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Abstract— This work studies the K -user broadcast channel
where each user is assisted by one of A caches with a cumulative
memory constraint that is equal to ¢ times the size of the library,
and where each cache serves an arbitrary number of users. In
this setting, under the assumption of uncoded cache placement,
no prior scheme is known to achieve a sum degrees of freedom
(DoF) of t 4+ 1, other than in the uniform case where all caches
serve an equal number of users. We here show for the first time
that allowing an optimized memory allocation across the caches
as a function of the number of users served per cache, provides
for the aforementioned DoF. A subsequent index-coding based
converse proves that this performance can be close to optimal
for bounded values of ¢.

I. INTRODUCTION

The well known work by Maddah-Ali and Niesen in [1]
revealed that in the shared-link broadcast channel (BC) with
cache-aided users, a carefully designed cache-placement phase
can allow content delivery that employs multicasting transmis-
sions that can be simultaneously useful to many users having
different content requests. This delivery speedup, commonly
referred to as the coding gain or equivalently as the Degrees-
of-Freedom (DoF), was interestingly shown to scale with the
cumulative cache capacity of the network, and it was shown
in [2], [3] to be essentially optimal for the specific network.

Subsequently a variety of works explored coded caching
in different scenarios such as D2D networks [4], multi-
transmitters wireless settings [5]-[7], subpacketization con-
strained settings [8], [9], non-uniform file popularities [10],
multiple access networks [11], and in other settings as well.

A. Coded Caching with Shared Caches

A variety of realistic scenarios — such as when cache-
aided base stations serve users in cellular networks — calls
for exploring coded caching in the presence of shared caches,
where instead of having each user with its own dedicated
cache, now caches (cache-aided base stations) can serve
multiple users/receivers at the same time. Crucial to such
scenarios is naturally the ability to account for the load
density of each cache (i.e., the number of users served by
each cache); for example, as noted in [15], a base station
serving an office building is statistically likely to serve many
more users/demands than a base station serving a more sparse
residential area. Such considerations motivated the recent work
in [16] which characterized the optimal (under uncoded cache
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placement) worst-case delivery time when each cache assists
an arbitrary number of users and where the corresponding
user-to-cache association is not known during the cache-
placement phase. Related work can be found in [17] which
extends the setting in [16] to account for error-prone links,
as well as the work in [18] which quantifies — for the same
setting as in [16] — the extra gains from knowing the user-
to-cache association during the cache placement phase.

This same heterogeneous context also naturally supports the
scenario that the more popular caches (those known to serve
many users) will be allocated more memory. Motivated by this,
we will consider a shared-cache setting — where each cache
serves an arbitrary number of users/requests — and we will
seek to optimally allocate a given storage memory across the
caches and then to design a caching and delivery strategy that
minimizes the delivery time. For this problem, we propose a
novel caching scheme and an information theoretic converse,
together with an upper bound on the gap to optimal.

B. Notation

For A € N, we use [A] = {1,2,...,A} and we use C2 =
{7 :7 C[A],|r]| = k} to denote the set of all k-combinations
of [A]. For any n € N, we use S,, to denote the symmetric
group of all permutations of [n]. Finally for an ordered set T,
we will refer to the j-th element of T as 7(j).

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a network where a server with access to a
library of N(N > K) unit-sized files W, W@ . W)
is connected via a shared-link broadcast channel! to K users,
each enjoying direct access (at zero cost) to one of A different
caches, where the size of each cache A € {1,2,...,A} is a
design parameter M) € (0, N] (in units of file), adhering to a
cumulative sum cache-size constraint Zi\le M, = Ms. For

Ya 2 %, this constraint takes the form
A
A ME
=t=__=, 1
> 5 (1)
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Each cache A is connected to a set of Ly users Uy C [K],
thus defining a so-called user profile vector

L:(L17"'7LA) (2)

where naturally Ef\\zl |Uy] = K and where without loss of
generality we assume that L; > L; for i < j.

IThe channel capacity is normalized to one file per unit of time.



The scenario calls for three different phases.

1) A memory allocation phase during which the total
memory My is allocated to the caches, yielding the
allocated set {7, }3_,.

2) A cache placement phase during which each cache

A — of allocated size ~, — is filled with content
Zy from the library, according to a certain strategy
Z=(21,...,2p).

3) A delivery phase which starts when each user k € [K]
requests a file, Wdr) With the demand vector d =
(d1,da,...,dr) known, the server will aim to deliver
each requested file to its corresponding user.

A. Problem definition

For any given uncoded cache placement strategy Z and
any given demand d, we denote by 7*(Z,d) the minimum
(over all delivery schemes) time that guarantees delivery to
all users k& € [K] of their desired files W(%). Our goal
is to characterize the minimum (over all memory-allocation
strategies and all placement-and-delivery schemes, under the
assumption of uncoded cache placement) worst-case delivery
time

T* = min mazx T*(Z,d) 3)
Z d

as a function of K, My, N and L.
III. MAIN RESULTS
In this section we state our main contributions.

