
Security for Distributed Machine Learning based
Software

Laurent Gomez1, Alberto Ibarrondo2, Marcus Wilhelm3, José Márquez4, and Patrick
Duverger5

1 SAP Global Security, SAP Security Research, France
laurent.gomez@sap.com

2 Eurecom, Sophia Antipolis, France
alberto.ibarrondo@eurecom.com

3 Hasso Plattner Institute, University Potsdam, Germany
marcus.wilhelm@student.hpi.com

4 Portfolio Strategy Technology Adoption, SAP SE, Germany
jose.marquez@sap.com

5 City of Antibes - Juan les Pins, France
patrick.duverger@antibes.com

Abstract. Current developments in Enterprise Systems observe a paradigm shift,
moving the needle from the backend to the edge sectors of those; by distributing
data, decentralizing applications and integrating novel components seamlessly to
the central systems. Distributively deployed AI capabilities will thrust this tran-
sition.
Several non-functional requirements arise along with these developments, secu-
rity being at the center of the discussions. Bearing those requirements in mind,
hereby we propose an approach to holistically protect distributed Deep Neural
Network (DNN) based/enhanced software assets, i.e. confidentiality of their in-
put & output data streams as well as safeguarding their Intellectual Property.
Making use of Fully Homomorphic Encryption (FHE), our approach enables the
protection of Distributed Neural Networks, while processing encrypted data. On
that respect we evaluate the feasibility of this solution on a Convolutional Neu-
ronal Network (CNN) for image classification deployed on distributed infrastruc-
tures.

Keywords: Intellectual Property Protection, Fully Homomorphic Encryption,
Neural Networks, Distributed Landscapes, Smart Cities

1 Introduction

1.1 Motivation

Until now, the backend (on-prem & cloud) deployments were considered as the single
source of truth & unique point of access in regards of Enterprise Systems (ES). Nev-
ertheless, a paradigm shift has been recently observed, by the deployment of ES assets
towards the Edge sectors of the landscapes; by distributing data, decentralizing appli-
cations, de-abstracting technology and integrating edge components seamlessly to the
central backend systems.

2 L. Gomez et al.

Capitalizing on recent advances on High Performance Computing along with the
rising amounts of publicly available labeled data, Deep Neural Networks (DNN), as an
implementation of AI, have and will revolutionize virtually every current application
domain as well as enable novel ones like those on autonomous, predictive, resilient,
self-managed, adaptive, and evolving applications.

Distributively deployed AI capabilities will thrust the above mentioned transition.
As reported by Deloitte, “... companies are incorporating artificial intelligence in par-
ticular, machine learning into their ’Internet of Things applications’ and seeing capa-
bilities grow, including improving operational efficiency and helping avoid unplanned
downtime” [28].

1.2 Problem Statement

The deployment of data processing capabilities throughout Distributed Enterprise Sys-
tems rises several security challenges related to the protection of input & output data
[26] as well as of software assets.

In the specific context of distributed intelligence, DNN based/enhanced software
will represent key investments in infrastructure, skills and governance, as well as in the
acquisition of data and talents. The software industry is therefore in the direct need to
safeguard these strategic investments by enforcing the protection of this new form of
Intellectual Property.

Furthermore, on the wake of Data Protection (DP) regulations such as the EU-
GDPR [26], Independant Software Vendors (ISVs) have the non-transferable require-
ment to comply with those.

Therefore, ISVs aim to protect both: data and the Intellectual Property of their
AI-based software assets, deployed on potentially unsecure edge hardware & plat-
forms [15].

1.3 State-of-the-Art

Security of Deep Neural Networks is a current research topic taking advantage of two
major cryptographic approaches: variants of Fully Homomorphic Encryption/FHE [12]
and Secure Multi-Party Computation/SMC [8]. While FHE techniques allow addition
and multiplication on encrypted data, SMC enables arithmetic operations on data shared
across multi-parties.

Several approaches can be found in the literature, at different phases of the devel-
opment and deployment of DNNs.

Secure Training Secure DNN training has been addressed using FHE [16] and SMC
[30], disregarding protection once the trained model is to be productively deployed.
Other Machine Learning models such as linear and logistic regressions have also been
trained in a secure way in [24]. In those approaches, confidentiality of training data is
guaranteed, while runtime protection (i.e. input, model, output) is out of scope.

Security for Distributed Machine Learning based Software 3

Processing on Encrypted Data At processing phase, SMC has led to cooperative so-
lutions where several devices work together to obtain federated inferences [21], not
supporting deployment of the trained DNN to trusted decentralized systems. DNN pro-
cessing on FHE encrypted data is covered in CryptoNets [13], improved in [4] and
[18]. More recently, in [2], the authors proposed a privacy-preserving framework for
deep learning, making use of the SEAL [29] FHE library. While disclosure of data at
runtime is prevented in these solutions, protection of DNN models remains out of the
scope.

Intellectual Property Protection of DNN Model In [31], the authors tackles IP protec-
tion of DNN models through model watermarking. While infringement can be detected
with this method, it can not be prevented. Furthermore, runtime protection of input,
model and output are out of scope.

To the best of our knowledge, no other publication has holistically tackled the pro-
tection of both trained DNN models and data, targeting distributed untrusted systems.

1.4 Data & Intellectual Property Protection for Deep Neural Networks

In this paper we propose a novel approach for the Intellectual Property Protection of
DNN-based/enhanced software while enabling data protection at processing time, mak-
ing use of concepts such as Fully Homomorphic Encryption (FHE).

