hi
‖hi‖ ∈ C2 using B

(j)
i bits, denoted as ĥ

(j)
i . We assume that

RX i uses random vector quantization codebooks of 2B
(j)
i codewords [132], such that the

codewords are unit-norm vectors uniformly distributed on the 2-dimensional complex

unit sphere. After receiving the feedback from both RXs, TX j obtains a multi-user

channel estimate Ĥ(j) = [ĥ
(j)
1 , ĥ

(j)
2 ]H ∈ C2×2. In order to avoid degenerated conditions,

we assume that the codebooks of different RXs do not share any codeword.

This D-CSIT model, for which the CSIT at TX j is composed of two vectors generated

from codebooks with different size (2B
(j)
1 and 2B

(j)
2 ), could also model a FDD transmission

in which, for example, one of the following feedback mechanisms is applied:

1. The RXs send a rate-adapted feedback to each TX through different feedback

messages.

2. The RXs send a single (broadcast) feedback message using layered encoding [153],

such that each TX decode the message up to a different number of bits.

3. The RXs send a single feedback message to one of the TXs –this is the current

standard mechanism– and each TX sends a compressed version of its CSIT to the

other TX.

Moreover, it is known that, in order to avoid the collapse of DoF in the C-CSIT setting,

the number of feedback bits must scale linearly with log2(P ) [120,132]. By extension, we

suppose the same scaling and let the number of bits grow linearly with log2(P ) as

B
(j)
i = α

(j)
i log2(P ). (6.10)

This means that the estimation noise variance scales with 2−B
(j)
i = P−α

(j)
i . From [132,

Lemma 1], it follows that the CSI error variance at TX j scales as P−α
(j)
i . Under such

feedback condition, the multiplexing gain (DoF) of our setting is equal to

DoF = 1 + min
(

max
j

(
α

(j)
1

)
, max

j

(
α

(j)
2

)
, 1
)+
, (6.11)

116



6.2. Centralized Zero-Forcing Precoding

as it can be inferred from Chapter 3 and [82]. The DoF collapses if the number of bits

does not scale linearly with log2(P ) [120, 132]. Therefore, we assume that all α
(j)
i are

strictly positive. From (6.11), α
(j)
i can be restricted to be 0 < α

(j)
i ≤ 1. The multi-user

D-CSIT configuration is represented through the multi-TX CSIT scaling matrix α defined

as

α ,

[
α

(1)
1 α

(1)
2

α
(2)
1 α

(2)
2

]
∈ R2×2. (6.12)

6.1.5 Genie-Aided Centralized Setting

In this chapter we consider the second genie-aided scenario introduced in Section 2.5,

whose rigorous definition is presented below.

Definition 6.1 (Genie-aided Centralized Setting). Let us assume a distributed

setting in which each node has a different estimate with different average accuracy.

The Genie-aided Centralized Setting is defined as the setting in which all the TXs

are endowed with the estimate of best average accuracy.

We compare the rate achieved in the distributed scenario described in Section 6.1.4

with the respective genie-aided counterpart. This provides us with a benchmark for the

performance of ZF schemes on the D-CSIT setting.

Remark 6.2. It is important to observe that the genie-aided scenario is such that every

TX owns the best among the available estimates at any TX, instead of its own estimate

–which by definition would have less accuracy–. This is in opposition to the other genie-

aided scenario considered in Part II, in which each TX shares its CSI with any other TX,

such that every TX owns the set of K estimates of the K TXs. We must assume this new

genie-aided setting because the previous one, although instrumental for the DoF analysis,

incurs in an excessive aid from the fact that each TX obtains K different estimates. �

6.2 Centralized Zero-Forcing Precoding

We restrict this chapter to ZF precoding schemes, which are one of the essential com-

ponents to achieve the optimal DoF in the C-CSIT setting [120,132] and that allow for

analytical tractability. Since in the C-CSIT setting all the TXs share the same CSIT,

the super-index (·)(j) is not needed. Let us denote the shared channel estimates as ĥi,

Ĥ, where ĥi is obtained with a feedback rate of Bi = αi log2(P ) bits. Note that the

centralized case is equivalent to the distributed setting in which ĥ
(1)
i = ĥ

(2)
i for all i ∈ N2.

Let v?i denote a unit-norm ZF precoder for RX i, computed on the basis of the

estimate Ĥ. We can write the centralized ZF precoding matrix as TZF , [µ1v
?
1, µ2v

?
2],
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where µi ∈ R is a parameter that ensures that the instantaneous power constraint

‖tTX j‖ ≤ 1 is fulfilled, and which will be detailed later in Section 6.3.2. Consider ī as

the complementary index of i, such that ī = [i mod 2] + 1. From the ZF precoding

definition, v?i is a vector satisfying

ĥH
ī v?i = 0. (6.13)

We assume hereinafter that ‖v?i ‖ = 1, as the norm of the precoder can be incorporated to

µi. In this case, since the estimation vector has a unitary norm from the RVQ properties,

we can write w.l.o.g. that vi = e−ıφi [ĥī2, −ĥī1]T, where e−ıφi is an arbitrary phase term.

The precoding matrix can be expressed as

TZF =

[
ĥ2,2 ĥ1,2

−ĥ2,1 −ĥ1,1

]
︸ ︷︷ ︸

,V

[
µ1e
−ıφ1 0

0 µ2e
−ıφ2

]
︸ ︷︷ ︸

,M

. (6.14)

In essence, M encloses the power normalization and a possible phase shifting whereas V

encloses the correct interference cancellation introduced in (6.13). Note that the rate is

invariant to any phase-shift eıφi [145].

6.3 Distributed ZF: Hybrid Active-Passive ZF Precoding

Although ZF precoding schemes as the one described in Section 6.2 perform properly

with centralized CSIT, their performance shrinks considerably on the D-CSIT setting.

This comes from the fact that the zero-forcing accuracy is proportional to the worst

quality among the TXs. Thus, conventional ZF does not achieve the centralized DoF,

as it has been shown in Chapter 3. Indeed, if the precoder defined for the centralized

setting in (6.14) were applied naively, we would obtain

T =

[
ĥ

(1)
2,2 ĥ

(2)
1,2

−ĥ
(1)
2,1 −ĥ

(2)
1,1

]
�

[
µ

(1)
1 e−ıφ1 µ

(1)
2 e−ıφ2

µ
(2)
1 e−ıφ1 µ

(2)
2 e−ıφ2

]
, (6.15)

where � denotes the Hadamard (element-wise) product. Note that, since the precoder is

computed locally, the estimated value for µi may be different at each TX, and thence the

change from matrix product to Hadamard product.

The solution proposed in DoF-achieving schemes [82,98,100], as the ones in Chapter 3

and Chapter 4, was that the TX with worse accuracy for a certain channel coefficient

does not use its estimate for computing its precoding vector. This strategy succumbs to
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6.3. Distributed Zero-Forcing: HAP-ZF

the assumption of instantaneous power constraint for the precoding vector (‖tTX j‖ ≤ 1),

since a less restricting average power constraint was considered. The only known scheme

achieving the optimal DoF is obtained from [82] where the transmit power scales in

P/log(P ). This leads to a very inefficient power normalization, and hence to a very poor

rate offset (R∞).

We present a distributed precoding scheme, coined Hybrid Active-Passive ZF Precod-

ing (HAP-ZF), that precludes the worst TX from harming the performance. The key

for attaining such result is an asymmetric ZF scheme and the quantization of the power

control, that allows the TXs to be consistent. We divide the HAP-ZF definition in several

logical steps that help to better comprehend the benefits of the precoder.

6.3.1 Adapting Phase to CSIT Topology

The first step in the building process of the precoding scheme is to adapt the phase of the

precoder to the CSIT configuration. Specifically, the idea is that, since multiplying the

precoding vector by a phase-shift eıφi does not impact the rate [145], we can adapt this

phase shifting to the CSIT configuration such that the TX with least accurate estimate

for a certain coefficient uses only the absolute value of that coefficient.

Example 6.1. Let TX 2 be the TX with worst accuracy for the channel coefficient

between TX 1 and RX 1 (h1,1). From the centralized ZF precoder definition of (6.14),

the precoder of TX 2 for the data symbols of RX 2 is

t2,2 = −µ2ĥ
(2)
1,1e

ıφi . (6.16)

Then, eıφi is selected such that µ2ĥ
(2)
1,1e

ıφi is a real number, i.e., φi = −∠ĥ
(2)
1,1, where

∠x represents the phase of x ∈ C. In that case, the precoder applied at TX 2 is

t2,2 = −µ2|ĥ(2)
1,1|. (6.17)

By doing so, the performance of the precoder would be intuitively improved, as the

limiting node eliminates its sensitivity with respect to the error on the phase of the

coefficient, and it is only affected by the error on the absolute value of the coefficient.

Therefore, the expression of the precoder changes accordingly to the D-CSIT config-

uration. In order to ease the mathematical derivations for the remaining of the chapter,

we make the precoder expression chime with the one in (6.14) for the centralized case,

such that it is decomposed in two matrices: A first matrix, denoted as W = [w1, w2],

that encloses the interference nulling task of (6.13); the second matrix, denoted as Λ,

carries out the power normalization and is only composed by real values. Then we can
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write that

T = [w1 w2]︸ ︷︷ ︸
W

�

[
λ

(1)
1 λ

(1)
2

λ
(2)
1 λ

(2)
2

]
︸ ︷︷ ︸

Λ

. (6.18)

We have denoted the (j, i)-th coefficient of the matrix Λ by λ
(j)
i . Then, the precoding

vector has a different structure depending on which TX has the most accurate estimate

for each channel coefficient. All the possible configurations for the precoder of RX 1 are

presented in Table 6.1, whereas the ones for RX 2’s precoder are omitted as they are

obtained by swapping the user indexes in Table 6.1.

We further define the corresponding precoder obtained in the genie-aided C-CSIT

setting where the most accurate estimate is shared as T? = W?Λ?. Note that, in the

centralized precoder, λ
(1)
i = λ

(2)
i and thus the element-wise product can be substituted

by a matrix product such that

T? = W?

[
λ?1 0

0 λ?2

]
︸ ︷︷ ︸

Λ?

. (6.19)

Example 6.2. Let TX 2 be the TX with worst accuracy for the whole channel

matrix. In that case, the precoder matrix can be expressed as

T =

 ĥ
(1)
2,2 ĥ

(1)
1,2

−ĥ
(2)
2,1 −ĥ

(2)
1,1

�
µ(1)

1 e−ı∠ĥ
(1)
2,1 µ

(1)
2 e−ı∠ĥ

(1)
1,1

µ
(2)
1 e−ı∠ĥ

(2)
2,1 µ

(2)
2 e−ı∠ĥ

(2)
1,1


=

[(
ĥ

(1)
2,1

)−1
ĥ

(1)
2,2

(
ĥ

(1)
1,1

)−1
ĥ

(1)
1,2

−1 −1

]
�

[
µ

(1)
1 |ĥ

(1)
2,1| µ

(1)
2 |ĥ

(1)
1,1|

µ
(2)
1 |ĥ

(2)
2,1| µ

(2)
2 |ĥ

(2)
1,1|

]

=

[(
ĥ

(1)
2,1

)−1
ĥ

(1)
2,2

(
ĥ

(1)
1,1

)−1
ĥ

(1)
1,2

−1 −1

]
︸ ︷︷ ︸

W

�

[
λ

(1)
1 λ

(1)
2

λ
(2)
1 λ

(2)
2

]
︸ ︷︷ ︸

Λ

.

(6.20)

In this specific case, λ
(j)
i is given by λ

(j)
i = µ

(1)
i |ĥ

(1)

īi
|. Furthermore, the equivalent

precoding matrix obtained in the centralized scenario is given by

T? =

[
ĥ−1

2,1ĥ2,2 ĥ−1
1,1ĥ1,2

−1 −1

]
︸ ︷︷ ︸

W?

[
λ?1 0

0 λ?2

]
︸ ︷︷ ︸

Λ?

.
(6.21)
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Table 6.1 – Precoder t1 = [λ
(1)
1 w

(1)
1,1, λ

(2)
1 w

(2)
1,2]T for the data symbols of RX 1 according

to the CSIT configuration.

Main TX 1
- - - - - - - - - - -
α

(1)
2,1 > α

(2)
2,1

α
(1)
2,2 ≥ α

(2)
2,2

Main TX 2
- - - - - - - - - - -
α

(1)
2,1 > α

(2)
2,1

α
(1)
2,2 ≥ α

(2)
2,2

Local CSIT
- - - - - - - - - - -
α

(1)
2,1 > α

(2)
2,1

α
(1)
2,2 < α

(2)
2,2

Non-local CSIT
- - - - - - - - - - -
α

(1)
2,1 ≤ α

(2)
2,1

α
(1)
2,2 ≥ α

(2)
2,2

w1

(ĥ(1)
2,1

)−1
ĥ

(1)
2,2

−1

  1

−
(
ĥ

(1)
2,2

)−1
ĥ

(1)
2,1

  (
ĥ

(1)
2,1

)−1

−
(
ĥ

(2)
2,2

)−1

  ĥ
(1)
2,2

−ĥ
(2)
2,1


λ(1)

1

λ
(2)
1

 µ(1)
1 |ĥ

(1)
2,1|

µ
(2)
1 |ĥ

(2)
2,1|

 µ(1)
1 |ĥ

(1)
2,2|

µ
(2)
1 |ĥ

(2)
2,2|

 µ(1)
1 |ĥ

(1)
2,1||ĥ

(1)
2,2|

µ
(2)
1 |ĥ

(2)
2,1||ĥ

(2)
2,2|

  µ(1)
1

µ
(2)
1



It is important to remark that, in the centralized scenario, all the different precoder

expressions obtained from Table 6.1 are equivalent, since the only difference is the phase

shift and it does not affect the rate performance. Note also that for any channel coefficient

there exist two estimates, ĥ
(1)
i,j and ĥ

(2)
i,j , and W only depends on the one with higher

accuracy. Indeed, the matrix W matches the precoding matrix for the genie-aided

centralized setting W? and, as consequence, the possible performance loss comes only

from the divergence between Λ and Λ?. The idea behind this separation is that the

interference nulling of 6.13 has to be extremely accurate but it can be performed by a

single TX, whereas the power normalization has to be done by both TXs but it can be

computed with a reduced precision, allowing the TXs to be consistent.

Remark 6.3. Table 6.1 illustrates all the possible relations between α
(j)
2k , for all j, k ∈ N2.

The precoder for RX 2 has the same number of possible configurations. Nevertheless,

from the CSIT model assumed, not all of them are possible. Indeed, we have assumed

that the RX feeds back its channel vector quantized with RVQ. Then, the CSIT accuracy

at one TX for the whole channel vector is always the same, i.e., α
(j)
2,1 = α

(j)
2,2. This implies

that only the two first cases –in which a TX knows with a better accuracy the full channel

vector of a certain RX– are the only possible ones. However, we have included all the

possible cases for two reasons. The first one is to show the analogy with respect to the

scheme of Chapter 3 which achieves the optimal GDoF. The second reason is because,

if we abstract the mathematical model from the feedback mechanism, it is possible to

assume that each coefficient may have a different accuracy but following the random

distribution arising from RVQ feedback. Then, the results of this chapter still hold. �
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6.3.2 Instantaneous Power Control

We have postponed the explanation about the power parameter for sake of readability,

as it depends on the Λ matrix and its λi coefficients, which have just been introduced.

The instantaneous power normalization algorithm is the same for the distributed and

the centralized setting. The only difference is the information that each TX owns to

compute it. Consequently, we omit any reference to the super-indexes indicating who is

computing the coefficient –(·)(j) or (·)?–.

The power normalization strategy is performed by the parameter µi and follows any

algorithm that belongs to a broad family of functions satisfying the per-TX instantaneous

power constraint ‖tTX j‖ ≤ 1, ∀j ∈ N2. We recall that the term instantaneous refers only

to the precoding vector power. The power of the transmit signal depends on the power

of the data symbols, and thus it satisfies an average power constraint. We model the

power control as a function Λi such that ∀i ∈ N2,

λi = Λi

(
Ĥ,α, P

)
, (6.22)

where λi ∈ R. We assume that Λi is C1, i.e., all its partial derivatives exist and are

continuous, and that its Jacobian Matrix JΛ satisfies ‖JΛ‖ ≤MJ <∞. Moreover, the

probability density function of Λi, denoted as fΛi is bounded away from infinity such that

max
x

fΛi(x) ≤ fmax
Λi <∞. (6.23)

From the RVQ feedback assumption, Ĥ is distributed as H̃ and hence the marginal PDF

fΛi(x) is the same for perfect, imperfect centralized and distributed CSIT. To con-

clude, since the power control acts on the normalized precoder, the instantaneous power

constraint per TX implies that

0 ≤ λi ≤ 1. (6.24)

6.3.3 Discretization of Power Normalization Parameters

Although the previous CSIT-adapted precoder attains better performance that the naive

ZF scheme, it is still governed by the worst CSIT accuracy among the TXs. Indeed, as we

will show in the numerical results section, it does not achieve the DoF of the centralized

CSIT setting. A possible refinement would be to let the best informed TX predict what

is the channel coefficient estimate at the other TX. However, it is easy to see that the

error on such prediction is proportional to the worst accuracy among the two TXs. In

this way, the performance is not improved.

We are interested in any case in enabling certain consistency between the TXs, such
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that the power control applied at each TX is consistent. We implement this idea by

discretizing the power normalization matrix. In particular, let Q(·) represent the output

of an arbitrary quantizer Q satisfying that Q(x) ≤ x. Hence, after computing the power

parameter λ
(j)
i , TX j quantizes it to obtain Q(λ

(j)
i ). TX j applies then the quantized

version to the precoding matrix. Consequently, the Hybrid Active-Passive Zero-Forcing

precoder, denoted by THAP ∈ C2×2, is given by

THAP ,W �

[
Q(λ

(1)
1 ) Q(λ

(1)
2 )

Q(λ
(2)
1 ) Q(λ

(2)
2 )

]
. (6.25)

where W varies according to the CSIT configuration as illustrated in Table 6.1 and, by

definition, only depends on the most accurate estimate for each channel coefficient.

At first sight, the performance obtained by using (6.25) would be degraded in

comparison with the previous non-quantized precoder, as the quantizer decreases the

accuracy of the parameters. This is not case, as we explain in the following. From (6.25),

two possible cases arise. Namely, either Q(λ
(1)
1 ) = Q(λ

(2)
1 ) or not. If the two quantized

estimations do not match, the performance is degraded. However, if they match, the

precoding matrix becomes

THAP ,W

[
Q(λ

(1)
1 ) 0

0 Q(λ
(2)
2 )

]
. (6.26)

Thus, the precoder recovers the original centralized shape of (6.19). This implies that

the interference cancellation is achieved up to the centralized level, as W = W? and the

matrix of power normalization does not break the orthogonality. The only impairment

comes from the reduction of transmitted power, as Q(x) ≤ x.

6.3.4 Properties of the Quantizer

In the following, we summarize some inherent properties of the quantizer Q, as well as

some desired behavior. Note that the condition Q(x) ≤ x is mandatory so as to not

infringe the instantaneous unitary power constraint. Furthermore, λ
(j)
i ∈ [0, 1] from (6.24)

and therefore Q(λ
(j)
i ) ∈ [0, 1]. We assume that it exists MQ <∞ such that

∣∣∣E|Q(x)>0

[
log2

(
Q(x)

)]∣∣∣ ≤MQ, (P0)

which is a technical assumption that is satisfied by any non-degenerate quantizer. The

role of Q is to trade-off the accuracy of the power control with the consistency of the

decision at the TXs, since the ZF orthogonality of (6.13) is preserved only if both TXs

obtain the same quantization value (Q
(
λ

(1)
i

)
= Q

(
λ

(2)
i

)
). In order to emphasize the
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relevance of the quantizer, we define Ω as the set of estimates (Ĥ(1), Ĥ(2)) that ensure

that the ZF orthogonality is not violated, excluding degenerate cases, i.e.,

Ω ,
{

(Ĥ(1), Ĥ(2))
∣∣ ∀i ∈ N2 Q

(
λ

(1)
i

)
= Q

(
λ

(2)
i

)
∈ R+

}
. (6.27)

In simple words, Ω encloses the cases in which the TXs agree on the power normalization

coefficients for both RXs and they are strictly positive. We further denote the com-

plementary event of Ω as Ωc (the inconsistent cases). We proceed by introducing two

important properties for the quantizers.

Definition 6.2 (Asymptotically Accurate Quantizers). A quantizer Q is said to be

asymptotically accurate if

lim
P→∞

Q(λ
(j)
i ) = λ?i a.s. ∀i, j ∈ N2, (P1)

where a.s. stands for almost surely.

Definition 6.3 (Asymptotically Consistent Quantizers). A quantizer Q is said to

be asymptotically consistent if

Pr (Ωc) = o

(
1

log2(P )

)
. (P2)

Property (P2) implies that inconsistent precoding events are negligible in terms of

asymptotic rate. We exhibit in the following lemma one particular quantizer satisfying

properties (P1)-(P2). Optimizing further this quantizer is crucial to good performance

at finite SNR and its optimization its an interesting topic for future research.

Lemma 6.1. Let αmin = mini,j∈N2(α
(j)
i ). Let Qu be a uniform quantizer in the

interval [0, 1] with a step size of P̄
−αmin
cq , with cq > 1, such that

Qu(x) , P̄
−αmin
cq
⌊
P̄
αmin
cq x

⌋
. (6.28)

Then, Qu satisfies properties (P0), (P1) and (P2).

Proof. The proof is relegated to Appendix F. �
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6.4 Rate Gap of ZF in the Distributed CSIT Setting

Let us denote the expected sum rate achieved using HAP-ZF precoding in the D-CSIT

setting by RHAP(α), the expected sum rate attained by the centralized ZF precoder

of Section 6.2 on the basis of the best estimates is denoted as RZF(α?). Note that

α? = [maxj∈N2 α
(j)
1 , maxj∈N2 α

(j)
2 ]. Accordingly, the rate gap between those settings is

defined as

∆R , RZF(α?)−RHAP(α). (6.29)

For the cases in which Q(λ
(1)
i ) = Q(λ

(2)
i ), we refer to both quantized parameters as λQi :

given Ω, λQi = Q(λ
(j)
i ), ∀j ∈ N2. (6.30)

We can now state our main results.

Theorem 6.1. Consider

Γi ,

∣∣∣∣ λ?iλQi
∣∣∣∣2. (6.31)

and ΓAV
i , E|Ω[log2 (Γi)]. Then, the rate gap of ZF precoding with distributed CSIT

is upper bounded by

∆R ≤ ΓAV
1 + ΓAV

2 + Pr (Ωc)RZF
|Ωc(α?), (6.32)

where Ω is defined in (6.27), and it holds that RZF
|Ωc(α(1)) ≤ 2 log2 (1 + P ).

The proof is detailed in Section 6.5. This bound depends on the set Ω and thus on

the quantizer selected. Intuitively, a good quantizer has to ensure a high probability of

agreement, so as to make Pr (Ωc) small. This can be done by enlarging the quantization

step, what will make the first term bigger, as Q(λ
(j)
i ) needs to be as close to λ?i as

possible. This shows why finding the optimal quantizer is a challenging research topic.

Nevertheless, there exists a family of quantizers that behave asymptotically optimal, as

stated in the following theorem.

Theorem 6.2. Let Q be an arbitrary quantizer satisfying (P0), (P1) and (P2).

Then, taking the limit in Theorem 6.1 as P approaches infinity yields

lim
P→∞

∆R ≤ 0. (6.33)
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Proof. The proof follows from Theorem 6.1. First, note that the sum rate RZF
|Ωc(α?)

is trivially bounded by twice the interference-free single-user rate to obtain

RZF
|Ωc(α?) ≤

2∑
i=1

log2

(
1 +

P

2
E
[
‖hi‖2

])
= 2 log2 (1 + P ) ,

(6.34)

what together with property (P2) implies that

Pr (Ωc)RZF
|Ωc(α(1)) = o(1). (6.35)

Consequently, it only remains to show that limP→∞ E|Ω[log2(Γi)] = 0 to conclude

the proof . From the definition of Γi, it holds that

E|Ω[log2 (Γi)]=E|Ω
[
log2

(
λ?i
)]
− E|Ω

[
log2

(
Q(λ

(1)
i )
)]
. (6.36)

We recall a simple property on conditional probability. The law of total probability

stays that, for any two events A,B,

E|A[log2(x)] = Pr(B | A)E|A∩B[log2(x)] + Pr(Bc | A)E|A∩Bc [log2(x)]. (6.37)

Consider that 0 ≤ x ≤ 1 and that Pr(B | A) > 0. Then, E|A∩Bc [log2(x)] ≤ 0 and

E|A∩B[log2(x)] ≥ 1

Pr(B | A)
E|A[log2(x)]. (6.38)

Therefore, if E|A[log2(x)] exists, also E|A∩B[log2(x)] exists and it is bounded below

by (6.38) and above by 0.

Now, suppose that A and B are given by A = {Q(λ
(1)
i ) > 0,∀i} and B ={

Q
(
λ

(1)
i

)
=Q

(
λ

(2)
i

)
, ∀i}. Thus, Ω = A ∩B. It follows from (6.38) and (P0) that

E|Ω[log2

(
Q(λ

(1)
i )
)
] ≥ −

Pr(Q(λ
(1)
i ) > 0, ∀i)

Pr(Ω)
MQ, (6.39)

where we have applied the fact that Pr(B|A) = Pr(A∩B)
Pr(A) . Hence, E|Ω[log2(Q(λ

(1)
i ))]

is bounded. The same result follows for E|Ω[log2

(
λ

(1)
i

)
] from the bounded density

assumption of (6.23). Moreover, from the continuity of the log function and (P1),

log2(Q(λ
(1)
i )) converges a.s. to log2(λ

(1)
i ). From all these facts, we can apply
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Lebesgue’s Dominated Convergence Theorem [159, Theorem 16.4] to interchange

expectation and limit and show that

lim
P→∞

E|Ω
[
log2

(
Q(λ

(1)
i )
)]

= E|Ω
[
log2

(
λ

(1)
i

)]
, (6.40)

and thus limP→∞ E|Ω[log2(Γ1)]= 0, which concludes the proof. �

Corollary 6.1 (Rate Offset with HAP precoder). It holds from Theorem 6.2 that

the rate offset R∞ –defined in (6.2)– of ZF with D-CSIT is the same as for the

genie-aided centralized setting, whose rate offset was shown to be constant with

respect to Perfect CSIT ZF [132] (and thus with respect to the capacity-achieving

Dirty Paper Coding) for α = 1. Specifically, for a constant b, if the number of bits

is B = log2(P )− log2(b), the rate offset with respect to Perfect CSIT ZF is log2(b).

The key for attaining such performance is the trade-off between consistency and

accuracy that is ruled by the quantizer. The result also implies that the logical separation

between interference cancellation and power adjustment is instrumental: The power

adjustment can be implemented with a low accuracy, as it is more important that the

TXs agree. Conversely, the interference cancellation has to be applied with high accuracy.

Interestingly, Lemma 6.1 illustrates that simple quantizers –as the uniform one– satisfy

the sufficient conditions of convergence if we select the correct number of quantization

levels. Moreover, since this quantizer is applied locally and no information exchange is

done, the granularity of the quantizer does not increase the complexity of the scheme.

Note that, if Q has a single quantization point, it leads to a statistical power control. In

turn, if Q has infinite quantization points the scheme corresponds to the unquantized

scheme. In both cases, part of the DoF is lost.

6.5 Proof of Theorem 6.1

We consider w.l.o.g. the rate difference at RX 1, denoted as ∆R1, since the proof for

RX 2 is obtained after switching the indexes of the RXs. ∆R1 can be split as

∆R1 = Pr (Ω) ∆R1|Ω + Pr (Ωc) ∆R1|Ωc . (6.41)

First, we focus on ∆R1|Ω, which encloses the consistent precoding cases. Thus, we

condition on Ω, albeit in the following we may omit to mention it explicitly for sake of

concision. Conditioned on Ω it holds that Q
(
λ

(1)
i

)
= Q

(
λ

(2)
i

)
, ∀i ∈ N2, and hence we can

127



Chapter 6. Rate Gap of the D-CSIT Setting with RVQ

use the notation λQi introduced in (6.30). Moreover, it can be observed from (6.26) that,

conditioned on Ω, the HAP-ZF precoder satisfies

tHAP
i =

λQi
λ?i

tZF
i , ∀i ∈ N2. (6.42)

From the definition of the centralized scheme, λ?i = λ
(argmaxj α

(j)
i )

i . Given that Q(x) ≤ x,

it follows that λQi /λ
?
i ≤ 1, ∀i ∈ N2. Let us recall that Γi is defined as

Γi ,

∣∣∣∣ λ?iλQi
∣∣∣∣2, (6.43)

Then, Γi satisfies Γi ≥ 1 ∀i ∈ N2. Conditioned on Ω we can write that the SINR obtained

through HAP-ZF precoding satisfies

1 +
P
2

∣∣hH
1 tHAP

1

∣∣2
1 + P

2

∣∣hH
1 tHAP

2

∣∣2 = 1 +
1

Γ1

P
2

∣∣hH
1 tZF

1

∣∣2
1 + 1

Γ2

P
2

∣∣hH
1 tZF

2

∣∣2
≥ 1

Γ1

(
1 +

P
2

∣∣hH
1 tZF

1

∣∣2
1 + P

2

∣∣hH
1 tZF

2

∣∣2
)
,

(6.44)

where the first equality follows from (6.42)-(6.43) whereas the last inequality comes from

the fact that 1/Γi ≤ 1 ∀i. We can recognize in (6.44) the SINR at RX 1 for the centralized

ZF scheme such that it holds:

RHAP
1|Ω (α) = E|Ω

[
log2

(
1 +

P
2 |h

H
1 tHAP

1 |2

1 + P
2 |h

H
1 tHAP

2 |2

)]
≥ −E|Ω[log2 (Γ1)]+RZF

1|Ω(α?).