Theorem 1. For the K-user BC with A shared caches, a sum-
cache constraint My, and a user profile L, the worst-case
delivery time

T — Zﬁ\x:l L)\(l B ’YA)

4
t+1 @)
is achievable for any integer’ t € [\], where
t
>, Il L
TEC?: TIA =
Ya = . (%)

t
> H1 L)

rech I=
Proof: The placement and tdelivery schemes are presented

in Section IV.

A. DoF Performance

In the context of uneven L and uneven {~, }, the concept of

: A K-8 NI

the sum DoF naturally generalizes to Dol = —=251->—=
reflecting the rate of delivery of the non-cached desired
information. By recalling that Zf\\zl L) = K, the delay in (4)
directly implies that DoF' =t + 1, which is an improvement
over the case where L is unknown to the placement phase. In
fact, we know from [16] that without knowledge of L during
the (uncoded) cache placement, the DoF = t + 1 can be
achieved only in the uniform case of having % users per cache,
and that any non-uniformity in L forces a DoF' penalty. The

2For non-integer ¢, the lower convex envelope is achievable.
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Fig. 1. Caching setting considered in this work for L = (2,1, 1).

above theorem shows that knowledge of the profile L allows
for a redesigned and skewed memory allocation® which — in
conjunction with the coded caching scheme — achieves this
DoF =t + 1 regardless of L.

We proceed with the converse.

Theorem 2. For the K-user, A-shared caches problem with
cache redundancy t € [A] and profile L, under the assumption
of uncoded cache placement, any delivery time must satisfy

t
K- Z)\:l L

t+1 )
Proof: The proof can be found in Section V.

The following bounds the gap to optimal under the assump-
tion of uncoded cache placement.

T> 6)

Proposition 1. For any set {K,N,Ms,L}, the achieved
delivery time in (4) is at most a multiplicative factor of
t + 1 from the optimal. When L = (2,1,1) the delivery time
is exactly optimal under the assumption of uncoded cache
placement.

Proof: The proof* can be found in Section VIIL.

IV. PLACEMENT-AND-DELIVERY SCHEME

In this section we present our caching and delivery scheme
that achieves the performance in (4). We start with a simple
example to help the reader understand the idea behind the
scheme.

A. Example

Consider the problem with N = 4 files, A = 3 caches and
K = 4 users (see Fig. 1) distributed according to the profile

31t is this skewness that allows for multicasting messages that serve  + 1
users at a time. It is interesting to observe that the skewness of the allocated
{'YA}Qzl reduces as t increases. For ¢t = 1, the skewness is maximal and it
corresponds to vy = % while as ¢ increases, the allocation approaches the
uniform allocation.

“The exact optimality when L = (2,1, 1) is proven by means of a more
sophisticated variant of the index coding technique in Section V. The proof
will appear in the extended version of this work [19].



L = (2,1,1). We assume that a sum memory of My = 4
units of file is available to be allocated across the caches.

In the caching phase, we split each file W" (n €
{1,2,3,4}) into 4 equally-sized subfiles indexed by the pairs
{(1,1),(1,2),(2,1),(3,1)}. Based on the first index, we fill
the caches as follows;

20 = (Wi, Wiy Wi Wil Wi wiy, wit) wi),
3
{W2 1)7W2( 1)>W2 1)»W2 2
1 2 3 4
2 —{Wéf,Wé’ Wé,f,Wéf}
thus adhering to v, = %, Yo = 4, v; = 7, as stated in (5).

In the delivery phase, we consider the demand vector d =
(1,2,3,4) where W) and W) are each requested by the
two users associated to cache 1, w®) by the user with cache
2, and W* by the user with cache 3. For R denoting the

set of uncached subfiles wanted by the users of cache A, we
have

Ry = {Wg, Wyl Wi Wiy,

Ra = {W1(731)7 W?Si)v W1(32)}7

Ry = (Wi, Wy, W3},
These files are transmitted — two at a time — in the form of
the following 5 XORs

=Wyl oW Xo =W oWy
—wl Wl Xi=wiowl)
X5 = ngzl) S5) Wl(42)
and can be decoded in the standard clique-based manner of

[1], thus yielding a delay T = % which can be shown to be

optimal under the assumption of uncoded cache placement.
We proceed with the description of the general scheme.

