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Abstract—Cellular connected unmanned aerial vehicles (UAVs)
that can operate safely in beyond visual line of sight conditions
are expected to open important future opportunities in the areas
of transportation, goods delivery, and system monitoring. A key
challenge in this area lies in the design of trajectories which,
while allowing the completion of the UAV mission, can guar-
antee reliable cellular connectivity all along the path. Previous
approaches in this domain have considered either simplistic
propagation model assumptions (e.g. Line of Sight based) or
more advanced models but with computationally demanding
optimization solutions. In this paper, we propose a novel approach
for trajectory design using a coverage map that can be obtained
with a combination of a 3D map of the environment and
radio propagation models. Leveraging on the convexity of sub-
regions within the coverage map, we propose a low-complexity
graph based algorithm which is shown to achieve quasi-optimal
performance at a fraction of the computational cost of known
optimal methods.

I. INTRODUCTION

Rapid innovation and technological disruption in manufac-

turing low-cost and high-quality commercial unmanned aerial

vehicles (UAVs) or drones has opened up many business

opportunities to address consumer applications such as goods

delivery services, passenger transport, aerial surveillance and

inspection, rescue operations [1]. With growing efforts from

governments facilitating regulatory framework [2], [3], UAV

market is projected to reach $63.6 billion by 2025 [4].
Ensuring ultra-reliable and low latency links between UAVs

and their ground control stations plays a pivotal role in making

these businesses a reality as many of the above mentioned

application scenarios require UAVs to be autonomous or semi

autonomous. Integrating UAVs into ubiquitous existing or

future cellular networks as user terminals and connecting

them with base stations (BSs) offers simple and cost-effective

solution to the UAV connectivity problem [5].
In spite of the promising results demonstrating the feasibil-

ity of supporting UAVs in current cellular networks, several

new challenges have been highlighted in supporting aerial

users in current cellular networks, which are otherwise de-

veloped for terrestrial users [6]–[8]. In particular, interference

and abrupt changes in signal strength (compared to terrestrial

users) have been observed in aerial users as the BS antennas

are typically tilted a little downwards (intended for terrestrial

users), thus making the aerial users experience side lobes.
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However, the inherent advantage offered by UAVs in terms

of 3D mobility can be exploited to efficiently design UAV

paths to avoid the outage areas and exploit good channel

conditions while not deviating too much away from the tra-

jectories planned for original tasks. Motivated by this, several

recent works have considered the problem of communication-

aware trajectory design for cellular connected UAVs [9]–[15].

Specifically, the problem of finding an optimal path in the

sense of a shortest path between a departing point and a

given destination such that the UAV consistently gets a reliable

connection from the cellular network has been considered in

[9]–[14]. The works in [9], [10] have considered the problem

of finding the shortest path under cellular coverage constraints

assuming that the UAV terminal experience line-of-sight (LoS)

channels from the BSs at all times independent of UAV and BS

locations. Convex optimization and graph based approaches

are used to optimize the trajectory. However, the chosen radio

propagation model is not applicable in urban environments,

where it is shown that air-to-ground channels exhibit switching

from LoS and non-line-of-sight (NLoS) conditions depending

on the UAV and BS locations, where NLoS conditions are

caused by signal blockage, reflection and diffraction caused

by city buildings [16], [17].

To overcome the drawback arising from using simple LoS

channel models in urban environments, the works in [11]–[13]

have utilized a radio map of the environment that carries very

fine grain information about the channel gains from all BSs

in the trajectory optimization. While [11] considers only the

altitude optimization of UAV, [12], [13] optimizes trajectory in

2D while considering a fixed altitude. Both these works depend

on discretizing the radio map of the overall flight region into

finer grids and then use graph based algorithms to find the

shortest path from the initial location to the destination. The

complexity and performance trade-off of the shortest path

algorithm depend on the number of nodes in the constructed

graph, which in turns depend on the grid resolution used in

discretizing the radio map. Note that the radio maps are not

available on fly but need to be estimated offline by collecting

lot of radio measurements from users in that environment [18].

Another approach to obtain realistic trajectories in complex

urban environments is to use learning approaches which are

model free [14], [15]. However, the drawback of such tech-

niques is that they require a relatively high number of learning

episodes to obtain the desired results.



