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ABSTRACT

Cell-free MIMO, employing distributed antenna systems
(DAS), is a promising approach to deal with the capacity
crunch of next generation wireless communications. In this
paper, we consider a wireless network with transmit and re-
ceive antennas distributed according to homogeneous point
processes. The received signals are jointly processed at a cen-
tral processing unit. We study if the favorable propagation
properties, which enable almost optimal low complexity detec-
tion via matched filtering in massive MIMO systems, hold for
DAS with line of sight (LoS) channels and general attenuation
exponent. Making use of Euclidean random matrices (ERM)
and their moments, we show that the analytical conditions for
favorable propagation are not satisfied. Hence, we propose
multistage detectors, of which the matched filter represents the
initial stage. We show that polynomial expansion detectors and
multistage Wiener filters coincide in DAS and substantially
outperform matched filtering. Simulation results are presented
which validate the analytical results.

Index Terms— Distributed antenna systems, large system
analysis, favorable propagation, linear multiuser detection,
cell-free

1. INTRODUCTION

In recent years, distributed antenna systems (DASs) have
emerged as a promising candidate for future wireless commu-
nications thanks to their open architecture and flexible resource
management [1, 2]. A DAS involves the use of a large num-
ber of antennas, allowing the accommodation of more users,
higher data rates, and effective mitigation of fading. Extensive
studies indicate that besides lower path loss effects to improve
the coverage, a DAS has many attractive advantages over its
centralized counterpart such as macro-diversity gain and higher
power efficiency [3, 4]. Users’ energy consumption is reduced
and transmission quality is improved by reducing the access
distance between users and geographically distributed access
points (APs). DASs have been extensively studied in downlink,
see, e.g., [5, 6] and references therein. In uplink, results on
the sum capacity of DAS can be found in [7–9]. In [8, 9], a
mathematical framework based on Euclidean random matrices
was proposed to analyze the fundamental limits of DASs in
terms of capacity per unit area in the large scale regime.

The concept of DASs has recently reappeared under the

name cell-free (CF) massive MIMO [10, 11]. The new ter-
minology is used for networks consisting of a massive num-
ber of geographically distributed single-antenna APs, which
jointly serve a much smaller number of users distributed over a
wide area. CF massive MIMO should combine the mentioned
benefits of DAS with the advantages of massive MIMO. In
principle, an optimal utilization of a DAS requires joint mul-
tiuser detection at a central unit. However, optimum detection
schemes such as maximum likelihood are prohibitively com-
plex to be implemented for a large system and low complexity
linear multiuser detectors become appealing. Interestingly, in
massive MIMO systems, as the number of antennas at the cen-
tralized base station increases the channels of different users
with the base station tend to become pairwise orthogonal and
the low complexity matched filters become asymptotically op-
timum detectors [12]. This appealing phenomenon is referred
to as favorable propagation [13]. Under the assumption that
a similar property holds in DAS, CF massive MIMO systems
have been studied in [14] adopting matched filters at the central
processing unit.

In this paper, our system model includes as special case
CF massive MIMO systems when the intensity of receivers is
much higher than the intensity of transmitters. We investigate
the properties of channels in DAS through an analysis of the
MIMO channel eigenvalue moments and analytically show
that favorable propagation is limited also asymptotically as
the AP’s intensity tends to infinity while the users’ intensity
is kept constant. In this case, matched filtering is not almost
optimum and the use of linear multiuser detectors capable to
combat multiuser interference at an affordable computational
cost becomes really appealing. Thus, we analyze the perfor-
mance of multistage detectors that can be implemented with
low complexity at the expense of a certain performance degra-
dation. We consider both polynomial expansion detectors [15]
and [16] and show their equivalence in DAS. Additionally,
their performance analysis confirms that even low complexity
multiuser detectors outperform considerably matched filtering.

The rest of paper is organized as follows. Section 2 de-
scribes the system and channel model. A recursive expression
to obtain the eigenvalue moments of the channel covariance
matrix of DASs is presented in Section 3. In Section 4, we
analyze the conditions of favorable propagation and the per-
formance of multistage detectors for DASs. Simulation results
are illustrated in Section 5. Finally, Section 6 draws some
conclusions.