B. Memory Allocation and Cache Placement
We first split each file W (™) n € [N], into

t
S = Z 11 Z-6)

TEC?jZl

)

subfiles of equal size, and we label each subfile as

W — {Wﬁﬁ),w( W |T€CA}

t
where A, 2 {1,27 11 LT(j)}. Cache X € [A] caches all
j=1

subfiles WT(% m € A, whose first subscript 7 includes A,
which in turn yields caches

2= { Wi Wi e w75 xn e [N},

This automatically yields the memory allocation {v,}3_,
from (5) because the aforementioned placement condition that
a subfile WT(% is placed in Z if only if A € 7, manages
to automatically guarantee the numerator of (5), while the
subpacketization in (7) guarantees the denominator of (5). This

same placement also assures that each subfile is cached in
exactly ¢ caches (because each 7 satisfies |7| = ), which in
turn guarantees the sum memory constraint in (1).

This placement yields an interesting property, which is
described in the following lemma.

Lemma 1. For any t + 1-tuple Q C [A], the total number
of subfiles with first subscript T = Q \ {\} that are missing
from all the users associated to any specific cache \ € Q, is
independent of \ and it equals
A b
Po =[] Lo
j=1
Proof. For any t+ 1-tuple Q C [A], consider cache A € Q and
let 7 = Q\{A}. There are Ly requested files from the users U
of cache ), each having H;Zl L, ;) subfiles with first index 7.
This in turn means that the total number of subfiles that need to
be sent to satisfy users in U, is Ly H;Zl L.y = Héill Loy,
which does not depend on . O

®)

C. Delivery phase

For ease of presentation, we will use d> to denote the vector
of indices of the files requested by the users in ).
For a fixed ¢ 4+ 1-tuple Q and any A € Q, consider the set

{WT(%\U)) :j€[Ly],me A}

of subfiles, with first subscript 7 = Q\ {\}, that are requested
from users in U, and relabel these as

(FY 2 j e [Po]}.

The two sets are the same.
Because of the cache placement phase, we notice that for
any ¢t + 1-tuple Q and any j € [Pg], the set of subfiles

(N
FQ\{)\}], YA e Q 9

forms a clique of £+ 1 nodes. By Lemma 1, for any ¢+ 1-tuple
Q € [A], we have Pg cliques as in (9), all of ¢t + 1 nodes.
Consequently we transmit, for each ¢ + 1-tuple Q C [A], the
following PQ XORs

= P FSVpy, VielPl (10)
A€Q

whose structure allows for clique-based decoding as in [1].

D. Performance of the scheme

The fact that there are Pg XORs for each ¢ + 1-tuple @,
implies a total of

t+1

Z Po = Z I Zow

gech,, Qech,, =t

transmissions and a corresponding delay of

t+1
> HlLQ(J) .
Qect, 77 Ly(1—
T — €Cih : (;) ZA:1 A( V) (11)



where the denominator 3 _ca H§:1 L. ;) is due to (7), and
where (a) follows from basic mathematical manipulations
which are omitted here due to lack of space. The above
expression reflects the fact that each user from cache A enjoys
a local caching gain +,, the fact that each cache A “requests”
L, files, and the fact that all transmitted XORs served ¢ + 1
users at a time.

V. PROOF OF THE CONVERSE

In this section we present the proof of Theorem 2.

The technique used to develop the bound draws from [2]
and some aspects are drawn from [16]. Key to the bound is the
conversion of the coded caching problem into an equivalent
index coding problem, along with the use of the outer bound
on the index coding capacity presented in [20, Corollary 1].

a) Translation to index coding: Let Dgy;y be the set of
vectors d comprised of K different file indices. For every
demand vector d € Dgy;y, we assume that each requested
file W@ )| ¢ L] is split in a generic manner into 24
disjoint subfiles WT(d (l)),T e 2 according to the power
set 28 of [A], where 7 € [A] denotes the set of caches
in which Wridx(l)) is cached, and where the size of each
subfile |WT(d (l))| can take any value. The equivalent index
coding problem (equivalent to the caching problem defined
by d) is then fully defined by the side information graph
Ga = (Vg,&g), where Vg is the set of vertices corresponding
to the requested subfiles WT(dA(l)), A ¢ 7, where &g is the set
of directed edges of the graph. A directed edge from vertex
v € Vg to v’ € Vg exists if and only if the index coding user
requesting vertex/subfile v’ knows the subfile corresponding
to vertex v.

Helpful to our proof will be the adaptation of two lemmas
from [20] and [16], which we state below.

Lemma 2. (Cut-set-type converse [20]) For a given side
information graph Gq = (Vg,Eg), the following inequality

holds
T> ) |l

vEV 7

12)

Sor every acyclic induced subgraph J = (V7,€7) of Ga,

where |v| is the size of the subfile/node v.

The following lemma is an adaptation of Lemma 1 in [2]
taken here directly from [16].