(6.45)

Since ∆R1|Ω = RZF
1|Ω (α?)−RHAP

1|Ω (α ), it follows that

∆R1|Ω ≤ E|Ω[log2 (Γ1)]. (6.46)

Let us now consider the inconsistent precoding cases, i.e., Ωc. Since RHAP
1|Ωc (α) ≥ 0, the

rate gap can be bounded by the centralized rate as ∆R1|Ωc ≤ RZF
1|Ωc(α?). Putting these

results together in (6.41) yields

∆R1 ≤ E|Ω[log2 (Γi)]+ Pr (Ωc)RZF
1|Ωc(α(1)), (6.47)

where we have applied the fact that Pr (Ω) ≤ 1. The sum rate gap ∆R is obtained as

∆R = ∆R1 + ∆R2, what concludes the proof. �
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6.6 Analysis of the Power Normalization Parameters λi

Thus far, we have not focused on the statistics of the power normalization parameters λi,

and we have abstracted them up to the sufficient conditions that they have to fulfill to

prove the assymptotic results. In this section, we discuss them a bit more in detail. This

discussion is motivated because the bound of (6.32) Theorem 6.1 strongly depends on

those statistics. Note that

ΓAV
i = 2E|Ω[log2 (λ?i )]− 2E|Ω

[
log2

(
λQi
)]
. (6.48)

In the following, we present the main conclusions. The derivation and further information

is relegated to Appendix G. We recall that the the CSIT is composed of a quantized version

of the normalized vector h̃i ,
hi
‖hi‖ ∈ C2 using RVQ with B

(j)
i bits. The assumption of

Rayleigh fading (h̃i,k ∼ NC(0, 1)) implies that

|h̃i,k|2 ∼ Uniform(0, 1),

|h̃i,k| ∼ Triangular(0, 1),

|h̃i,k̄|2 = 1− |hi,k|2 .

(6.49)

(6.50)

(6.51)

From RVQ properties, the estimates ĥ
(j)
i,k follow the same distributions. We denote the

precoding vector of TX j before normalization as toTX j , [toTX j,1, toTX j,2]. As indicated

in (6.15), toTX j,i = h̃
(j)

ī,j̄
. The final precoder of TX j is then tTX j = [µ1t

o
TX j,1, µ2t

o
TX j,2].

We consider two different power normalizations.

1. The coefficient µi is chosen such that µi , 1
max(‖toTX 1‖,‖t

o
TX 2‖)

, , for any i ∈ N2.

2. We transmit P/2 power for each RX stream (symbol), and the precoder of each

symbol is unit-norm. Hence, for any i ∈ N2, µi = 1.

In order to ease the notation, consider that α
(j)
i,k = α(j) for all i, k ∈ N2. We assume

w.l.o.g. that TX 1 is the TX with the most accurate CSIT, i.e., α(1) ≥ α(2). We analyze

separately each one of the power normalization considered. Let fx denote the PDF of

the variable x and Fx denote the cumulative distribution function (CDF).

6.6.1 Maximum TX Norm Normalization

We consider here the first power normalization of the two cases mentioned above. Note

that in this case µ1 = µ2 but λ1 6= λ2, since λi , µi|ĥ(j)

ī1
|, as shown in Table 6.1. Since

the estimates ĥ
(j)
i,k have the same distributions as the true channel elements h̃i,k, we omit
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Figure 6.2 – Probability density function λi assuming µ = max(PTX 1, PTX 2)−1/2.

the super-index notation. Consequently, λi is given by

λi ,
|h̃ī,1|

max(‖toTX 1‖, ‖toTX 2‖)
. (6.52)

Lemma 6.2. For the power normalization of (6.52), it follows that

fλi =
4x

(1 + x2)2
− 2x+ min

( x

(1− x2)2
,

1

x3

)
, (6.53)

and

E[log2(λi)] =
3− 4 ln(4)

4 ln(2)

≈ −0.917980.

(6.54)

Proof. The proof is relegated to Appendix G.1. In Fig. 6.2, the PDF of (6.53) is

shown, together with the histogram of a Monte-Carlo based simulation, in order to

verify the results. �
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Lemma 6.3. Suppose that the quantization of the λ
(j)
i parameters is done by the

quantizer of Lemma 6.1, with step size q. Let p0
i be

p0
i ,

1

1− Pr
(
λQi = 0|Q(λ

(1)
i ) = Q(λ

(2)
i )
) . (6.55)

Then,

E|Ω
[
log2

(
λQi
)]

= p0
i

(
log2

(
n− 1

n

)
+ log2(N − 1) + log2(q) (1− Fλ(q))

)
+ p0

i

N−1∑
n=2

Fλ(nq). (6.56)

Note that, if q−1 ∈ Z, the expression is simplified as

E|Ω
[
log2

(
λQi
)]

= p0
i

N∑
n=2

Fλ(nq). (6.57)

Proof. The proof is relegated to Appendix G.1. �

6.6.2 Unit-Norm per RX Normalization

We consider now the second normalization, i.e., µi = 1. Therefore, λi ,
∣∣hī,1∣∣, and thus

λ2
i ∼ Uniform(0, 1),

λi ∼ Triangular(0, 1).

(6.58)

(6.59)

Lemma 6.4. For the power normalization of (6.6.2), it follows that

E[log2(λi)] =
−1

2 ln(2)
(6.60)

and

E|Ω
[
log2

(
λ2
)]

=
−1

ln(2)
− q2 log2(q2)

1− q2
. (6.61)

Proof. The proof is relegated to Appendix G.2. �
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Lemma 6.5. Suppose that the quantization of the λ
(j)
i parameters is done by the

quantizer of Lemma 6.1, with step size q. Let p0
i be

p0
i ,

1

1− Pr
(
λQi = 0|Q(λ

(1)
i ) = Q(λ

(2)
i )
) . (6.62)

Then,

E|Ω
[
log2

(
λQi
)]

=
q2

1− q2

N−2∑
n=1

log2(nq)(2n+ 1) + log2((N − 1)q)
1− (N − 1)2q2

1− q2
.

Note that, if q−1 ∈ Z, the expression is simplified as

E|Ω
[
log2

(
λQi
)]

=
q2

1− q2

N−1∑
n=1

log2(nq)(2n+ 1). (6.63)

Proof. The proof is relegated to Appendix G.2. �

6.7 Numerical Results

We illustrate in the following some numerical results that corroborate the previous insights.

Suppose that the quantization of the λ
(j)
i parameters is computed with a uniform quantizer.

For sake of simplification, we assume a basic power normalization that ensures the per-TX

power constraint: Let toTX j , [toTX j,1, toTX j,2] denote the precoding vector of TX j before

normalization. The final precoder of TX j is tTX j = [µ1t
o
TX j,1, µ2t

o
TX j,2]. Then, µi is

chosen as

µi ,
1

max(‖toTX 1‖, ‖toTX 2‖)
, ∀i ∈ N2. (6.64)

Let us start with a simple CSIT configuration. Suppose the per-TX homogeneous CSIT

configuration in which a TX j has the same accuracy for the whole channel matrix, i.e.,

α
(1)
1 = α

(1)
2 = α(1),

α
(2)
1 = α

(2)
2 = α(2).

(6.65)

In particular, suppose that α(1) = 1 and α(2) = 0.6. Fig. 6.3 shows the simulated sum

rate for this specific configuration. The simulation is computed by using Monte-Carlo
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Figure 6.3 – Expected sum rate of the proposed scheme for the setting with CSIT scaling
parameters α(1) = 1, α(2) = 0.6, using the uniform quantizer of Lemma 6.1.

runs and averaging over 1000 random codebooks and 1000 channel realizations. The

quantization step q is selected as

q = P̄−α
(2)/2. (6.66)

We can see that the proposed HAP-ZF scheme leads to a vanishing rate loss with respect

to the centralized case (where both TXs are provided with the best CSIT, Ĥ(1) in the

simulated case). The lower-bound of Theorem 6.1 is considerably close to the actual

rate. We recall that the only scheme known previously to achieve the centralized DoF in

the D-CSIT setting was presented in [82] and it applies a scaled power normalization of

P/ log2(P ). Fig. 6.3 shows that, although this scheme achieves the optimal DoF –slope–,

it achieves that property at the cost of a strong loss in rate offset.

Finally, the performance obtained if we do not quantize the λ
(j)
i parameters is also

presented (the so-called HAP-ZF unquantized in Fig. 6.3). It is clear that the unquantized

scheme experiences a loss in terms of DoF. This occurs because, as aforementioned, the

mismatches between the precoding coefficients of each TX break the orthogonality needed

for the interference nulling. Thus, this scheme only achieves a DoF proportional to α(2)
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Figure 6.4 – Average sum rate comparison for the CSIT allocation in which the CSIT
about RX 1 is known locally and the CSIT about RX 2 is known non-locally.

instead of α(1). At intermediate SNR, this unquantized scheme outperforms the proposed

HAP-ZF precoding scheme. Yet, this is a consequence of our focus towards analytical

tractability and asymptotic analysis, as the quantization step q has been selected in (6.66)

only so as to satisfy the convergence conditions. Optimizing the precoder for finite SNR

performance will allow to bridge the gap between the two schemes to obtain a scheme

outperforming both of them.

Let us now present a different configuration. Importantly, in this case the quantization

step q is optimized by exhaustive search. We still consider two levels of accuracy, this

time allocated as

At TX 1 −→
α

(1)
1,1 = 1 α

(1)
1,2 = 0.4 α

(2)
1,1 = 0.4 α

(2)
1,2 = 1

←− At TX 2
α

(1)
2,1 = 0.4 α

(1)
2,2 = 1 α

(2)
2,1 = 0.4 α

(2)
2,2 = 1

Note that this configuration corresponds to the case in which the CSIT about RX 1’s

channel is distributed locally –i.e., each TX has the most accurate estimate for its own

coefficient–, and the CSIT about RX 1’s channel is allocated in a non-locally way –i.e.,
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each TX has the most accurate estimate for the other TX’s coefficient–. Although this

CSIT allocation may not be found in practical use cases, we select it so as to illustrate

the flexibility of the proposed scheme and the validity of the results. We show in Fig. 6.4

the rate achieved by the proposed HAP-ZF scheme together with three different reference

schemes:

1. The centralized scheme for case in which the best estimate is shared by both TXs.

2. The Naive ZF, where the TXs compute the conventional ZF assuming that the

other TX shares the same information. This scheme is not aware of the distributed

allocation of the CSIT.

3. Simple Time Division Multiplexing (TDM). Only one RX is served at a given time.

We observe that the proposed scheme offers a considerably better performance with

respect to the Naive ZF and TDM. Besides this, it can be seen that the HAP-ZF rate

converges to the upper-bound of the centralized setting.

In the interest of better illustrating the convergence behavior of Theorem 6.1, we

present in Fig. 6.5 the percentage of the centralized upper-bound attained by the proposed

HAP-ZF scheme, for all the possible CSIT configurations. We show side-by-side the

percentage attained at P = 30, 50 and 80dB. It is important to bear in mind that the

values are normalized. The rate achieved by the centralized setting is 15 bits/Hz/s at 30

dB, 28 bits/Hz/s at 50 dB, and 48 bits/Hz/s at 80 dB, what can be seen from Fig. 6.4.

Note that the more the SNR increases, the less percentage attains the Naive ZF scheme.

Furthermore, Fig. 6.5 shows that the HAP-ZF scheme converges at different pace for

each of the possible CSIT configurations. This shows how sensitive the scheme is to the

probability distribution of the power parameters λ
(j)
i , since that distribution differs for

different CSIT configurations.

6.8 Conclusions

Considering a decentralized scenario where each TX has a CSI with different SNR scaling

accuracy, we have shown that there exists a linear precoding scheme that asymptotically

recovers the rate of ZF precoding in the ideal centralized setting in which the best

estimate is shared. Going beyond the setting considered, we have shown how using a

low rate quantization of some parameters (here the power normalization) in combination

with a higher-accuracy distributed decision allows to reach coordination without loosing

precision. The extension of the results to more antennas and more users is considered in

the following chapter. The optimization at finite SNR, as well as the extension of the
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the Naive ZF (—◦ ) schemes, for any possible D-CSIT configuration. The configurations
are described in Table 6.1.

main unveiled intuitions concerning distributed settings to diverse cooperative problems,

are interesting and challenging open research problems.
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Chapter 7

Rate Gap of the M×K Network

MISO with Distributed CSIT

In the previous chapter, we have analyzed the performance of distributed ZF schemes

for the 2 × 2 Network MISO setting, with the aftermath that it is possible to recover

asymptotically the rate of the genie-aided centralized setting. Motivated by this result,

we proceed as in Part II and we broaden the rate gap analysis to a more general setting.

In this case, we extend it to the setting in which M multi-antenna TXs jointly serve K

different RXs. In particular, we focus on the cases in which distributed ZF-type schemes

can attain the DoF of the C-CSIT setting. This restriction is due to the fact that we

study the asymptotic regime, and the rate gap for the cases in which the DoF is not

attained grows unboundedly as the SNR increases.

As in the previous part, the schemes that were developed for the simple 2× 2 case

are not applicable to the general setting, as they rely on the fact that there exists only

an interference constraint to resolve and therefore a single TX is enough to recover the

DoF. Besides this, we consider now a CSIT model with Gaussian estimation noise. This

modification of the estimation model with respect to the previous chapter, in which we

assumed RVQ feedback, is applied so as to extend the scope of the results. Indeed, from

the mathematical demonstrations in both chapters, the results are expected to hold for a

broad set of distributions, since the analysis shows that the parameter that characterizes

the asymptotic performance is the scaling of the noise variance, and not its distribution.
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7.1 Preliminaries

7.1.1 Transmission and System Model

We consider the Network MISO setting in which M TXs jointly serve K single-antenna

RXs. TX j has Nj antennas. We denote the total number of transmit antennas as

NT =
∑M

j=1Nj . The received signal is defined as in Section 2.2. Every RX wishes to

receive a data symbol si. The data symbols si are i.i.d. as NC(0, 1). We define the

vector of data symbols as s = [s1, . . . , sK ]T, such that E
[
‖s‖2

]
= K. We apply a minor

modification to the notation of the channel matrix. The channel matrix is now written as

H ,


h1

...

hK

 =


h1,1 . . . h1,M

...
. . .

...

hK,1 . . . hK,M

 ∈ CK×NT . (7.1)

Hence, hi ∈ C1×NT denotes the global channel vector towards RX i, and hi,j ∈ C1×Nj is

the channel vector from TX j to RX i. Note that we have defined the row vectors as hi

and hi,j in place of the usual Hermitian notation hH
i and hH

i,j . This is done so as to ease

the notation for the remaining of the chapter. The channel coefficients are assumed to be

i.i.d. as NC(0, 1) such that all the channel sub-matrices are full rank with probability

one. The precoding matrix is given by

T ,


T1

...

TM

 = µ
[
w1 . . . wK

]
= µ


w1,1 . . . wK,1

...
. . .

...

w1,M . . . wK,M

 ∈ CNT×K , (7.2)

hence Tj ∈ CNj×K is the precoding matrix applied at TX j, wi ∈ CNT×1 is the global

precoding vector for the information symbols of RX i (si), and wi,j ∈ CNj×1 is the

precoding vector applied at TX j for si. Finally, we denote the coefficient at the n-th

antenna of TX j as wi,j,n. The parameter 0 < µ ≤ 1 is a power correction value that

will be detailed later. We further define Tj,n as the precoding vector applied at the

n-th antenna of TX j, with n ∈ NNj . We assume that the precoder has a per-antenna

instantaneous unit-norm constraint, such that

‖Tj,n‖ ≤ 1. (7.3)

The results presented here also hold under the assumption of per-TX instantaneous

constraint (‖Tj‖ ≤ 1). Note that, even if we set ‖Tj‖ = 1, the transmit power varies over
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the time as the power of the information symbols si varies. With a huge abuse of notation,

and for sake of concision, we refer hereinafter to the unit-norm constraint of (7.3) as

instantaneous power constraint, although strictly speaking it is an instantaneous power

constraint on the precoding vector. This is done in opposition to the less restrictive average

power constraint on the precoder (E[‖Tj‖] ≤ 1) which has been assumed in Part II.

7.1.2 Distributed CSIT Model

We recall the expression of the channel estimate at TX j, presented in (2.15):

Ĥ(j) ,
√

1K×NT − Z(j) �H +
√

Z(j) �∆(j). (7.4)

This chapter is characterized by the assumption of Gaussian estimation noise. In

particular, besides the assumption of Rayleigh fading, we consider that the elements of

∆(j) are i.i.d. as NC(0, 1) and they are independent of H. Furthermore, we consider

the Sorted CSIT configuration introduced in Section 2.4.4, as in Chapter 4. We assume

for simplicity the homogeneous accuracy case, such that we can write Z(j) = Z(j) ∈ R.

Consequently, (7.4) becomes

Ĥ(j) ,
√

1− Z(j) H +
√
Z(j)∆(j). (7.5)

Hence, a TX knows the full channel matrix with the same average accuracy. This model

encloses e.g. a scenario in which a main, multi or massive antenna base station serves a

set of users with the help of some single or multi antenna remote radio-head or simple

TXs, as depicted in Fig. 7.1.

CSIT accuracy

Following the same reasoning of the previous chapters, our interest in the high-SNR

regime motivates the assumption that the estimation error scales as

Z(j) = P−α
(j)
, (7.6)

where 0 < α(j) ≤ 1. α(j) is the accuracy scaling parameter that measures the quality of

estimation of the channel matrix at TX j. Hence, we can order the TXs w.l.o.g. as

1 ≥ α(1) ≥ α(2) ≥ · · · ≥ α(M) ≥ 0, (7.7)

what implies that TX 1 is the best-informed TX, whose CSIT has the highest accuracy.

We define the set of accuracy parameters of the D-CSIT setting as
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Wireless limited link (Distributed)

Figure 7.1 – Master Base Station with remote radio-heads. It obtains an estimate of the
whole channel matrix, then it transmits noisy or compressed CSI to the auxiliary TXs.

αM = {α(j)}j∈NM . (7.8)

For further use, we define the estimate for the channel of RX i such that

ĥ
(j)
i , z̆

(j)hi + z(j) δ
(j)
i , (7.9)

where z(j) , P̄−α
(j)

, z̆(j) ,
√

1− (z(j))2, and ĥ
(j)
i , δ

(j)
i , are the i-th row of the matrices

Ĥ(j), ∆(j), respectively. The accuracy parameters αM are assumed to be long-term

coefficients that vary slowly. Based on that, it is assumed that every TX knows the full

set αM , as it only requires a sharing of few bits over a long period of time.

7.1.3 Genie-Aided Centralized Setting

We consider the same genie-aided centralized setting as in the previous chapter, defined

in Definition 6.1. Hence, all the TXs are endowed with the estimate of best average

accuracy. Note that in the sorted setting, where α(1) ≥ · · · ≥ α(M), the centralized setting

consists on a BC setting with NT transmit antennas and CSIT Ĥ equal to Ĥ(1).

7.1.4 Affine Approximation of the Achievable Rate

As in the previous chapter, we want to characterize the affine approximation of the rate

presented in (2.11) in the D-CSIT setting. To wit, we aim to find the values DoFd, Rd∞,

such that
R(α) = DoFd log2(P )−Rd∞ + o(1). (7.10)
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7.2 Centralized Zero-Forcing Precoding

7.2.1 Centralized Zero-Forcing Schemes (Under ideal CSIT sharing)

Since we base our analysis on the comparison with respect to the well-known centralized

ZF precoding schemes, we first present the set of centralized precoders to which we

restrict this work. In point of fact, the presented results hold for a general type of ZF

precoders, such that we just introduce the requirements that these schemes have to satisfy.

We denote the CSIT accuracy of the centralized case as α?. Hence, the genie-aided

centralized setting for the sorted distributed setting of (7.7) is represented by α? = α(1).

First, in order to distinguish when the precoding vectors refer to the genie-aided

C-CSIT setting or to the D-CSIT setting, we denote the centralized coefficients as vi,k.

This is in opposition to the wi,k notation applied in (7.2) for the D-CSIT setting. In

addition, V, vi and Tcentr
j are defined as the centralized counterpart of W, wi and Tj .

Hence, the vectors vi are computed from any ZF precoding algorithm satisfying

1) ĥiv` = 0, ∀` 6= i (Zero-Forcing condition)

2) E
[
‖vi,j,n‖−1

]
= Θ (1)

3) f‖vi‖ ≤ f
max
‖vi‖ <∞

(ZF1)

(ZF2)

(ZF3)

where ĥi is the centralized estimate of the channel vector of RX i. Note that (ZF1) is

nothing but the condition that defines ZF schemes, (ZF2) implies that the probability

of precoding with a vanishing power is negligible, and (ZF3) that the precoding vector

has a bounded probability density function, i.e., that it is neither predetermined nor

constant. Hereinafter, we assume that the centralized precoding scheme satisfies (ZF1),

(ZF2), (ZF3). Furthermore, we assume that the precoding vectors and matrices can be

expressed as a combination of summations, products, and generalized inverses of the

channel estimate. As an example, we can use the typical choice of the projection of the

matched filters onto the null spaces of the interfered users, i.e.,

vi = λi
Ph⊥

ī
ĥH
i

‖Ph⊥
ī
ĥH
i ‖
, Ph⊥

ī
,
(
I− ĤH

ī (ĤīĤ
H
ī )−1Ĥī

)
, (7.11)

where the matrix Ĥī stands for the full channel matrix with the i-th row removed,

and λi is a parameter to satisfy the power constraint of (7.3). Note that, in order to

avoid degenerate cases and increase the performance at low SNR, the inversion in (7.11)

can be regularized. However, as conventional regularized schemes converge to their

non-regularized counterpart at high-SNR, we omit any reference to regularized inverses.
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We further model the precoding scheme as a function of the CSIT, such that V denotes

the function applied to the channel estimate:

V : CK×NT → CNT×K and V = V
(
Ĥ
)
. (7.12)

7.2.2 ZF on Distributed CSIT Settings

It is known that centralized ZF schemes performance collapses under D-CSIT assumption

[82,100]. The main reason is that the interference cancellation achieved through (ZF1) is

proportional to the worst accuracy among the TXs, α(M) in the sorted case. Thus, the

question is how to prevent the least accurate TXs from harming the transmission.

The first intuitive idea is to apply the strategy that we have developed in Part II. In

that case, those inaccurate TXs do not make use of its instantaneous CSI to precode,

transmitting with a fixed or known precoder based on statistical information. This

solution achieves the centralized DoF under the less restrictive average power constraint

E
[
‖Tj‖2

]
≤ 1. However, under the –here assumed– instantaneous power constraint

‖Tj,n‖2 ≤ 1, the best known performance requires a power back-off such that the

best informed TXs have enough power to realign the interference generated by the

fixed-precoder TXs, with the flaw that this power back-off does not vanish at high SNR.

Another possible strategy is that the best informed TX attempts to estimate what is

the CSIT at any TX ` (Ĥ(`)) based on its own estimate Ĥ(1). However, the error variance

of Ĥ(`) as a function of Ĥ(1) scales proportionally to α(`). Thus, trying to correct the

misalignment created by TX ` will not succeed.

The two problems described above are the two main barriers that limit the perfor-

mance on D-CSIT settings. We present in the following several definitions that help to

emphasize those two limitations.

Definition 7.1 (Consistency). Consider two TXs, each one endowed with a different

CSI, such that Ĥ(j) denotes the CSI at TX j. Suppose that they aim to compute

the same function f(x), each one on the basis of its own CSI. The computation is

said to be Consistent if and only if f(Ĥ(1)) = f(Ĥ(2)). Otherwise, it is said to be

Inconsistent.

Definition 7.2 (Power Outage). Let TX j compute its precoding matrix Tj such

that, for a given function f and value A, Tj fulfills that f(Tj) = A. Then, TX j

is said to be in Power Outage if and only if the computed precoder exceeds the

instantaneous power constraint.
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Definition 7.3 (Feasible Consistency). Two TXs apply a Feasible Consistent pre-

coder if the precoding coefficients are Consistent and there is not Power Outage.

One of our main contributions is to show that these limitations can be overcome by

encouraging consistency among the different TXs, at the cost of reducing the accuracy of

precoding at some TXs.

7.3 Rate Gap of the M×K D-CSIT Network MISO Setting

Our main contributions rely on a novel ZF-type precoding scheme coined Consistent

Decentralized ZF (CD-ZF), which is presented in detail in Section 7.3.2. Briefly, this

scheme is an adaptation to distributed scenarios of the aforementioned centralized ZF

precoding, such that the precoding applied at each TX is different if the TX is the best

informed one or not. Let R(αM ) be the expected sum rate for our D-CSIT setting.

Similarly, let R?(α(1)) be the expected sum rate achieved by a ZF scheme on the genie-

aided C-CSIT setting as described in Section 7.2.1. Accordingly, the rate gap between

those settings is defined as ∆R , R?(α(1)) − R(αM ). We can now state our main

result.

Theorem 7.1. In the Network MISO setting with distributed CSIT, with N1 ≥ K−1

and α(M) > 0, the expected sum rate achieved by ZF-type schemes in the genie-aided

Centralized CSIT setting is asymptotically achieved, i.e.,

lim
P→∞

R?(α(1))−R(αM ) = 0. (7.13)

Proof. The proof builds on the proposed CD-ZF precoding scheme, which is presented

in Section 7.3.2, and it is relegated to Section 7.4. �

Corollary 7.1 (Rate-Offset under Distributed CSIT). It holds from Theorem 7.1

that the rate offset Rd∞ –defined in (7.10)– of ZF with distributed CSIT is the same

as for the genie-aided centralized setting, whose rate offset was shown in [132] to

be constant with respect to Perfect CSIT ZF –and thus with respect to the capacity-

achieving Dirty Paper Coding (DPC)– for the case of α? = 1.

Remarkably, Theorem 7.1 implies that it is possible to achieve not only the multiplexing

gain but also the beamforming gain achieved by the centralized case with NT antennas,
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even if only N1 antennas are endowed with the maximum accuracy. The constraint

N1 ≥ K − 1, i.e., that the TX with the most accurate CSI has a number of antennas at

least equal to the number of interferable RXs, comes from the fact that if N1 < K − 1 the

use of only ZF is not enough to achieve the DoF of the centralized setting [100], and thus

limP→∞R
?(α(1))−R(αM ) =∞. We have shown in Chapter 4 that, even for the case

with N1 = 1, it is possible to reach the genie-aided DoF in some regimes. However, this is

accomplished by means of an elaborated transmission scheme which comprises interference

quantization and retransmission, superposition coding at the TXs and successive decoding

at the RXs. Since in this work we focus in a simple ZF transmission, we restrict to the

DoF-achieving regime N1 ≥ K − 1.

It is known that the optimal DoF of the C-CSIT setting with accuracy α(1) is equal

to 1+(K−1)α(1), by means of superposition coding where a common message is broadcast

and intended to be the decoded by all the RXs. It is noteworthy that, in the regime of

interest, N1 ≥ K − 1, the D-CSIT setting performance still converges asymptotically to

the centralized performance even if superposition coding is applied. This comes from

the fact that the instantaneous power applied converges to the one used in the C-CSIT

setting, such that the broadcast common symbol can be sent with the same rate.

7.3.1 Achievability: A Broad View

Theorem 7.1 evidences that the issues associated which feasible consistency between the

TXs –enunciated in Section 7.2.2– can be overtaken. Intuitively, the strategies mentioned

in Section 7.2.2 are the extremes cases of consistency. Particularly, the naive ZF –whose

block diagram is shown in Fig. 7.2a– represents the extreme in which consistency is not

considered, whereas the AP-ZF –shown in Fig. 7.2b– embodies the extreme with perfect

consistency but limited accuracy and possible Power Outage. The main question is if

enforcing partial consistency might help and enhance the performance. Let the TX with

best CSI attempt to estimate the decision of the other TXs. As previously mentioned,

this incurs in an error proportional to the CSI accuracy of the worst TX. Moreover, as

the variables are continuous, the probability of being consistent –estimating exactly what

the other TX knows– is 0.

Nevertheless, we can build on the idea introduced in the previous chapter that

discretizing the decision space of the TXs helps to enforce consistency as, at least, the

probability of discerning what the other TX knows is strictly positive. The application

of this idea is however not straightforward, since the only source of inconsistency in

Chapter 6 was a single scalar power parameter, and no beamforming was possible.

However, the main insight is still valid: By means of discretizing the decision space of

the TXs that do not have the best CSI, we construct a probabilistic hierarchical setting,
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(a) Block diagram of ZF applied naively in the 2x2 D-CSIT scenario (No Consistency).

TX 2 :
Ĥ(2)

α(1), α(2)

x Power Control
(Constant) T2

TX 1 : Ĥ(1) ZF
Precoding

w
(1)
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w
(1)
2

Power
Control T

(1)
1

(b) Block diagram of AP-ZF applied in the 2x2 D-CSIT scenario (Full Consistency).

Figure 7.2 – Simple strategies for distributed precoding.

in which the best informed TX is able to estimate correctly the action taken by the other

TXs with a certain probability. Interestingly, this discretization –or quantization– can be

applied either to the available information –the channel matrix– or the output parameters

–the precoder–. Both cases are illustrated in Fig. 7.3. This is due to the properties of

linear systems and the asymptotic nature of our analysis. It is however clear that the

performance at low-to-medium SNR can importantly differ for each of the cases.

The key for attaining the surprising result of Theorem 7.1 is the proposed precoding

scheme, whose rigorous description is presented in the following section. Yet, the benefit

from achieving partial consistency is still not explicit and, indeed, it turns out that

there exists a non-trivial compromise between consistency and accuracy that allows

us to asymptotically close the rate gap. The proof of Theorem 7.1 relies on a simple

idea: Let A be a set enclosing the feasible consistent cases in which the precoders

transmit coordinately, and let Ac be its complementary event. Hence, the rate gap

∆R , R?(α(1))−R(αM ) can be expressed as

∆R = ∆R|A Pr(A) + ∆R|Ac Pr(Ac). (7.14)

If ∆R|A → 0 and ∆R|Ac Pr(Ac) → 0, Theorem 7.1 is proven. It turns out that the

transmission scheme has to be both consistent (Pr(A)→ 1) and, for the consistent cases,

it has to be accurate (∆R|A → 0). This is rigorously shown in Section 7.4.
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TX 2 : Ĥ(2) Q(·) Ĥ
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Continuous Discrete

(a) Quantizing input (CSIT).

TX 2 : Ĥ(2)
ZF

Precoding
Power

Control T
(2)
2

Q(·) T
(2)
2q

TX 1 : Ĥ(1)
ZF

Precoding
Power

Control T
(1)
1

Q(·) T
(1)
1q

Continuous Discrete

(b) Quantizing output (precoder).

Figure 7.3 – Two manners of discretizing decision space: At the input (information) or
at the output (action).