In this work, we consider the problem of finding the shortest

path between a starting location and a given destination such

that a constant altitude flying UAV consistently gets a reliable

quality of service (QoS) from the cellular network. Some of

the key contributions of this work are

• Instead of considering radio map which contains rich

information channel gains but not easy to model analyti-

cally, and generally not easy to obtain for arbitrary areas,

we use the 3D map of the city along with a segmented

pathloss model to construct coverage maps which serve

as a high-quality approximation to the radio maps while

having an analytical structure.

• Making use of the convexity of sub-regions within the

coverage map, we prove that the optimal trajectory has a

piecewise linear structure.

• By leveraging this optimal structure, we propose a low-

complexity graph based shortest path algorithm that

doesn’t require discretizing the entire coverage map.

II. SYSTEM MODEL

We consider a cellular connected UAV that flies over an

urban area consisting of a number of city buildings for a

duration of time T . The position of UAV at time t ∈ [0, T ]
is denoted by v(t) = [x(t), y(t), h]T ∈ R

3, where h denotes

the altitude of the UAV. For simplicity, the altitude of the

UAV is set to a fixed value which is determined by the tallest

building in the city to avoid the collision. The problem of

optimizing the UAV altitude is left for future work. We assume

that the UAV is equipped with a GPS receiver, hence v(t) is

known. The UAV flies from a predetermined initial position

vI at time t = 0 and has to reach to a terminal location vF by

the end of the mission duration. The UAV flies at a constant

speed, hence the UAV’s trajectory v(t), t ∈ [0, T ] can solely

be determined by the path it takes. During the mission the

UAV needs to remain connected to one of the K outdoor

static base stations (BS), with k-th BS, k ∈ [1,K], located

at uk = [xk, yk, hg]
T ∈ R

3 , where hg stands for the height

of the BS and it is assumed to be the same for all BSs1.

Moreover, the projection of the k-th BS location on the 2D

plane which is of the same altitude of the UAV is denoted by

ûk = [xk, yk, h]
T, k ∈ [1,K].

A. Communication Model

We consider a cellular down-link scenario where the time

varying signal-to-noise ratio (SNR) at the UAV from the k-th

BS is given by

ρk(v(t)) =
Pγk,s(t)

σ2
, 0 ≤ t ≤ T, (1)

where P is the transmission power of the BS, γk,s(t) is

the channel gain between the k-th BS and the UAV flying

at location v(t), σ2 represents the noise power, and finally

s ∈ {LoS,NLoS} emphasizes the strong dependence of the

1By no means this is a restriction and the results presented in this paper
can be easily extended to the case with different BS heights.

Fig. 1: Coverage area of a given BS and it’s sectors.

propagation conditions in line-of-sight (LoS) and non-line-of-

sight (NLoS) scenarios [18]. The channel gain between the

UAV and the k-th BS is modeled as [18], [19]

γk,s(t) =
βs

(dk(t))
αs

, (2)

where αs is a path loss exponent, βs is a channel gain offset,

and

dk(t) = ‖v(t)− uk‖2

represents the euclidean distance between the k-th BS and the

UAV. Regarding the LoS/NLoS classification of the UAV-BS

links, we leverage the knowledge of a 3D city map. Based on

such map, we can predict LoS (un)availability on any given

UAV-BS link from a trivial geometry argument: For a given

UAV position, the BS is considered in LoS to the UAV if the

straight line passing through the UAV’s and the BS’s position

lies higher than all buildings in between.

B. Problem Formulation

We are interested to find the shortest trajectory for the UAV

between a predefined starting point vI and a terminal point

vF, while satisfying the minimum SNR ρ̄ during the mission,

that is

min
0≤t≤T

max
k∈[1,K]

ρk(v(t)) ≥ ρ̄. (3)

Since the UAV moves with a constant velocity, the trajectory

optimization problem can be formulated as

min
T,{v(t),0≤t≤T}

T (4a)

s.t. (3), (4b)

v(0) = vI, v(T ) = vF. (4c)

This problem is not convex since the SNR in the constraint (3)

is a non-differentiable and non-smooth function with respect

to the UAV position due to the binary classification variable

s ∈ {LoS, NLoS}, therefore this function is neither convex



nor concave. Moreover, it is a functional optimization which

makes it challenging to solve optimally in general.

In the following, with some analysis we show that the

optimal trajectory has some structures which can be exploited

to make the problem (4) more tractable. To this end, the

following results and definitions are helpful.