Lemma 3. An acyclic subgraph J of Gq, is designed here

to consist of all subfiles W "9 vj e [La], YA € [A] for

all 7 C [A]\ {o1,...,0x} where o = (o1,...,
permutation on vector (1,...,A).

op) IS a

For any acyclic subgraph of G4 induced by a permutation
o according to Lemma 3, we use Lemma 2 to get

T*(Z,d) > T (Z,d)

where

T (Z,d) =

Z S WEO) oy

=1 71 C[A]\{o1}
DIND SRUCCCCIRERES R wUE el

=1 m\C[A\{o1,.. 7Ux} I=1 maC[AN\{o1,....on}
(13)
To symmetrize, we average (13) over all |Sp| = A! permuta-
tions o € Sp to get
T*(Z,d T(Z,d 14)
(2,d) 2 5o SA| ; ) (
ocSp
and a subsequent lower bounding of 7™ gives
T* =min max T*(Z,d)
Z de[N]K
1
> min T (Z,d
> i mdm L T
is
> min ———— T (Z,d). (15)
Tz |Ddzf\|5A| 2 2

deDg;p o€ESA

At this point, the inherent symmetry with respect to the file
indices, allows us to rewrite the double summation in (15) as

S Y Ea-y Y

d€Dgiy o€ESA 1=0 7e2[Al:|7|=i

g7l 16)

where g, denotes the number of times that [WWZ=| appears in
(15). We can prove that

gr _ K — ZjGTL
Dai|lSal  N(7|+1)

the proof of which can be found in the extended version [19]
of this work. Next, we combine (17) with (15)-(16) to obtain

A J—
T > Hgnz Z Zjer LJ

W
=0 re2Al:|7|=i

a7

N(jr|+1) (18)

which, together with the sum file size constraint and the cache
size constraint

S WE =N (19)
re2lA]
> WP =N (20)
re2lA]
yields the linear program
A
K-> .. L,
C JjeT I b
minimize — W
WE| ;Tewz];ﬂ_l N(lr[+1)
subject to (19),(20) and |WZ| >0, Vr e 2[A]
whose solution is exactly
K-Y' | L;
2]71 J (21)

N{t+1)



The LP solution in (21) can be verified by solving the KKT
conditions, and this verification can be found in the extended
version [19] of this work. This concludes the proof. L]

VI. CONCLUSIONS AND FUTURE WORKS

The work explored the coded caching problem with shared
caches where each cache serves an arbitrary number of users,
and proposes a scheme which — under a cumulative cache-
size constraint — yields a sum DoF of ¢ 4+ 1 users served
at a time. Compared to settings where all caches have the
same size, the current solution also allows for increased
local caching gains. The work also presented an information
theoretic converse that allows us to identify the optimal per-
formance (under the assumption of uncoded cache placement)
within a gap of no more than ¢ + 1, irrespective of K and L.

An interesting extension of this work could be the study
of the average delivery time. As always, another direction
would be to account for subpacketization constraints, which
are known to severely limit theoretical gains. Also motivated
by the approach in [18], an additional extension would be to
explore potential gains from allowing coded cache placement.
Finally one could explore — under a non-uniform file pop-
ularity — the tradeoffs between increased local caching gain
(cf. [15]) and the current approach that focuses on coding gain.

VII. APPENDIX

A. Gap from Optimality

To bound the gap to the optimal 7™, we employ the
achievable 7" from (4) and the lower bound from (6), and
proceed as follows

T < K — 2921 Lyv,

S 22)
T K—Y%_, Ly
t A
— 14 Yoam La =22 b (23)
A
Z)\:tJrl Ly
t t A t
YL MMLrgy=2 Ly X Il Ly
(a) A=1  recpj=1 A=1  recf: o) j=1
= 1—|— N Z
E)\:t+l Ly Z H L)
‘rECé\J:1
(24)
t t A t
Ly X T Lrgy—> Lan X TlLry
A=1 TEC?:A%TjZl A=t+1 TEC?: N J=1
:1—|— N P
S a1 e
7'€C{X i=1
(25)
B
. . A t
Sy X LD Iy, IEo)
_y L TSR et rect manisl 0

t t
[[Lh+ > I L+

TeChagri=1

A
> L >

A=t+1 TeChrerj=1

t

23:1 L > [1 L)

(®) TeChagr =1

<14 7)
t
A
E)\:t+1 L Z H LT(j)
TeCHNgT J=1
t
t L ; 1:[1 L)
-1 + Z TEC] AgTI= t (28)
A= A
! Zi:t-{—l L; > H LT(j)
(© TeECHigr i=1
<1+t 29)

where (a) is obtained by applying the value of ~, from (5),
() is obtained after adding and subtracting B to the numerator

and denominator of (26), and (c) is due to the fact that each
term of the summation in (28) is smaller than 1. O
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