Notation: Throughout the paper, i =
√
−1, superscript

T and H represent the transpose and Hermitian transpose op-
erator, respectively. Uppercase and lowercase bold symbols
are utilized to denote matrices and vectors, respectively. The
expectation and the Euclidean norm operators are denoted by
E(.) and | . |, respectively. tr(.) and diag(.) denote the trace
and the squared diagonal matrix consisting of the diagonal
elements of matrix argument, respectively.

2. SYSTEM MODEL

We consider a DAS in uplink consisting of NT users and
NR APs in the Euclidean space R. Each user and AP are
equipped with a single antenna and are independently and
uniformly distributed over AL =

[
−L2 ,+

L
2

)
, a segment of

length L. All the APs are connected to and controlled by a
central processing unit through a backhaul network such that
detection and decoding are performed jointly.

We denote the channel coefficient between the j-th user
and i-th AP by h(ri, tj), where ri and tj denote the Euclidean
coordinates of AP i and user j, respectively. Furthermore, we
assume line of sight (LoS) and large scale fading such that the
channel coefficient h(ri, tj) is modeled as

h(ri, tj)=


dα0

|ri−tj |α
e
−

i2π|ri−tj |
λ if |ri−tj |>d0

1 otherwise

(1)

where d0 is a reference distance, α is the path loss factor, and
λ is the radio signal wavelength. Note the |ri − tj | is the
Euclidean distance between the j-th user and i-th AP denoted
in the following as di,j and h(ri, tj) depends on ri and tj only
via their distance. Then, when convenient, we denote h(r, t)
as h(d). In (1), the phase rotation depends on the distance
di,j and is given by exp(−i2πλ−1di,j). In (1), we ignore the
shadowing effect and model the large scale fading as pure
pathloss d−αi,j . It is well-known that the function d−α models
properly a LoS channel for a large range of distances when the
plane wave approximation holds, i.e., d is sufficiently large. At
small distances, this decaying model introduces a clear artifact:
for d < d0, the transmit signal is amplified beyond the transmit
signal level and the amplification presents a vertical asymptote
for d→ 0. In order to remove this artifact while keeping the
model simple 1, we assume negligible the signal attenuation in
a close neighborhood of a transmitter and we fix the attenuation
equal to 1.

The transmitting users do not have any knowledge of the
channel and transmit with equal power P . The receivers are
impaired by additive white Gaussian noise (AWGN) with vari-
ance σ2. The received signal vector at the central processor
and discrete time instant m is given by

y(m) =
√
PHx(m) + n(m), (2)

where x(m) = (x1(m), x2(m), . . . xNT
(m))T , xj(m) is the

unitary energy symbol transmitted by user j, H is an NR ×
1It is worth noticing that in contrast to the approach in [8,9], the analysis

proposed in this paper can be applied to any LoS model which admits a Fourier
transform and it is not restricted to (1).

NT channel matrix with element (i, j) equal to h(ri, tj), and
n(m) is the additive white Gaussian noise vector whose i-th
component is the noise at AP i.

For the sake of analytical treatability, as in [9], we assume
that users and APs are located on a grid inAL. Let τ > 0 be an
arbitrary small real such thatL = θ τ with θ positive, even inte-
ger. We denote byA#

L the set of points regularly spaced inAL
by τ, i.e., A#

L ≡
{
w|w = (−θ+ 2k)τ/2, k = 0, 1 . . . θ− 1}.

We model the distributed users and APs as homogeneous point
processes ΦT and ΦR in A#

L characterized by the parame-
ters βT = ρT τ and βR = ρRτ , where ρT and ρR are the
intensities, i.e., the number per unit area, of transmitters and
receivers, respectively. Observe that NT = ρTL = βT θ and
NR = ρRL = βRθ.