Definition 1. Coverage area: The coverage area of the BS is

defined as a set of points with the same altitude as the UAV in

which the SNR of the UAV-BS link will remain greater than

or equal to ρ̄. Mathematically, the coverage area of the k-th

BS, k ∈ [1,K] is defined as

Ak = {v = [x, y, h]T ∈ R
3 | ρk(v) ≥ ρ̄}. (5)

Using the SNR expression in (1), the set of points [x, y]
that belong to the set Ak can be written as

(x− xk)
2 + (y − xk)

2 ≤ ds, (6)

where ds ,

(

Pβs

σ2ρ̄

)
2

αs

− (hg − h)2. The radius ds therefore

depends on whether the point v is in LoS or NLoS with respect

to the BS, which in turn depends upon the building distribution

around that BS. Based on (6) and the 3D map, without loss of

generality (w.l.o.s), the coverage area Ak can be divided into

Mk sectors with

Ak = {ak,1 ∪ · · · ∪ ak,Mk
}, (7)

where each ak,i is a convex shape which is a segment of a

circle between two angles θk,i and θk,i+1 with a radius of rk,i.

The radius rk,i depends on the building distribution and (6).

For better understanding, an illustration of such coverage area

of a BS is given in Fig. 1 and in Fig. 2. For instance, regarding

the coverage area depicted in Fig. 1 for a given BS, we can

write Ak = {ak,1 ∪ ak,2 ∪ ak,3 ∪ ak,4}.

Definition 2. Coverage border: The coverage border is the

perimeter of a coverage area of a given base station. The

coverage border of the k-th BS, k ∈ [1,K] is denoted Bk.

Definition 3. Common areas and common borders: The

common area between k-th and j-th BSs, k, j ∈ [1,K], k 6= j

represents the overlap regions of their coverage areas, i.e.,

Cj,k = Ck,j = {Ak ∩Aj} . (8)

The borders of the common areas Cj,k is defined as the

common borders which we denote by Dj,k.

In Fig. 2, an example of the coverage areas, coverage

borders, common areas, and common borders of two base

stations is illustrated. The coverage area of each BS is depicted

with a highlighted surfaces and the coverage borders are shown

with solid black lines.

Proposition 1. Problem (4) is equivalent to the following

Fig. 2: Top view of the city, the base stations positions,

coverage area of each base station, and the common area. The

UAV flies at 50 m and the base stations are on the ground

level.

problem:

min
N,V

∑

n∈[1,N−1]

‖vn − vn+1‖
2
2 (9a)

s.t. ρ(vn,vn+1) ≥ ρ̄ , n ∈ [1, N − 1], (9b)

v1 = vI, vN = vF, (9c)

where

ρ(x,y) = min
0≤λ≤1

max
k∈[1,K]

ρk (λx+ (1− λ)y) , (10)

and V = (vn)
N
n=1 is the sequence of UAV trajectory points in

R
3 such that any two consecutive points are connected with

a straight line.

Proof. We now provide a sketch of the proof. Let v∗(t), 0 ≤
t ≤ T be the optimal trajectory which traverses the k-th

BS’s coverage area Ak. Without loss generality, let us assume

that within coverage area Ak the trajectory traverses the n-th

sector. We denote the intersections of v
∗(t) with the borders

of sector ak,n as points vk,n,vk,n+1. For instance in Fig. 1,

the optimal trajectory intersects the border of the sector ak,1
in points vk,1,vk,2. Since vk,n,vk,n+1 both are inside ak,n
and each sector has a convex shape, then the straight line

connecting vk,n,vk,n+1 also lies inside ak,n, mathematically

we can write

λvk,n + (1− λ)vk,n+1 ∈ ak,n., ∀λ, 0 ≤ λ ≤ 1. (11)

This implies that the constraint (3) is satisfied for any points on

the straight line between vk,n and vk,n+1. Since, our objective

is to minimize the travel time (or equivalently the length of

the trajectory), then the optimal trajectory between vk,n and



vk,n+1 is the straight line. Note that (11) can equivalently be

written as

ρ(vk,n,vk,n+1) ≥ ρ̄. (12)

Consequently without loss of optimality, the optimal trajectory

can be represented as a sequence of the points such that any

two consecutive points are connected with a straight line

V = (vn)
N
n=1 | ρ(vn,vn+1) ≥ ρ̄, n ∈ [1, N − 1]. (13)

Hence, problem (4) is equivalent to (9).