Once trained, DNN model parameters (i.e. weights, biases) are encrypted homo-
morphically. The resulting (encrypted) DNN can be distributed across untrusted land-
scapes, preserving its IP while mitigating the risk of reverse engineering. At runtime,
FHE-encrypted insights from encrypted input data are produced by the homomorphi-
cally encrypted DNN. Confidentiality of both trained DNN, input and output data will
be therefore guaranteed.

Despite of recent improvements of FHE schemes [3], [5] and implementations [29,
?,?], homomorphic encryption remains computationally expensive. Hence it could rep-
resent a bottleneck having a negative impact on overall performance, and on the accu-
racy of encrypted DNNs outputs, handling encrypted inputs. In this paper, we therefore
evaluate as well the overall performance (e.g. CPU, memory, disk usage) along with the
accuracy of encrypted DNNs.

This paper is organized as follows: Section 2 details the fundamentals of our ap-
proach. Section 3 provides an overview of our solution. In Sections 4 and 5, we present
the architecture and evaluation, concluding with an outlook in Section 6.

2 Fundamentals

2.1 Deep Neural Network

Figure 1 depicts a DNN with multiple layers. It is composed of L layers:

1. An input layer, the tensor of input data X
2. L−1 hidden layers, mathematical computations transforming X sequentially.
3. An output layer, the tensor of output data Y.

4 L. Gomez et al.

Fig. 1: Deep Neural Network [14]

We denote the output of layer i as a tensor A[i], with A[0] = X ,and A[L] =Y . Tensors
can have different sizes and number of dimensions.

Each layer A[i] depends on the mathematical computations performed at the previ-
ous layer A[i−1]. At each layer A[i], two types of function can be computed:

– Linear: involving polynomial operations.
– Non-linear, involving non-linear operations, so called activation function, such as

max, exp, division, ReLU, or Sigmoid.

Linear Computation Layer For the sake of clarity, we exemplify the inner linear
computation with a Fully Connected (FC) layer, as depicted in Figure 2.

Fig. 2: Fully Connected layer with Activation Function [14]

Security for Distributed Machine Learning based Software 5

A Fully Connected layer, noted A[i], is composed of n parallel neurons, performing
a Rn→ Rn transformation (see Figure 2). We define:

a[i] =
[
a[i]0 . . .a[i]k . . .a[i]N

]T
as the output of layer A[i];

z[i] =
[
z[i]0 . . .z[i]k . . .z[i]N

]T
as the linear output of layer A[i]; (z[i] = a[i] if there is no activa-

tion function)

b[i] =
[
b[i]0 . . .b[i]k . . .b[i]N

]T
as the bias for layer A[i];

W[i] =
[
w[i]

0 . . .w[i]
k . . .w[i]

N

]T
as the weights for layer A[i].

Neuron k performs a linear combination of the output of the previous layer a[i−1]

multiplied by the weight vector w[i]
k and shifted with a bias scalar b[i]k , obtaining the

linear combination z[i]k :

z[i]k =

(
M

∑
l=0

w[i]
k [l]∗a[i−1]

l

)
+b[i]k = w[i]

k ∗a[i−1]+b[i]k [14] (1)

Vectorizing the operations for all the neurons in layer A[i] we obtain the dense layer
transformation:

z[i] = W[i] ∗a[i−1]+b[i] [14] (2)

where W and b are the parameters for layer A[i].

Activation Functions Activation functions are the major source of non-linearity in
DNNs. They are performed element-wise (R0 → R0, thus easily vectorized), and are
generally located after linear transformations such as Fully Connected layers.

a[i]k = fact

(
z[i]k

)
(3)

Several activation functions have been proposed in the literature but Rectified Linear
Unit (ReLU) is currently considered as the most efficient activation function for DL.
Several variants of ReLU exist, such as Leaky ReLU[23], ELU[7] or its differentiable
version Softplus.

ReLU(z) = z+ = max(0,z)
So f t plus(z) = log(ez +1)

[14] (4)

2.2 Homomorphic Encryption

While preserving data privacy, Homomorphic Encryption (HE) schemes allow certain
computations on ciphertext without revealing neither its inputs nor its internal states.
Gentry [12] first proposed a Fully Homomorphic Encryption (FHE) scheme, which
theoretically could compute any kind of arithmetic circuit, but is computationally in-
tractable in practice. FHE evolved into more efficient schemes preserving addition and

6 L. Gomez et al.

multiplication over encrypted data, such as BGV [3], FV [11] or CKKS [5], allow-
ing approximations of multiplicative inverse, exponential and logistic function, or dis-
crete Fourier transformation. Similar to asymmetric encryption, a public-private key
pair (pub, priv) is generated.

Definition 1. An encryption scheme is called homomorphic over an operation � if it
supports the following

Encpub(m) = 〈m〉pub ,∀m ∈M
〈m1�m2〉pub = 〈m1〉pub�〈m2〉pub ,∀m1,m2 ∈M

where Encpub is the encryption algorithm and M is the set of all possible messages.

Definition 2. Decryption is performed as follows

Encpub(m) = 〈m〉pub ,∀m ∈M
Decpriv(〈m〉pub) = m

where Decpriv is the decryption algorithm and M is the set of all possible messages.

2.3 Challenges

Even though HE schemes seem theoretically promising, their usage comes with several
drawbacks, particularly when applied to Deep Learning.

Noise budget In Gentry’s lattice-based HE schemes[12] and subsequent variants of
it, ciphertexts contain a small term of random noise drawn from some probability dis-
tribution. While every operation performed on a ciphertext increases the noise of the
resulting ciphertext, it is important to keep the noise below a certain threshold, because
once the noise reaches that threshold, it is no longer possible to decrypt the ciphertext.
To estimate the current magnitude of noise, a noise budget can be calculated, that starts
as a positive integer, decreases with subsequent operations and reaches 0 exactly when
the ciphertext becomes indecipherable. The noise budget is more strongly affected by
multiplications as by additions.