7.3.2 Proposed Transmission Scheme: Consistent Distributed ZF

We first explain the Consistent Distributed ZF (CD-ZF) precoding scheme for the case

in which the channel matrix (input) is quantized. The case when the precoding vector

(output) is quantized is presented later. The proposed scheme presents an uneven

structure, such that each TX applies a different strategy depending on who has higher

accuracy. Furthermore, the proposed scheme computes independently the precoder for

the symbols of different RXs, except for the final power normalization.

a) Quantizing the CSI (Q(Ĥ(j)))

The block diagram of this precoding scheme is depicted in Fig. 7.4. We split the description

such that in the first place we explain the precoder at any TX not being the best informed

one (TX 2 to TX M). Later, we present the precoder at the best-informed TX (TX 1).

The main limitation of the distributed precoding is not the error variance at the

restricting TXs, but the impossibility at TX 1 (or the set of TXs with accuracy α(1)) of

knowing what the other TXs are going to transmit. In order to overtake this problem, all

the TXs but TX 1 quantize their estimation matrix with a known quantizer Q. Hence,

146



7.3. Rate Gap of the M ×K D-CSIT Network MISO Setting

TX 2 :

TX 1 : Ĥ(1)

MAP(Ĥ
(2)
q ) Ĥ

(2)←(1)
q

ZF Precoding T
(1)
1

Ĥ(2) Q(·) Ĥ
(2)
q ZF Precoding T

(2)
2

Continuous Discrete

Figure 7.4 – Block diagram of CD-ZF applied in the 2x2 D-CSIT scenario.

for any j > 1, TX j does not use its CSIT Ĥ(j) to precode, but first pre-processes it. In

other words, TX j applies

Ĥ(j)
q = Q(Ĥ(j)). (7.15)

The characteristics of the quantizer Q will be detailed later. Then, it applies naively a

centralized ZF scheme as described in Section 7.2.1, based on Ĥ
(j)
q . Since the quantization

transforms the continuous variable Ĥ(j) into a discrete one, it facilitates that the setting

becomes a hierarchical setting, in which the information available at other TXs is

estimated without explicit communication.

We focus now on the precoder at the most accurate TX, which attempts to correct

the error of the previous TXs. Let TX 1 estimate Ĥ
(j)
q based on its own information

Ĥ(1), e.g. by computing the Maximum A Posteriori estimator (MAP) of Ĥ
(j)
q :

Ĥ(j)←(1)
q = argmax

Ĥ
(j)
q ∈Q(CK×NT )

Pr
(
Ĥ(j)
q | Ĥ(1)

)
. (7.16)

It is important to notice that the quantized value Ĥ
(j)
q is not intended to be transmitted,

but it is aimed at helping TX 1 to estimate the CSIT used at TX j, without any explicit

communication between them. For sake of exposition, let us assume that TX 1 correctly

estimates the CSIT at TX j, ∀j ∈ NM , such that

Ĥ(j)←(1)
q = Ĥ(j)

q . (7.17)

We will discuss about the probability that (7.17) happens in the following section. Hence,

we obtain a consistent D-CSIT setting. The goal of TX 1 is to imitate the interference

cancellation performance that the centralized ZF scheme would achieve if every other TX

also owned Ĥ(1). In order to provide some insight, we first describe the 2× 2 case.
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2×2 case: Let ī , i (mod 2)+1. Mathematically, the goal is to have |ĥ(1)
i wī| = |ĥ

(1)
i vī|,

what can be rewritten as

|ĥ(1)
i,1 wī,1 + ĥ

(1)
i,2 wī,2| = |ĥ

(1)
i,1 vī,1 + ĥ

(1)
i,2 vī,2|. (7.18)

We remind that w stands for the distributed precoder whereas v stands for the centralized

precoder. Under the assumption that TX 1 correctly estimates Ĥ
(2)
q , it knows wī,2. Then,

TX 1 computes its precoder such that

wī,1 = vī,1 + (ĥ
(1)
i,1 )†ĥ

(1)
i,2 (vī,2 −wī,2)︸ ︷︷ ︸
φī

, (7.19)

where (x)† denotes the pseudo-inverse1 of x, which is known to have minimal Frobenius

norm among all the generalized inverses [145]. The term φi represents the correction

term that TX 1 has to apply in order to compensate the error introduced by TX 2; note

that (7.19) satisfies (7.18).

M ×K case: The generalization follows directly but it needs one more step. Let the

TX 1 have N1 ≥ K − 1 antennas. The goal is again to obtain the same interference

cancellation as for the centralized precoder, such that, ∀i ∈ NK ,

∑
`∈NK\i

|ĥ(1)
i w`|2 =

∑
`∈NK\i

|ĥ(1)
i v`|2. (7.20)

This can be attained if ĥ
(1)
i w` = ĥ

(1)
i v`, ∀i, ` ∈ NK , i 6= `. Let us split the precoding and

channel vectors in two parts: v`,1, w`,1 and ĥ
(1)
i,1 denote the sub-vector corresponding to

the antennas of TX 1, and v`,1̄, w`,1̄ and ĥ
(1)

i,1̄
represent the sub-vector corresponding

to the antennas of TX 2 to TX M . The sub-matrices Ĥ¯̀,1 and Ĥ¯̀,1̄ are defined in the

same manner. Both sub-matrices are illustrated in Fig. (7.5) for ease of comprehension.

We can expand the condition ĥ
(1)
i w` = ĥ

(1)
i v` as a matrix equation in which w`,1 has to

satisfy

Ĥ¯̀,1w`,1 = Ĥ¯̀,1v`,1 + Ĥ¯̀,1̄(v`,1̄ −w`,1̄), (7.21)

where N1̄ = NT −N1. The precoding vector at TX 1 is selected as

w`,1 = v`,1 + Ĥ†¯̀,1Ĥ¯̀,1̄(v`,1̄ −w`,1̄)︸ ︷︷ ︸
φ`

. (7.22)

1(x)† could also represent the regularized pseudo-inverse.
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(1)
`,K

ĥ
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Figure 7.5 – Definition of the channel sub-matrices Ĥ¯̀,1 and Ĥ¯̀,1̄.

The dimensionality of the linear system in (7.21) explains the limitation of having

N1 ≥ K − 1. In (7.21), it is only ensured that the interference received is the same as for

the centralized setting. It is possible also to ensure that the receive signal ĥ
(1)
i wi is equal

to the one of the centralized setting. However, it would require an extra antenna at TX 1

–since there is an extra equation in the equations system–, and it is not necessary as the

received intended signal turns out to be statistically equivalent without enforcing ĥ
(1)
i wi.

b) Quantizing the precoding coefficients

The scheme proposed above makes use of the quantization of the channel matrix at the

TXs from TX 2 to TX M so as to allow TX 1 to know with a certain probability the

CSIT at those TXs. Then, TX 1 can compute the precoder coefficients obtained at the

other TXs. Another possibility is to apply the quantization at the end of the computation.

In this case, TX j, j ≥ 2, computes its precoder T
(j)
j based on its own non-quantized

CSIT Ĥ(j). Then, it quantizes2 its precoder to obtain

Q
(j)
j , Q(T

(j)
j ), (7.23)

which will be the effective precoding vector applied. Then, TX 1 will perform the same

algorithm as in the previous case where the channel matrix was quantized. The difference

is that in this case it directly computes

Q
(j)←(1)
j = argmax

Q
(j)
j ∈Q(CNj×K)

Pr
(
Q

(j)
j | Ĥ

(1)
)
, (7.24)

2Note that we assume an instantaneous power constraint on Tj . Hence, in order to prevent possible
infringements of the constraint due to the quantization, if the quantization is done on the precoding
vector it has to be applied by truncating (closer value towards 0).
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such that TX 1 will know –with a certain probability– the precoding vector wi,j applied

at the TX j for RX i. The asymptotic results of this work hold for both cases (either

quantizing the channel matrix or the precoding vectors). We focus hereinafter in the

scheme that quantizes the channel matrix for sake of a better understanding, as the proof

is less devious, and because the proof for the other case follows the same approach.

Feasibility and Consistency

In the previous description of the scheme, it has been assumed that TX 1 obtains a

feasible consistent precoder, such that it correctly estimates the CSI at the other TXs

and that the obtained precoding vector can be used for transmission. However, the

transmission scheme will suffer from the two main issues described in Section 7.2.2: Power

outage –since it has to satisfy that ‖T1,n‖ ≤ 1, ∀n ∈ NN1–, and Consistency –as the

quantization of the CSIT at TX j allows TX 1 to obtain that CSIT only with a certain

probability–. In the following we present some properties that will be instrumental to

deal with those limitations. Let us focus first on the consistency problem. We introduce

a set of quantizers that are essential in the proof of Theorem 7.1.

Definition 7.4 (Asymptotically Consistent Quantizers). A quantizer Q is said to

be Asymptotically Consistent if the probability of correct estimation of the MAP

estimator at TX 1 satisfies

Pr
(
Ĥ(j)←(1)
q = Ĥ(j)

q

)
= o

(
1

log2(P )

)
, ∀j ∈ NM . (P1)

Property (P1) implies that it is possible to induce that the probability of having incon-

sistent precoding among TXs vanishes faster than 1/log2(P ). This fact implies that the

rate impact of inconsistent precoding events vanishes asymptotically –as we will detail

later–. Clearly, it remains to prove that there exists some quantizer Qc satisfying (P1).

Surprisingly, very simple quantizers as the one presented below satisfy it.

Lemma 7.1. Let Qu(X) be a scalar uniform quantizer with quantization step q =

P̄−αq , where αq is such that α(j) > αq > 0, ∀j ∈ NM . Then, Qu is an Asymptotically

Consistent Quantizer and Pr
(
Ĥ

(j)←(1)
q 6= Ĥ

(j)
q

)
= o
(

1
log2(P )

)
, for any j ∈ NM .

Proof. The proof is relegated to Appendix H.5. �

Note that Qu is a scalar quantizer. Thus, the notation Aq = Qu(A), where A is a

matrix, denotes –with an abuse of notation– that Aq is composed of the independent
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scalar quantization of the real and imaginary part of each element in A. Obviously,

a better results would be obtained by applying vector quantization. However, as any

quantizer satisfying (P1) is adequate for proving Theorem 7.1, we present Qu for the

sake of simplicity. The analysis at medium and low SNR –that requires an optimization

on the quantizer used– is an interesting research topic that is delegated to future works.

Let us assume that the uniform quantizer of Lemma 7.1 is applied. Then, the naive

precoder of TX 2 incurs in an error with respect to the centralized precoder that is

proportional to the quantization step, as stated in the following lemma.

Lemma 7.2. Let TX j, 2 ≤ j ≤ M , quantize its CSIT with a scalar uniform

quantizer with quantization step q = P̄−αq , α(M) > αq > 0. The naive precoder at

TX j satisfies that

E [‖vi,j −wi,j‖ ] = O
(
P̄−αq

)
,

E
[
‖vi,j −wi,j‖2

]
= O

(
P−αq

)
.

(7.25)

(7.26)

Proof. The proof is provided in Appendix H.6. �

Lemma 7.2 is based on error propagation properties of linear systems. Thus, it is expected

to hold for a broad set of noisy estimation models whose error variance scales as P−a

for any a > 0. For example, it holds for the quantized feedback model of [132], in which

random vector quantization is assumed and the number of quantization bits scales with P ,

as shown in Chapter 6. Furthermore, Lemma (7.2) leads to the following corollary. The

proof of this corollary is provided in Appendix H.2.

Corollary 7.2. Let TX j, 2 ≤ j ≤ M , quantize its CSIT with a scalar uniform

quantizer with quantization step q = P̄−αq , α(M) > αq > 0. The global precoder

satisfies that

E
[
‖vi −wi‖2

]
= O

(
P−αq

)
, (7.27)

and hence E [‖vi −wi‖] = O
(
P̄−αq

)
.

Let us focus now on the probability of power outage. Let Po denote the event of power

outage. The precoder at the n-th antenna of TX j is given by Tj,n. In that case,

Po ,
{ ⋃
n∈NNj
j∈NM

‖Tj,n‖ > 1
}

(7.28)

and the following lemma holds.
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Lemma 7.3. Let µ = 1− ε, where ε > 0, ε ∈ Θ(P̄−αµ) and αµ < αq. Then,

Pr (Po) = o

(
1

log2(P )

)
. (7.29)

Proof. See Appendix H.1 �

Similarly to property (P1), Lemma 7.3 implies that power outage events are negligible in

terms of asymptotic rate. The only TX that may incur in power outage is TX 1, as the

other TXs apply the naive centralized precoder and hence they will always satisfy the

power constraint.

7.3.3 Hierarchical CSIT Setting

Theorem 7.1 shows that it is possible to attain asymptotically the rate of the centralized

setting. Its performance at low-to-medium SNR is however limited by the probability

of obtaining a feasible consistent precoder. This probability depends on the quantizer

applied, the power back-off considered and the values of α(j), and hence it is challenging

to obtain. As shown in Section 7.3.2, the precoder is computed assuming a correct

estimation of the CSI at the other TXs. Consequently, if the probability of consistency is

low, the scheme does not perform properly and this probability decreases as the network

size increases, since TX 1 needs to estimate correctly more parameters.

This limitation is inherent to the D-CSIT setting here assumed, in which each TX

only knows its own CSI. However, there exists another practical setting with distributed

CSI but in which there is more structure in the network CSI: The Hierarchical CSIT

setting (H-CSIT). In this setting, introduced in Section 2.4.5, each TX is endowed with

its own multi-user CSI H(j), as in the D-CSIT setting, but it is also endowed with the

CSI of the TXs having less accuracy than itself. Namely, in the sorted CSI scenario with

α(1) ≥ · · · ≥ α(M), TX j knows {Ĥ(j), Ĥ(j+1), . . . , Ĥ(M)}.
This scenario, although it may seem less practical, arises in many heterogeneous

networks. Fig. 7.1 depicts an example: Suppose that the RXs are all connected to the

same main TX (e.g. TX 1), and the other TXs are remote radio-heads that receive a

coarse version of the CSI by means of a wireless link from TX 1. In this use case, TX

1 will know the CSI available at each other TX. If the CSI sharing is done through

dedicated links for each TX, each TX would receive CSI with accuracy proportional to

its own link. If the CSI is broadcast, they may obtain an estimate with different accuracy

if layered encoding [153] or analog feedback [154] is used.
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Corollary 7.3. Theorem 7.1 also holds in the Hierarchical CSIT setting and hence

limP→∞R
?(α(1))−R(αM ) = 0.

Proof. The proof follows directly from the proof of Theorem 7.1 in Section 7.4. �

In this setting, TX 1 already knows Ĥ(j), ∀j ∈ NM . Hence, the discretization of

the variables at the other TXs is not needed, and the precoders are consistent with

probability 1. Therefore, the only effect that may restrain TX 1 to achieve the centralized

performance is the power outage. The performance at medium SNR will improve with

respect to the general D-CSIT case, and moreover, it is not affected by the size of the

network, as we will see in the numerical examples of Section 7.6.

7.3.4 Finite Precision CSIT Setting

Previously, it has been assumed that α(j) > 0 ∀j ∈ NM . Let us now assume that some

TXs may have a finite precision CSIT, i.e., that ∃j ∈ NM such that α(j) = 0. Since the

TXs are sorted is descending order of the CSIT accuracy, consider w.l.o.g. that α(M) = 0.

In this case, the AP-ZF introduced in Chapter 4 is a more suitable scheme, as the

TXs from TX 2 to TX M do not use its own CSIT for precoding. This scheme can be

seen as a special case of CD-ZF, in which the TXs 2 to M use a known, pre-defined

precoder independent of its CSI. For example, wi,j = 1√
K

1Nj×1 can be chosen for sake

of simplicity, but wi,j could also be computed e.g. from a pseudo-random sequence

known at every TX following a Gaussian distribution or the distribution of the centralized

precoder vi,j . Hence, TX 1 knows which is the precoder at the other TXs –similar as in

the Hierarchical CSIT setting– and it can cancel out the interference generated by the

other TXs. Particularly, the AP-ZF precoder for RX ` at TX 1 [82,100] is given by

w`,1 = −Ĥ†¯̀,1Ĥ¯̀,1̄w`,1̄. (7.30)

Under this assumption of finite precision CSIT, Theorem 7.1 does not hold and the

following corollary is obtained. The proof is relegated to Appendix H.7.

Corollary 7.4. Let N1 ≥ K − 1, and α(M) = 0. In the Network MISO setting with

distributed CSIT or hierarchical CSIT, with instantaneous power constraint for the

precoder, the use of CD-ZF or AP-ZF leads to

lim
P→∞

R?(α(1))−R(αM ) =∞. (7.31)
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In the D-CSIT setting, it is clear that CD-ZF requires α(j) > 0 for all j ∈ NM because,

if α(j) = 0, the probability of correct estimation at TX 1 does not increase as the

SNR approaches infinity, i.e., Pr
(
Ĥ

(j)←(1)
q = Ĥ

(j)
q

)
= Θ(1). For that reason, the rate

achieved with CD-ZF does not converge to the centralized performance. Moreover, for

the Hierarchical CSIT scenario or for the use of AP-ZF precoding the main limitation

consists in the fact that the probability of being in power outage at TX 1 does not vanish,

and hence Pr (Po) = Θ(1) because the distribution of the precoder at the other TXs

remains the same for any P . This is explained more in detail in Appendix H.7.

Let us now relax the power normalization constraint from instantaneous precoder

norm to the common average power constraint, i.e.,

E
[
‖Tj,n‖2

]
≤ 1, ∀j ∈ NM , n ∈ NNj . (7.32)

Theorem 7.2. Let N1 > K − 1, and α(j) = 0, ∀j > 1. In the Network MISO setting

with distributed CSIT, under average power constraint, the rate gap is bounded, i.e.,

limP→∞R
?(α(1))−R(αM ) ≤ c, with c <∞. Furthermore, it holds that

lim
P→∞

R?(α(1))−R(αM ) ≤ K
(

log2

(
E
[
‖Ĥ†K,1‖

2
])

+ log2

(
4K2(K − 1)

))
, (7.33)

where ĤK,1 represents the first N1 columns of the channel matrix estimate at TX 1.

Proof. The proof is relegated to Appendix H.8. �

The bound in (7.33) is not tight, but it is useful at it shows that the rate gap with respect to

the centralized scenario is bounded when some TXs are endowed with finite precision CSIT

(or no CSIT at all). Note that the gap in (7.33) scales in K as K log2(K). Interestingly,

the gap between capacity-achieving Dirty-Paper Coding (DPC) and centralized ZF with

perfect CSIT was shown in [131] to scale also as K log2(K) when NT = K.

7.4 Proof of Theorem 7.1

In order to prove Theorem 7.1, we need to demonstrate that the user rate gap ∆Ri =

R?i (α
(1)) − Ri(αM ) vanishes. Then, by symmetry, ∆R =

∑
i∈NK ∆Ri will also vanish.

The proof is divided in several steps: First, we show that both main issues previously

exposed, power outage and inconsistent precoding, can be made negligible in terms of rate

loss. Then, we prove that the rate gap vanishes by showing that in the distributed setting

both the interference received and total power received converge to their counterparts of

the centralized setting.
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7.4.1 Neglecting Non-Consistent Events

The proof of Theorem 7.1 builds on Lemma 7.1 and Lemma 7.3. Indeed, the proposed

scheme will perform poorly if the precoder is not feasible consistent, as it assumes that it

is. Howbeit, both Lemma 7.1 and Lemma 7.3 illustrate that those events can be made

very unlikely. Let H6= denote the set inconsistent events, i.e., H6= =
{⋃

2≤j≤M Ĥ
(j)←(1)
q 6=

Ĥ
(j)
q

}
. Hence, the probability of having feasible consistent precoding is Pr

(
Pc
o ∩Hc

6=

)
.

By means of the law of total probability, we can split the expected sum rate R as

R = Pr (Po ∪H 6=)R|Po∪H 6= + Pr
(
Pc
o ∩Hc

6=
)
R|Pc

o ∩Hc
6=
. (7.34)

Note that the expected sum rate achieved for any event is O(log2(P )). Hence, it follows

from Lemma 7.1 and Lemma 7.3 that

Pr (Po ∪H 6=)R|Po∪H 6= = o

(
1

log2(P )

)
O(log(P )), (7.35)

and consequently
R = R|Pc

o ∩Hc
6=

+ o(1). (7.36)

Thus, in the remaining of the proof we assume w.l.o.g. that TX 1 knows Ĥ
(j)
q , ∀j ∈ NM ,

and that there is not power outage, as both cases become negligible at high SNR. This

implies that the setting becomes hierarchical, as TX 1 correctly estimates the quantized

CSIT of the other TXs. It is important to remark that this simplification is only

possible because of the proposed scheme, in which we apply a correct power back-off

and quantization step. Indeed, the surprising outcome is not (7.36) but the fact that

R|Pc
o ∩Hc

6=
converges to the centralized setting rate. Furthermore, the achievable rate at

low or medium SNR regimes might be increased by means of more complex schemes. For

example, allowing several layers of quantization, such that TX (j − 1) tries to correct the

interference generated by TX j, in a similar manner to the algorithm presented in [137].

7.4.2 Reformulating the Rate Gap

Note that we can rewrite the rate gap for RX i as

∆Ri = E

[
log2

(
1 +

P
K |hivi|

2

1 + P
K

∑
6̀=i |hiv`|

2

)]
− E

[
log2

(
1 +

P
K |µhiwi|2

1 + P
K

∑
`6=i |µhiw`|2

)]

= E
[

log2

( 1 + P
K

∑
`∈NK |hiv`|

2

1 + P
K

∑
`∈NK |µhiw`|2︸ ︷︷ ︸
FD

)]
+ E

[
log2

( 1 + P
K

∑
`6=i |µhiw`|2

1 + P
K

∑
`6=i |hiv`|

2︸ ︷︷ ︸
FI

)]
. (7.37)
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This rewriting of ∆Ri allows us to separate the ratio of received interference power

(FI) and the ratio of total received power (FD). In the following, we will prove that

limP→∞∆Ri = 0 by showing that limP→∞ E[log2(Fi)] = 0 for both FD and FI . We

start with FI for simplicity, and later we apply a similar argument to FD.

7.4.3 Analysis of the Interference Ratio (FI)

We prove the convergence by upper and lower bounding FI and then showing that both

bounds converge to 0. We recall that we assume that TX 1 is able to transmit the desired

precoding vector of (7.19) since the opposite case only yields an o(1) rate contribution.

Let us start with the upper-bound. Note that, since µ ≤ 1,

E

[
log2

(
1 + P

K

∑
6̀=i |µhiw`|2

1 + P
K

∑
` 6=i |hiv`|

2

)]
≤ E

[
log2

( 1 + P
K

∑
`6=i |hiw`|2

1 + P
K

∑
` 6=i |hiv`|

2︸ ︷︷ ︸
F ′I

)]
, (7.38)

where we have introduced the notation F ′I for the sake of readability. Let η be a scalar

0 ≤ η ≤ 1. We can split the expectation under the condition that the term F ′I is smaller

than 1 + η or not. Therefore,

E
[
log2

(
F ′I
)]

= Pr
(
F ′I < 1 + η

)
EF ′I<1+η

[
log2

(
F ′I
)]

+ Pr
(
F ′I ≥ 1 + η

)
EF ′I≥1+η

[
log2

(
F ′I
)]
.

(7.39)

Now we present the a useful lemma.

Lemma 7.4. Let η = P̄−ε, with αq > ε > 0 and ε arbitrarily small. Then,

Pr
(
F ′I ≥ 1 + η

)
= o

(
1

log2(P )

)
and Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
. (7.40)

Proof. The proof is relegated to Section 7.5.1. �

Let η = P−ε, with αq > ε > 0 and ε arbitrarily small. Then, (7.39) becomes

E
[
log2

(
F ′I
)]
≤ EF ′I<1+η

[
log2

(
F ′I
)]

+ o

(
1

log2(P )

)
EF ′I≥1+η

[
log2

(
F ′I
)]

≤ log2(1 + η) + o (1)

(7.41)
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since EF ′I≥1+η [log2 (F ′I)] = O(log2(P )). We now lower-bound the expectation. Note that

E [log2 (FI)] ≥ log2(µ2) + E
[

log2

(
F ′I
)]
. (7.42)

Furthermore, lower-bounding (7.42) is equivalent to upper-bound E
[

log2

(
1
F ′I

)]
. By

applying Lemma 7.4 and similar as in (7.41), we obtain that E
[
log2

(
1
F ′I

)]
≤ log2(1 +

η) + o (1) and hence

E [log2 (FI)] ≥ log2(µ2)− log2(1 + η) + o (1) . (7.43)

Consequently, the term E [log2 (FI)] can be bounded as

log2(µ2)− log2(1 + η) + o (1) ≤ E [log2 (FI)] ≤ log2(1 + η) + o (1) . (7.44)

Since limP→∞ µ = 1, limP→∞ η = 0, and limP→∞ o(1) = 0, it follows that

lim
P→∞

E [log2 (FI)] = 0. (7.45)

7.4.4 Analysis of the Received Signal Ratio (FD)

It remains to prove that the first expectation of (7.37) also converges to zero. As for FI ,
we can write

E[log2(FD)] ≤ log2

(
1

µ2

)
+ E

[
log2

( 1 + P
K

∑
`∈NK |hiv`|

2

1 + P
K

∑
`∈NK |hiw`|2︸ ︷︷ ︸
F ′D

)]
.

(7.46)

Moreover, the equivalent to Lemma 7.4 also holds for F ′D.

Lemma 7.5. Let η = P̄−ε, with αq > ε > 0 and ε arbitrarily small. Then,

Pr
(
F ′D ≥ 1 + η

)
= o

(
1

log2(P )

)
and Pr

(
1

F ′D
≥ 1 + η

)
= o

(
1

log2(P )

)
. (7.47)

Proof. The proof is relegated to Section 7.5.2. �

Thus, applying the same step as in (7.41) we obtain that

E
[

log2

(
FD′

)]
≤ log2(1 + η) + o(1). (7.48)
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We can lower-bound E[log2(FD)] similarly to obtain that

− log2(1 + η) + o (1) ≤ E[log2(FD)] ≤ log2 (1/µ2) + log2(1 + η) + o (1) . (7.49)

Since limP→∞ µ = 1, limP→∞ η = 0, limP→∞ o(1) = 0, it follows that

lim
P→∞

E[log2(FD)] = 0. (7.50)

7.4.5 Merging Previous Sections

It follows that, since limP→∞∆R = limP→∞
∑K

i=1 ∆Ri,

lim
P→∞

∆R = lim
P→∞

K(E[log2(FD)] + E[log2(FI)])

= 0,
(7.51)

what concludes the proof of Theorem 7.1.

7.5 Proof of Lemma 7.4 and Lemma 7.5

In this section we prove Lemma 7.4 and Lemma 7.5, which are instrumental for the proof

of the main results.

7.5.1 Proof of Lemma 7.4

We aim to prove that, for η = P̄−ε, with αq > ε > 0 and ε arbitrarily small, it holds that

Pr
(
F ′I ≥ 1 + η

)
= o

(
1

log2(P )

)
,

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
.

(7.52)

(7.53)

We start by noting that hi can be written as hi = 1
z̆(j) (ĥ

(j)
i − z(j) δ

(j)
i ) from the definition

of the estimate in (7.9). Let us introduce the notations z̆
(j)
inv = 1

z̆(j) and z
(j)
n = z(j)

z̆(j) . Hence,

it follows that

|hiw`|
(a)
= |z̆(1)

invĥ
(1)
i w` − z(1)

n δ
(1)
i w`|

(b)
= |z̆(1)

invĥ
(1)
i v` − z(1)

n δ
(1)
i w` + z(1)

n δ
(1)
i v` − z(1)

n δ
(1)
i v`|

(c)
= |hiv` − z(1)

n δ
(1)
i (w` − v`)| ,

(7.54)
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where (a) and (c) come from the D-CSIT model of (7.9) and (b) from the precoder

definition in (7.18) since ĥ
(1)
i v` = ĥ

(1)
i w`. Hence, from the triangular inequality it follows

1 + P
K

∑
` 6=i |hiw`|2

1 + P
K

∑
6̀=i |hiv`|

2

≤ 1 +
P
K

∑
6̀=i
(
|z(1)
n δ

(1)
i (w` − v`)|2 + 2 PK |hiv`||z

(1)
n δ

(1)
i (w` − v`)|

)
1 + P

K

∑
` 6=i |hiv`|

2 .

(7.55)

Let us recall that

Pr
( K∑
k=1

Ak ≥ c
)
≤

K∑
k=1

Pr
(
Ak ≥

c

K

)
. (7.56)

From (7.55) and (7.56), it follows that

Pr
(
F ′I ≥ 1 + η

)
≤
∑
6̀=i

Pr

(
P
K

(
|z(1)
n δ

(1)
i (w` − v`)|2 + 2 PK |hiv`||z

(1)
n δ

(1)
i (w` − v`)|

)
1 + P

K

∑
`6=i |hiv`|

2 ≥ η

K

)

≤
∑
6̀=i

Pr

(
|z(1)
n δ

(1)
i (w` − v`)|2 + 2|hiv`||z

(1)
n δ

(1)
i (w` − v`)|

|hiv`|2
≥ η

K

)
(a)
= (K − 1) Pr

(
|z(1)
n δ

(1)
i (w` − v`)|2 + 2|hiv`||z

(1)
n δ

(1)
i (w` − v`)|

|hiv`|2
≥ η

K

)
(b)

≤ (K − 1)

(
Pr

(
|z(1)
n δ

(1)
i (w` − v`)|2

|hiv`|2
≥ η

2K

)

+ Pr

(
2|hiv`||z

(1)
n δ

(1)
i (w` − v`)|

|hiv`|2
≥ η

2K

))
(c)

≤ 2(K − 1) Pr

(
|z(1)
n δ

(1)
i (w` − v`)|
|hiv`|

≥ η

4K

)
, (7.57)

where (a) comes from symmetry, (b) from (7.56), and (c) because η < 1. Let us introduce

now a parameter γ ∈ R. We can continue as

Pr

(
|z(1)
n δ

(1)
i (w` − v`)|
|hiv`|

≥ η

4K

)
= Pr

(
|δ(1)
i (w` − v`)| ≥

η

4K
|δ(1)
i v`|

)
≤ Pr

(
|δ(1)
i v`| < P̄−γ

)
+

∫
|δ(1)
i v`|≥P̄−γ

E
[
|δ(1)
i (w` − v`)|

]
η

4K y
f|δ(1)

i v`|
(y) dy

(7.58)
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where the first equality comes from the fact that |hiv`| = z
(1)
n |δ(1)

i v`| and the last

inequality from the Law of Total Probability and Markov’s Inequality. f|δ(1)
i v`|

stands for

the probability density function of |δ(1)
i v`|. Let us focus first on the first term of (7.58),

Pr
(
|δ(1)
i v`| < P̄−γ

)
, which satisfies the following proposition, whose proof is relegated

to Appendix H.3.