3. PRELIMINARY MATHEMATICAL TOOLS

In this section, we introduce mathematical tools for the analy-
sis and design of DAS. Communication systems modeled by
random channel matrices can be efficiently studied via their
covariance eigenvalue spectrum [17, 18]. Then, in order to
analyze DASs, we characterize the spectrum of the channel
covariance matrix C = HHH in terms of its eigenvalue mo-
ments

m
(n)
C =

∫
µnfC(µ)dµ = E

{ 1

NT
tr(Cn)

}
(3)

where µ and fC(µ) denote the eigenvalue and eigenvalue dis-
tribution of the matrix C, respectively.The expectation is with
respect to the two homogeneous point processes ΦT and ΦR.

Following the approach in [8, 9], we decompose H as
follows

H = ΨRTΨH
T (4)

where T is a θ×θ matrix depending only on the function h(d),
ΨR and ΨT are an NR × θ and NT × θ random matrices de-
pending only on random AP’s and user’s location, respectively.
In order to define the matrices ΨT , ΨR, and T, we consider
the θ × θ channel matrix H of a system with θ transmit and
receive antennas regularly spaced in A#

L . It is easy to recog-
nize that H is a band Toeplitz matrix and, asymptotically, for
θ → ∞, it admits an eigenvalue decomposition based on a
θ × θ Fourier matrix F [19]. Then, we consider the decom-
position H = FTFH , where the matrix T is a deterministic,
asymptotically diagonal matrix depending on the function h(d)
via its discrete time Fourier transform. The random matrices
ΨT and ΨR are obtained by extracting independently and
uniformly at random NT and NR rows of F. For the sake of
conciseness, we omit here a detailed analytical definition of
the three matrices since not required for further studies and
refer the interested reader to [8, 9] for their detailed definition.

Further analysis requires m(n)
T , the n-order eigenvalue

moment of T as L, θ → +∞. Let us consider the sequence
{h(kτ)}|k∈Z obtained by sampling the function h(d) with
period τ. Asymptotically, for L, θ → +∞, the eigenvalues
of the matrix T are given by H(ω), with ω ∈ [−π,+π], the
discrete-time Fourier transform of the sequence {h(kτ)}|k∈Z
[19] and m(n)

T =
∫ +π

−π H
n(ω)dω.



In order to obtain the moments m(l)
C , we follow the ap-

proach in [9, 20] and approximate the random matrices ΨR

and ΨT by the independent matrices ΦR and ΦT , respectively,
consisting of i.i.d zero mean Gaussian elements with variance
θ−1. This approximation enables the application of classical
techniques from random matrix theory and free probability.
In the following we introduce an algorithm for the recursive
computation of m(n)

C̃
, the n-order eigenvalue moment of the

channel covariance matrix C̃ = H̃HH̃ = ΦTTΦH
RΦRTΦH

T

and C̃(n)
kk , the diagonal elements of C̃n. The derivation and

proof are based on techniques similar to the ones utilized
in [21, 22] and it is omitted due to space constraints.

The algorithm holds asymptotically for θ,NR, NT → +∞
with NT /θ → βT and NR/θ → βR and it is based on the rela-
tions between the matrix C̃l and the matrices T, D = H̃H̃H ,
Γ(l) = TΦH

RDl−1ΦRT, and ∆(l) = TΦH
TC̃l−1ΦTT. It

determines m(l)

C̃
and C̃(l)

kk , the k-th diagonal element of the

matrix C̃l, by a recurrent expression of the eigenvalue mo-
ments of the matrices T, D, Γ(l), and ∆(l) and their diagonal
elements. The eigenvalue moment of order l of the matrix D

is denoted by m(l)
D . m(l)

Γ and m(l)
∆ are the eigenvalue moments

of the matrices Γ(l) and ∆(l), respectively. Similarly, D(l)
kk ,

Γ
(l)
kk, and ∆

(l)
kk are their respective diagonal elements.

Algorithm

Initial step: Set m(0)

C̃
= m

(0)
D = C̃

(0)
kk = D

(0)
kk = 1, Γ

(1)
kk =

βRT
2
kk, ∆

(1)
kk = βTT

2
kk, m

(1)
Γ = C̃

(1)
kk = βRm

(2)
T ,

m
(1)
∆ = D

(1)
kk = βTm

(2)
T .