In order to cope with that challenge, encryption parameters can be adjusted accord-
ingly to the required computation depth of an arithmetic circuit. In addition, Gentry
introduced the so called bootstrapping procedure, which resets the noise budget of a
ciphertext, but requires significant additional computational costs. Recently in [5], the
authors proposed a optimized bootstrapping approach with improved performance.

FHE libraries and APIs As summarized in Table 1, multiple FHE libraries are avail-
able. Depending on the supported HE schemes, those libraries show noticeable dif-
ference on performance (e.g. computational, memory consumption), on supported op-
erations type (e.g. addition, multiplication, negative, square, division), datatype (e.g.
floating point, integer), and chipset infrastructure (e.g. CPU, GPU).

In addition, and regardless on their level of maturity and performance, HE libraries
can be configured through several encryption parameters such as:

Security for Distributed Machine Learning based Software 7

– Polynomial degree or modulus: which determines the available noise budget and
strongly affects the performance.

– Plaintext modulus: which is mostly associated to the size of input data.
– Security parameter: which sets the reached level of security in bits of the cryptosys-

tem (e.g. 128, 192, 256-bit security level).

Fine-tuning of those encryption parameters enables developers to optimize the per-
formance of encryption and encrypted operations. The selection of the right encryption
parameters depends on the size of the plaintext data, targeted accuracy loss or level of
security.

Library Language Dependencies License Description
HElib[17] C++ 11 NTL, GMP Apache 2.0 Mature. Low level implementation, hard to use but complete.

Ciphertext packing, integers, bootstrapping, multi-threading.
PALISADE[25] C++ 11 None Copyrighted Many functionalities & multiple schemes. Well documented but

fairly new. Ciphertext packing, integers, fractionals, bootstrap-
ping, multi-threading.

SEAL[29] C++ 17 None Microsoft Well documented and easy to use. Ciphertext packing, fraction-
als, automatic parameter selection and multi-threading. Latest
version SEAL 3.0 - Oct’18

FHEW[10] C++ 11 FFTW GNU-GPLv2 NAND gate with ciphertext packing, works over bits.
TFHE[6] C++ 11 FFTW Apache 2.0 Binary gates at 20ms per gate. Works over bits. Bootstrapping

is included in all operations.

cuFHE[9]
CUDA
C++ 11

NVIDIA CUDA
arch >= 6.0

MIT Binary gates at 0.1ms per gate. Works over bits. Bootstrapping
included in operations.

Table 1. FHE implementation libraries [14]

Linear function support only By construction, linear functions, composed of addition
and multiplication operations, are seamlessly protected by FHE. But, non-linear acti-
vation functions such as ReLU or Sigmoid require approximation to be computed with
FHE schemes.

The challenge lies on the transformation of activation functions into polynomial
approximations supported by HE schemes. We elaborate more on approximation of
activation functions in Section 3.2.

Supported plaintext type The vast majority of HE schemes allow operations on in-
tegers [17, 29] , while others use booleans [6] or floating point numbers [5, 29]. In the
case of integer supporting HE schemes, rational numbers can be approximated using
fixed-point arithmetic by scaling with a scaling factor and rounding.

Performance FHE schemes are computationally expensive and memory consuming.
In addition, ciphertexts are often significantly bigger than plaintexts and thus use more
memory and disk space.

Even if in the past years the performance of FHE made it impractical, recent FHE
schemes show promising throughput. New FHE libraries take also advantage of GPU
acceleration.

8 L. Gomez et al.

In addition, modern implementations of HE schemes such as HELib [17], SEAL [29],
or PALISADE [25] benefit from Single Instruction Multiple Data (SIMD), allowing
multiple integers to be stored in a single ciphertext and vectorizing operations, which
can accelerate certain applications significantly.

3 Approach

As introduced in Section 1.2, the delivery of DNN-enriched insights come at a cost.
ISVs aim to guarantee data security, together with the IP protection of their DNN-based
software assets, deployed on potentially unsecure edge hardware & platforms. In order
to achieve those security objectives on DNN, we utilize FHE schemes to operate on
ciphertext at runtime.

Consequently, secure training of DNN is out of scope of our approach as we focus
on runtime execution. We assume that DNN training already preserves both data privacy
& confidentiality, and the resulting trained model. Once a model is trained, as discussed
in Section 2.1, we obtain a set of parameters for each DNN layer; i.e weights W[i] and
biases b[i] for Fully Connected layers DNN are not solely made of FC layers, and in
[14], we identified different type of linear operations parameters within DNN such as
Batch Normalization[19] or Convolutional Layer[20]. Those parameters constitute the
IP to be protected when deploying a DNN to distributed systems.

3.1 Linear Computation Layer Protection

Our approach is agnostic from the type of layer. In [14], we detail the encryption of
layers such as Convolutional Layer or Batch Normalization. For sake of simplicity,
we exemplify the encryption of DNN layers parameters on FC layers. Since FC are
simply a linear transformation on the previous layer’s outputs, encryption is achieved
straightforwardly as follows〈

z[i]
〉

pub
=
〈

W[i] ∗a[i−1]+b[i]
〉

pub

=
〈

W[i]
〉

pub
∗
〈

a[i−1]
〉

pub
+
〈

b[i]
〉

pub

[14] (5)

Fully Connected Layer (FC) Also known as Dense Layer, it is composed of N parallel
neurons, performing a R1→ R1 transformation (Figure 1). We will define:

a[i] =
[
a[i]0 . . .a[i]k . . .a[i]N

]T
as the output of layer i;

z[i] =
[
z[i]0 . . .z[i]k . . .z[i]N

]T
as the linear output of layer i; (z[i] = a[i] if there is no activation

function)

b[i] =
[
b[i]0 . . .b[i]k . . .b[i]N

]T
as the bias of layer i;

W[i] =
[
w[i]

0 . . .w[i]
k . . .w[i]

N

]T
as the weights of layer i.