Proposition 7.1. Let γ > 0. Then,

Pr
(
|δ(1)
i v`| < P̄−γ

)
= o

(
1

log2(P )

)
. (7.59)

On the other hand, the integral term of (7.58) can be rewritten as

∫
|δ(1)
i v`|≥P̄−γ

E
[
|δ(1)
i (w` − v`)|

] f|δ(1)
i v`|

(y)

η
4K y

dy

=
4K

η
E
[
|δ(1)
i (w` − v`)|

]
E||δ(1)

i v`|≥P̄−γ

[
1

|δ(1)
i v`|

]

≤ 4K

η
E
[
|δ(1)
i (w` − v`)|

]
P̄ γ .

(7.60)

Now we introduce a useful result, whose proof is relegated to Appendix H.4.

Proposition 7.2. It follows that

E
[
|δ(1)
i (w` − v`)|

]
= O(P̄−αq). (7.61)

By introducing Proposition 7.1 and Proposition 7.2 in (7.58), it is straight to see that

Pr
(
F ′I ≥ 1 + η

)
≤ o

(
1

log2(P )

)
+

8K(K − 1)

η
O(P̄−αq)P̄ γ . (7.62)

Since η = P̄−ε, with αq > ε > 0,

Pr
(
F ′I ≥ 1 + η

)
≤ o

(
1

log2(P )

)
+ P̄ εO(P̄−α

(2)
)P̄ γ . (7.63)

Let us select γ such that γ > 0 and ε+ γ − αq < 0. Then, it follows that

Pr
(
F ′I ≥ 1 + η

)
= o

(
1

log2(P )

)
, (7.64)
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what concludes the proof of the first statement of Lemma 7.4. We prove in the following

the second statement, i.e.,

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
. (7.65)

This is obtained by switching the vectors v` and w` and applying the same steps as in

the proof of the first statement. To begin with, by following the steps in (7.57) we can

easily obtain that

Pr

(
1

F ′I
≥ 1 + η

)
= Pr

(
1 + P

K

∑
` 6=i |hiv`|

2

1 + P
K

∑
`6=i |hiw`|2

≥ 1 + η

)

≤ 2(K − 1) Pr

(
|z(1)
n δ

(1)
i (w` − v`)|
|hiw`|

≥ η

4K

)
.

(7.66)

Furthermore, the final expression in (7.66) is equal to the one in (7.57) except from the

fact that the denominator is |hiw`| instead of |hiv`|. Hence, continuing as in (7.58)-(7.63),

we obtain that

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
, (7.67)

what concludes the proof of Lemma 7.4.

7.5.2 Proof of Lemma 7.5

We aim to prove that, ∀η = P̄−ε, with αq > ε > 0 and ε arbitrarily small, it holds that

Pr
(
F ′D ≥ 1 + η

)
= o

(
1

log2(P )

)
,

Pr

(
1

F ′D
≥ 1 + η

)
= o

(
1

log2(P )

)
.

(7.68)

(7.69)

Firstly, we focus on the first statement. Note that, applying similar steps to (7.54), it

holds that

|hiv`|2 ≤ |hiw`|2 + |z(1)
n δ

(1)
i (w` − v`)|2 + 2|hiw`||z(1)

n δ
(1)
i (w` − v`)|,

|hivi|2 ≤ |hiwi|2 + |hi(wi − vi)|2 + 2 |hiwi| |hi(wi − vi)| .

(7.70)

(7.71)

Hence, following the steps applied in (7.55)-(7.57), we can write that

Pr

(
1 + P

K

∑
`∈NK |hiv`|

2

1 + P
K

∑
`∈NK |hiw`|2

≥ 1 + η

)
≤ Pr (D1 +D2 +D3 +D4 ≥ η) , (7.72)
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where we have introduced the notations

D1 ,
∑
`6=i

|z(1)
n δ

(1)
i (w` − v`)|2

|hiwi|2

D2 ,
∑
`6=i

2 |hiw`| |z
(1)
n δ

(1)
i (wi − v`)|

|hiwi|2

D3 ,
|hi(wi − vi)|2

|hiwi|2

D4 ,
2 |hiwi| |hi(wi − vi)|

|hiwi|2
.

(7.73)

(7.74)

(7.75)

(7.76)

The inequality in (7.77) is obtained by applying (7.70)-(7.71) and eliminating the term

1 + P
K

∑
6̀=i |hiw`|2 from the denominator. From (7.56) it follows that

Pr (D1 +D2 +D3 +D4 ≥ η) ≤
4∑
i=1

Pr
(
Di ≥

η

4

)
. (7.77)

From the analysis of FI in the previous section –see (7.58)– it follows easily that, if

η = P̄−ε, with αq > ε > 0,

Pr
(
D1 ≥

η

4

)
≤
∑
`6=i

Pr

(
z(1)
n

|δ(1)
i (w` − v`)|2

|hiwi|2
≥ η

4K

)

= o

(
1

log2(P )

)
.

(7.78)

Similarly,

Pr
(
D2 ≥

η

4

)
=
∑
6̀=i

Pr

(
z(1)
n

2 |hiw`| |δ
(1)
i (wi − v`)|
|hiwi|2

≥ η

4K

)

= o

(
1

log2(P )

)
.

(7.79)

For the two remaining terms, D3 and D4, note that

Pr
(
D3 ≥

η

4

)
+ Pr

(
D4 ≥

η

4

)
= Pr

(
|hi(wi − vi)|2

|hiwi|2
≥ η

4

)
+ Pr

(
2 |hi(wi − vi)|
|hiwi|

≥ η

4

)
≤ 2 Pr

(
|hi(wi − vi)|
|hiwi|

≥ η

16

)
= 2 Pr

(
|h̃i(wi − vi)|
|h̃iwi|

≥ η

16

)
,

(7.80)
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where h̃ = h
‖h‖ is unit-norm and it is distributed isotropically on the NT -dimensional

unit-sphere [132]. We can continue as in (7.58) to write

Pr

(
|h̃i(wi − vi)|
|h̃iwi|

≥ η

16

)
≤ Pr

(
|h̃iwi| < P̄−γ

)
+

∫
|h̃iwi|≥P̄−γ

E[|h̃i(wi − vi)|]
η
16y

f|h̃iwi|(y) dy

≤ O(P̄−γ) + 16P̄ εE[|h̃i(wi − vi)|] P̄ γ .

(7.81)

(7.82)

The fact that ‖h̃i‖ = 1 implies that E[|h̃i(wi − vi)|] ≤ E[‖wi − vi‖]. Moreover, Corol-

lary 7.2 states that E[‖wi − vi‖] = O(P̄−αq). Consequently, by selecting γ such that

γ > 0 and ε+ γ − αq < 0, it follows from (7.82) that

Pr

(
|h̃i(wi − vi)|
|h̃iwi|

≥ η

16

)
≤ O(P̄−γ) + P̄ εO(P̄−αq)P̄ γ

= o

(
1

log2(P )

)
.

(7.83)

We can introduce the result of (7.83) into (7.80) to obtain from (7.77) that

Pr
(
F ′D ≥ 1 + η

)
= o

(
1

log2(P )

)
. (7.84)

It would remain to prove that Pr
(

1
F ′D
≥ 1 + η

)
= o

(
1

log2(P )

)
. To do so, we just need to

apply the same previous steps, in which w and v are interchanged. Following those steps

and following similar argument as in the proof for Pr
(

1
F ′I

)
, it is obtained directly. For

this reason, and for sake of concision, we omit the derivation.

7.6 Numerical Results

In this section we provide some performance analysis for the previous asymptotic results.

First, we consider a scenario in which the most-informed TX has a CSI accuracy scaling

parameter α(1) = 1 for the whole channel matrix, and the rest of TXs have a CSI accuracy

scaling parameter α(j) = 0.6, for any j > 1. Intuitively, this configuration can model a

setting in which a main TX receives a quantized CSI feedback from all the RXs, and

then it shares a compressed version of the CSI to the other auxiliary transmit antennas.

We present the performance of several schemes:

• The ideal C-CSIT setting, in which all the TXs are endowed with the CSI of TX 1.
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• The CD-ZF scheme with Hierarchical CSIT –TX 1 knows the other TXs’ CSI–.

• The CD-ZF scheme when the CSIT is non hierarchical –general D-CSIT setting–.

• The AP-ZF scheme when the CSIT is non hierarchical –general D-CSIT setting–.

• The Naive ZF scheme when the CSIT is non hierarchical –general D-CSIT setting–.

• The performance of transmitting only from TX 1 and turning off the other TXs.

We analyze different network configurations. In Fig. 7.6, we show the rate performance

for a setting with 2 single-antenna TXs and 2 RXs with the assumption of instantaneous

power constraint for the precoder, whereas Fig. 7.7 illustrates a setting with M = 4 TXs,

N1 = 3 and N2 = N3 = N4 = 1 transmit antennas, and K = 3 RXs with average power

constraint. The unit of the vertical axis is bits/Hz/s at all the figures. Several insights

emerge from the figures.

First, we observe how the proposed CD-ZF scheme performs almost as good as the

ideal perfect-sharing C-CSIT setting for the H-CSIT configuration. This fact holds for

any network size, yet considering that N1 ≥ K − 1. Besides this, the CD-ZF scheme is

shown to tend towards the centralized rate also for the general D-CSIT setting, where

the CSI at other TXs is not available at TX 1. However, we can see how the convergence

is slow and at practical SNR regimes the CD-ZF scheme outperforms the single-TX

transmission or the Naive ZF only in a slight manner. This is an aftermath of the scheme

definition. Indeed, the CD-ZF scheme performs in an almost optimal manner if TX 1

correctly estimate the CSI at the other TXs; however, the probability of correct estimation

increases slowly. Thus, the performance at medium SNR is limited. It is important to

note that the CD-ZF scheme here presented is not optimized, as our objective was to show

the asymptotic behavior. For example, we assume a scalar quantizer that independently

quantizes every real and imaginary part of each channel coefficient. Considerably higher

probabilities of consistency would be obtained if the quantization phase is optimized,

e.g. by using vector quantization. Nevertheless, the aforementioned points show how

important is to provide the CSI with structure (or hierarchy), as it has been proven

indispensable to boost the performance. Moreover, this CSI structure is sometimes given

by the network configuration, such that it does not imply an extra aspect to develop.

Another point to be considered is that CD-ZF allows to obtain centralized performance

with one informed antenna less than the single-TX transmission. This consideration can

be seen in Fig. 7.6, as the single-TX transmission does not achieve even the centralized

DoF.

In Fig. 7.8, we consider a different CSI configuration. In this case, α(2) = 0, i.e.,

the CSI accuracy at TX 2 does not scale with the SNR. We consider a setting with

M = 2 TXs, N1 = 3 and N2 = 1 transmit antennas, and K = 4 RXs, with average

power constraint. We do not plot the CD-ZF scheme in this configuration because
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the performance collapses, as discussed in the previous sections. This saturation is

due to the fact that the probability of correct estimation of the other TXs’ CSI does

not increase proportionally to the SNR. As previously mentioned, in this setting the

single-TX transmission does not achieve the centralized DoF because it can only use a

single antenna. We observe how the AP-ZF scheme achieves the centralized DoF, and

moreover it attains a rate within a constant gap with respect to the centralized rate,

what proves Theorem 7.2. Naive ZF, for its part, suffers from its dependency to the

worst-TX accuracy.

7.7 Conclusions

We have presented an achievable scheme for the D-CSIT setting that attains the same

asymptotic rate as the Zero-Forcing-type schemes in the centralized setting where every

TX is endowed with the best estimate among all the TXs. This interesting result reveals

that the performance degradation generated from the CSI mismatches between TXs can

be asymptotically overcome by a properly designed precoding scheme which is aware of the

distributed nature of the setting. Furthermore, it has been shown that the quantization

of the information available at certain nodes is helpful as it facilitates the consistency

of the decision at all the transmitters. This last result could be applied to a broad set

of distributed problems, in which the trade-off between global consistency and local

accuracy has not been deeply analyzed yet.
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Figure 7.6 – Setting with 2 single-
antenna TXs and 2 RXs with instan-
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Figure 7.7 – Setting with M = 4 TXs,
N1 = 3 and N2 = N3 = N4 = 1
transmit antennas, and K = 3 RXs
with average power constraint.
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Figure 7.8 – Setting with M = 2 TXs,
N1 = 3 and N2 = 1 transmit anten-
nas, and K = 4 RXs with average
power constraint and α(2) = 0.

166



Chapter 8

Conclusions and Perspectives

In this dissertation, we have focused on characterizing the high SNR regime of the

Distributed Network MIMO, in which a set of TXs jointly serve a set of users with the

particularity that the information available at each TX may be different or it can have a

different accuracy. We have looked at this problem from different perspectives. First,

we have analyzed the Generalized Degrees of Freedom metric. We have shown that the

distributed setting attains the GDoF performance of the ideal centralized setting in which

the TXs can perfectly share their CSIT. The case with 2 TXs and 2 RXs is of particular

interest, as it turns out that it does not matter neither which TX has the best estimation

for each link nor the path-loss configuration of the setting. Thus, in this particular

configuration, the performance is robust to decentralization. For the general K × K
setting, we have extended the previous result to a certain regime of CSI accuracy. It is

intuitive that the distributed setting can not attain the ideal centralized performance for

any possible case. However, we show that for any value of K, there exists a certain regime

of CSIT accuracies for which the distributed setting achieves the ideal DoF performance.

Besides the GDoF analysis, we were interested in understanding to what extend the

previous results can be translated to achievable rate, since the GDoF metric only provides

information about the scaling. For that purpose, we have assumed a simple zero-forcing

transmission and analyzed the rate gap between a transmission in our distributed setting

and a transmission in an ideal centralized setting in which the best channel estimate is

perfectly shared among the TXs. Following the same approach as in the GDoF analysis,

we have first considered the 2×2 setting, and later we have extended the analysis to the

M×K setting with multi-antenna TXs. Surprisingly, a similar conclusion as for the GDoF
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analysis is obtained in the rate analysis of the 2×2 case: For any CSIT configuration,

the distributed setting asymptotically attains the ideal centralized rate. We have further

extended this result to the general multi-node setting, showing that for the cases in which

the distributed setting attains the centralized DoF, it also attains –asymptotically– the

centralized rate for a zero-forcing transmission.

Nonetheless, the manner of achieving this asymptotic result is interesting on its own.

It is noteworthy that such optimal performance is obtained by reducing the accuracy

of the precoder. In particular, the main insight derived from the proposed achievable

scheme is that there exists an implicit compromise between the local accuracy at each

TX and the consistency between TXs. Thus, reducing the precision at certain nodes

–normally at those whose accuracy is not the best– allows us to improve the consistency

of the decision taken by all the TXs, since the best informed TXs are able to estimate

those reduced-precision parameters, and thereby correct the interference generated. The

asymptotic convergence implies that the distributed setting attains not only the same

multiplexing gain but also the same beamforming gain. In other words, for a setting with

K single-antenna RXs and NT transmit antennas, we can achieve the beamforming gain

of the NT antennas with only K − 1 well-informed antennas.

In conclusion, we have shown how cooperation gains are less sensitive to CSIT

impairments that what it was usually assumed. The key insight is that we have to develop

schemes that are aware and reactive to the CSIT allocation, since common schemes

induce a significant shrinking of performance. Although we are able to compensate the

decentralization of the information with suitable algorithms in some cases, reaching the

centralized performance is impossible for many distributed settings. A valuable conclusion

of this dissertation is the idea that adding structure to the CSIT configuration boosts

the achievable performance. We have observed this perception in the Hierarchical CSIT

setting. Hence, providing some TXs with the limited CSI available at other TXs can

boost the performance, specially at low-to-medium SNR. Motivated by this behavior,

an interesting analysis to be done is to study how this reduction of performance scales

when confronting it with the reduction of overhead that is implicit in the distributed

settings. Hence, a reduced performance can be advantageous with respect to the ideal

centralized one if the later implies an unfeasible quantity of information to be shared.

The approaches developed to attain the aforementioned results are thought to be useful

in many diverse decentralized settings or team decision problems. Indeed, the trade-off

between consistency and accuracy is an inherent compromise in team decision problems.

The outcomes of this thesis illustrate how coarse limiting metrics as DoF are instru-

mental in the understanding of complex networks, since the main intuitions provided

by them help considerable to develop new approaches applicable in practical scenarios.
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The aftermath of the carried out analysis is constrained by the considered assumptions.

Indeed, the analysis is asymptotic, although the results has proven extensible to the

low-to-medium SNR regime. Even if this aspect can limit the conclusions, it also pro-

vides interesting future research paths. In particular, it is necessary to understand how

dependent are the exposed results to the assumption of perfect sharing of the user’s

information data. The scenario in which the user data is also distributed across the

network is an appealing and challenging problem. Another interesting topic is to shift

the perspective here considered –that of developing the best transmission for a given

CSI allocation– towards the reverse analysis of optimizing the CSI allocation subject

to a certain transmission strategy and feedback protocol. Furthermore, considering the

CSIT sharing load as part of the performance metric is a subsequent step in the analysis

of decentralized networks. In fact, in order to compare distributed settings with its

centralized counterpart in a fair manner, it is necessary to consider two facets of the CSI

sharing overhead: That it impacts the performance, but also that it is a constraint of

infeasibility, as the centralized setting may be unachievable due to delay constraints. The

analysis at low SNR of the scenario considered is also an interesting extension of the

presented work.

To conclude, the future 5G-and-beyond wireless networks are expected to cope with

very heterogeneous scenarios and previously unseen specifications, as a massive number

of devices communicating at the same time, sometimes in a sporadic manner (IoT),

networks with mobile devices moving at very high speed (V2X networks), or exceedingly

demanding delay constraints (URLLC). These scenarios arise as consequence of the

broadening of use cases, as novel paramount applications are envisioned, for example

haptic communications, remote medical services, or industry automation. Thus, the

analysis of other cooperative scenarios, as well as non-cooperative ones where the inclusion

of partial cooperation is possible, is a very appealing topic that can be analyzed in the

future research.
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Appendix A

GDoF of the 2x2 setting:

Achievability of Theorem 3.2

Let us start by denoting best CSIT accuracy across TXs as

αmax
i,k , max

(
α

(1)
i,k , α

(2)
i,k

)
. (A.1)

We hence define α′i as

α′1 , min(αmax
1,1 , αmax

1,2 ) and α′2 , min(αmax
2,1 , αmax

2,2 ). (A.2)

Note that α′1 and α′2 are the only α-parameters that impact the GDoF expression of

Theorem 3.2. We can assume w.l.o.g. that γ1,1 is the strongest channel, i.e.,

γ1,1 ≥ max(γ1,2, γ2,1, γ2,2). (A.3)

Hereinafter, we prove that the GDoF expression of Theorem 3.2 is achievable by means

of the proposed S-ZF. The proof is akin to the one for the MISO BC with centralized

CSIT in [50], with the particularity that the interference cancellation is carried out by

the S-ZF scheme. We split the demonstration in two different path-loss regimes in order

to ease the readability. Those two path-loss regimes are

1. Regime γ2,1 ≤ γ2,2: The strongest link of each TX is geared to different RXs.

2. Regime γ2,1 > γ2,2: In this regime TX 1 owns the strongest link towards both RXs.

We recall that, as explained in Section 3.5.2, the transmitted signal follows the structure

x = P̄BCtBCsBC + P̄ZF(tSZF
1 sZF 1 + tSZF

2 sZF 2) + P̄φtφsφ, (A.4)
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where sφ is a non-zero-forced symbol transmitted with power such that it is only received

by the intended RX, if the path-loss topology allows for that, sZF i is intended to RX i

and canceled at the other RX using S-ZF precoding, and sBC is a broadcast symbol

transmitted with full power, intended to be decoded at both RXs. In the following, we

refer to the sZF i symbols as the S-ZF symbols.

Before presenting the transmission scheme, we present a lemma that will be useful

throughout this appendix. Importantly, we can observe from Table 3.2 that the S-ZF

precoding vector for RX i always satisfies that the difference of transmit power at each

TX differs in P |γī,2−γī,1|. This comes from the fact that, in order to implement the

zero-forcing of the interference, the received signal at RX i from both TXs has to have

the same power level; hence, each TX needs to transmit with a different power so as to

compensate the different path-loss that they endure.

Lemma A.1. Consider the 2-user D-CSIT Network MISO setting. Suppose a

transmission with S-ZF precoding such that E[‖tSZF
i ‖2] = 1. Then, the intended signal

received at RX i, satisfies

∣∣hH
i tSZF

i

∣∣2 = Θρ
(
P−1 max(P γi,1−(γī,1−γī,2)+

, P γi,2−(γī,2−γī,1)+
)
)
, (A.5)

whereas the interference at the same RX i satisfies

∣∣hH
i tSZF

ī

∣∣2 = Oρ
(
Pmin(γi,1,γi,2)−1−α′i

)
. (A.6)

Proof. The scaling of the interference term in (A.6) follows directly from Lemma 3.2.

We focus on the proof of (A.5). Note that hH
i and tSZF

i are independent. It follows

that

|hH
i,1t

(1)
i,1 |

2 = Θρ(P
γi,1−1P−(γī,1−γī,2)+

). (A.7)

Similarly,

|hH
i,2t

(2)
i,2 |

2 = Θρ(P
γi,2−1P−(γī,2−γī,1)+

). (A.8)

From the fact that Θρ(A) + Θρ(B) = Θρ(max(A,B)), we obtain (A.5). �

As main insight, the terms ±(γī,2 − γī,1) in (A.5), as well as the term min(γi,1, γi,2)

in (A.6), come from the fact that the TX with greater channel strength towards the

interfered RX reduces his power to match the power received from the other TX so as to

be able to cancel the interference.
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A.1 Case γ2,1 ≤ γ2,2

In that case, the sum GDoF expression of Theorem 3.2 reads as

GDoFDCSIT(α) = min
(
γ1,1 + (γ2,2 − γ1,2 + α′1)+, γ2,2 + γ1,1 − γ2,1 + α′2

)
. (A.9)

Note that the stronger link for RX 2 has a path-loss exponent of max(γ2,1, γ2,2) =

γ2,2. Therefore, any signal transmitted with less power than P 1−γ2,2 lies on the noise

floor at RX 2. We can transmit information to RX 1 with power P 1−γ2,2 and rate

(γ1,1 − γ2,2) log2(P ) bits without generating interference at RX 2.

Transmitted signal

Let us define ρ ∈ [0, 1] such that the rate of the S-ZF symbols is ρ log2(P ) bits per

transmission. Omitting the time indexes, the transmitted signal is given by (A.4), where

• sBC ∈ C is a common symbol of rate (γ2,2 − ρ) log2(P ) bits that is decoded at both

RXs. The precoder tBC is the uniform multicast precoder tBC = [1, 1]T and P̄BC

is given by

P̄BC =

√
P − 2P ρ+1−γ2,2 − P 1−γ2,2

√
2

. (A.10)

• sZF i ∈ C is a S-ZF symbol intended to RX i of rate ρ log2(P ) bits, where

ρ = min
(
(γ2,2 − γ1,2 + α′1)+, γ2,2 − γ2,1 + α′2

)
. (A.11)

The term tSZF
i is the normalized S-ZF precoder for RX i introduced in Section 3.3,

such that E[‖tSZF
i ‖2] = 1. The transmission power is

P̄ZF = P̄ ρ+1−γ2,2 . (A.12)

• sφ ∈ C is a symbol of rate (γ1,1−γ2,2) log2(P ) bits that carries information intended

by RX 1 and it does not generate interference at the other RX. tφ is the matched

precoder with power transmission P̄φ = P̄ 1−γ2,2 .

Received signal

The received signal at RX 1 is

y1 = P̄BChH
1 tBCsBC︸ ︷︷ ︸

Θρ(P̄
γ1,1 )

+ P̄ZFhH
1 tSZF

1 sZF 1︸ ︷︷ ︸
Θρ(P̄

ρ+γ1,1−γ2,2 )

+ P̄φh
H
1 tφsφ︸ ︷︷ ︸

Θρ(P̄
γ1,1−γ2,2 )

+ P̄ZFhH
1 tSZF

2 sZF 2︸ ︷︷ ︸
Oρ(P̄ 0)

. (A.13)
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The different power scaling of each symbol can be obtained from Lemma A.1 and the

path-loss topology. In particular, starting from Lemma A.1 we can write that

PZF

∣∣hH
1 tSZF

1

∣∣2 = Θρ
(
PZFP

−1 max(P γ1,1−(γ2,1−γ2,2)+
, P γ1,2−(γ2,2−γ2,1)+

)
)

(a)
= Θρ

(
P ρ+1−γ2,2−1 max(P γ1,1 , P γ1,2−(γ2,2−γ2,1))

)
= Θρ

(
P γ1,1−γ2,2+ρ

)
,

(A.14)

where (a) comes from the fact that (γ2,1 − γ2,2)+ = 0 and (γ2,2 − γ2,1)+ = γ2,2 − γ2,1.

Also due to Lemma A.1, the contribution of the interfering symbol sZF 2 lies on the noise

floor thanks to the S-ZF precoder:

PZF

∣∣hH
1 tSZF

2

∣∣2 (a)
= Θρ

(
P ρ+1−γ2,2P γ1,2−1−α′1

)
(b)
= Oρ(P 0),

(A.15)

where (a) comes from PZF = P ρ+1−γ2,2 and γ1,1 ≥ γ1,2, whereas (b) comes from the

definition of ρ in (A.11) since it holds that ρ ≤ γ2,2 − γ1,2 + α′1. The received signal at

RX 2 is analyzed in the same way. Hence

y2 = P̄BChH
2 tBCsBC︸ ︷︷ ︸

Θρ(P̄
γ2,2 )

+ P̄ZFhH
2 tSZF

2 sZF 2︸ ︷︷ ︸
Θρ(P̄ ρ)

+ P̄ZFhH
2 tSZF

1 sZF 1︸ ︷︷ ︸
Oρ(P̄ 0)

+ P̄φh
H
2 tφsφ︸ ︷︷ ︸

Θρ(P̄ 0)

. (A.16)

The power scaling can be derived following the same steps as in (A.14) and (A.15). Then,

PZF

∣∣hH
2 tSZF

2

∣∣2 = Θρ
(
P ρ+1−γ2,2−1 max(P γ2,1−(γ1,1−γ1,2), P γ2,2)

)
= Θρ

(
P ρ
)
.

(A.17)

The scaling for the interfering signal sZF 1 yields∣∣hH
2 tSZF

1

∣∣2 = Θρ
(
P ρ+1−γ2,2−1P γ2,1−α′2

)
= Oρ

(
P 0),

(A.18)

where (A.18) comes from the definition of ρ in (A.11) since ρ ≤ γ2,2 − γ2,1 + α′2.

Decoding and Achievable GDoF

We can see in (A.13) that RX 1 receives the common symbol sBC with a SNR scaling as

P γ2,2−ρ, and therefore it can decode sBC by treating sZF 1 and sφ as noise. After decoding

the common symbol and removing its contribution to the received signal, sZF 1 can be

decoded by treating sφ as noise, since the SNR scales as P ρ. And finally, sφ is decoded
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after removing the symbol sZF 1 from the received signal. Likewise, for the received sigmal

at RX 2, (A.16) shows that the SNR for sBC scales with P γ2,2−ρ if sZF 2 is treated as

noise. After decoding sBC and removing its contribution from the received signal, sZF 2

can be decoded as its SNR scales with P ρ.

The symbols are sent with a rate that is proportional to the SNR scaling, hence they

can be decoded with a vanishing error probability. We decode the common symbol sBC

with rate (γ2,2 − ρ) log2(P ) bits, sZF 1 and sZF 2 with rate ρ log2(P ) bits and sφ with rate

(γ1,1 − γ2,2) log2(P ) bits. That allows us to achieve a GDoF of

GDoFDCSIT(α) = (γ2,2 − ρ) + (γ1,1 − γ2,2) + 2ρ

= ρ+ γ1,1

= min(γ1,1 + (γ2,2 − γ1,2 + α′1)+, γ2,2 + γ1,1 − γ2,1 + α′2).

(A.19)

This corresponds to the GDoF of the C-CSIT setting –see Theorem 3.1– and hence we

attain the upper-bound.

A.2 Case γ2,2 < γ2,1

For the second regime, the sum GDoF expression given in Theorem 3.1 is

GDoFDCSIT(α) = min
(
γ1,1 + max

(
(γ2,2 − γ1,2 + α′1)+, (γ2,1 − γ1,1 + α′1)+

)
,

γ1,1 + (γ2,1 − γ1,1 + γ1,2 − γ2,2)+ + α′2

)
.

(A.20)

In a similar way as in the previous case, any signal sent with power below P 1−γ2,1 lies on

the noise floor for RX 2. Thus, we will transmit to RX 1 a non-interfering symbol with

power P 1−γ2,1 and rate (γ1,1 − γ2,1) log2(P ) bits.

Transmitted signal

Let ρ ∈ [0, 1] be defined as the rate-parameter for the S-ZF symbols, such that the rate

is ρ log2(P ) bits. By omitting the time indexes, the transmitted signal is given by (A.4),

with

• sBC is a common symbol of rate (γ2,2− ρ) log2(P ) bits that is decoded at both RXs.

The precoder tBC is obtained as tBC = [1, 1]T and P̄BC is given by

P̄BC =

√
P − 2P ρ+1−γ2,1+min(γ1,1−γ1,2, γ2,1−γ2,2) − P 1−γ2,1

√
2

(A.21)
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• sZF i is a S-ZF symbol intended to RX i of rate ρ log2(P ) bits, where ρ is given by

ρ = min
(

max
(

(γ2,2 − γ1,2 + α′1)+, (γ2,1 − γ1,1 + α′1)+
)
,

α′2 + (γ2,1 − γ1,1 + γ1,2 − γ2,2)+
)
.

(A.22)

The term tSZF
i is the normalized S-ZF precoder for RX i introduced in Section 3.3,

such that E[‖tSZF
i ‖2] = 1. The transmission power is

P̄ZF = P̄ ρ+1−γ2,1+min(γ1,1−γ1,2, γ2,1−γ2,2). (A.23)

• sφ is a symbol of rate (γ1,1 − γ2,2) log2(P ) bits that carries information intended

by RX 1, and it does not generate interference at the other RX. tφ is the matched

precoder with transmission power P̄φ = P̄ 1−γ2,1 .