Step l: Compute

Γ
(l)
kk = βRβTT

2
kk

s+r=0,1,...l−2∑
s=0

∑
r=0

m
(s)

C̃
m

(r)
D Γ

(l−(s+r)−1)
kk +

+ βRm
(l−1)
D T 2

kk l ≥ 2

m
(l)
Γ = βRβT

s+r=0,1...,l−2∑
s=0

∑
r=0

m
(s)

C̃
m

(r)
D E(

T 2
kk

θ
Γ
(l−(s+r)−1)
kk )

+ βRm
(l−1)
D m

(2)
T l ≥ 2

∆
(l)
kk = βRβTT

2
kk

s+r=0,1,...l−2∑
s=0

∑
r=0

m
(s)

C̃
m

(r)
D ∆

(l−(s+r)−1)
kk +

+ βTm
(l−1)
C̃

T 2
kk l ≥ 2

m
(l)
∆ = βRβT

s+r=0,1,...l−2∑
s=0

∑
r=0

m
(s)

C̃
m

(r)
D E(

T 2
kk

θ
∆

(l−(s+r)−1)
kk )

+ βTm
(l−1)
C̃

m
(2)
T l ≥ 2

D
(l)
kk =

l−1∑
n=0

m
(l−n)
∆ D

(n)
kk l ≥ 1

m
(l)
D =

l−1∑
n=0

m
(l−n)
∆ m

(n)
D l ≥ 1

C̃
(l)
kk =

l−1∑
n=0

m
(l−n)
Γ C̃

(n)
kk l ≥ 1

m
(l)

C̃
=

l−1∑
n=0

m
(l−n)
Γ m

(n)

C̃
l ≥ 1

Remarks
• In order to compute m(l)

C̃
, it is necessary to determine

m
(l)
Γ and m(l−1)

∆ .

• In the previous algorithm, at step l = 1 only the expres-
sions defined for l ≥ 1 are computed.
• It is easy to verify that the diagonal elements C̃(l)

kk and
D

(l)
kk are independent of the index k and all equal.

• For l = 1, C̃kk = m
(1)

C̃
= βRm

(2)
T .

By applying the previous algorithm we obtain the follow-
ing eigenvalue moments.

m
(1)

C̃
= βRm

(2)
T ,

m
(2)

C̃
= β2

RβTm
(4)
T + βR(βR + βT )(m

(2)
T )2,

m
(3)

C̃
= β3

Rβ
2
Tm

(6)
T + 3β2

RβT (βR + βT )m
(2)
T m

(4)
T

+
[
βRβT (3βR + βT ) + β3

R

]
(m

(2)
T )3.

4. FAVORABLE PROPAGATION AND MULTIUSER
DETECTION IN DAS

In this section, we analyze the property of favorable prop-
agation in DAS through the characteristics of their channel
eigenvalue moments. In a favorable propagation environment,
when the users have almost orthogonal channels, the channel
covariance matrix R satisfies the following properties

m
(l)
R

tr[
(
diag(R)

)l
]
≈ 1 ∀l ∈ N+ (5)

where m(l)
R denotes the l-order eigenvalue moment of matrix

R. These properties are asymptotically satisfied for centralized
massive MIMO systems, in rich scattering environments, when
the number of users stays finite while the number of antennas
at the central base station tends to infinity.

By making use of the observation that in large DAS, as
L → ∞, C̃kk = βRm

(2)
T , we obtain that tr[

(
diag ˜(C)

)l
] =

βlR(m
(2)
T )l such that (5) specializes for DAS and l = 2, 3 as

follows

m
(2)

C̃

β2
R(m

(2)
T )2

= 1 +
βT
βR

+ βT
m

(4)
T

(m
(2)
T )2

m
(3)

C̃

β3
R(m

(2)
T )3

= 1 + 3
βT
βR

+
β2
T

β2
R

+ 3βT

(
1 +

βT
βR

)
m

(4)
T

(m
(2)
T )2

+

+β2
T

m
(6)
T

(m
(2)
T )3

As βR goes to infinity while βT is kept constant, i.e., for

βT /βR → 0 and βT > 0,
m

(2)