Security for Distributed Machine Learning based Software 9

Neuron k performs a linear combination of the output of the previous layer a[i−1]

multiplied by the weight vector w[i]
k and shifted with a bias scalar b[i]k , obtaining the

linear combination z[i]k :

z[i]k =

(
M

∑
l=0

w[i]
k [l]∗a[i−1]

l

)
+b[i]k = w[i]

k ∗a[i−1]+b[i]k [14] (6)

Vectorizing the operations for all the neurons in layer i we obtain the dense layer trans-
formation:

z[i] = W[i] ∗a[i−1]+b[i] [14] (7)

Protecting FC layer Since FC is a linear layer, it can be directly computed in the en-
crypted domain using additions and multiplications. Vectorization is achieved straight-
forwardly: 〈

z[i]
〉

pub
≡
〈

W[i] ∗a[i−1]+b[i]
〉

pub

=
〈

W[i]
〉

pub
∗
〈

a[i−1]
〉

pub
+
〈

b[i]
〉

pub

[14] (8)

〈
z[i]
〉

pub
≡
〈

W[i] ∗a[i−1]+b[i]
〉

pub

=
〈

W[i]
〉

pub
∗
〈

a[i−1]
〉

pub
+
〈

b[i]
〉

pub

[14] (9)

〈
a[i]k

〉
pub
≡
〈

fapproxact

(
z[i]k

)〉
pub

[14] (10)

Convolutional Layer (Conv) Conv layers constitute a key improvement for image
recognition and classification using NNs. The R2|3 → R2|3 linear transformation in-
volved is spatial convolution, where a 2D s∗ s filter (a.k.a. kernel) is multiplied to the
2D input image in subsets (patches) with size s ∗ s and in defined steps (strides), then
added up and then shifted by a bias (see Figure 3). For input data with several channels
or maps (e.g.: RGB counts as 3 channels), the filter is applied to the same patch of each
map and then added up into a single value of the output image (cumulative sum across
maps). A map in Conv layers is the equivalent of a neuron in FC layers. We define:
A[i]

k as the map k of layer i;
Z[i]

k as the linear output of map k of layer i;
(Z[i]

k = A[i]
k in absence of activation function)

b[i]k as the bias value for map k in layer i

W[i]
k as the s∗ s filter/kernel for map k.
This operation can be vectorized by smartly replicating data [27]. The linear trans-

formation can be expressed as:

Z[i]
k =

(
M maps

∑
m=0

A[i−1]
m ⊕W[i]

k

)
+b[i]k [14] (11)

10 L. Gomez et al.

Protecting Convolutional Layers Convolution operation can be decomposed in a series
of vectorized sums and multiplications over patches of size s∗ s. :〈

Z[i]
k

〉
pub

=

〈(
M maps

∑
m=0

A[i−1]
m ⊕W[i]

k

)
+b[i]k

〉
pub

=

M maps

∑
m=0

〈
A[i−1]

m ⊕W[i]
k

〉
pub

+
〈

b[i]k

〉
pub

={
M

∑
m=0

〈
A[i−1]

m [j]
〉

pub
∗
〈

W[i]
k

〉
pub

}
[s∗s]

+
〈

b[i]k

〉
pub

[14] (12)

Fig. 3: Conv layer with activation for map k [14]

Pooling Layer This layer reduces the input size by using a packing function. Most
commonly used functions are max and mean. Similarly to convolutional layers, pooling
layers apply their packing function to patches (subsets) of the image with size s ∗ s at
strides(steps) of a defined number of pixels, as depicted in Figure 4.

Fig. 4: Max and Mean packing for Pooling layers [14]

Protecting Pooling layer Max can be approximated by the sum of all the values in
each patch of size s∗ s, which is equivalent to scaled mean pooling. Mean pooling can
be scaled (sum of values) or standard (multiplying by 1/N). By employing a flattened
input, pooling becomes easily vectorized.

Security for Distributed Machine Learning based Software 11

Other Techniques

• Batch Normalization (BN) reduces of the range of input values by ’normalizing’
across data batches: subtracting mean and dividing by standard deviation. BN also
allows finer tuning using trained parameters β and γ (ε is a small constant used for
numerical stability).

a[i+1]
k = BNγ,β(a

[i]
k) = γ∗

a[i]k −E[a[i]k]√
Var[a[i]k]+ ε

+β [14] (13)

Protection of BN is achieved by treating division as the inverse of a multiplication.

〈
a[i+1]

k

〉
pub

= 〈γ〉pub ∗
(〈

a[i]k

〉
pub
−
〈

E[a[i]k]
〉

pub

)
∗

〈
1√

Var[a[i]k]+ ε

〉
pub

+ 〈β〉pub

[14] (14)

• Dropout and Data Augmentation only affect training procedure. They don’t re-
quire protection.

• Residual Block is an aggregation of layers where the input is added unaltered at
the end of the block, thus allowing the layers to learn incremental (’residual’) mod-
ifications (Figure 5).