Received signal

The received signal at RX 1 is

y1 = P̄BChH
1 tBCsBC︸ ︷︷ ︸

Θρ(P̄
γ1,1 )

+ P̄ZFhH
1 tSZF

1 sZF 1︸ ︷︷ ︸
Θρ(P̄

ρ+γ1,1−γ2,1 )

+ P̄φh
H
1 tφsφ︸ ︷︷ ︸

Θρ(P̄
γ1,1−γ2,1 )

+ P̄ZFhH
1 tSZF

2 sZF 2︸ ︷︷ ︸
Oρ(P̄ 0)

. (A.24)

The different power scaling of each symbol can be obtained from Lemma A.1 and the

path-loss topology. In particular, starting from Lemma A.1 we can write that

PZF

∣∣hH
1 tSZF

1

∣∣2 = Θρ
(
PZFP

−1 max(P γ1,1−(γ2,1−γ2,2)+
, P γ1,2−(γ2,2−γ2,1)+

)
)

(a)
= Θρ

(
P ρ+1−γ2,1+min(γ1,1−γ1,2,γ2,1−γ2,2)−1 max(P γ1,1−(γ2,1−γ2,2), P γ1,2)

)
= Θρ

(
P ρ−γ2,1+min(γ1,1−γ1,2, γ2,1−γ2,2)+max(γ1,1−γ2,1+γ2,2,γ1,2)

)
= Θρ

(
P γ1,1−γ2,1+ρ

)
,

(A.25)

where (a) comes from (γ2,1− γ2,2)+ = γ2,1− γ2,2 and (γ2,2− γ2,1)+ = 0. The contribution

of the interfering symbol sZF 2 is obtained from the definition of ρ in (A.22) as

PZF

∣∣hH
1 tSZF

2

∣∣2 = Θρ
(
P ρ+1−γ2,1+min(γ1,1−γ1,2,γ2,1−γ2,2)−1P γ1,2−α′1

)
= Oρ(P 0).

(A.26)

Similarly, the received signal at RX 2 can be written as

y2 = P̄BChH
2 tBCsBC︸ ︷︷ ︸

Θρ(P̄
γ2,1 )

+ P̄ZFhH
2 tSZF

2 sZF 2︸ ︷︷ ︸
Θρ(P̄ ρ)

+ P̄ZFhH
2 tSZF

1 sZF 1︸ ︷︷ ︸
Oρ(P̄ 0)

+ P̄φh
H
2 tφsφ︸ ︷︷ ︸

Θρ(P̄ 0)

. (A.27)
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A.2. Case γ2,2 < γ2,1

The power scaling of the intended signal sZF 2 satisfies that

PZF

∣∣hH
2 tSZF

2

∣∣2 = Θρ
(
P ρ+1−γ2,1+min(γ1,1−γ1,2,γ2,1−γ2,2)−1 max(P γ2,1−(γ1,1−γ1,2), P γ2,2)

)
= Θρ

(
P ρ
)
. (A.28)

The power scaling of the interfering signal sZF 1 satisfies that∣∣hH
2 tSZF

1

∣∣2 = Θρ
(
P ρ+1−γ2,1+min(γ1,1−γ1,2,γ2,1−γ2,2)−1P γ2,1−α′2

)
= Oρ

(
P 0),

(A.29)

where (A.29) follows from the definition of ρ in (A.22) since it holds that ρ ≤ γ2,1 −
min(γ1,1 − γ1,2, γ2,1 − γ2,2)− γ2,1 + α′2.

Decoding and Achievable GDoF

The decoding is applied as for the first regime, with the only difference that the rate

of each symbol is adapted to the topology here considered. Hence, we can decode each

symbol with a rate proportional to the SNR scaling: The common symbol sBC can be

decoded with rate (γ2,1 − ρ) log2(P ) bits, sZF 1 and sZF 2 with rate ρ log2(P ) bits and sφ

with rate (γ1,1 − γ2,1) log2(P ) bits. That allows us to achieve a GDoF of

GDoFDCSIT(α) = (γ2,1 − ρ) + (γ1,1 − γ2,1) + 2ρ

= γ1,1 + ρ

= min
(
γ1,1 + max

(
(γ2,2 − γ1,2 + α′1)+, (γ2,1 − γ1,1 + α′1)+

)
,

γ1,1 + (γ2,1 − γ1,1 + γ1,2 − γ2,2)+ + α′2
)
.

(A.30)

The expression in (A.30) corresponds to the GDoF of the Centralized CSIT setting –see

Theorem 3.1– which concludes the proof. �
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Appendix B

Statistics of the average power con-

straint for the 2x2 setting

In this appendix, we analyze the normalization constant λ of the Sliced ZF scheme

introduced in Chapter 3. We recall that λi is defined as

λi ,
1√

E
[
‖w(1)

i,1 ‖2 + ‖w(2)
i,2 ‖2

] . (B.1)

First of all, we characterize the probability density function and the expected value of

the regularized inverse. Then, based on those results, we prove Proposition (3.3).

B.1 Generic Regularized Inverse Term

For sake of completeness, we consider a generic regularized inverse for a Gaussian variable

with arbitrary variance, and then we particularize for the case of interest in the GDoF

setting. Let us consider a random variable h ∼ NC(0, σ2), and an arbitrary regularization

constant η > 0.

B.1.1 Distribution of the Regularized Inverse Term

We wish to obtain the probability density function (PDF) of
∣∣hH
(
|h|2 + η

)−1∣∣2, as well

as its expected value. Note that the square of the absolute value of a complex Gaussian

distribution with variance σ2 follows an exponential distribution of parameter µ = 1
σ2 .

Therefore, |h|2 ∼ Exp( 1
σ2 ). Let us introduce the notation

χ , |h|2 ∼ Exp
( 1

σ2

)
. (B.2)
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Furthermore, we denote the CDF of χ as Fχ. We obtain in the following the PDF and

expected value of χ|(χ+ η)−1|2. For ease of notation we denote

Ψ =
χ

(χ+ η)2 . (B.3)

The CDF of Ψ, is given by FΨ(ψ) = Prob
(

χ

(χ+η)2 < ψ
)

. Isolating χ yields

FΨ(ψ) =


0 if ψ < 0

Prob
(
χ < 1−2ηψ−

√
1−4ηψ

2ψ

)
+ Prob

(
χ > 1−2ηψ+

√
1−4ηψ

2ψ

)
if 0 ≤ ψ < 1

4η

1 if ψ ≥ 1
4η

Then, we can obtain the PDF of Ψ thanks to the fact that fΨ(ψ) = d
dχFΨ(ψ). Let us

introduce the notation

ψ̄− ,
1− 2ηψ −

√
1− 4ηψ

2ψ
and ψ̄+ ,

1− 2ηψ +
√

1− 4ηψ

2ψ
.

Thus,

fΨ(ψ) =
d

dχ

(
Fχ
(
ψ̄−
)

+ 1− Fχ
(
ψ̄+
))

=
ψ̄−

ψ
√

1− 4ηψ
fχ
(
ψ̄−
)

+
ψ̄+

ψ
√

1− 4ηψ
fχ
(
ψ̄+
)
.

For sake of example, consider the case in which η = 1 and σ2 = 10 dB and 20 dB. (We

have enclosed the transmit power in the channel coefficient; this example is equivalent to

having a unit-variance channel and a transmit power of 10 dB and 20 dB.) Fig. (B.1)

shows the PDF (Fig. B.1a-B.1c) and the CDF (Fig. B.1b-B.1d) of these two examples.

B.1.2 Expected value

We continue by calculating the expected value of Ψ. For that, we use the Law of the

unconscious statistician. Hence, the expected value of the regularized inverse is

E [Ψ] =

∫ ∞
0

x

(x+ η)2 fχ(x) dx. (B.4)

The PDF of χ is given by fχ(x) = µe−µx, with µ = 1
σ2 . Considering the change of

variables x′ = x+ η yields

E [Ψ] =

∫ ∞
η

1

x′
µe−µ(x′−η) dx′ −

∫ ∞
η

η

(x′)2µe
−µ(x′−η) dx′. (B.5)
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We follow by integrating the RHS and obtaining

E [Ψ] = µeηµE1(ηµ)− µ(1− eηµηµE1(ηµ))

= µ
(
eηµE1(ηµ)(1 + ηµ)− 1

)
,

(B.6)

where E1(z) is the exponential integral defined as

E1(z) ,
∫ ∞

1

e−zt

t
dt. (B.7)

B.1.3 GDoF Path-Loss Model: Proof of Proposition (3.3)

Consider now that the variance of the channel coefficient h is σ2 = P γ−1, and that the

regularization parameter is η = 1/P . In that case, µ = P 1−γ and (B.6) becomes

E
[∣∣hH

(
|h|2 + η

)−1∣∣2] = P 1−γ(eP−γE1(P−γ)(1 + P 1−γ)− 1
)
, (B.8)

what gives Proposition (3.3). �

B.2 General Expression of the Normalization Parameter

We focus now on the general expression of the normalization constant for every regime,

which we obtain from (B.6) and the precoder definition. Let σ2
i,k denote the variance of

the channel from TX j to RX i (hi,k), and η the regularization constant. We consider

the precoder for RX i’s data symbols. Recall that

λi =
1√

E
[
|w(1)
i,1 |2 + |w(2)

i,2 |2
] .

Non-locally Informed TXs: Thi precoding vector does not require inversion and λ

is given by

λi =
1√

σ2
ī,2

+ σ2
ī,1

.

Most-informed TX: Suppose that TX 1 is the Most-informed TX. Let σ−2 be defined

as σ−2 , (σ2)−1. Then precoding vector writes as

λi =
1√

σ−2
ī,1

(
e
ησ−2
ī,1E1(ησ−2

ī,1
)(1 + ησ−2

ī,1
)− 1

)
σ2
ī,2

+ 1

.
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Locally Informed TXs: In this case, each TX applies the regularized inverse as

precoder, and thus

λi =
1√

σ−2
ī,1

(
e
ησ−2
ī,1E1(ησ−2

ī,1
)(1 + ησ−2

ī,1
)− 1

)
+ σ−2

ī,2

(
e
ησ−2
ī,2E1(ησ−2

ī,2
)(1 + ησ−2

ī,2
)− 1

) .
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Figure B.1 – Probability Density Function (PDF) and Cumulative Density Function
(CDF) for σ2 = 10 dB and σ2 = 20 dB, with η = 1.
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Appendix C

Proofs of Chapter 4 and Proper-

ties of AP-ZF

C.1 Properties of AP-ZF

In this appendix, we start by showing some simple but important properties of the

AP-ZF precoder. We consider the precoder for RX i’s data symbols. From symmetry,

the precoder satisfies the same properties for any RX, such that we omit hereinafter the

RX’s sub-index i for clarity.

Lemma C.1. Let H ∈ Cn×K denote the channel matrix towards the n RXs whose

received interference is canceled. With perfect channel knowledge at all Active TXs,

the AP-ZF precoder with n Active TXs and K − n Passive TXs satisfies

HTAPZF? −−−−→
P→∞

0n×(K−n), (C.1)

where TAPZF? denotes the AP-ZF precoder according to the description in Sec-

tion 4.4.2 but based on perfect CSIT, and it is given as

TAPZF? , λAPZF

[
TA?

TP

]
. (C.2)
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Proof. Using the well known Resolvent identity [160, Lemma 6.1], we can write that(
HH

AHA +
1

P
In

)−1

−
(
HH

AHA

)−1
= −

(
HH

AHA

)−1 1

P
In

(
HH

AHA +
1

P
In

)−1

. (C.3)

We can then compute the leaked interference as

HTAPZF? = λAPZFHATA? + λAPZFHPTP

(a)
= λAPZFHA

(
HH

AHA

)−1 1

P
In

(
HH

AHA +
1

P
In

)−1

HH
AHPTP,

(C.4)

where equality (a) follows from inserting (C.3) inside the AP-ZF precoder and

simplifying. It follows that the leaked interference tends to zero as the available

power P tend to infinity. �

Lemma C.2. The AP-ZF precoder with n Active TXs and K − n Passive TXs is of

rank K − n.

Proof. The passive precoder was chosen such that TP is full rank (rank = K−n). The

precoder TA(j) is a linear combination of TP for each j, such that the effective AP-ZF

precoder TAPZF resulting from distributed precoding is exactly of rank K − n. �

C.2 Proof of Lemma 4.2

Following a similar approach as in [82], we can use once more the resolvent identity [160,

Lemma 6.1] to approximate the matrix inverse and show that, ∀j ≤ n,∥∥∥TAPZF(j) −TAPZF?
∥∥∥2

F
= Oρ(P−α

(j)
). (C.5)

It then follows that∥∥HTAPZF
∥∥2

F

(a)
= Θ

(∥∥H (TAPZF −TAPZF?
)∥∥2

F

)
≤ Θ

(
‖H‖2F

∥∥TAPZF −TAPZF?
∥∥2

F

)
≤ Θ

(
‖H‖2F

n∑
j=1

∥∥TAPZF(j) −TAPZF?
∥∥2

F

)
(b)
= Oρ

(
P−minj∈{1,...,n} α

(j))
,

(C.6)
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C.3. Proof of Corollary 4.1

where (a) comes from Lemma C.1 and (b) follows from (C.5).

Remark C.1. The interference attenuation of AP-ZF precoding is only limited by the

worst CSIT accuracy at the Active TXs, and does not depend on the CSI accuracy at

the Passive TXs. �

C.3 Proof of Corollary 4.1

In this appendix we prove Corollary 4.1, i.e., that the solution of Theorem 4.3 is

composed of two phases (Transmission Modes) at most. This is equivalent to prove that

∃k1, k2 ∈ K, n1 < k1, n2 < k2 such that

γn1,k1 > 0, γn2,k2 ≥ 0, γn,k = 0, ∀(n, k) 6= (n1, k1), (n2, k2), (C.7)

is always an optimal solution of the maximization problem stated in Theorem 4.3. We

know from the problem definition that the number of variables γn,k (denoted as U) of the

problem is
∑K

i=2(i− 1) = K(K−1)
2 . To simplify the notation, we apply a unique sub-index

to the variables such that our variables become {γu | u ∈ {1, . . . , U}}. The index u is

defined as u , fb(n, k), where fb is a bijective function, e.g. u = (k−1)(k−2)
2 +n. We recall

the optimization problem to obtain DoFAPZF(α) but, for sake of clarity, we present it in

vector notation. For that, let γ be the vector containing the time-sharing variables γu,

i.e., γ , [γ1, γ2, . . . , γU ]. Similarly, we define the vector Fα as the concatenation of the

effective DoF of each mode in (4.13), such that Fα
u = 1 + (k − 1)α(n), with k, n given by

(n, k) = f−1
b (u). Finally, the vector of terms dn,k , 1− α(n) − k(k − n− 1)α(n) for the

constraint (4.15) is denoted as d. Hence, the problem of Theorem 4.3 can be expressed as

DoFAPZF(α) = maximize
γ

Fαγ

subject to ‖γ‖1 = 1,

γ � 0,

dγ ≥ 0,

(C.8)

(C.9)

(C.10)

(C.11)

where Fα, d, are constant vectors. Let us remind that if a linear programming problem

has an optimal solution then it is an extreme point of the feasible set [161].

The feasible set given by conditions (C.9)-(C.10), which is denoted by C, is the

probability simplex [162] determined by the unit vectors e1, . . . , eU ∈ RU , hence it is

a (U − 1)-dimensional simplex. On the other hand, condition in (C.11) represents a

half-space determined by the vector hyperplane [162] denoted as V and given by dγ = 0.
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We can have different cases depending on how the probability simplex C and the half-space

determined by the hyperplane V intersect:

1. If C ∩ {γ | dγ ≥ 0} = C (C is a subset of the half-space), the feasible region is C and

the extreme points are the unit vectors eu. Then, the solution of the problem uses

only a single mode –because in eu the only non-zero variable is the u-th variable–.

2. If C ∩ {γ | dγ ≥ 0} = ∅, there is not feasible solution. However, this is not possible

since we have shown that this linear program is always feasible, just choosing

γk−1,k = 1, with k ∈ {2, . . . , K}.

3. If C∩{γ | dγ ≥ 0} ⊂ C, we need to prove that all the extreme points of the resulting

set satisfy (C.7). Those extreme points either they will be the extreme points of C
or they will belong to the intersection between C and V.

From linear algebra, we know that the intersection of an l-dimensional and an m-

dimensional sub-space in the n-dimensional space Rn has dimension p such that

p ≥ l +m− n. (C.12)

Thus, in order to obtain the extreme points (p = 0) of the feasible set, we must obtain

the intersection between V (m = U − 1), and the edges of C, i.e., the 1-faces (segments)

that define C, in the space RU . The edges of C are segments that connect two points with

a single non-zero variable –the unit vectors–, and therefore they belong to a line of only

two non-zero variables. Given that the intersection of V with one edge must be a point

of the edge, it holds that all the extreme points satisfy (C.7), and therefore Corollary 4.1

is proven. From the previous analysis, it follows that the feasibility set is convex.

Moreover, as Theorem 4.3 is always composed of at most two Transmission Modes,

it can be expressed as the following integer linear program:

DoFAPZF(α) = maximize
k1,n1,k2,n2

1 + γ(k1 − 1)α(n1) + (1− γ)(k2 − 1)α(n2)

subject to k1, k2 ∈ {2, . . . ,K},

n1 ∈ {1, . . . , k1 − 1},

n2 ∈ {1, . . . , k2 − 1} | dn2,k2 ≥ 0,

(C.13)

(C.14)

(C.15)

(C.16)

where γ is given by

γ ,

 1 if dn1,k1 ≥ 0
dn2,k2

dn2,k2
−dn1,k1

otherwise
. (C.17)

�
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C.4. Proof of Proposition 4.1

C.4 Proof of Proposition 4.1

In this section we prove Proposition 4.1, i.e., that Lemma 4.1 holds for the case where

the different estimates of a certain link are correlated, and both noises and channel are

drawn from Gaussian distributions. Specifically, we assume that the setting satisfy the

following assumptions.

Assumption.

hi,k ∼ N (0, 1), ∀i, k ∈ NK .

δ
(j)
i,k ∼ N (0, 1), ∀i, k, j ∈ NK .

ĥ
(j)
i,k = hi,k + P̄−α

(j)
i,kδ

(j)
i,k .

hi,k ⊥⊥ hi′,k′ , ∀(i, k) 6= (i′, k′)

δ
(j)
i,k ⊥⊥ δ

(`)
i′,k′ , ∀j, ` ∈ NK , ∀(i, k) 6= (i′, k′).

Prob
( K∑
j=1

ajδ
(j)
i,k = 0

)
< 1.

(C.H1)

(C.H2)

(C.H3)

(C.H4)

(C.H5)

(C.H6)

Assumption (C.H6) implies that none of the noise variables {δ(j)
i,k }j∈NK is a deterministic

linear combination of the others. From (C.H4)-(C.H5), we can restrict ourselves to a

single arbitrary link. Consequently, let h be the channel coefficient of a link between an

arbitrary TX and an arbitrary RX, i.e., h = hi,k, with i ∈ NK , k ∈ NK . Henceforth, we

omit the sub-indexes (i, k) for sake of readability.

Besides the previous assumptions, we consider that the estimation noise at TX j is

correlated with the estimation noise at TX ` with a correlation factor ρj,`, such that

ρj,` , cov(δ(j), δ(`)). (C.18)

Note that (C.H6) precludes the cases with |ρj,`| = 1. For the sake of completeness, we

recall the following result on multivariate Gaussian distribution.

Theorem C.1. [163, Theorem 23.7.4. p. 484] Let X and Y be centered and jointly

Gaussian with covariance matrix KXX and KYY. Assume that KYY � 0. Then the

conditional distribution of X conditioned on Y = y is a multivariate Gaussian of

mean E
[
XYH

]
K−1

YYy and covariance matrix

KXX − E
[
XYH

]
K−1

YYE
[
YXH

]
(C.19)
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In our case, X represents the channel (h) and Y denotes the set of estimates

{ĥ(j)}j∈NK . Applying Theorem C.1, the conditional distribution ph|ĥ(1),...,ĥ(K) is mul-

tivariate Gaussian. Our goal is to compute the covariance matrix of this conditional

distribution, denoted by KX|Y. Let us denote the covariance matrix between the noise

random variables as ∆ ∈ CK×K , such that

∆ =


P−α

(1)
. . . ρ1,K P̄

−α(1)−α(K)

ρ1,2P̄
−α(2)−α(1)

. . . ρ2,K P̄
−α(2)−α(K)

...
. . .

...

ρ1,K P̄
−α(K)−α(1)

. . . P−α
(K)

 . (C.20)

Let KYY ∈ CK×K denote the covariance matrix of Y. It is given by

KYY = (1K + ∆), (C.21)

where 1K is the all-ones matrix of size K ×K.

Remark C.2. From (C.H6), ∆ is non-singular. This follows because, as explained

in [163, Section 23.4.3. p. 466], a singular covariance matrix implies that there is at least

one component of the random vector such that it is determined with probability one by

an affine function of other components. �

Let Dα ∈ RK×K be the diagonal matrix obtained from the vector of error variances, i.e.,

Dα , diag
([
P̄−α

(1)
, . . . , P̄−α

(K)])
. (C.22)

From its structure in (C.20), we can write the matrix ∆ as

∆ = DαPDα, (C.23)

where P ∈ CK×K is a symmetric matrix that only depends on the correlation coeffi-

cients ρj,`. Therefore,

∆−1 = D−1
α P−1D−1

α . (C.24)

It follows from Remark C.2 that the inverse P−1 exists. Thus, the j-th row, `-th column

coefficient of the matrix ∆−1 can be written as

∆−1
j,` = P̄α

(j)+α(`)
P−1
j,` , (C.25)

and thus ∆−1
j,` = O(P̄α

(j)+α(`)
). Moreover, the all-ones matrix 1K can be expressed as
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C.4. Proof of Proposition 4.1

1K = 1K,11
T
K,1. With this notation and by using Theorem C.1, the covariance matrix

KX|Y is then expressed as

KX|Y = 1− 1T
K,1

(
1K,11

T
K,1 + ∆

)−1
1K,1

= 1− 1T
K,1∆

−11K,1
(
1 + 1T

K,1∆
−11K,1

)−1
,

(C.26)

where the last equality follows from the Matrix Inversion Lemma [164, Chapter 3.1.1],

specifically because (BCD + A)−1BC = A−1B(C−1 + DA−1B)−1. Note that

1T
K,1∆

−11K,1 =
K∑
j=1

K∑
`=1

∆−1
j,` . (C.27)

Applying (C.27) to (C.26) we have

KX|Y = 1− 1T
K,1∆

−11K,1

[
1 + 1T

K,1∆
−11K,1

]−1

=
1

1 +
∑K

j=1

∑K
`=1 ∆−1

j,`

.
(C.28)

Hence, from (C.28) and (C.25), the conditional probability density function is Gaussian

with the variance of its elements scaling in Pmaxj α
(j)

such that it satisfies that

max
h

fh|ĥ(1),...,ĥ(K) = O
(√

Pmaxj∈NK α(j)
)
, (C.29)

what concludes the proof of Proposition 4.1. �
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Appendix D

Proof of Lemma 4.1

In this appendix, we prove Lemma 4.1 –and so Theorem 4.1– for a broad general case,

where the estimation noise random variables are mutually independent and they are

drawn from continuous distributions with density. We first enunciate some definitions

and hypothesis that are taken on the random variables and their PDFs. Later, we prove

the lemma for the case with K = 2 and, to conclude, we prove the general case with

K > 2 by induction. From the independence between different channel coefficients, we

restrict ourselves to an arbitrary link such that we omit the sub-indexes i, k.

D.1 Preliminaries

As opposed to the general notation used throughout this manuscript, in this appendix we

use a different notation for expressing a random variable and its realization. Henceforth,

random variables are denoted by calligraphic upper-case letters (X ), and the realization

of the variable X is denoted by regular lower-case letters (x). We recall that the PDF of a

variable X is denoted as fX . Let us first introduce several important definitions.

Definition D.1. For ε > 0, The ε-support of a random variable X is defined as

SεX = {x | fX (x) > ε}. (D.1)

Based on the Definition D.1, we present the notion of Bounded Support as follows.

Definition D.2 (Bounded Support). A random variable X has bounded support if

there exists a constant MX <∞ such that x ≤ |MX | ∀x ∈ SεX , ∀ε.
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Definition D.3 (Bounded Probability Density function). A random variable X has

bounded probability density function if there exists a constant fmax
X <∞ such that

fX (x) ≤ fmax
X for any x.

Let X ⊥⊥ Y denote that the random variables X and Y are independent. We consider the

following assumptions on the random variables.

Assumption.

H, ∆(j), ∀j ∈ NK , are continuous random variables with

bounded support and bounded probability density function.

Ĥ(j) , H+ P̄−α
(j)

∆(j).

H, ∆(j) ⊥⊥ P, α(j).

Hi,k ⊥⊥ Hi′,k′ , ∀(i, k) 6= (i′, k′).

∆
(j)
i,k ⊥⊥ ∆

(j′)
i′,k′ , ∀(i, k, j) 6= (i′, k′, j′).

(D.H1)

(D.H2)

(D.H3)

(D.H4)

(D.H5)

We denote the observed values of the aforementioned variables as h ∼ H, δ(j) ∼ ∆(j),

ĥ(j) ∼ Ĥ(j), and consequently ĥ(j) , h + P̄−α
(j)
δ(j). Furthermore, let us consider that

the realizations are in the ε-support of their respective variables. As a refresher, and

because we will make extensive use of it, we recall the well-known formula for the PDF

of a random variable multiplied by a positive constant.

Proposition D.1. Let X be a continuous random variable with PDF fX (x), and

let c ∈ R be a constant satisfying c>0. Then, the random variable c · X is also a

continuous random variable whose probability density function is given by

fcX (x) =
1

c
fX

(x
c

)
. (D.2)

Furthermore, we present a useful lemma on the convergence of the estimate variables

Ĥ(j) that will be useful for the proof.

Lemma D.1. Let Ĥ(j), with j ∈ NK , be defined from assumptions (D.H1)-(D.H5),

such that α(j) > 0. Then, fĤ(j) converges almost surely to fH, i.e.,

lim
P→∞

fĤ(j)(x) = fH(x). (D.3)

The previous lemma leads to the next corollary for the conditional PDF of the estimation

noise.
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D.2. Proof for the K=2 estimates Case

Corollary D.1. Assume that α(1) > 0. Then,

lim
P→∞

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K)) = f∆(1)(y). (D.4)

Proof. The proof of both lemma and corollary is relegated to Section D.4. �

Finally, we recall here the Lebesgue’s Dominated Convergence Theorem [159].

Theorem D.1 ( [159, Theorem 16.4]). Let {fn} be a sequence of functions on the

measure space (Ω,Σ, µ), where Ω is a non-empty sample space, Σ is a σ-algebra on

the space Ω, and µ a measure on (Ω,Σ). Suppose that

lim
n→∞

fn(x) = f(x) (D.5)

almost surely. Further suppose that exists an integrable non-negative function G such

that

|fn(x)| ≤ G(x), ∀n, (D.6)

almost surely. Then {fn} and f are integrable and

lim
n→∞

∫
Ω
fn(x)dµ(x) =

∫
Ω
f(x)dµ(x). (D.7)

D.2 Proof for the K=2 estimates Case

Before analyzing the conditional PDF fH|Ĥ(1),Ĥ(2) , let us introduce two claims on the

PDF of fH|Ĥ(1) and fĤ(2)|Ĥ(1) . The proof of both claims is relegated at the end of the

section.

Claim D.1. Let H and Ĥ(1) be defined as in (D.H1)-(D.H5). Then,

max fH|Ĥ(1)(h | ĥ(1)) = Θ
(
P̄α

(1))
. (D.8)
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Claim D.2. Let H, Ĥ(1), and Ĥ(2) be defined as in (D.H1)-(D.H5). Let us define

υP (y) as

υP (y) , f∆(2)

(
δ(2) − P̄α(2)−α(1)

(δ(1) + y)
)
f−∆(1)|Ĥ(1)(y|ĥ(1)). (D.9)

Then,

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1)) = P̄α

(2)

∫ ∞
−∞

υP (y) dy. (D.10)

Furthermore, it holds that

lim
P→∞

υP (y) =


f∆(2)(δ(2)−δ(1) − y)f−∆(1)(y) if α(1) = α(2) (D.11a)

f∆(2)(δ(2))f−∆(1)(y) if α(1) > α(2) (D.11b)

For the K = 2 case, Lemma 4.1 states that

max fH|Ĥ(1),Ĥ(2) = Θ
(
P̄α

(1))
. (D.12)

From the statement of Claim D.1, in order to prove Lemma 4.1 we need to demonstrate

that

lim
P→∞

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2))

fH|Ĥ(1)(h|ĥ(1))
= Θ(1), (D.13)

i.e., that the limit exists and it is bounded away from 0 and ∞. Let us start by noting

that

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2)) =
fH,Ĥ(1),Ĥ(2)(h, ĥ(1), ĥ(2))

fĤ(1),Ĥ(2)(ĥ(1), ĥ(2))

(a)
=
fH,Ĥ(1)(h, ĥ(1))f

P̄−α
(2)

∆(2)(ĥ
(2) − h)

fĤ(1)(ĥ(1))fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))

= fH|Ĥ(1)(h|ĥ(1))
f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
,

(D.14)

where (a) comes from the independence between H, ∆(1), ∆(2). Equation (D.14) yields

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2))

fH|Ĥ(1)(h|ĥ(1))
=
f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
. (D.15)

Hereinafter we focus on the RHS of (D.15). Note that we can write f
P̄−α

(2)
∆(2)(ĥ

(2)−h) =
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P̄−α
(2)
f∆(2)(δ(2)), what follows from Proposition D.1. From (D.10) in Claim D.2, the

RHS of (D.15) can be expressed as

f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
=

f∆(2)(δ(2))∫∞
−∞ υP (y) dy

. (D.16)

We consider separately the two possible subcases α(1) = α(2) and α(1) > α(2):

a) Case α(1) = α(2) :

From the Lebesgue’s Dominated Convergence Theorem (Theorem D.1), the bounded

probability density assumption, and (D.11a), the limit exists and it holds that

lim
P→∞

∫ ∞
−∞

υP (y) dy = f−∆(1) ∗ f∆(2)(δ(2) − δ(1)). (D.17)

where f ∗ g(x) stands for the convolution (f ∗ g)(x) between f(x) and g(x). From (D.16)

and (D.17), it holds that

lim
P→∞

f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
=

f∆(2)(δ(2))

f−∆(1) ∗ f∆(2)(δ(2) − δ(1))
. (D.18)

From the bounded density assumption, it exists a fmax
∆(i) < ∞ such that, for all x,

f∆(i)(x) ≤ fmax
∆(i) . Then, it holds that

f−∆(1) ∗ f∆(2)(x) ≤ max(fmax
∆(1) , f

max
∆(2)). (D.19)

Let 1 be the indicator function and let then τ be

τ ,
∫ ∞
−∞

1x∈Sε
−∆(1)

× 1(δ(2)−δ(1)−x)∈Sε
∆(2)

dx. (D.20)

Then, it follows that

f−∆(1) ∗ f∆(2)(δ(2) − δ(1)) > ε2τ (D.21)

and τ > 0 if δ(1) ∈ Sε
∆(1) and δ(2) ∈ Sε

∆(2) . From (D.19) and (D.21), (D.18) satisfies

ε

max(fmax
∆(1) , f

max
∆(2))

<
f∆(2)(δ(2))

f−∆(1) ∗ f∆(2)(δ(2) − δ(1))
<

fmax
∆(2)

ε2τ
. (D.22)

This implies (D.13) and thus the proof is concluded for the α(2) = α(1) case.
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a) Case α(1) > α(2)

From the Lebesgue’s Dominated Convergence Theorem, the bounded probability density

assumption, and (D.11b), the limit exists and it holds that

lim
P→∞

υP (y) =

∫ ∞
−∞

f∆(2)(δ(2))f−∆(1)(y) dy

= f∆(2)(δ(2)).