Then to solve (9), we just need to optimize over a limited

number of optimization variables. However this problem is

still difficult to solve since the constraint (9b) is neither convex

nor concave. In what comes next, we develop a graph theory-

based solution to this problem. First, we check the feasibility

of problem (9) by proposing a graph theory based approach,

in the same vein of [9]. We then derive a method to find a

sub-optimal and efficient solution to problem (9).

III. FEASIBILITY CHECK

In this section, we investigate the feasibility of problem

(9) by leveraging the graph theory approach. A trajectory

sequence V = (vn)
N
n=1 is a feasible solution to (9) if

constraints (9b) are satisfied. In general, obtaining a feasible

solution to problem (9) is not trivial, since the coverage area

of BSs have non-convex shapes and the exhaustive search

cannot be avoided. For further simplification, we uniformly

discretize the coverage border of each BS, which was defined

in Definition 2, into Q samples. The discretized coverage

border of the k-th BS, k ∈ [1,K] is denoted by B̂k, |B̂k| = Q,

where |.| is the cardinality function. We then define D̂k,j as

a set of the discrete points on the common borders between

k-th and j-th BSs, k, j ∈ [1,K], k 6= j which is given by

D̂k,j =
{

Dk,j ∩ B̂k

}

∪
{

Dk,j ∩ B̂j

}

, (14)

where Dk,j was defined in Definition 3. We now propose a

method to check the feasibility of the original problem using

tools from graph theory. Let’s denote an undirected graph by

G = (N , E). We define N as a set of graph’s nodes which is

given by N = {vI∪ U∪D∪vF}, where U = {ûk, k ∈ [1,K]}
is a set comprising the projections of the BSs locations, and

D is defined as

D =
⋃

k,j∈[1,K],k 6=j

D̂k,j . (15)

The set of the graph’s edges is denoted by E which is given

by

E = {(ûk,vI)|vI ∈ Ak, k ∈ [1,K]}

∪ {(ûk,xk,j)| ∀xk,j ∈ D̂k,j , k, j ∈ [1,K], k 6= j}

∪ {(ûk,vF)|vF ∈ Ak, k ∈ [1,K]}.

(16)

We also assign a weight value to each edge of the graph

corresponding to its length. Note that, the edge (vI, ûk) exists

if the starting point vI lies in the coverage area of the k-th BS.

Moreover, (ûk,xk,j) represents an edge between the k-th BS

and all the points (xk,j) in the discretized coverage borders

with its neighbour BS j.

Proposition 2. All the edges defined in (16) satisfy the

constraint (9b).

Proof. Without loss of generality consider k-th BS having an

coverage area Ak. By definition, we can see that ûk,xk,j , k 6=
j lie inside Ak. Since the coverage area Ak can be represented

by a union of convex non-overlapping sectors as defined in

(7), by construction, there always exits a straight line path

connecting ûk and xk,j which always lies inside the coverage

region Ak. Therefore all edges (ûk,xk,j), k 6= j satisfy the

coverage constraint. Since, we assume that initial and terminal

points of the UAV are always in the coverage area of at least

one BS, it can easily be seen that edges of the form (vI, ûk)
and (ûk,vF) also satisfy the constraint in (9b).

Since all edges of the graph G satisfy SNR feasibility

constraint, the trajectory optimization problem (9) is feasible

if we can find a path from starting node vI to the termi-

nal node vF in the graph G. To this end, we employ the

Dijkstra [20] algorithm with the worst-case complexity of

O(|E| + |N | log |N |) which obtains a shortest path between

vI and vF. We denote such a solution as the base trajectory

Vb = (vb
n)

N
n=1. Note that, if the algorithm cannot find a path

between vI and vF, problem (9) is infeasible.

The base trajectory starts from the initial point vI and it

goes on top of the closest BS to the vI. The UAV then tries to

reach to the terminal point by visiting the minimum number

of the BSs. From one BS to another one the UAV crosses over

a point inside the discretized common border of the two BSs.

An illustration of the base trajectory between the starting

point and the terminal point is shown in Fig. 2. For ease of

exhibition we consider merely two BSs. It can be seen that,

the base trajectory starts from vI and heads towards the closest

BS, which is the BS1 here, and then it goes to the neighbour

base station by passing over the common borders between the

BSs. Finally, the trajectory terminates by going from BS2 in

a straight line towards vF.