A[i] = A[i−1]+ResBlock
(

A[i−1]
)

(15)

Fig. 5: Example of a possible Residual Block [14]

Protection of ResBlock is achieved by protecting the sum and the layers inside
ResBlock: 〈

A[i]
〉

pub
=
〈

A[i−1]
〉

pub
+
〈

ResBlock
(

A[i−1]
)〉

pub
[14] (16)

3.2 Activation Function Protection

Due to their innate non-linearity, activation functions need to be approximated with
polynomials to be encrypted with FHE. Several approaches have been elaborated in the
literature. In [22] and [13], the authors proposed to use a square function as activation
function. The last layer, a sigmoid activation function, is only applied during training.

12 L. Gomez et al.

Chabanne et al. used Taylor polynomials around x = 0, studying performance based on
the polynomial degree [4]. In [18], Hesamifard et al. approximate instead the derivative
of the function and then integrate to obtain their approximation.

Regardless on the approximation technique, we denote activation function fact()
approximation as

fact()≈ fapproxact() [14] (17)

By construction, we have〈
a[i]k

〉
pub

=
〈

fact

(
z[i]k

)〉
pub

≡
〈

fapproxact

(
z[i]k

)〉
pub

[14] (18)

• Rectifier Linear Unit (ReLU) is currently considered as the most efficient activation
function for DL. Several variants have been proposed, such as Leaky ReLU[23],
ELU[7] or its differentiable version Softplus.

ReLU(z) = z+ = max(0,z)
So f t plus(z) = log(ez +1)

[14] (19)

• Sigmoid σ The classical activation function. Its efficiency has been debated in the
DL community.

Sigmoid(z) = σ(z) =
1

1+ e−z [14] (20)

• Hyperbolic Tangent (tanh) is currently being used in the industry because it is easier
to train than ReLU: it avoids having any inactive neurons and it keeps the sign of
the input.

tanh(z) =
ez− e−z

ez + e−z [14] (21)

Protecting Activation functions Due to its innate non-linearity, they need to be approx-
imated with polynomials. [13] proposed using only σ(z) approximating it with a square
function. [4] used Taylor polynomials around x = 0, studying performance based on
the polynomial degree. [18] approximate instead the derivative of the function and then
integrate to obtain their approximation. One alternative would be to use Chebyshev
polynomials.

4 Architecture

In this section we outline the architecture of our IP protection system, as depicted in
Figure 6.

Security for Distributed Machine Learning based Software 13

Fig. 6: Activity Diagram in our solution [14]

4.1 Encryption of trained DNN

At backend-level, a DNN is trained by the DNN Training Agent, 1 . Training out-
come (NN architecture and parameters) is pushed to the Trained DNN Protection Agent,
3 . Alternatively, an already trained DNN can be imported directly into the Protection

Agent. The DNN Protection Agent generates a Fully Homomorphic key pair from the
Key Generator component, 2 . The DNN is then encrypted and stored together with its
homomorphic key pair in the Trained and Protected DNN Database, 4 .

4.2 Deployment of trained and protected DNN

At the deployment phase, the Trained DNN Deployment Agent deploys the DNN on
distributed systems, together with its public key, 5 .

4.3 DNN processing

On the distributed system, data is collected by a Data Stream Acquisition component,
7 , and forwarded to the DNN Processing Agent, 6 . Input layer does not involve any

computation, and therefore can be seamlessly FHE encrypted as follows

X encryption−−−−−−→ Encpub(X) = 〈X〉pub [14] (22)

Encrypted inferences are sent to the Decryption Agent, 8 , for their decryption
using the private key associated to the DNN, 9 . FHE encryption propagates across
the DNN layers, from input to output layer. By construction, output layer is encrypted
homomorphically.

14 L. Gomez et al.

IP of the DNN, together with the computed inferences, is protected from any dis-
closure on the distributed system throughout the entire process.

The decryption of the last layer’s output Y is done with the private encryption key
priv, as in standard asymmetric encryption schemes:〈

A[L]
〉

pub

decryption−−−−−−→ Decpriv

(〈
A[L]

〉
pub

)
= Y [14] (23)

4.4 Sequential Processes

Encryption of Trained NN Once a Neural Network is trained or imported, we encrypt
all its parameters, using the Protected NN DataBase to store it and handle Homomor-
phic Keys (Figure 7).

Fig. 7: Sequence diagram of Trained NN Encryption [14]

Deploy Trained and Protected NN The newly trained and protected deep neural net-
work is deployed on the decentralized systems, including:

1. Network architecture;
2. Network model: Encrypted parameters;
3. Public encryption key.

Encrypted Inference On the decentralized system, data is collected and injected into
the deployed NN. We must encrypt A[0] = X with the public encryption key associated
to the deployed NN (Figure 8).

Inference Decryption Encrypted inferences are sent to backend, together with an iden-
tifier of the NN used for the inference. The inference is homomorphically decrypted
using the mapping private decryption key (Figure 9).

Security for Distributed Machine Learning based Software 15

Fig. 8: Sequence diagram of inference processing [14]

Fig. 9: Sequence diagram of inference decryption [14]

5 Evaluation

As detailed in Section 2.3, FHE introduces additional computational costs at each step
of the DNN life-cycle. In this section, we evaluate performance overhead from compu-
tation time, memory load and disk usage perspectives at DNN model and processing
encryption and output decryption.

5.1 Hardware Setup

As backend, we use a NVIDIA DGX-16 server, empowered with 8 Tesla V100 GPUs.
This machine is theoretically not resource-constrained (computation & memory). We
reasonably neglect the impact of the performance overhead introduced by FHE on DNN
trained model encryption and output decryption.

We deploy and execute our encrypted DNN on a NVIDIA Jetson-TX27. Powered by
NVIDIA Pascal architecture, this platform embeds 256 CUDA cores, CPU HMP Dual
Denver 22 MB L2 + Quad ARM® A572 MB L2, and 8 GB of memory. This platform
gets closer to the hardware configuration of a Distributed Enterprise System.