(D.23)

By applying (D.23) in (D.16) we obtain that

lim
P→∞

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2))

fH|Ĥ(1)(h|ĥ(1))
= 1. (D.24)

This concludes the proof of Lemma 4.1 for the 2-estimate case. �

D.2.1 Proof of Claim D.1

Using Bayes’ formula we obtain that

fH|Ĥ(1)(h | ĥ(1)) =
f
P̄−α

(1)
∆(1)(P̄

−α(1)
δ(1))fH(h)

fĤ(1)(ĥ(1))

= P̄α
(1) f∆(1)(δ(1))fH(h)

fĤ(1)(ĥ(1))
,

(D.25)

where the last equality comes from Proposition D.1. Let us consider separately the cases

where α(1) = 0 and where α(1) > 0.

a) α(1) = 0: In this case, (D.25) does not depend on P , since P 0 = 1, ∀P > 0. From

the bounded probability density assumption, fH and f∆(1) are bounded away from ∞.

Moreover, if ĥ(1) ∈ SεĤ(1) , then fĤ(1) is also lower-bounded by ε. Thus,

max fH|Ĥ(1)(h | ĥ(1)) = Θ
(
P̄ 0
)
. (D.26)

b) α(1) > 0: From Lemma D.1, we have that fĤ(1) converges almost surely (a.s.) to fH,

and from the bounded probability density assumption that max f∆(1) <∞. Thus, from

(D.25) it holds that

max fH|Ĥ(1)(h | ĥ(1)) = Θ
(
P̄α

(1))
. (D.27)

�
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D.2.2 Proof of Claim D.2

Since ∆(j) is independent of H, and Ĥ(2) = Ĥ(1)−P̄−α(1)
∆(1)+P̄−α

(2)
∆(2), it follows that

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1)) = fĤ(1)−P̄−α(1)

∆(1)+P̄−α
(2)

∆(2)|Ĥ(1)(ĥ
(1) + ĥ(2) − ĥ(1) | ĥ(1))

= f
P̄−α

(2)
∆(2)−P̄−α(1)

∆(1)|Ĥ(1)(ĥ
(2) − ĥ(1) | ĥ(1)).

(D.28)

Note that ĥ(2) − ĥ(1) = P̄−α
(2)
δ(2) − P̄−α(1)

δ(1). From the independence of ∆(1) and ∆(2),

we can rewrite (D.28) in terms of the convolution as

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1)) = f−P̄−α(1)

∆(1)|Ĥ(1)∗fP̄−α(2)
∆(2)(ĥ

(2)−ĥ(1)|ĥ(1))

=

∫ ∞
−∞

f
P̄−α

(2)
∆(2)(ĥ

(2)−ĥ(1)−x)f−P̄−α(1)
∆(1)|Ĥ(1)(x|ĥ(1)) dx.

(D.29)

Consider the change of PDF of Proposition D.1. If we apply it to pass from f−P̄−α(1)
∆(1)

to f−∆(1) , we can express fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1)) as

∫ ∞
−∞

P̄α
(2)
f∆(2)

(
P̄α

(2)
(ĥ(2) − ĥ(1) − x)

)
P̄α

(1)
f−∆(1)|Ĥ(1)(P̄

α(1)
x | ĥ(1)) dx. (D.30)

Changing the integration variable to y = P̄α
(1)
x (and thus dx = P̄−α

(1)
dy) yields

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1)) = P̄α

(2)

∫ ∞
−∞

υP (y) dy (D.31)

where

υP (y) , f∆(2)

(
δ(2) − P̄α(2)−α(1)

(δ(1) + y)
)
f−∆(1)|Ĥ(1)(y|ĥ(1)) (D.32)

comes from applying ĥ(i) = h + P̄−α
(i)
δ(i). We have obtained (D.10) of Claim D.2. Let

us obtain the limit of υP (y) as P →∞. This limit is directly obtained from continuity of

f∆(1) and f∆(2) and Corollary D.1, and it has two possible expressions depending on the

relation between α(1) and α(2). Specifically, it holds that

lim
P→∞

υP (y) = f∆(2)(δ(2)−δ(1) − y)f−∆(1)(y) (D.33)

if α(1) = α(2), and that

lim
P→∞

υP (y) = f∆(2)(δ(2))f−∆(1)(y) (D.34)

if α(1) > α(2), what concludes the proof of Claim D.2. �
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D.3 Proof for K >2 estimates

In this section we prove by induction that Lemma 4.1 also holds for any number K

of estimates. We have proved that it is true for the base cases K = 1 –trivial– and

K = 2. In the following, we prove the induction step. We denote the set of estimates as

GK , {Ĥ(1), . . . , Ĥ(K)} and, consistently, the set of given values as gK , {ĥ(1), . . . , ĥ(K)}.
Let us assume that Lemma 4.1 is verified for a given K. We consider K + 1 estimates.

Then, from the mutual independence of the estimation noise variables ∆(j) and Bayes’

formula we obtain that

fH|GK,Ĥ(K+1)

(
h | gK, ĥ(K+1)

)
=
fH,GK

(
h, gK

)
fGK (gK)︸ ︷︷ ︸
fH|GK

(h|gK)

f
P̄−α

(K+1)
∆(K+1)

(
ĥ(K+1) − h

)
fĤ(K+1)|GK

(
ĥ(K+1)|gK

) . (D.35)

From the induction hypothesis, it holds that max fH|GK(h | gK) = Θ
(
P̄α

(1))
. Thus, we

need to prove that

0 < lim
P→∞

f
P̄−α

(K+1)
∆(K+1)

(
ĥ(K+1) − h

)
fĤ(K+1)|GK(ĥ(K+1)|gK)

<∞. (D.36)

Let us denote ∆′ = P̄−α
(K+1)

∆(K+1) − P̄−α(1)
∆(1). From the equivalence

ĥ(K+1) − ĥ(1) = P̄−α
(K+1)

δ(K+1) − P̄−α(1)
δ(1), (D.37)

the denominator of the expression in (D.36) can be rewritten as

fĤ(K+1)|GK

(
ĥ(K+1)|gK

)
= fĤ(1)+∆′|GK

(
ĥ(K+1) − ĥ(1) + ĥ(1) | gK

)
= f∆′|GK

(
P̄−α

(K+1)
δ(K+1) − P̄−α(1)

δ(1) | gK
)
.

(D.38)

Hence, expressing f∆′|GK as convolution of PDFs yields

fĤ(K+1)|GK

(
ĥ(K+1)|gK

)
=f

P̄−α
(K+1)

∆(K+1)∗f−P̄−α(1)
∆(1)|GK

(
ĥ(K+1)−ĥ(1)|gK

)
. (D.39)

Let us introduce the notation δ′y , δ(K+1) − P̄α(K+1)−α(1)
(δ(1) + y) for ease of reading.

Thus, by applying the same steps as in (D.28)-(D.32), we obtain

f
P̄−α

(K+1)
∆(K+1)

(
ĥ(K+1) − h

)
fĤ(K+1)|GK

(
ĥ(K+1)|gK

) =
f∆(K+1)

(
δ(K+1)

)∫∞
−∞ f∆(K+1)

(
δ′y
)
f−∆(1)|GK

(
y|gK

)
dy
, (D.40)
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We can see that (D.40) is equivalent to (D.16) with ∆(K+1) in place of ∆(2). Then,

by following the same derivation as in the K = 2 case, i.e., using Corollary D.1 and

Lebesgue’s Dominated Convergence Theorem, we conclude the induction step. From the

base case and the induction step, Lemma 4.1 is proven. �

D.4 Proof of Lemma D.1

Suppose that α(j) > 0. Then,

lim
P→∞

fĤ(j)(ĥ
(j)) = lim

P→∞
fH+P̄−α

(j)
∆(j)(h + P̄−α

(j)
δ(j))

= lim
P→∞

∫ ∞
−∞

fH(h + P̄−α
(j)
δ(j) − x)f

P̄−α
(j)

∆(j)(x) dx

(a)
= lim

P→∞

∫ ∞
−∞

fH(h + P̄−α
(j)
δ(j) − P̄−α(j)

y)f∆(j)(y) dy

(b)
=

∫ ∞
−∞

fH(h)f∆(j)(y) dy

= fH(h),

(D.41)

where (a) comes from applying Proposition D.1 to express f
P̄−α

(j)
∆(j) as function of f∆(j) ,

and from the change of integration variable y = P̄α
(j)
x. Finally, (b) follows from applying

Lebesgue’s Dominated Convergence Theorem. Hence, fĤ(j) converges almost surely to fH

and hence Lemma D.1 is proven. In order to prove Corollary D.1, i.e., that

lim
P→∞

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K)) = f∆(1)(y), (D.42)

we apply Bayes’ formula such that

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K)) =
fĤ(1),...,Ĥ(K)|∆(1)(ĥ(1), . . . , ĥ(K)|y)f∆(1)(y)

fĤ(1),...,Ĥ(K)(ĥ(1), . . . , ĥ(K))

=
fH,Ĥ(2),...,Ĥ(K)(h, ĥ(2), . . . , ĥ(K))

fĤ(1),...,Ĥ(K)(ĥ(1), . . . , ĥ(K))
f∆(1)(y).

(D.43)

From (D.41) and the fact that α(1) > 0 we obtain that

lim
P→∞

fH,Ĥ(2),...,Ĥ(K)(h, ĥ(2), . . . , ĥ(K))

fĤ(1),...,Ĥ(K)(ĥ(1), . . . , ĥ(K))
= 1. (D.44)

From (D.44), the limit of (D.43) as P →∞ is obtained as
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lim
P→∞

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K)) = f∆(1)(y), (D.45)

what concludes the proof. �
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Appendix E

CSI Allocation for the Distributed

CSIT Setting

Let us introduce a value A such that the sum of accuracy scaling coefficients α satisfies

that
K∑
j=1

α(j) = A. (E.1)

We can write (4.50) of Lemma 4.3 as max(DoFmax
single,DoF2ph), where the DoFmax

single is the

maximum DoF obtained by using only one Transmission Mode and DoF2ph the maximum

DoF with two Transmission Modes. Specifically, DoFmax
single = maxk DoFksingle and DoFksingle

DoFksingle = maximize
n, α

1 + (k − 1)α(n)

subject to n ∈ {1, . . . , k − 1},

dn,k ≥ 0,
k−1∑
j=1

α(j) = A.

(E.2)

(E.3)

(E.4)

Consider now the one-mode case. Therefore, the best allocation is always to give equal

level of CSIT to the n active TXs and no CSIT to the other k − n TXs. Then,

α(j) =

A
n if j ≤ n

0 if j > n
(E.5)
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Moreover, from dn,k ≥ 0 and α(n) =
A

n
we have that

1− α(n) − k(k − n− 1)α(n) ≥ 0 ⇒ n ≥ A+ k(k − 1)A

kA+ 1
(E.6)

From(E.6), DoFksingle is obtained as

DoFksingle =


k if A ≥ k − 1

1 + (k − 1) A⌈
A+k(k−1)A

kA+1

⌉ if A ≤ k − 1
(E.7)

And therefore DoFmax
single is found by choosing the biggest constant among K − 1 possible

choices. On the other hand, we have that DoF2ph is given by

DoF2ph = maximize
k1,n1,
k2,n2,
α

1 +
dn2,k2

dn2,k2 − dn1,k1

(k1 − 1)α(n1) −
dn1,k1

dn2,k2 − dn1,k1

(k2 − 1)α(n2)

subject to k1, k2 ∈ NK ,

n1 ∈ Nk1 | dn1,k1 ≤ 0,

n2 ∈ Nk2 | dn2,k2 ≥ 0,

K−1∑
j=1

α(j) = A.

(E.8)

where dn,k , 1− α(n) − k(k − n− 1)α(n).

We present in the following some particular cases of Lemma 4.3. We have obtained

the maximum DoF for a given budget A, for any possible allocation α. For this, we

sample the continuous value of α(j) with a precision, such that a precision=1/100 means

that we compute the DoF for all α(j) = i
precision such that

∀i ∈ N | α(j)
min <

i

precision
< α(j)

max, (E.9)

where α
(j)
min, α

(j)
max are the extreme values of α(j) for each case (given α(`<j), n, k,K,A...).

Due to the multidimensional nature of the problem –there exist K different α(j)

coefficients–, it is not simple to choose a good way of representing all the possible cases.

We have chosen to do it by hierarchy of TXs: The axis x is ordered such as, for any

possible value of α(1), we draw all the possible values of α(2) in increasing order. Again,

for any of those values of α(2), we draw in increasing order all the possible values of α(3),

and so on. This is represented in Fig. E.1.
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α(1) = 0.3 7→ 7→ α(1) = 0.5

α(2) = 0.2

α(3)=0.2
α(4)=0.2

α(3)=0.15
α(4)=0.15

α(3)=0.25
α(4)=0.05

α(3)=0.10
α(4)=0.10

α(3)=0.20
α(4)=0

x axis

α(1) = 0.4

α(2) = 0.3 α(2) = 0.4

Figure E.1 – Example of the defined axis x for a total CSIT of A = 1.

We have simulated 4 possible cases:

1. K = 4, A = 0.5, precision = 1/100

2. K = 4, A = 1.5, precision = 1/100

3. K = 4, A = 2.5, precision = 1/100

4. K = 5, A = 2.5, precision = 1/50

In Fig. E.2 we present the first case (K = 4, A = 0.5, precision = 1/100). In this

picture, as well as in the others, we plot the DoF value in blue, surrounded by the upper

envelope in green (given by the local maxima) and the lower envelope in red (given by

the local minima). Moreover, we plot in vertical orange lines the values of the horizontal

x where α(1) increases. Finally, we plot the total square-difference
∑K−2

i=1 (α(i) − α(i+1))2.

Figure E.2 – DoF for the case K = 4, A = 0.5, precision = 1/100
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Fig. E.2 shows that the DoF is cyclic for every value of α(1): For each α(1) we obtain

the maximum DoF just before it gets the new value. This means –from our definition

of the axis x in Fig. E.1– that the maximum is obtained when α(2) gets the maximum

value. We see the same cyclic pattern in Fig. E.3 (A = 1.5), and Fig. E.4 (A = 2.5),

but while in Fig. E.3 the local maximum is also at the end of the cycle, for Fig. E.4 the

maximum is at the beginning, i.e., for smallest values of α(2).

Figure E.3 – DoF for the case K = 4, A = 1.5, precision = 1/100

Figure E.4 – DoF for the case K = 4, A = 2.5, precision = 1/100
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Figure E.5 – Sorted DoF for the case K = 4, A = 0.5, precision = 1/100

We observe that there exists a pattern in the difference between α(j). To analyze this

behavior, we depict the sorted DoF values together with
∑K−2

i=1 (α(i) − α(i+1))2. This

representation is shown for the K = 4 case in Fig. E.5 (A = 0.5), Fig. E.6 (A = 1.5),

and Fig. E.7 (A = 2.5). We show two graphs in each of the figures: One depicting

the sum
∑K−2

i=1 (α(i) − α(i+1))2, and the other with the decoupled differences between

successive α(i), i.e., (α(1) − α(2))2 and (α(2) − α(3))2. It is interesting to note that, as

the DoF grows, each difference term tends to either increase or decrease. In Fig. E.6

(A = 1.5) we can easily see that, for the cases with higher DoF, (α(1) − α(2))2 → 0 while

(α(2) − α(3))2 → (0.75)2. This behavior implies that the optimal allocation is

α(1) = α(2) = 0.75,

α(3) = α(4) = 0.

In Fig. E.7 (A = 2.5) this behavior is not so clear because the quantity of CSIT is too

big compared with the number of TXs, i.e.,

0.833 ≤ α(1) ≤ 1,

0.75 ≤ α(2) ≤ 1,

0.5 ≤ α(3) ≤ 0.833.
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Figure E.6 – DoF for the case K = 4, A = 1.5, precision = 1/100

Figure E.7 – Sorted DoF for the case K = 4, A = 2.5, precision = 1/100
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Figure E.8 – DoF for the case K = 5, A = 2.5.

In Fig. E.8 and Fig. E.9, we show the results for K = 5, A = 2.5. We observe the same

insights:

• Fig. E.8: There exists a cyclic pattern for each value of α(1). In this setting, since

we have more TXs, there are sub-cycles, one for each value of α(2). We conjecture

that this holds for all the α(j)s with j < K − 2.

• Fig. E.9: We observe the same divergence of differences. Moreover, the difference

that increases as the DoF in this case is (α(3) − α(4))2. This implies that the best

performance is obtained when the first three TXs obtain a CSI with the same

accuracy and the other two TXs do not receive any CSI.

Main insights

We have seen that the allocation of CSIT for a given budget is a complex optimization.

However, some interesting patterns turn out from the analysis. The behavior of difference

between values of α(j) is probably due to the proposed structure. Since Corollary 4.1

implies that the maximum DoF is obtained with only two Transmission Modes, it holds

that the best strategy is to allocate the CSIT such that we have a two-steps staggered

CSIT allocation; first n1 active TXs, second n2 active TXs and passive TXs with α(p) = 0.

209



Appendix E. CSI Allocation for the D-CSIT Setting

Figure E.9 – Sorted DoF for the case K = 5, A = 2.5.
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Appendix F

Asymptotic Properties of Quanti-

zation: Proof of Lemma 6.1

In the following, we prove Lemma 6.1, i.e., that for any cq > 1 the quantizer

Qu(x) , P̄
−αmin
cq
⌊
P̄
αmin
cq x

⌋
(F.1)

satisfies properties (P0), (P1) and (P2). We first prove property (P1). Afterward, we

demonstrate (P2) and finally (P0). We define αq as αq ,
αmin
cq

so as to simplify the

notation. The quantization step is then q = P̄−αq .

F.1 Proof of (P1): Convergence

In order to prove that Qu satisfies (P1), i.e., that

lim
P→∞

Qu(λ
(j)
i )− λ?i = 0 a.s. ∀i, j ∈ N2, (F.2)

we demonstrate (F.2) for j = 2, as the case with j = 1 is straightforwardly proved

following the same derivation. Let v
(j)
H ∈ R8×1 be the column vector obtained by stacking

the real and imaginary parts of the elements of Ĥ(j) one on top of another, such that

v
(j)
H =


Re
(

ĥ
(j)
1,1

)
Im
(

ĥ
(j)
1,1

)
. . .

Im
(

ĥ
(j)
2,2

)

 , (F.3)
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where Re(x) and Im(x) denote the real and imaginary part of x ∈ C, respectively. Let

v?H ∈ R8×1 be the analogous expanded vector for the genie-aided best-estimate channel

Ĥ?. We recall the definition of λi as a function in (6.22), and we rewrite it in terms of

v?H as λi , Λi(v
?
H). Therefore, consider the Taylor’s expansion of λ

(2)
i centered in λ?i .

We can write that

λ
(2)
i − λ

?
i =

(
v

(2)
H − v?H

)T ∇Λi
(
v?H
)

+ o
(
‖v(2)

H − v?H‖
)
, (F.4)

where (∇Λi(·))T is the i-th row of the Jacobian Matrix JΛ introduced in Section 6.3.2.

Let ϑ be defined as

ϑ , λ(2)
i − λ

?
i . (F.5)

From (F.5) and the definition of Qu in (F.1), it follows that

Qu(λ
(2)
i )− λ?i = P̄−αq

⌊
P̄αq(λ?i + ϑ)

⌋
− λ?i . (F.6)

Since for any c ∈ R+ it holds that c
⌊

1
c (x+ y)

⌋
− x ≤ y, we obtain that

Qu(λ
(2)
i )− λ?i ≤ ϑ. (F.7)

Similarly, since for any c ∈ R+ it holds that c
⌊

1
c (x+ y)

⌋
− x ≥ c

⌊y
c

⌋
≥ y − c, we can

bound (F.6) from below as

Qu(λ
(2)
i )− λ?i ≥ ϑ− P̄−αq . (F.8)

From (F.7) and (F.8), it is sufficient to prove that

lim
P→∞

ϑ = 0 a.s. (F.9)

to demonstrate that limP→∞Qu(λ
(2)
i ) = λ?i almost surely. To do so, we make use of the

following lemma, whose proof is relegated to Appendix F.4.

Lemma F.1. Let α
(j)
i,k > 0 for any i, j, k ∈ N2. Then, it holds that

lim
P→∞

‖v(2)
H − v?H‖ = 0 a.s. (F.10)

Since we assume that ‖∇Λi‖ ≤ ‖JΛ‖ ≤MJ, –see Section 6.3.2–, it holds that

|ϑ| ≤ ‖v(2)
H − v?H‖MJ + |o

(
‖v(2)

H − v?H‖
)
|. (F.11)
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Thus, from Lemma F.1 we obtain that limP→∞ ϑ = 0 almost surely. Consequently, Qu
satisfies (P1). �

F.2 Proof of (P2): Probability of Agreement

We want to prove that Qu satisfies

Pr (Ωc) = o
( 1

log2(P )

)
, (F.12)

where Pr (Ωc) = 1 − Pr
(
∀i ∈ N2, Q

(
λ

(1)
i

)
= Q

(
λ

(2)
i

)
∈ R+

)
. Note that, for any two

events A, B, it holds that

1− Pr(A ∧B) ≤ 1− Pr(A) + 1− Pr(B). (F.13)

Suppose w.l.o.g. that the probability of agreement is smaller for λ1 than for λ2. Therefore,

Pr (Ωc) ≤ 2
(

1− Pr
(
Qu(λ

(1)
1 ) = Qu(λ

(2)
1 ) ∈ R+

))
. (F.14)

Moreover, it holds that

1− Pr
(
Qu(λ

(1)
1 ) = Qu(λ

(2)
1 ) ∈ R+

)
≤ Pr

(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 )
)

+ Pr
(
Qu(λ

(1)
1 ) = 0

)
.

(F.15)

Consider the last term of (F.15). It follows that

Pr
(
Qu(λ

(1)
1 ) = 0

) (a)
= Pr

(
λ

(1)
1 ≤ P̄−αq

)
(b)

≤ fmax
Λ1

P̄−αq ,

(F.16)

where (a) follows from the quantization step size of Qu, and (b) follows from the bounded

density assumption of (6.23). This leads to

Pr
(
Qu(λ

(1)
1 ) = 0

)
= o

(
1

log2(P )

)
. (F.17)

Consider now the other term of (F.15), the probability of disagreement Pr
(
Qu(λ

(1)
1 ) 6=

Qu(λ
(2)
1 )
)
. In order to prove that this probability is o(1/log2(P )), we need to introduce

first some notation related to the quantization levels.
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︸ ︷︷ ︸
Ln

En−1︷ ︸︸ ︷ En︷ ︸︸ ︷ En︷ ︸︸ ︷Cn︷ ︸︸ ︷ Cn+1︷ ︸︸ ︷En+1︷ ︸︸ ︷ En+1︷ ︸︸ ︷`n `n+1 `n+2

Figure F.1 – Illustration of a reconstruction level Ln of the quantizer and the two sub-areas
in which we divide it: The central area Cn and the edge area En.

F.2.1 Edge and Center of the Reconstruction Level

Let `n be the n-th quantization level of Qu, n ∈ NN with N =
⌈
P̄αq

⌉
. We assume that

P̄αq ∈ N in order to ease the notation, although the result holds for any P̄αq ∈ R. Let us

define Ln as the input interval that outputs `n, i.e.,

Ln , {x | Qu(x) = `n}. (F.18)

Ln has a range [Lmin
n , Lmax

n ) such that |Ln| , Lmax
n − Lmin

n = P̄−αq (and `N+1 = 1). We

split Ln in two areas, the edge area En and the center area Cn, as depicted in Fig. F.1.

The edge area is defined as the part of Ln that is at most at distance P̄−ceαq of the

boundary of the cell, with ce > 1. Thus,

En ,
{
x ∈ Ln | x− Lmin

n < P̄−ceαq ∨ Lmax
n − x < P̄−ceαq

}
. (F.19)

The center area hence is given by Cn , {x ∈ Ln\En}. Intuitively, the probability of

disagreement is high if one estimate lies in the edge area En, whereas this probability

vanishes in the central area Cn. Mathematically, we have that

Pr
(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 )
)
≤ Pr

(
λ

(1)
1 ∈

⋃
n∈NN

En

)
+ Pr

(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 ) | λ(1)

1 ∈
⋃

n∈NN

Cn

)
.

(F.20)

Let us analyze separately the two probabilities in the RHS of (F.20).

F.2.2 Probability of Belonging to the Edge Area

Consider an arbitrary quantization level `n. From the bounded density assumption

of (6.23), the probability that a computed value λ
(1)
1 is in En is

Pr
(
λ

(1)
1 ∈ En

)
≤ fmax

Λ1
|En|

= fmax
Λ1

2P̄−ceαmin ,
(F.21)
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where |En| denotes the length of En. Since there are N = P̄αq cells, the probability of

being in the edge of any cell is

Pr
(
λ

(1)
1 ∈

⋃
n∈NN

En

)
≤ P̄αqfmax

Λ1
2P̄−ceαq

= 2fmax
Λ1

P̄ (1−ce)αq

= o

(
1

log2(P )

)
.

(F.22)

F.2.3 Probability of Disagreement in the Center Area

Let us focus now on the probability of disagreement in Cn. The minimum distance from

any point of Cn to the border of Ln is P̄−ceαq . Therefore,

Pr
(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 )
∣∣∣λ(1)

1 ∈
⋃

n∈NN

Cn

)
≤ Pr

(∣∣λ(1)
1 − λ

(2)
1

∣∣ ≥ P̄−ceαq ∣∣∣λ(1)
1 ∈

⋃
n∈NN

Cn

)
.

Given that, for two events A,C, Pr(A | C) ≤ Pr(A)/Pr(C), it follows that

Pr
(∣∣λ(1)

1 − λ
(2)
1

∣∣ ≥ P̄−ceαq ∣∣∣ λ(1)
1 ∈

⋃
n∈NN

Cn

)
≤

Pr
(
|λ(1)

1 − λ
(2)
1 | ≥ P̄−ceαq

)
Pr
(
λ

(1)
1 ∈

⋃
n∈NN Cn

)
(a)

≤ 1

1− 2fmax
Λ1

P̄ (1−ce)αq
Pr
(
|λ(1)

1 − λ
(2)
1 | ≥ P̄

−ceαq)
(b)

≤ 1

1− 2fmax
Λ1

P̄ (1−ce)αq

E
[∣∣λ(1)

1 − λ
(2)
1

∣∣2]
P̄−2ceαq

,

(F.23)

where (a) follows from (F.22) and (b) from Chebyshev’s Inequality. In the following, we

obtain the expectation E
[∣∣λ(1)

1 − λ
(2)
1

∣∣2]. In a similar manner to (F.4), Taylor’s Theorem

leads to

E
[∣∣λ(1)

1 − λ
(2)
1

∣∣2] ≤ E
[∣∣∣(v(2)

H − v
(1)
H

)T∇Λ1

(
v

(1)
H

)∣∣∣2]
+ E

[∣∣∣o(‖v(2)
H − v

(1)
H ‖
)∣∣∣2]

≤M2
JE
[
‖v(2)

H − v
(1)
H ‖

2
]

+ E
[
o
(
‖v(2)

H − v
(1)
H ‖

2
)]
,

(F.24)

where (F.24) comes from the fact that ‖∇Λi‖ ≤ ‖JΛ‖ ≤MJ. We present in the following

a useful lemma whose proof is relegated to Appendix F.5.
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Lemma F.2. Suppose α
(j)
i,k > 0 for any i, j, k ∈ N2. Consider αmin , mini,j,k∈N2 α

(j)
i,k .

Let κ be a positive real constant. Then, it holds that

E
[
‖v(2)

H − v
(1)
H ‖

2
]

= κP−αmin . (F.25)

It follows from Lemma F.1 and Lemma F.2 than

E
[
o
(
‖v(2)

H − v
(1)
H ‖

2
)]

= o
(
P−αmin

)
. (F.26)

Including Lemma F.2 and (F.26) in (F.24) yields

E
[∣∣λ(1)

1 − λ
(2)
1

∣∣2] ≤ κM2
JP
−αmin + o

(
P−αmin

)
. (F.27)

Recall that P̄ =
√
P and αq = αmin

cq
. Thus, by substituting (F.27) in (F.23) we obtain

Pr
(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 ) | λ(1)

1 ∈
⋃

n∈NN

Cn

)
≤

κM2
JP
−αmin + o (P−αmin)(

1− 2fmax
Λ1

P̄
(1−ce)

αmin
cq
)
P
−ce

αmin
cq

. (F.28)

It follows that

κM2
JP
−αmin + o (P−αmin)(

1− 2fmax
Λ1

P̄
(1−ce)

αmin
cq
)
P
−ce

αmin
cq

= O
(
P

( ce
cq
−1)αmin

)
. (F.29)

Let us select an edge size such that ce < cq. Hence,

Pr
(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 ) | λ(1)

1 ∈
⋃

n∈NN

Cn

)
= o

(
1

log2(P )

)
(F.30)

for any cq > 1.