C̃

β2
R(m

(2)
T )2

→ 1 + βT
m

(4)
T

(m
(2)
T )2

and
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m
(3)

C̃

β3
R(m

(2)
T )3

→ 1+3βT
m

(4)
T

(m
(2)
T )2

+β2
T

m
(6)
T

(m
(2)
T )3

and conditions

(5) are not satisfied.
Systems with favorable propagation can efficiently utilize

the low complexity matched filter at the central processing
unit since it achieves almost optimal performance in such en-
vironments. However, when conditions (5) are not satisfied,
even linear multiuser detectors are expected to provide sub-
stantial gains compared to the matched filter. In the following,
we consider low complexity multistage detectors including
both polynomial expansion detectors, e.g., [15], and multi-
stage Wiener filters [16] and we analyze their performance in
terms of their signal to interference and noise ratio (SINR) by
applying the unified framework proposed in [21,23]. In [21], it
is shown that both design and analysis of multistage detectors
with M stages can be described by a matrix S(X) defined as

S(X) =


X(2) + σ2X(1) · · · X(M+1) + σ2X(M)

X(3) + σ2X(2) · · · X(M+2) + σ2X(M+1)

...
. . .

...
X(M+1) + σ2X(M) · · · X(2M) + σ2X(2M−1)


and a vector s(X) = (X(1), X(2), ..., X(M))T where X =

mC̃ for polynomial expansion detectors and X = C̃kk for
multistage Wiener filters. From the asymptotic property that
C̃

(l)
kk = m

(l)

C̃
for any k and l, we can conclude that multistage

Wiener filters and polynomial expansion detectors are equiva-
lent in DAS. Additionally, we can determine the performance
of a centralized processor implementing multistage detectors
by applying the following expression [21]

SINR =
sT (mC̃)S−1(mC̃)s(mC̃)

1− sT (mC̃)S−1(mC̃)s(mC̃)
. (6)

It is worth noting that for M = 1, a multistage detector re-
duces to a matched filter and (6) can be applied also for the
performance analysis of matched filters.

5. SIMULATION RESULTS

In this section, we validate the analytical results in Section 3
and 4. We consider systems with pathloss factor α = 2 and

d0 = 1. For Fig. 1, we consider a system with transmitters
homogeneously distributed with intensity ρT = 20 over a seg-
ment of length L while the receivers’ intensity varies in the
range ρR = [20, 200]. Fig. 1 compares the fourth eigenvalue
moments of LoS channels obtained analytically for L → ∞
by the algorithm in Section 3 and the fourth eigenvalue mo-
ments of systems with L finite and with and without Gaussian
approximation. The comparison shows that the asymptotic
approximation matches very well practical systems. For Fig.
2 and 3, we assume L = 100, ρT = 0.5, and ρR = [1, 5].

Fig. 2 shows the ratio m(l)

C̃
/tr[
(
diag(C̃)

)l
] versus βT /βR for

l = 2, 3 to corroborate the analytical result that the condi-
tions for favorable propagation are not satisfied. In fact, the
curves do not tend to 1 for small ratios βT /βR. Finally, we
consider a system with average signal to noise ratio (SNR)
at the transmitters equal to 20dB and show the usefulness of
multiuser detection in DAS. More specifically, Fig. 3 shows
the SINR(dB) of matched filters (M = 1) and multistage
detectors with two and three stages versus the intensity of re-
ceive antennas. For increasing values of ρR, the performance
gap between the matched filter and the multistage detector is
substantial and does not tend to vanish.

6. CONCLUSIONS

In this paper, we considered a system consisting of randomly
distributed transmit and receive antennas and investigated to
which extent the phenomenon of favorable propagation, widely
exploited in massive MIMO systems, is present and can be
utilized in DAS. The properties of DASs were analyzed using
channel eigenvalue moments. We showed analytically that the
conditions of favorable propagation are not satisfied. A final
comparison between the performance of multistage detectors
and matched filters corroborates the usefulness of multiuser
detection in DAS.
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