6 https://www.nvidia.com/en-us/data-center/dgx-1/
7 https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/

16 L. Gomez et al.

5.2 Software Setup

DNN Model As demonstrated in Section 3, our approach is fully agnostic from NN
topology, or implementation. For the sake of our evaluation, involving several modifi-
cations to the NN model, we choose a simple CNN classifier8, implemented with the
Keras library9. Two datasets have been used in our experiment: CIFAR1010, for image
classification, and MNIST11 for handwritten digits classification.

As depicted in Figure 10, we distinguish two main parts in this CNN: a feature ex-
tractor and a classifier. The feature extractor reduces the amount of information from
the input image, into a set of high level and more manageable features. This step facili-
tates the subsequent classification of the input data.

Composed of four layers, [FC→ ReLU→ FC→ Softmax], the classifier catego-
rizes the input data according to the extracted features, and outputs discrete probability
distribution over 10 classes of objects.

As reference point, we evaluate key performance figures at model training and pro-
cessing time without encryption. Once trained, the size of the CNN plaintext model is
9.6Mb. On Jetson TX2, single unencrypted image classification is computed on average
in 89.1ms.

Fig. 10: Keras Convolutional Neural Network.

FHE library As introduced in section 2.3, several libraries are available for FHE. We
use SEAL [29] C library from Microsoft Research running on CPU. This choice is
motivated by the library’s performance, support of multiple schemes such as BGV [3],
stability, and documentation. The use of SEAL, implemented in C++, with the Keras

8 https://github.com/keras-team/keras/blob/master/examples/cifar10 cnn.py
9 https://keras.io

10 https://www.cs.toronto.edu/ kriz/cifar.html
11 http://yann.lecun.com/exdb/mnist/

Security for Distributed Machine Learning based Software 17

Python library requires some engineering efforts. To enable both fast performance of
the native C++ library and rapid prototyping using Python, we use Cython12.

We conduct our evaluation with the BGV scheme [3], utilizing the integer encoding
with SIMD support. To handle the floating-point DNN parameters, we use fixed-point
arithmetic with a fixed scaling factor, similarly to CryptoNets[13]. This has no notice-
able impact on the classification accuracy, if a suitable scaling factor is applied. The
SIMD operations allow for optimized performance through vectorization.

5.3 Linearization

We tackle the problem of linearization of the ReLU functions following approaches:
we approximate it with a modified square function, and we skip activation function.
The modified square function x2 + 2x (see Figure 13) is derived from the ReLU ap-
proximation proposed in [4]. In order to optimize the computation of that function on
ciphertexts, we used simpler coefficients.

In order evaluate the impact of these approaches, we trained the CNN on the CI-
FAR10 and MNIST datasets, replacing the last ReLU activation. Depicted in Figure 11
and Figure 12, we report the accuracy loss. Both approximations have merely a minor
impact on the output classification accuracy.

Skipping the last activation function shows good results on this simple CNN, but
we do not want to generalize to any other DNN or dataset.

0 20 40 60 80 100 120 140 160 180 199
0.96

0.97

0.98

0.99

Epoch

V
al

id
at

io
n

ac
cu

ra
cy

Original model
No activation function

x2 +2x

Fig. 11: Classification Accuracy with ReLU Approximation - MNIST Dataset.

5.4 Experimentation Results

Model & Data Protection Intellectual Property-wise, we consider the feature extractor
as of minor importance, as CNNs generally use state of the art feature extractor. The IP

12 https://cython.org/

18 L. Gomez et al.

0 20 40 60 80 100 120 140 160 180 199
0.5

0.6

0.7

0.8

0.9

Epoch

V
al

id
at

io
n

ac
cu

ra
cy

Original model
No activation function

x2 +2x

Fig. 12: Classification Accuracy with ReLU Approximation - CIFAR10 Dataset.

−1.5 −0.5 0.5 1.5

−1.5

−0.5

0.5

1.5

x

y

Square Approximation
ReLu

Fig. 13: ReLU Approximation as Square Function

of the model rather lies in the parameters, weights and bias, of the trained classifier. For
that reason, we encrypt the classifier only, as a first step towards full model encryption,
as depicted in Figure 10. To better understand the impact of computation depth, we
also complete our evaluation with the encryption of the last FC layer only.

Confidentiality-wise, we evaluate the impact of extracted features encryption by
comparing processing performance on an encrypted model with plaintext and encrypted
feature extractor outputs.

As depicted in Figure 10, we evaluate our approach on three modified versions of
the model:

• Last FC Layer Encrypted
• Full Classifier Encrypted with no Activation Function
• Full Classified Encrypted with our Modified Square Activation Function

Security for Distributed Machine Learning based Software 19

Confidentiality-wise, we evaluate the impact of extracted features encryption by
comparing processing performance on an encrypted model with plaintext and encrypted
feature extractor outputs.

In order to optimize our approach, we omit the Softmax layer within the classifier.
This layer does not have any influence on the classification results, as Softmax layer is
mostly required at training phase, to normalize network outputs probability distribution,
for more consistent loss calculations.

The overall experiment as described in section 4 has been applied 5 times on each
model. We report average evaluation metrics for each step: model encryption, process-
ing encryption and decryption.

DNN Model Encryption Each trained CNN model is encrypted on DGX-1’s CPU. In
Table 2, we depict the resource consumption average on the following metrics:

• Time to Compute: Time to encrypt the model.
• Model Size: Size of resulting encrypted model.
• Memory Load: Overall memory usage for model encryption.