F.2.4 Assembling Probabilities

Plugging (F.17), (F.22) and (F.30) into (F.14) yields

Pr (Ωc) ≤ 2
(

Pr
(
Qu(λ

(1)
1 ) 6= Qu(λ

(2)
1 )
)

+ Pr
(
Qu(λ

(1)
1 ) = 0

))
= o

(
1

log2(P )

)
,

(F.31)

what concludes the proof for property (P2). �
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F.3 Proof of (P0): Bounded Expectation

We show now that there exists a constant M <∞ such that for all P it holds that

∣∣E|Qu(λ
(j)
i )>0

[
log2

(
Qu(λ

(j)
i )
)]∣∣ ≤M. (F.32)

Let us denote x , λ
(j)
i , with i, j ∈ N2, and the quantization step size as q , P̄

−αmin
cq .

First, we upper bound the expectation from the fact that 0 ≤ λ(j)
i ≤ 1 as

E|Qu(x)>0

[
log2

(
Qu(x)

)]
≤ 0. (F.33)

In order to lower bound it, note that

E|Qu(x)>0

[
log2

(
Qu(x)

)]
,

M∑
i=1

log2(iq) Pr (Qu(x) = iq | Qu(x) > 0) , (F.34)

where M ,
⌈

1
q

⌉
− 1 because the quantization level Qu(x) = 0 (i = 0) is excluded from

Qu(x) > 0. Besides this, Pr (Qu(x) = iq) = Pr (iq ≤ x ≤ (i+ 1)q). The expectation

in (F.34) is bounded for a given finite P because q = P̄−αmin/cq > 0. In the following we

prove that it is bounded also when P →∞. We can write that

Pr (Qu(x) = iq | Qu(x) > 0) =
Pr (Qu(x) = iq)

Pr (Qu(x) > 0)

≤
fmax

Λ

max
(
0, 1− fmax

Λ P̄
−αmin
cq
) q. (F.35)

The last inequality comes from (F.16) as 1 − Pr (Qu(x) > 0) ≤ fmax
Λ P̄

−αmin
cq and from

the fact that Pr (Qu(x) = iq) ≤ fmax
Λ q. There exists a Pmin such that for all P > Pmin it

holds that 1− fmax
Λ P̄

−αmin
cq > 0. Thus, as we focus on the limit as P →∞, we assume

hereinafter that 1− fmax
Λ P̄

−αmin
cq > 0. We introduce the notation

p′max ,
fmax

Λ

1− fmax
Λ P̄

−αmin
cq

. (F.36)

Hence, since M ≤ 1
q and for any i ≤ 1

q it holds that log2(iq) ≤ 0, we obtain that

E|Qu(x)>0

[
log2

(
Qu(x)

)]
≥ p′max

M

(
M∑
i=1

log2(i)−
M∑
i=1

log2(M)

)
. (F.37)
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Then, computing the summations yields

E|Qu(x)>0

[
log2

(
Qu(x)

)]
≥ p′max

(
log2(M !)

M
− log2(M)

)
. (F.38)

We have that

lim
M→∞

(
log2(M !)

M
− log2(M)

)
=
−1

ln(2)
, (F.39)

what together with the fact that limP→∞ p
′
max = fmax

Λ implies that

lim
P→∞

E|Qu(x)>0

[
log2

(
Qu(x)

)]
≥
−fmax

Λ

ln(2)
, (F.40)

what concludes the proof. �

F.4 Proof of Lemma F.1

Let us start noting that

‖v(2)
H − v?H‖

a.s.−→ 0 ⇐⇒ |{v(2)
H }` − {v

?
H}`|2

a.s.−→ 0, ∀` ∈ N8. (F.41)

It turns out that the only condition needed for this proof is that all α
(j)
i,k are strictly

positive –as we will see in the following–. We recall that we have assumed that the

estimates satisfy that α
(j)
i,k > 0, for any i, j, k ∈ N2. Hence, we allow ourselves to focus on

the first element of the vector v
(2)
H − v?H. Let us denote the first element of the vector

v
(j)
H ∈ R8×1 as ĥ

(j)
< , i.e.,

ĥ
(j)
< = Re

(
ĥ

(j)
1,1

)
. (F.42)

Similarly, h̃< denotes the real part of the normalized channel coefficient, h̃< = Re
(
h̃1,1

)
.

From the feedback model it follows that

|ĥ(2)
< − ĥ?<|2

a.s.−→ 0 ⇐⇒ ĥ
(j)
< − h̃<

a.s.−→ 0 ∀j ∈ N2. (F.43)

Let An = {|Xn −X| > ε}. Then, the definition of almost sure convergence says that

Xn
a.s.−→ X ⇐⇒ Pr (An i.o.) = 0 ∀ε > 0, (F.44)

where
An i.o. , {w : w ∈ An for infinitely many n}

= lim sup
n

An.
(F.45)
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Let Xn = ĥ
(j)
< − h̃< and X = 0. We obtain in the following Pr (An) = Pr

(
|ĥ(j)
< − h̃<| > ε

)
.

The absolute value of the difference can be bounded as

|ĥ(j)
< − h̃<| = |(1− z̆

(j)
1 )ĥ

(j)
< − z

(j)
1 δ

(j)
< |

≤ (1− z̆(j)
1 ) + z

(j)
1 ,

(F.46)

what comes from the estimate model in (6.9) and because |ĥ(j)
< | ≤ 1 and |δ(j)

< | ≤ 1. The

absolute value is omitted because 0 ≤ z(j)
1 ≤ 1. Let us remind that z̆

(j)
1 =

√
1− (z

(j)
1 )2

and z
(j)
1 =

√
Z

(j)
1 . The fact that 1−

√
1− x2 ≤ x for 0 ≤ x ≤ 1 yields

|ĥ(j)
< − h̃<| ≤ 2z

(j)
1 . (F.47)

As a result,

Pr
(
|ĥ(2)
< − h̃<| > ε

)
≤ Pr

(
2z

(j)
1 > ε

)
= Pr

(
Z

(j)
1 >

ε2

4

)
.

(F.48)

The quantization error Z
(j)
1 is distributed as the minimum of n = 2B

(j)
1 = Pα

(j)
1 standard

uniform random variables [43,132]. Upon denoting ε′ = ε2

4 , we obtain

Pr
(
Z

(j)
1 > ε′

)
=
(
1− ε′

)n
. (F.49)

By definition –see (F.45)–, Pr (An i.o.) satisfies

Pr (An i.o.) ≤ lim
n→∞

∞∑
m=n

Pr (An) . (F.50)

Introducing (F.49) in (F.50) leads to

Pr (An i.o.) ≤ lim
n→∞

∞∑
m=n

(
1− ε′

)n
(a)
= lim

n→∞

(1− ε′)n−1

ε′

= 0.

(F.51)

where (a) comes from the application of the geometric series’ formula. This implies that

Pr (An i.o.) = 0 for any ε > 0. We can repeat the process for all the elements in the RHS

of(F.41), and thus Lemma F.1 is proven. �
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F.5 Proof of Lemma F.2

In this section we prove Lemma F.2, i.e., that

E
[
‖v(2)

H − v
(1)
H ‖

2
]
≤ κP−αmin . (F.52)

Let us consider w.l.o.g. that ĥ
(2)
1,1 is the estimate whose accuracy scales as αmin. As

defined in the previous section, let ĥ
(j)
< = Re

(
ĥ

(j)
1,1

)
and h̃< = Re

(
h̃1,1

)
. We start by

noting that

E
[
‖v(2)

H − v
(1)
H ‖

2
]
≤ 8E

[
|ĥ(2)
< − ĥ

(1)
< |

2
]
. (F.53)

The absolute value of the difference can be bounded as

|ĥ(2)
< − ĥ

(1)
< | ≤ |ĥ

(2)
< − h̃<|+ |h̃< − ĥ

(1)
< |

≤ 2z
(2)
1 + 2z

(1)
1 ,

(F.54)

what follows from (F.47). Since z
(2)
1 is drawn from the same distribution as z

(1)
1 but with

higher variance, it holds that

E
[(

2z
(2)
1 + 2z

(1)
1

)2] ≤ E
[(

4z
(2)
1

)2]
(F.55)

and consequently

E
[
|ĥ(2)
< − ĥ

(1)
< |

2
]
≤ 16E

[(
z

(2)
1

)2]
≤ 16P−αmin ,

(F.56)

where (F.56) is obtained from [132, Lemma 1]. This concludes the proof of Lemma F.2. �
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Appendix G

Analysis of the Power Normaliza-

tion Parameters λi

We prove in this appendix the results presented in Section 6.6. As the parameters λi are

obtained separately for each RX, we consider here only one of them. Consequently, we

omit the sub-index i in the following. As we consider only one of the two parameters,

the set Ω is defined as

Ω ,
{

(Ĥ(1), Ĥ(2))
∣∣Q(λ(1)

)
= Q

(
λ(2)

)
∧Q

(
λ(1)

)
6= 0
}
. (G.1)

Let us consider the extended set Ω∪0 as the set including the cases in which the quantized

agreed parameter is 0. It is hence defined as

Ω∪0 ,
{

(Ĥ(1), Ĥ(2))
∣∣ Q(λ(1)

)
= Q

(
λ(2)

)}
. (G.2)

We will assume when needed that

fλ|Ω∪0
= fλ. (G.3)

This assumption is done so as to simplify the result. It has not been proven, but it is

expected to hold because of the uniformity of the quantizer and the isotropy of the CSIT.

Moreover, it holds that fλ|Ω
a.s.−→ fλ as P approaches infinity. The equality in (G.3) has

been verified by simulations.

We consider the uniform quantizer of Lemma 6.1, denoted by Q, with step size q.

There are N = d1/qe quantization levels. Let define `n as the n-th quantization point.
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Let `0 = 0, `n = nq, n ∈ {0, . . . , N − 1}. The quantizer is given by the function

Qu(x) , q

⌊
1

q
x

⌋
. (G.4)

Consequently, Pr(Qu(x) = `n) =
∫ `n+1

`n
fX(x) dx, where fX(x) is the probability density

function of the input x.

G.1 Maximum TX norm Normalization

Let us first consider the case in which λi = |h̃ī,1|µi, with µ1 = µ2 = µ, and

µ ,
1

max(‖toTX 1‖, ‖toTX 2‖)
. (G.5)

In this case, (6.49) implies that fmax(‖toTX 1‖,‖t
o
TX 2‖) = 4− 2x, x ∈ [1, 2], and µ satisfies

that, ∀x ∈ [
√

2
2 , 1],

Fµ = 1− 4x−2 − x−4, fµ = 8x−3 − 4x−5. (G.6)

Expected value of λ

In this case λ satisfies that, ∀x ∈ [0, 1],

Fλ =
x2(1− x2)

1 + x2
+

 x2

2−2x2 if x ≤ 1/
√

2

1.5− 1
2x2 if x ≥ 1/

√
2

fλ =
4x

(1 + x2)2
− 2x+ min

(
x

(1− x2)2
,

1

x3

)
⇒ E[λ] =

1

6

(
− 16 + 9

√
2 + 3π − 3 tanh−1(

1√
2

)
)
≈ 0.584763.

(G.7)

(G.8)

(G.9)

Moreover λ2 satisfies that, ∀x ∈ [0, 1],

Fλ2 =
x(1− x)

1 + x
+

 x
2−2x if x ≤ 1/2

1.5− 1
2x if x ≥ 1/2

fλ2 =
2

(1 + x)2
− 1 + min

(
1

2(1− x)2
,

1

2x2

)
⇒ E

[
λ2
]

= −1 + tanh−1(2)− tanh−1(3)− ln(2)

2
− ln(3)

2
+ ln(8) ≈ 0.386294.

(G.10)

(G.11)

(G.12)
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G.1. Maximum TX norm Normalization

Consider now log2(λ2). From the previous results, it satisfies, ∀x ∈ (−∞, 0],

flog2(λ2) = ln(2)

(
2x
( 2

(2x + 1)2
− 1
)

+ min
( 2x−1

(1− 2x)2
, 2−x−1

))
⇒ E

[
log2(λ2)

]
=

3− 4 ln(4)

2 ln(2)
≈ −1.83596.

(G.13)

(G.14)

Thus, E[log2(λ)] = 3−4 ln(4)
4 ln(2) ≈ −0.91798, what proves Lemma 6.2. �

Expected value of λ conditioned on Ω

We have analyzed the expected values for the λ parameter. Let us consider now the

expectation conditioned on Ω. First, note that Pr(λQ = `n) = Fλ(`n+1)− Fλ(`n). Hence,

the assumption in (G.3) yields

Pr
(
λQ = 0|Ω∪0

)
= Fλ(q). (G.15)

Then, from (G.7), we obtain

Pr
(
λQ = 0|Ω∪0

)
=
q2(1− q2)

1 + q2
+


q2

2−2q2 if q ≤ 1/
√

2

1.5− 1
2q2 if q ≥ 1/

√
2

(G.16)

From the fact that fλ|Ω(x) =
fλ|Ω∪0

(x)

1−Pr(λQ=0|Ω∪0)
if x ≥ q, (G.3), and (G.15) it follows that

fλ|Ω(x) = =
fλ(x)

1− Fλ(q)
if x ≥ q. (G.17)

Recalling (G.3), we can write

E|Ω[log2

(
λ2
)
] =

1

1− Fλ(q)

∫ 0

log2(q2)
xflog2(λ2)(x)︸ ︷︷ ︸
,Φ

. (G.18)

Let us introduce the notation a , log2(q2). Then,

Φ =



1
ln(2)

(
1
2 + 2−a−1(a ln(2) + 1)

+ 2a (a ln(2)− 1) + 2 ln
(
2a + 1

)
− 2a ln(2)

1+2−a

)
− 2 if a ≥ −1

3−12 ln( 3
2)−ln(2)

ln(64) −
1+2a−(2a−1)a ln(2)

1+2−a −2 ln(1+2a)

ln(2) − 1

+
2aa ln(2)

2a−1
−ln(1−2a)

2 ln(2) + 2−ln(2)
ln(4) −

ln( 8192
729 )

ln(8) if a ≤ −1

(G.19)
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Expected values for the quantized parameter λQ

For the quantized parameter, it follows in a similar manner as in (G.17) that, for n ≥ 1,

Pr
(
λQ = `n|Ω

)
=

Pr
(
λQ = `n|Ω∪0

)
1− Fλ(q)

. (G.20)

We denote the mass density function (MDF) of a discrete variable x as fx. From the law

of the unconscious statistician and (G.3) we can write that

E|Ω
[
log2

(
(λQ)2

)]
=

N−1∑
n=1

log2((nq)2)fλQ|Ω(nq)

=
2

1− Fλ(q)

N−1∑
n=1

log2(nq)fλQ(nq)︸ ︷︷ ︸
, Ξ

.
(G.21)

It follows that

Ξ =
N−1∑
n=1

log2(nq)
(
Fλ((n+ 1)q)− Fλ(nq)

)
=

N−1∑
n=2

Fλ(nq) log2

(
n− 1

n

)
+ log2(N − 1) + log2(q) (1− Fλ(q)) ,

(G.22)

what concludes the proof for Lemma 6.3. �

G.2 Unit-norm per RX Normalization

In this case, we transmit P
2 power for each RX stream (data symbol), and the precoder

of each symbol is unit-norm. Hence, ∀i ∈ N2, µi = µ and µ = 1.

Expected value of λ

Therefore, λi , |hī,1| and thus

λ2 ∼ Uniform(0, 1), λ ∼ Triangular(0, 1). (G.23)

Note that, under such assumptions, Λ∗1 and Λ∗2 are i.i.d. The distributions in (G.23)

imply that, ∀x ∈ [0, 1],

Fλ = x2, fλ = 2x, ⇒ E[λ] =
2

3
. (G.24)
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Regarding λ2, it follows that for any x ∈ [0, 1]

Fλ2 = x, fλ2 = 1, ⇒ E
[
λ2
]

=
1

2
. (G.25)

Furthermore, log2(λ2) satisfies that, ∀x ∈ (−∞, 0],

Flog2(λ2) = 2x, flog2(λ2) = 2x ln(2)

⇒ E
[
log2(λ2)

]
=
−1

ln(2)
≈ −1.4427.

(G.26)

(G.27)

and also log2(λ) = 0.5 log2(λ2) and then E[log2(λ)] = −1
2 ln(2) ≈ −0.72135. Hence,

equation (6.60) of Lemma 6.4 is proven.

Expected value of λ conditioned on Ω

In a similar manner as in (G.16), it holds that Pr(λQ = `n) = Fλ(`n+1) − Fλ(`n) and

hence

Pr(λQ = `n) =

1− (N − 1)2q2 if n = N − 1

(2n+ 1)q2 otherwise.
(G.28)

From (G.3), it follows that

Pr
(
λQ = `0|Ω∪0

)
= q2, Pr

(
λQ 6= `0|Ω∪0

)
= 1− q2. (G.29)

Likewise (G.17), by considering that Pr
(
λQ 6= `0|Ω∪0

)
= 1− q2 and (G.3) we obtain

fλ|Ω(x) =
fλ|Ω∪0

(x)

1− q2

=
2x

1− q2
,

(G.30)

and thus

E|Ω
[
log2

(
λ2
)]

=

∫ 1

q
2 log2(x)

2x

1− q2
dx

=
1

(1− q2)

[
x2(2 ln(x)− 1)

ln(2)

]1

q

=
−1

ln(2)
− q2 log2(q2)

1− q2
,

(G.31)

what concludes the proof of Lemma 6.4. �
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Expected values for the quantized parameter λQ

Similar to (G.17) and (G.30), the quantized parameter λQ satisfies that

Pr
(
λQ = `n|Ω

)
=

Pr
(
λQ = `n

)
1− q2

. (G.32)

Thus,

Pr
(
λQ = `n|Ω

)
=


1−(N−1)2q2

1−q2 if n = N − 1

(2n+1)q2

1−q2 otherwise.
(G.33)

Moreover, from the Law of the Unconscious Statistician, it holds that

E|Ω
[
log2

(
(λQ)2

)]
= 2

N−1∑
n=1

log2(nq) Pr
(
λQ = nq|Ω

)
. (G.34)

Therefore,

E|Ω
[
log2

(
(λQ)2

)]
= 2

(
N−2∑
n=1

log2(nq)
(2n+ 1)q2

1− q2
+ log2((N − 1)q)

1− (N − 1)2q2

1− q2

)

= 2
( q2

1− q2

N−2∑
n=1

log2(nq)(2n+ 1)︸ ︷︷ ︸
Ψ

+ log2((N − 1)q)
1− (N − 1)2q2

1− q2

)
. (G.35)

To conclude, the sum Ψ can be expressed as

Ψ =

N−2∑
n=1

2n log2(n) +
N−2∑
n=1

log2(n) + log2(q)
N−2∑
n=1

(2n+ 1)

= 2 log2

(
N−2∏
n=1

nn

)
+ log2((N − 2)!) +N(N − 2) log2(q)

= 2
N−2∑
n=1

n log2(n) + log2((N − 2)!) +N(N − 2) log2(q).

(G.36)
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Appendix H

Proofs for Chapter 7

This appendix encloses all the proofs of the lemmas, corollaries and propositions of

Chapter 7. We present them in demonstrative order.

H.1 Proof of Lemma 7.3 (Probability of Power Outage)

We denote the event of power outage as Po. Note that

Pr (Po) ≤ N1 Pr (‖T1,1‖ > 1) , (H.1)

and T1,1 = µ[w1,1,1,w2,1,1, . . . ,wK,1,1], where wi,j,n represents the n-th element of the

precoding vector at TX j for the data symbols of RX i. Therefore,

Pr (Po) ≤ N1 Pr (‖µ[w1,1,1,w2,1,1, . . . ,wK,1,1]‖ > 1)

(a)

≤ N1 Pr

 ⋃
i∈NK

‖µwi,1,1‖ > ‖vi,1,1‖


(b)

≤ N1K Pr (‖µw1,1,1‖ > ‖v1,1,1‖)
(c)

≤ N1K Pr (µ‖v1,1,1‖+ µ‖φ1‖ > ‖v1,1,1‖)

= N1K Pr

(
‖φ1‖ >

1− µ
µ
‖v1,1,1‖

)
,

(H.2)

where (a) is obtained from the precoder definition –since ‖[v1,1,1 . . . vK,1,1]‖ ≤ 1–,

(b) because wi,1,1 (resp. vi,1,1) is equally distributed for any i ∈ NK , and (c) from (7.22).

Now, we obtain the probability by conditioning on ‖v1,1,1‖ and then averaging over the
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distribution of ‖v1,1,1‖. Let us denote µ′ , 1−µ
µ . Hence,

Pr (Po) ≤ N1K

∫ ∞
−∞

Pr
(
‖φ1‖ > µ′ν

)
f‖v1,1,1‖(ν) dν. (H.3)

Using Markov’s inequality we obtain that

Pr (Po) ≤ N1K

∫ ∞
−∞

E[‖φ1‖]
µ′ν

f‖v1,1,1‖(ν) dν

= N1K E[‖φ1‖]
1

µ′
E
[
‖v1,1,1‖−1

]
,

(H.4)

where E
[
‖v1,1,1‖−1

]
exists from property (ZF2). Let us focus on the first expectation

term of (H.4) (E[‖φ1‖]). Recalling (7.22), φi is defined as

φi = Ĥ†
ī,1

Ĥī,1̄(vi,1̄ −wi,1̄). (H.5)

Then,

E [‖φi‖] = E
[
‖Ĥ†

ī,1
Ĥī,1̄(vi,1̄ −wi,1̄)‖

]
(a)

≤ E
[
‖Ĥ†

ī,1
Ĥī,1̄‖F‖vi,1̄ −wi,1̄‖

]
(b)

≤
√

E
[
‖Ĥ†

ī,1
Ĥī,1̄‖2F

]
E
[
‖vi,1̄ −wi,1̄‖2

]
,

(H.6)

where (a) comes from the sub-multiplicative property of Frobenius norm and (b) from

Cauchy–Schwarz inequality. Let us denote gm ,
√
E
[
‖Ĥ†

ī,1
Ĥī,1̄‖2F

]
, which is a value

that does not depend on P because the channel estimates are equally distributed for any

estimation error variance. Then, we have that

E [‖φi‖] ≤ gm
√
E
[
‖vi,1̄ −wi,1̄‖2

]
. (H.7)

Lemma 7.2 and the fact that E
[
‖vi,1̄ −wi,1̄‖2

]
=
∑M

j=2 E
[
‖vi,j −wi,j‖2

]
yield

E [‖φ1‖] = O
(
P̄−αq

)
. (H.8)

Since µ = 1− ε, with ε = Θ(P̄−αµ) and ε > 0, the term 1
µ′ = µ

1−µ satisfies 1
µ′ = Θ(P̄αµ).

From (ZF2), E
[
‖v1,1,1‖−1

]
is Θ(1). Hence, recalling (H.4),

Pr (Po) ≤ N1KE
[
‖v1,1,1‖−1

]
E[‖φ1‖]

1

µ′

= Θ(1)O
(
P̄−αq

)
Θ(P̄αµ),

(H.9)
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what implies that Pr (Po) = O
(
P̄αµ−αq

)
. By selecting αµ < αq, the probability of power

outage vanishes and it holds that

Pr (Po) = o

(
1

log2(P )

)
, (H.10)

what concludes the proof. �

H.2 Proof of Corollary 7.2 (Error on Distributed Precoder)

In order to prove that E
[
‖vi −wi‖2

]
= O (P−αq), let us recall that the vector wi − vi

can be written as

wi − vi =

[
φi

wi,1̄ − vi,1̄

]
, (H.11)

where φi, which has been defined in (7.22), is the difference at TX 1 and wi,1̄ − vi,1̄
denotes the difference for the coefficients of all the TXs but TX 1, i.e., wi,1̄ − vi,1̄ =

[(wi,2−vi,2)T, . . . , (wi,K −vi,K)T]T. Let us define GI as GI ,

[
Ĥ†
ī,1

Ĥī,1̄

I

]
. From (H.5),

we can rewrite (H.11) as

wi − vi = GI(wi,1̄ − vi,1̄). (H.12)

From Cauchy-Schwarz inequality, (H.12) implies that

E
[
‖wi − vi‖2

]
≤
√

E[‖GI‖4]E[‖wi,1̄ − vi,1̄‖4]. (H.13)

Let gs be gs ,
√
E[‖GI‖4], which is Θ(1). Moreover, the instantaneous power constraint

for the precoder ensures that ‖vi,j −wi,j‖2 ≤ 4N2
j . Hence,

E
[
‖wi,1̄ − vi,1̄‖4

]
≤

M∑
j=2

E
[
4N2

j ‖wi,j − vi,j‖2
]
, (H.14)

what, together with Lemma 7.2, means that

E
[
‖wi − vi‖2

]
≤ 4N2

j gs

M∑
j=2

E
[
‖vi,j −wi,j‖2

]
= O(P̄−αq),

(H.15)

what concludes the proof. �
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H.3 Proof of Proposition 7.1

We prove in the following that Pr
(
|δ(1)
i v`| < P̄−γ

)
= o

(
1

log2(P )

)
, for any γ > 0 and

i, ` ∈ NK : ` 6= i. Let us denote the precoder for RX ` obtained with perfect knowledge

of H as u`. Then,

Pr
(
|δ(1)
i v`| < P̄−γ

)
= Pr

(
|δ(1)
i u` + δ

(1)
i (v` − u`)| < P̄−γ

)
≤ Pr

(∣∣|δ(1)
i u`| − |δ

(1)
i (v` − u`)|

∣∣ < P̄−γ
)
,

(H.16)

where we have applied the inverse triangle inequality. In order to prove Proposition 7.1

we capitalize the intuition that the term |δ(1)
i u`| is independent of the quality of the

estimate and P , but the value of |δ(1)
i (v` − u`)| is directly proportional to the quality

P−α
(1)

. Before applying this intuition to (H.16), we first analyze the term |δ(1)
i (v` − u`)|

to obtain which is the probability Pr
(
|δ(1)
i (v` − u`)| > P̄−β

)
, for β < α(1). Let us define

the scalar ε > 0 such that β < β + ε < α(1). By means of the Cauchy-Schwarz inequality

and the law of total probability we obtain

Pr
(
|δ(1)
i (v` − u`)| > P̄−β

)
≤ Pr

(
‖δ(1)

i ‖‖v` − u`‖ > P̄−β
)

≤ Pr
(
‖δ(1)

i ‖‖v` − u`‖ > P̄−β | ‖v` − u`‖ > P̄−β−ε
)

Pr
(
‖v` − u`‖ > P̄−β−ε

)
+ Pr

(
‖δ(1)

i ‖‖v` − u`‖ > P̄−β | ‖v` − u`‖ ≤ P̄−β−ε
)

Pr
(
‖v` − u`‖ ≤ P̄−β−ε

)
≤ Pr

(
‖v` − u`‖ > P̄−β−ε

)
+ Pr

(
‖δ(1)

i ‖ > P̄ ε | ‖v` − u`‖ ≤ P̄−β−ε
)
. (H.17)

The first term Pr
(
‖v` − u`‖ > P̄−β−ε

)
can be upper-bounded by means of the Markov’s

inequality, such that

Pr
(
‖v` − u`‖ > P̄−β−ε

)
≤ P̄ β+ε E[‖v` − u`‖]

= O(P̄ β+ε−α(1)
),

(H.18)

where the last step follows directly after applying Lemma 7.2 to vectors whose respective

input estimates differ by a O(P̄−α
(1)

) additive error term. For the last term in (H.17),

Pr
(
‖δ(1)

i ‖ > P̄ ε | ‖v` − u`‖ ≤ P̄−β−ε
)
, it follows that

Pr
(
‖δ(1)

i ‖ > P̄ ε | ‖v` − u`‖ ≤ P̄−β−ε
)
≤

Pr
(
‖δ(1)

i ‖ > P̄ ε
)

Pr
(
‖v` − u`‖ ≤ P̄−β−ε

) . (H.19)

From (H.18), it holds that Pr
(
‖v` − u`‖ ≤ P̄−β−ε

)
= 1 − O(P̄ β+ε−α(1)

). Besides this,

‖δ(1)
i ‖2 =

∑NT
n=1 |δ

(1)
i,n |2, where δ

(1)
i,n are i.i.d. asNC(0, 1). Consequently, |δ(1)

i,n |2 is distributed
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following a Rayleigh distribution and ‖δ(1)
i ‖2 ∼ Γd(NT , 1), where Γd(NT , 1) denotes the

Gamma distribution. Moreover, Γd(NT , 1) is also called the Erlang distribution, and it

satisfies that

Pr
(
X ∼ Γd(NT , 1) < x

)
= 1−

NT−1∑
n=0

1

n!
e−xxn. (H.20)

Hence, it follows that

Pr
(
‖δ(1)

i ‖ > P̄ ε
)

= Pr
(
‖δ(1)

i ‖
2 > P̄ 2ε

)
=

NT−1∑
n=0

1

n!
e−P̄

2ε
P̄ 2nε.

(H.21)

Since ε > 0, it follows that Pr
(
‖δ(1)

i ‖ > P̄ ε
)

= o(P̄ x), ∀x ∈ R, and hence

Pr
(
‖δ(1)

i ‖ > P̄ ε
)

Pr
(
‖v` − u`‖ ≤ P̄−β−ε

) =
1

1−O(P̄ β+ε−α(1)
)
o

(
1

log2(P )

)
, (H.22)

what together with (H.18) and (H.17) leads to

Pr
(
|δ(1)
i (v` − u`)| > P̄−β

)
= o

(
1

log2(P )

)
(H.23)

for any β < α(1). With this result, we can focus back on (H.16), that can be expanded

by means of the Law of total probability such that

Pr
(∣∣|δ(1)

i u`| − |δ
(1)
i (v` − u`)|

∣∣ < P̄−γ
)

= Pr
(∣∣|δ(1)

i u`| − |δ
(1)
i (v` − u`)|

∣∣ < P̄−γ | |δ(1)
i (v` − u`)| ≤ P̄−β

)
+ o

(
1

log2(P )

)
≤ Pr

(
|δ(1)
i u`| < P̄−γ + P̄−β

)
+ o

(
1

log2(P )

)
.

(H.24)

Let us assume w.l.o.g. that β < γ, such that Pr
(
|δ(1)
i u`| < P̄−γ + P̄−β

)
≤ Pr

(
|δ(1)
i u`| <

2P̄−β
)
. Therefore, it remains to prove that Pr

(
|δ(1)
i u`| < 2P̄−β

)
= o

(
1

log2(P )

)
. Let εβ

be a scalar such that 0 < εβ < β and let us define ψ as the angle satisfying

cos(ψ) ,
|δ(1)
i u`|

‖δ(1)
i ‖‖u`‖

. (H.25)
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Then, we use again the Law of Total Probability to obtain

Pr
(
|δ(1)
i u`| < 2P̄−β

)
= Pr

(
‖δ(1)

i ‖‖u`‖ cos(ψ) < 2P̄−β | ‖u`‖ ≤ P̄−εβ
)

Pr
(
‖u`‖ ≤ P̄−εβ

)
+ Pr

(
‖δ(1)

i ‖‖u`‖ cos(ψ) < 2P̄−β | ‖u`‖ > P̄−εβ
)

Pr
(
‖u`‖ > P̄−εβ

)
≤ Pr

(
‖u`‖ ≤ P̄−εβ

)
+ Pr

(
‖δ(1)

i ‖ cos(ψ) < 2P̄−βP̄ εβ | ‖u`‖ > P̄−εβ
)
.

(H.26)

Importantly, δ
(1)
i is isotropically distributed (i.e., the normalized value δ

(1)
i /‖δ(1)

i ‖ is

uniformly distributed in the sphere surface). Besides this, u` is a function of H. Since

H and δ
(1)
i are mutually independent, so δ

(1)
i and u` are. Hence, from isotropy of δ

(1)
i ,

cos(ψ) is independent of u`. On this basis, we can select u` = [1,01×NT−1] to obtain that

Pr
(
‖δ(1)

i ‖ cos(ψ) < 2P̄ εβ−β | ‖u`‖ > P̄−εβ
)

= Pr
(
|δ(1)
i,1,1| < 2P̄ εβ−β

)
, (H.27)

where δ
(1)
i,1,1 denotes the first element of the vector δ

(1)
i , and it is distributed as NC(0, 1).

Then,

Pr
(
|δ(1)
i,1,1| < 2P̄ εβ−β

)
=

2√
2π

∫ 2P̄
εβ−β

0
e−x

2/2 dx

≤ 4√
2π
P̄ εβ−β.

(H.28)

On the other hand, the term Pr
(
‖u`‖ ≤ P̄−εβ

)
can be bounded by

Pr
(
‖u`‖ ≤ P̄−εβ

)
=

∫ P̄
−εβ

0
f‖ui‖(x) dx

≤ fmax
‖ui‖P̄

−εβ ,

(H.29)

what follows from (ZF3). By introducing (H.28) and (H.29) in (H.26) we obtain that

Pr
(
|δ(1)
i u`| < 2P̄−β

)
= O(P̄max(−εβ , εβ−β)). (H.30)

Note that εβ satisfies 0 < εβ < β. Hence,

Pr
(
|δ(1)
i v`| < P̄−γ

)
≤ Pr

(∣∣|δ(1)
i u`| − |δ

(1)
i (v` − u`)|

∣∣ < P̄−γ
)

≤ Pr
(
|δ(1)
i u`| < 2P̄−β

)
+ o

(
1

log2(P )

)
= o

(
1

log2(P )

)
,

(H.31)
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what concludes the proof of Proposition 7.1. �

H.4 Proof of Proposition 7.2

We prove in the following that E[|δ(1)
i (w` − v`)|] = O(P̄−αq) for any i, ` ∈ NK : ` 6= i. It

follows that

E
[
|δ(1)
i (w` − v`)|

]
≤ E

[
‖δ(1)

i ‖‖w` − v`‖
]

= cov
(
‖δ(1)

i ‖, ‖w` − v`‖
)

+ E
[
‖δ(1)

i ‖
]
E[‖w` − v`‖]

≤
√

E
[
‖δ(1)

i ‖2
]
σ‖w`−v`‖ + E

[
‖δ(1)

i ‖
]
E[‖w` − v`‖] ,

(H.32)

where cov(X,Y ) , E[(X −E(X))(Y −E(Y ))] is the covariance between X and Y and σ2
X

represents the variance of the random variable X. The last inequality comes from the fact

that cov(x, y) ≤ σxσy and σ2
x ≤ E

[
x2
]
. Besides this, it holds from ‖δ(1)

i ‖2 ∼ Γd(NT , 1)

that E
[
‖δ(1)

i ‖2
]

= NT . From this and the fact that E[x] ≤
√

E[x2] we can write

E
[
|δ(1)
i (w` − v`)|

]
≤
√
NT

(
σ‖w`−v`‖ + E[‖w` − v`‖]

)
(a)

≤
√
NT 2

√
E[‖w` − v`‖2]

(b)
= O(P̄−αq),

(H.33)

where (a) comes from the fact that σx + E[x] ≤ 2
√
E[x2] and (b) from Corollary 7.2. �

H.5 Proof of Lemma 7.1 (Quantizer Consistency)

The proof of Lemma 7.1 is analogous to the proof of Property P2 in Chapter 6, although

the estimate model and the quantizer are different. Let q , P̄−αq be the quantization

step size of the quantizer Qu. Then, Qu is defined such that, for a scalar value x ∈ R,

Qu(x) , q

⌊
x

q
+

1

2

⌋
. (H.34)

We extend the notation for any complex matrix A ∈ Cn×m such that Aq = Qu(A)

denotes the element-wise quantization, i.e.,

(Aq)i,k = Qu
(

Re(Ai,k)
)

+ ıQu
(

Im(Ai,k)
)
, (H.35)
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where Re(x) and Im(x) stand for the real imaginary part of x ∈ C, and ı ,
√
−1. In

this appendix we prove that, for a scalar uniform quantizer Qu with q = P̄−αq and

α(j) > αq > 0, ∀j ∈ NM , it follows that

Pr
(
Ĥ(j)←(1)
q 6= Ĥ(j)

q

)
= o

(
1

log2(P )

)
, (H.36)

where Ĥ
(j)
q = Qu(Ĥ(j)) and Ĥ

(j)←(1)
q is the MAP estimator of Ĥ

(j)
q given Ĥ(1). We start

by noting that, by definition of the MAP estimator,

Pr
(
Ĥ(j)←(1)
q 6= Ĥ(j)

q

)
≤ Pr

(
Qu(Ĥ(1)) 6= Ĥ(j)

q

)
. (H.37)

Since Re(Ĥ
(1)
i,k ) and Im(Ĥ

(1)
i,k ) are i.i.d. for any i, k, it follows that

Pr
(
Qu(Ĥ(1)) 6= Ĥ(j)

q

)
≤ 2KNT Pr

(
Qu(Re(Ĥ

(1)
1,1)) 6= Qu(Re(Ĥ

(j)
1,1))

)
, (H.38)

where we have selected w.l.o.g. the real part of the (1,1) channel element. Hence, it is

sufficient to obtain the probability of disagreement for Re(Ĥ
(j)
1,1). For that purpose, we

follow the same approach of Appendix F.2 and we split each reconstruction level in two

parts: The edge of the cell and the center of the cell. This is done in order to show that,

as P increases, the probability of disagreement vanishes if Ĥ
(1)
1,1 is in the center of the

quantization level and, besides this, that the probability that Ĥ
(1)
1,1 is in the edge area

also vanishes. We rigorously show that in the following. Before starting, we introduce

the simplified notation h(j) , Re(Ĥ
(j)
1,1) to ease the readability. Accordingly, we also

introduce the notation h , Re(H1,1) and δ , Re(δ
(j)
1,1) such that h(j) = z̆(j)h + z(j)δ(j),

with z(j) = P̄−α
(j)

and z̆(j) =
√

1− (z(j))2. Furthermore, similar to Section 7.5, we

introduce the notations z̆
(j)
inv = 1

z̆(j) and z
(j)
n = z(j)

z̆(j) .

H.5.1 Egde and Center of the Reconstruction Level

This division is the same we applied in Appendix F.2.1. We recall it here for convenience.

Let `n be the n-th quantization level of Qu, n ∈ Z, with `0 = 0. Let us define Ln as the

input interval that outputs `n, i.e.,

Ln , {x | Qu(x) = `n}. (H.39)

Ln has a range [Lmin
n , Lmax

n ) such that |Ln| , Lmax
n − Lmin

n = P̄−αq . We split Ln in two

areas, the edge area En and the center area Cn, depicted in Fig. F.1. The edge area is

defined as the part of Ln that is at most at distance P̄−ceαq of the boundary of the cell,
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with ce > 1, i.e.,

En ,
{
x ∈ Ln |x− Lmin

n < P̄−ceαq ∨ Lmax
n − x < P̄−ceαq

}
. (H.40)

The center area is given by Cn , {x ∈ Ln\En}. Intuitively, the probability of disagree-

ment is very high if h(1) lies in the edge area En, whereas this probability vanishes in the

central area Cn. Mathematically, we have that

Pr

(
Qu(h(1)) 6= Qu(h(j))

)
≤ Pr

(
h(1) ∈

⋃
n∈Z

En

)
+ Pr

(
Qu(h(1)) 6= Qu(h(j)) | h(1) ∈

⋃
n∈Z

Cn

)
.

(H.41)

H.5.2 Probability of Belonging to the Edge Area

Suppose an arbitrary quantization level `n. Let fmax
Ln

be the maximum value of the PDF

of h(1) in Ln = {x | Qu(x) = `n}. Then, the probability that h(1) is in En is bounded by

Pr
(
h(1) ∈ En

)
≤ fmax

Ln |En|

= 2fmax
Ln P̄−ceαq ,

(H.42)

where |En| denotes the length of En. The standard normal distribution has a derivative

that is, at most, 1/
√

2πe. Thus, the probability of being in Ln satisfies

Pr
(
h(1) ∈ Ln

)
≥
(
fmax
Ln − 1/

√
2πe|Ln|

)
|Ln|

=
(
fmax
Ln − 1/

√
2πeP̄−αq

)
P̄−αq .

(H.43)

Hence, the probability that h(1) is in En, given that it is in Ln, satisfies ∀n that

Pr
(
h(1) ∈ En | Ln

)
=

Pr
(
h(1) ∈ En

)
Pr
(
h(1) ∈ Ln

)
≤

2fmax
Ln(

fmax
Ln
− 1/
√

2πeP̄−αq
) P̄−(ce−1)αq .

(H.44)

Let us define gmax as

gmax , max
n∈Z

2fmax
Ln(

fmax
Ln
− 1/
√

2πeP̄−αq
) . (H.45)

Note that gmax = Θ(1). Hence, from (H.44) and the fact that∑
n∈Z

Pr
(
h(1) ∈ Ln

)
= 1 (H.46)
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we can write

Pr
(
h(1) ∈

⋃
n∈Z

En
)

=
∑
n∈Z

Pr
(
h(1) ∈ En

)
Pr
(
h(1) ∈ Ln

) Pr
(
h(1) ∈ Ln

)
≤ gmaxP̄

−(ce−1)αq
∑
n∈Z

Pr
(
h(1) ∈ Ln

)
,

(H.47)

what means that
Pr
(
h(1) ∈

⋃
n∈Z

En
)
≤ O

(
P̄−(ce−1)αq

)
. (H.48)

Consequently,

Pr
(
h(1) ∈

⋃
n∈Z

En
)

= o

(
1

log2(P )

)
. (H.49)

H.5.3 Probability of Disagreement in the Center Area

From (F.23) in Appendix F.2.3, it follows that

Pr

(
Qu(h(1)) 6= Qu(h(j))

∣∣∣ h(1) ∈
⋃
n∈Z

Cn

)
≤ 1

Pr
(
h(1) ∈

⋃
n∈ZCn

) E
[∣∣h(1) − h(j)

∣∣]
P̄−ceαq

.

In the following, we obtain the expectation E
[∣∣h(1) − h(j)

∣∣]. Then,

h(1) − h(j) = h(z̆(1) − z̆(j)) + (z(1)δ(1) − z(j)δ(j)). (H.50)

From the assumption of Gaussian variables, it holds that

h(z̆(1) − z̆(j)) ∼ N
(

0, (z̆(1) − z̆(j))2
)
,

z(1)δ(1) − z(j)δ(j) ∼ N
(

0, (z(1))2 + (z(j))2
)
.

(H.51)

(H.52)

Since h(1) is independent of δ(1) and δ(j), it follows that

h(1) − h(j) ∼ N
(
0, σ2

d

)
, (H.53)

where σ2
d is given by

σ2
d = (z̆(1) − z̆(j))2 + (z(1))2 + (z(j))2. (H.54)

Substituting the variables for their values yields

σ2
d = 2

(
1−

√
1− P−α(1) − P−α(j)

+ P−α
(1)−α(j)

)
. (H.55)
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Furthermore, if h(1) − h(j) is drawn from a zero-mean Normal distribution of variance σ2
d,

|h(1) − h(j)| is distributed as a half-normal distribution of mean

E
[∣∣h(1) − h(j)

∣∣] = σd

√
2

π
. (H.56)

From (H.55) and the fact that, ∀ 0 ≤ x ≤ 1,
√

1− x ≥ 1− x, it follows that

E
[∣∣h(1) − h(j)

∣∣] ≤√ 4

π

(
P−α

(1)
+ P−α

(j) − P−α(1)−α(j)
)

= O(P̄−α
(j)

).

(H.57)

Besides this, it holds from (H.49) that

Pr
(

h(1) ∈
⋃
n∈Z

Cn

)
= 1− Pr

(
h(1) ∈

⋃
n∈Z

En

)
= 1−O(P̄−(ce−1)αq).

(H.58)

Both (H.57) and (H.58) lead to

Pr

(
Qu(h(1)) 6= Qu(h(j))

∣∣∣ h(1) ∈
⋃
n∈Z

Cn

)
≤ 1

Pr
(

h(1) ∈
⋃
n∈ZCn

) E
[∣∣h(1) − h(j)

∣∣]
P̄−ceαq

= O
(
P̄ ceαq−α

(j)
)

= o

(
1

log2(P )

)
.

(H.59)

The last inequality is obtained only if ceαq < α(j), ∀j ∈ NM . Thus, it follows from (H.59)

that it is necessary to satisfy that ceαq < α(j), ∀j ∈ NM . Since for any αq < α(j) we can

find a ce > 1 such that ceαq < α(j), any αq < α(j) will satisfy (H.59) as long as a correct

ce is selected.

H.5.4 Assembling Probabilities

Recalling (H.41), we make use of (H.49) and (H.59) to show that

Pr

(
Qu(h(1)) 6= Qu(h(j))

)
= o

(
1

log2(P )

)
, (H.60)

what concludes the proof of Lemma 7.1. �
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H.6 Proof of Lemma 7.2 (Error on Naive Precoder)

In this appendix we show that

E
[
‖vi,2 −wi,2‖2

]
= O

(
P−αq

)
. (H.61)

Then, (H.61) is straightforwardly generalized for any E
[
‖vi,k −wi,k‖2

]
, k ∈ NM\1. In

order to prove (H.61), we make use of the fact that, as presented in Section 7.2.1, we

assume that the precoding vectors and matrices can be expressed as a combination of

summations, products, and generalized inverses of the channel estimate. Note that with

the previous operations, it is also possible to compute divisions and norms of the channel

estimate coefficients.

First, note that both wi,2 and vi,2 are obtained following the same algorithm but

based on different information (input). Specifically, wi,2 is computed on the basis of

Ĥ
(2)
q = Qu(Ĥ(2)), where Qu is a scalar uniform quantizer with quantization step

q = P̄−αq , (H.62)

and vi,2 on the basis of Ĥ(1). Similar to the previous appendix, let h
(2)
q (resp. h(j) and h)

denote the real or imaginary part of an arbitrary element of the matrix Ĥ
(2)
q (resp. Ĥ(j)

and H). Let us define h
(2)
ς as

h(2)
ς , h(2) + ςq, (H.63)

where ςq is distributed as a binary symmetric distribution with points [−q, q], independent

of the other variables, such that σ2
ςq = q2. Note that the error h

(2)
q − h(1) has smaller

or equal variance than h
(2)
ς − h(1) = h(2) − h(1) + ςq. Hence, we can assume that wi,2 is

computed on the basis of the estimate h
(2)
ς as increasing the error variance can only hurt.

Consequently, the error ξ , h
(2)
ς − h(1) has a variance

σ2
ξ ≤ σ2

d + σ2
ςq + 2σdσςq

= O(P−αq),
(H.64)

where σ2
d is given in (H.55). Therefore, we can write that

h(2)
ς = h(1) + P̄−αqδξ, (H.65)

where δξ is a variable with variance Θ(1) and bounded density. We continue by showing

that the error variance remains being at most Θ(P−αq) after applying addition, product,

inverse or pseudo-inverse operations. Afterward, based on those results, we prove (H.61).
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H.6.1 Error in the Addition

Let a
(2)
ξ , b

(2)
ξ , be distributed as (H.65), i.e., a

(2)
ξ , a(1) + P̄−αqδa

ξ , b
(2)
ξ , b(1) + P̄−αqδb

ξ ,

where δa
ξ , δ

b
ξ , are variables with variance Θ(1) and bounded density. It is easy to see that,

for any a
(2)
ξ , b

(2)
ξ ,

a
(2)
ξ + b

(2)
ξ = a(1) + P̄−αqδa

ξ + b(1) + P̄−αqδb
ξ

= a(1) + b(1) + P̄−αq(δa
ξ + δb

ξ ).
(H.66)

This implies that the error variance of the sum is also O(P−αq).

H.6.2 Error in the Product

It follows that

a
(2)
ξ b

(2)
ξ =

(
a(1) + P̄−αqδa

ξ

)(
b(1) + P̄−αqδb

ξ

)
= a(1)b(1) + P̄−αq

(
a(1)δb

ξ + b(1)δa
ξ + P̄−αqδa

ξδ
b
ξ

)
,

(H.67)

what implies that the product also maintains the scaling of the variance as O(P−αq).

Moreover, as the sum and product of matrices is a composition of sums and products of

its coefficients, the result extends to any two matrices of suitable dimension.

H.6.3 Error in the Inverse

Let us first assume that A
(2)
ξ and A(1) are square matrices with full rank with probability

one, and with coefficients following (H.65). We can then write that

(A
(2)
ξ )−1 =

(
A(1) + P̄−αq∆A

ξ

)−1

= (A(1))−1 − P̄−αq (A(1))−1∆A
ξ

(
A(1) + P̄−αq∆A

ξ

)−1

(H.68)

(H.69)

which is obtained from the Woodbury matrix identity [165]. Hence, the error variance

of the inverse is again O(P−αq). Once that it is proved that the inverse operation

generates an error with variance O(P−αq), we extend it for the Moore–Penrose inverse

(pseudo-inverse) (A
(2)
ξ )†. We assume (as throughout the rest of the document) that each

sub-matrix has maximum rank, i.e.,

rank
(
A

(2)
ξ ∈ CN×M

)
= min(N,M). (H.70)
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Let us assume that A
(2)
ξ is full row-rank matrix, i.e., N ≤M . Under this assumption,

the pseudo-inverse is given by

(A
(2)
ξ )† = (A

(2)
ξ )H

(
A

(2)
ξ (A

(2)
ξ )H

)−1
. (H.71)

The case in which A
(2)
ξ is full column-rank matrix (N ≥M) will follow the same steps

and thus we omit it. It follows from (H.67) that A
(2)
ξ (A

(2)
ξ )H = A(1)(A(1))H + P̄−αq∆eq,

where ∆eq has variance Θ(1). This, together with (H.69), implies that

(
A

(2)
ξ (A

(2)
ξ )H

)−1
=
(
A(1)(A(1))H

)−1
+ P̄−αq∆′eq, (H.72)

and by applying again (H.67) it holds

(A
(2)
ξ )† = (A(1))H

(
A(1)(A(1))H

)−1
+ P̄−αq∆

′′
eq, (H.73)

where ∆′eq and ∆
′′
eq have variance Θ(1). As explained in [145], under the assumption that

X̂ is a full row-rank matrix, any generalized inverse may be expressed as X̂− = X̂†+P⊥U.

Hence, similar result could be obtained for a broad set of generalized inverse.

H.6.4 Error Variance of the Difference of Precoders

The centralized precoder vi,2 is based on Ĥ(1), i.e., V = V(Ĥ(1)). The distributed

precoder at TX 2 is based on its own quantized CSIT Ĥ
(2)
q , then wi,2 is obtained from

W = V(Ĥ
(2)
q ). Based on the previous results and the definition of linear precoders, it

follows that we can write the distributed precoder based on the CSIT of TX 2 (Ĥ
(2)
q ) as

wi,2 = vi,2 + P̄−αqew, (H.74)

where E
[
‖ew‖2

]
= O(1). Consequently,

E
[
‖vi,2 −wi,2‖2

]
= E

[
‖vi,2 − (vi,2 + P̄−αqew)‖2

]
= P−αq E

[
‖ew‖2

]
= O

(
P−αq

)
.

(H.75)

Moreover, since E[‖x‖] ≤
√
E[‖x‖2], it follows that

E [‖vi,j −wi,j‖] = O
(
P̄−αq

)
, (H.76)

what concludes the proof of Lemma 7.2. �
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H.7 Proof of Corollary 7.4

Next, we demonstrate that the use of CD-ZF or AP-ZF in a setting with α(M) = 0 and

instantaneous power constraint leads to limP→∞R
?(α(1)) − R(αM ) = ∞. The main

limitation that leads to this result is that the power outage probability does not vanish at

high SNR. We assume a per-TX power constraint, i.e., ‖Tj‖ = ‖µ[w1,j , . . . , wK,j ]‖ ≤ 1,

so as to simplify the notation. The proof for per-antenna power constraint follows directly.

Let wo
i represent the distributed precoder (CD-ZF or AP-ZF) before taking into

account the instantaneous power constraint and let wi represent the precoder after power

normalization. This means that

wi =

wo
i if ‖T1‖ ≤ 1[ wo
i,1

‖T1‖ , wo
i,2, . . . , wo

i,K

]T
otherwise.

(H.77)

We focus on the rate of RX 1, and the analysis of the rate of other RXs follows by symmetry.

Let PC denote the event that TX 1 is in power outage and that |µh1w2|2 ≥ |µh1w
o
2|

2 + c,

where c is a constant and c > 0. The rate gap ∆R1 can be decomposed as

∆R1 = Pr (PC) ∆R1|PC + Pr (Pc
C) ∆R|Pc

C

≥ Pr (PC) ∆R1|PC ,
(H.78)

where we have assumed that the ideal centralized rate is achieved conditioned on Pc
C .

The achievable rate conditioned on PC yields

R1|PC (α) ≤ E|PC

[
log2

(
1 +

P
K |µh1w1|2

1 + P
K |µh1wo

2|
2 + P

K c

)]

≤ E|PC

[
log2

(
1 +

1

c
|µh1w1|2

)]
.

(H.79)

From the instantaneous power constraint assumption, this term does not scale as function

of P and it is upper-bounded. Let us define the constant mc <∞ such that it satisfies

that E|PC
[

log2

(
1 + c−1 |µh1w1|2

)]
≤ mc. Hence, the rate gap conditioned on PC is

∆R1|PC = R?1|PC (α(1))−R1|PC (α)

≥ R?1|PC (α(1))−mc

=∞.

(H.80)

It remains to prove that Pr (PC) = Θ(1), i.e., that it does not vanish at high SNR,
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since together with (H.80) and (H.78) it implies that the rate gap is unbounded. In the

following, we compute the probability of PC , i.e., of having |µh1w2|2 ≥ |µh1w
o
2|

2 + c.

Let θw be defined as θw , w2 −wo
2. Hence,

Pr(|µh1w2|2 ≥ |µh1w
o
2|

2 + c) = Pr
(
|P̄−α(1)

δ1w
o
2 + h1θw|2 − |P̄−α

(1)
δ1w

o
2|2 ≥

c

µ2

)
,

which comes from the fact that h1w
o
2 = P̄−α

(1)
δ

(1)
1 wo

2. Note that P̄−α
(1)
δ1w

o
2 converges

almost surely to 0 [101], what leads to

lim
P→∞

Pr
(
|µh1w2|2 ≥ |µh1w

o
2|

2 + c
)

= Pr
(
|h1θw|2 ≥

c

µ2

)
. (H.81)

From (H.77) and the fact that PC ⇒ ‖T1‖ > 1,

Pr
(
|h1θw|2 ≥

c

µ2

)
= Pr

( ∣∣∣∣h1,1

wo
1,1

‖T1‖

∣∣∣∣2 ≥ c

µ2

)
. (H.82)

We recall that the CD-ZF precoder is given in (7.22) by

w`,1 = v`,1 + Ĥ†¯̀,1Ĥ¯̀,1̄(v`,1̄ −w`,1̄) (H.83)

and the AP-ZF precoder [82,100] is given by

w`,1 = −Ĥ†¯̀,1Ĥ¯̀,1̄w`,1̄. (H.84)

Since the accuracy of w`,1̄ does not scale with the SNR, the difference v`,1̄−w`,1̄ of (H.83)

has the same probability distribution for any value of P –conversely to the case with

α(M) > 0, where it vanishes–. This implies that the probability distribution of |h1,1
wo

1,1

‖T1‖ |
2

in (H.82) is not affected by the value of P , and since h1,1 is unbounded, there exists an

ε > 0 such that

Pr
(
|h1θw|2 ≥

c

µ2

)
≥ ε, ∀ c

µ2
> 0. (H.85)

Hence, the probability does not vanish when P →∞ and consequently Corollary 7.4 is

proven. �

H.8 Proof of Theorem 7.2

In this section we prove that, if N1 > K − 1, and α(j) = 0 for any j > 1, then, under

average power constraint E
[
‖Tj,n‖2

]
≤ 1, ∀n ∈ NNj , j ∈ NM , it holds that

lim
P→∞

R?(α(1))−R(αM ) ≤ log2

(
E
[
‖Ĥ†K,1‖

2
])

+ log2(K2) + log2

(
4(K − 1)

)
. (H.86)
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Let us assume that TX 2 to TX M precode with a known, fixed precoder, for example

wi,j =
1√
K

1Nj×1, (H.87)

for any i ∈ NK , j ∈ NM\1. The final precoding vector will be µwi,j , where µ ≤ 1 is an

average parameter to satisfy the power constraint. Note that (H.87) is chosen for sake of

simplicity, but the bound in Theorem 7.2 would be modified if wi,j is defined differently.

In a similar way as in (7.22), TX 1 computes its precoder so as to cancel out the

interference generated by the other TXs. If |ĥ(1)
i wi|2 were statistically equivalent to

|ĥ(1)
i vi|2, it would be enough to ensure that ĥ

(1)
i w` = ĥ

(1)
i v` ∀` ∈ NK\i. However, the

proof of that analogy is still an open and challenging problem. Hence, we design the

precoder so as to ensure that

ĥ
(1)
i wi = ĥ

(1)
i vi. (H.88)

The precoder at TX 1 for RX ` is

w`,1 = Ĥ†K,1

([
ĥ

(1)
` v`

0K−1×1

]
− ĤK,1̄w`,1̄

)
, (H.89)

where ĤK,1 represents the first N1 columns of the channel matrix –channel from TX 1

towards all the RXs– and ĤK,1̄ denotes the remaining NT − N1 columns –channel

coefficients from the rest of TXs towards all RXs–. The precoder at TX 1 is denoted by

T1 ∈ CN1×K , and the precoding coefficients at the n-th antenna of TX 1 as T1,n ∈ C1×K .

Let To
1 be defined as

To
1 , [w1,1, . . . , wK,1]. (H.90)

The precoding coefficients are equally distributed for every RX (∀` ∈ NK) and for every

antenna at TX 1 (∀n ∈ N1). Hence,

E
[
‖To

1,n‖2
]

=
1

N1
E
[
‖To

1‖2
]

=
K

N1
E
[
‖w1,1‖2

]
.

(H.91)

With per-antenna average power constraint, the precoder T1 ∈ CN1×K will be given by

T1 = µ
[
w1,1 . . . wK,1

]
, (H.92)

with µ selected to satisfy the power constraint as

µ =

√
N1√

K E [‖w1,1‖2]
. (H.93)
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Note that we can rewrite the rate gap as

∆Ri = E

[
log2

(
1 +

P
K |hivi|

2

1 + P
K

∑
6̀=i |hiv`|

2

)]
− E

[
log2

(
1 +

P
K |µhiwi|2

1 + P
K

∑
`6=i |µhiw`|2

)]

≤ E

[
log2

(
1 +

P
K |hivi|

2

1 + P
K

∑
` 6=i |hiv`|

2

)]
− E

[
log2

(
1 +

P
K |hiwi|2

1 + P
K

∑
` 6=i |hiw`|2

)]
− log2(µ2)

= log2(1/µ2),

where the last step follows from the definition of the precoder (since ĥ
(1)
i w` = ĥ

(1)
i v`, for

all i, ` ∈ NK) and the independence between the channel and the estimation noises. It

remains to bound log2(1/µ2). Note that

log2(1/µ2) = log2(K) + log2

(
E
[
‖w1,1‖2

])
≤ log2

( K
N1

)
+ log2

(
E
[
‖Ĥ†K,1‖

2
])

+ log2(E[‖ĥ(1)
` (v` −w`)‖2]) + log2(E[‖Ĥ¯̀,1̄w`,1̄‖2]).

(H.94)

Let ĥ
(1)
i,n represent the channel coefficient for the n-th antenna, with n ∈ NNT . Given

that w`,j = 1√
K

1Nj×1, for any j > 2,

log2

(
E[‖Ĥ¯̀,1̄w`,1̄‖2]

)
= log2

(
1

K
E
[ K∑
i=1
i 6=`

∥∥∥ NT∑
n=N1+1

ĥ
(1)
i,n

∥∥∥2
])
. (H.95)

Note that gi ,
∑NT
n=N1+1ĥ

(1)
i,n ∼ NC(0, N1̄). Hence, ‖gi‖2 = |gi|2 ∼ Exp( 1

2N1̄
). This,

together with the fact that the channel coefficients are i.i.d., leads to

log2

(
E[‖Ĥ¯̀,1̄w`,1̄‖2]

)
≤ log2

(
2N1̄

K − 1

K

)
. (H.96)

Moreover,

E[‖ĥ(1)
` (v` −w`)‖2] ≤ 2K E[‖ĥ(1)

` ‖
2]

≤ 2K2.
(H.97)

Introducing (H.96) and (H.97) in (H.94) leads to

log2(1/µ2) ≤ log2

(
E
[
‖Ĥ†K,1‖

2
])

+ log2(2K2) + log2

(
2(K − 1)

)
. (H.98)

Note that if we remove the condition for the intended received signal ĥ
(1)
i wi = ĥ

(1)
i vi and
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we assume that ĥ
(1)
i wi and ĥ

(1)
i vi are statistically equivalent, we would obtain a tighter

bound as

log2(1/µ2) ≤ log2

(
E
[
‖Ĥ†K,1‖

2
])

+ log2

(
2(K − 1)

)
. (H.99)

This concludes the proof of Theorem 7.2. �
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