We target three security levels: 128, 192, and 256-bits. For each of those, we op-
timize SEAL parameters as introduced in section 2.3, maximizing performance, and
minimizing leftover noise budget. Note that the security levels can have a counter-
intuitive effect on performance, where for instance 192-bit security level might be faster
that 128-bit security level. This can be explained by the fact that 128-bit security level
offers more (unnecessary) noise budget, depending on the choice of FHE scheme pa-
rameters (e.g. plaintext modulus, polynomial degree). Therefore, we target a remaining
noise budget as close as possible to zero.

Compared to the plaintext model size (9.6Mb), encrypted model size increases by a
factor of 8,22 in the best case, up to 1173,33.

Achieved Security Level (bits)
128 192 256 128 192 256 128 192 256

Full Classifier - x2 +2x Full Classifier - No Act. Last Layer
Time to Compute (s) 256.7 191.5 212.6 86.9 78.0 96.0 3.4 3.4 7.3
Model Size 11G 6.4G 11G 2.5G 4.4G 2.5G 79Mb 79Mb 158Mb
Memory (Mb) 2257.9 1112.4 2389.5 557.9 459.2 566.1 300.6 301.4 324.2

Table 2. Model Encryption

DNN Processing Encryption The three encrypted CNN models deployed on Jetson-
TX2 for CPU based encrypted processing. At this stage, we evaluate the following
metrics

• Time to compute: Processing time for an encrypted classification.
• Memory: Memory usage for encrypted classification.

20 L. Gomez et al.

• Remaining Noise Budget: At the end of processing encryption, we evaluate the
remaining noise budget, which determines if additional encryption operations could
be performed on the output vector.

In Table 3 and Table 4, we depict the performance of encrypted processing with
plaintext and encrypted previous layer outputs. We study the impact of confidentality
preservation of the preceding layer outputs. SEAL library supports secure computation
over plaintext and ciphertext producing ciphertext. As a consequence, output of the last
MaxPooling2D layer can be processed in FHE-encrypted Fully Connected layer. Secure
computation between plaintext and ciphertext has a lower impact on performance.

We observe a slight performance improvement on time to compute and memory
between 128 and 192-bit security level. This is due to the FHE parameters optimization
as described in Section 5.4, where initial noise budget is oversized for 128-bit security
level, which has a direct impact to performance.

Experiment results show that, depending on the level of achieved security, and tar-
geted scenario, we can achieve at best encrypted classification in 2.1s (for 128 level
security and only one layer encrypted). In the worst case, with encrypted input, full
classifier encrypted with a modified square function as activation layer, 5627s (93 mins)
is required for a single classification.

Achieved Security Level (bits)
128 192 256 128 192 256 128 192 256

Full Classifier - x2 +2x Full Classifier - No Act. Last Layer
Time to Compute (s) 287.2 174.6 1221.3 43.7 32.9 90.2 2.1 2.1 4.5
Memory Load (Mb) 4683.1 2924.3 4899.2 1162.5 869.2 2342.3 53.9 54.0 117.7
Remaining Noise Budget 221.6 80.2 88.8 91.4 23.8 16.2 58.8 20.2 60.2

Table 3. Runtime Encryption with Plaintext Input

Achieved Security Level (bits)
128 192 256 128 192 256 128 192 256

Full Classifier - x2 +2x Full Classifier - No Act. Last Layer
Time to Compute (s) 2902.6 1048.6 5627 367.1 272.2 835.9 19.2 19.2 40.2
Memory Load (Mb) 5047.8 5809 4906 2314.8 1733.7 4644.5 119.5 118.5 253
Remaining Noise Budget 206.0 65.0 76.0 79.0 11.0 3.0 45.0 10.0 52.0

Table 4. Runtime Encryption with Encrypted Input

Decryption Following our approach, encrypted output are decrypted by the backend,
on DGX-1. We therefore consider decryption as not computationally expensive, com-
pared to encryption. Results are available in Table 5.

Security for Distributed Machine Learning based Software 21

Achieved Security Level (bits)
128 192 256 128 192 256 128 192 256

Full Classifier - x2 +2x Full Classifier - No Act. Last Layer
Time to Compute (s) 2.9 1.7 3.2 0.6 0.6 1.0 0.2 0.1 0.2
Memory Load (Mb) 963.8 397.4 2062.5 123.4 73.4 267.1 17.8 17.8 38.7

Table 5. Decryption - Performance

6 Conclusion

In this paper, we discuss and evaluate a holistic approach for the protection of dis-
tributed Deep Neural Network (DNN) enhanced software assets, i.e. confidentiality of
their input & output data streams as well as safeguarding their Intellectual Property. On
that matter, we take advantage of Fully Homomorphic Encryption (FHE). We evaluate
the feasibility of this solution on a Convolutional Neural Network (CNN) for image
classification.

Our evaluation on NVIDIA DGX-1 and Jetson-TX2 shows promising results on
the CNN image classifier. Firstly, the impact of activation function approximation is
negligible, with almost no accuracy loss on output classification probability. Most of
the overhead is introduced at processing time, affecting computation time & memory
consumption. Performances vary from 2.1s for an encrypted classification, with only
53.9Mb consumed memory, up to 1h33m with almost 5Gb of consumed memory. This
requires a balancing between expected classification throughput, targeted security level
and encryption depth of the model. Currently this approach would be unrealistic for
the protection of DNN-based real-time analytics. Still, the Industry calls for numerous
scenarios – such as predictive maintenance – matching the current performance of our
approach.

As future work, we aim to improve the performance of our approach by differ-
ent means: following the constant evolution of FHE, such as with the recent CKKS
scheme[5], acceleration of FHE libraries on GPU based infrastructure or optimized
vectorized operations on FHE encrypted data[1]. In addition, we foresee a deployment
of our solution into a Smart City scenario for risk prevention in public spaces; while
expanding our approach to different types of DNNs, and complete encryption of CNNs,
including the feature extraction layers.

References

1. BADAWI, A. A., CHAO, J., LIN, J., MUN, C. F., JIE, S. J., TAN, B. H. M., NAN, X.,
AUNG, K. M. M., AND CHANDRASEKHAR, V. R. The alexnet moment for homomor-
phic encryption: Hcnn, the first homomorphic CNN on encrypted data with gpus. CoRR
abs/1811.00778 (2018).

2. BOEMER, F., RATNER, E., AND LENDASSE, A. Parameter-free image segmentation with
SLIC. Neurocomputing 277 (2018), 228–236.

3. BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. Fully homomorphic encryp-
tion without bootstrapping. Cryptology ePrint Archive, Report 2011/277, 2011.

22 L. Gomez et al.

4. CHABANNE, H., DE WARGNY, A., MILGRAM, J., MOREL, C., AND PROUFF, E. Privacy-
preserving classification on deep neural network. IACR Cryptology ePrint Archive 2017
(2017), 35.

5. CHEON, J. H., HAN, K., KIM, A., KIM, M., AND SONG, Y. Bootstrapping for approximate
homomorphic encryption. IACR Cryptology ePrint Archive 2018 (2018), 153.

6. CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHÈNE, M. Tfhe: Fast fully
homomorphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421, 2018.
https://eprint.iacr.org/2018/421.

7. CLEVERT, D.-A., UNTERTHINER, T., AND HOCHREITER, S. Fast and accurate deep net-
work learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015).

8. CRAMER, R., DAMGÅRD, I. B., ET AL. Secure multiparty computation. Cambridge Uni-
versity Press, 2015.

9. DAI, W., AND SUNAR, B. cuhe: A homomorphic encryption accelerator library. In Balka-
nCryptSec (2015), vol. 9540 of Lecture Notes in Computer Science, Springer, pp. 169–186.

10. DUCAS, L., AND MICCIANCIO, D. Fhew: bootstrapping homomorphic encryption in less
than a second. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques (2015), Springer, pp. 617–640.

11. FAN, J., AND VERCAUTEREN, F. Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144, 2012.

12. GENTRY, C. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University,
Stanford, CA, USA, 2009. AAI3382729.

13. GILAD-BACHRACH, R., DOWLIN, N., LAINE, K., LAUTER, K., NAEHRIG, M., AND

WERNSING, J. Cryptonets: Applying neural networks to encrypted data with high through-
put and accuracy. 201–210.

14. GOMEZ, L., IBARRONDO, A., MÁRQUEZ, J., AND DUVERGER, P. Intellectual property
protection for distributed neural networks - towards confidentiality of data, model, and infer-
ence. In Proceedings of the 15th International Joint Conference on e-Business and Telecom-
munications, ICETE 2018 - Volume 2: SECRYPT, Porto, Portugal, July 26-28, 2018. (2018),
P. Samarati and M. S. Obaidat, Eds., SciTePress, pp. 313–320.

15. GOODFELLOW, I. Security and privacy of machine learning. RSA Conference, 2018.
16. GRAEPEL, T., LAUTER, K., AND NAEHRIG, M. Ml confidential: Machine learning on

encrypted data, 2012.
17. HALEVI, S., AND SHOUP, V. Algorithms in helib. In International cryptology conference

(2014), Springer, pp. 554–571.
18. HESAMIFARD, E., TAKABI, H., AND GHASEMI, M. Cryptodl: Deep neural networks over

encrypted data. CoRR (2017).
19. IOFFE, S., AND SZEGEDY, C. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International conference on machine learning (2015),
pp. 448–456.

20. KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems
(2012), pp. 1097–1105.

21. LIU, J., JUUTI, M., LU, Y., AND ASOKAN, N. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (2017), ACM, pp. 619–631.

22. LIVNI, R., SHALEV-SHWARTZ, S., AND SHAMIR, O. On the computational efficiency
of training neural networks. In Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2014, pp. 855–863.

23. MAAS, A. L., HANNUN, A. Y., AND NG, A. Y. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml (2013), vol. 30, p. 3.

Security for Distributed Machine Learning based Software 23

24. MOHASSEL, P., AND ZHANG, Y. Secureml: A system for scalable privacy-preserving ma-
chine learning. In Security and Privacy (SP), 2017 IEEE Symposium on (2017), IEEE,
pp. 19–38.

25. PALISADE. The palisade lattice cryptography library, 2018.
26. PARLIAMENT, E., AND COUNCIL. General data protection regulation, 2016.
27. REN, J. S., AND XU, L. On vectorization of deep convolutional neural networks for vision

tasks. In AAAI (2015), pp. 1840–1846.
28. SCHATSKY, D., KUMAR, N., AND BUMB, S. Intelligent IoT, Bringing the power of AI to

the Internet of Things. Deloitte Insights, 2017.
29. Simple Encrypted Arithmetic Library (release 3.1.0). https://github.com/Microsoft/SEAL,

Dec. 2018. Microsoft Research, Redmond, WA.
30. SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning. In Proceedings of the

22nd ACM SIGSAC conference on computer and communications security (2015), ACM,
pp. 1310–1321.

31. UCHIDA, Y., NAGAI, Y., SAKAZAWA, S., AND SATOH, S. Embedding watermarks into
deep neural networks. In Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval (2017), ACM, pp. 269–277.

https://www.researchgate.net/publication/337187950