We denote the set of base stations which are sequentially

visited by the base trajectory as:

Ub = (ûk) | ûk ∈ Vb. (17)

We also define an index set Ib = (Ib,1, · · · , Ib,K′ ), where Ib,j

is the BS’s index of the j-th element in Ub, and K
′

= |Ub|.
As an example, let’s assume that the base trajectory visits the

sequence of the BSs Ub = (û1, û3, û4, û7), then the index set

Ib is given by

Ib = (1, 3, 4, 7). (18)

As it is shown in Fig. 2, the base trajectory is not an efficient

trajectory since the UAV needs to fly over the BSs to reach to

the terminal point. In the next section, we propose a method

to improve the base trajectory.



IV. TRAJECTORY OPTIMIZATION

We now aim to find a sub-optimal yet high-quality ap-

proximate solution to (9) by improving the base trajectory.

As mentioned earlier, the base trajectory is not an efficient

solution since it requires to visit the BSs to get to the terminal

location. For example in Fig. 2, the optimal trajectory is a

straight line from vI to vF. To tackle this problem, in this

section we aim to improve the base trajectory obtained in

Section III by employing the graph theory methods.

We then construct an undirected graph G = (N , E). For

ease of exposition we use the same notations as Section III.

The nodes of the graph is defined as follows

N = {vI ∪ Ub ∪ Db ∪ vF}, (19)

where Db ⊂ D which is defined as

Db =







⋃

j∈[1,K′−1]

B̂Ib,j ,Ib,j+1







. (20)

The edges of the graph are given by

E = {(vI, ûIb,1)}

∪ {(vI,x1,2)|L(vI,x1,2) ∈ AIb,1 , ∀x1,2 ∈ B̂Ib,1,Ib,2}

∪ {(xk−1,k,xk,k+1)|L(xk−1,k,xk,k+1) ∈ AIb,k ,

∀xk−1,k ∈ B̂Ib,k−1,Ib,k , ∀xk,k+1 ∈ B̂Ib,k,Ib,k+1
, k ∈ [2,K

′

− 1]}

∪ {(ûk,xk,j)| ∀xk,j ∈ B̂Ib,k,Ib,j , k, j ∈ [1,K
′

], k 6= j}

∪ {(vF,xK
′
−1,K

′ )|L(vF,xK
′
−1,K

′ ) ∈ AI
b,K

′
,

∀x
K

′
−1,K

′ ∈ B̂I
b,K

′
−1

,I
b,K

′
}

∪ {(vF, ûI
b,K

′
)},

(21)

where L(x,y) is a line segment between two points x,y which

is defined as follows:

L(x,y) = {λx+ (1− λ)y, ∀λ, 0 ≤ λ ≤ 1} . (22)

We also assign a weight value to each edge of the

graph corresponding to its length. All the edges

(vI, ûIb,1), (ûk,xk,j), (vF, ûI
b,K

′
) are defined in a similar

manner to (16). Similar to Proposition 2, it can be shown that

the constraint (9b) is always satisfied for any of these edges.

(vI,x1,2) is the edge between the initial location vI and any

points inside the discretized common borders of Ib,1-th and

the Ib,2-th BS, and it exists if this edge lies inside AIb,1 .

The edge (vF,xK
′−1,K′ ) is also defined similarly. The edge

(xk−1,k,xk,k+1) represents an edge between all the points

in the discretized common borders of the Ib,k-th BS and it’s

neighbor BSs Ib,k−1, Ib,k+1. Edge (xk−1,k,xk,k+1) ∈ E , if

the line L(xk−1,k,xk,k+1) lies inside AIb,k , which can be

efficiently checked by the following result.

Lemma 1. Let x,y ∈ Ak, to determine if the line L(x,y)
is inside coverage area Ak, only a limited number of points

along L(x,y) need to be evaluated.

Proof. Let’s assume that the line L(x,y) sequentially tra-

verses some sectors in Ak, denoted by (ak,1, . . . , ak,N ′ ) with
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Fig. 3: Top view of the city, BS locations, the generated tra-

jectories and its lengths for different algorithms. The coverage

area of each BS is highlighted with green color.

starting location x ∈ ak,1 and ending location y ∈ ak,N ′ .

The set of intersections of the line with the boundaries of the

sectors is denoted by a sequence of the points (xj)
J
j=1.

Since all the sectors are convex, it can be shown that if

{xj ,xj+1}, j ∈ [1, J ] belong to a same sector then the line

L(xj ,xj+1) lies inside Ak. Therefore, to check if the line

L(x,y) is inside the coverage area, it is enough to evaluate a

limited number of points.

Having constructed graph G using Lemma 1, since any

edge of the graph is covered by at least one base station then

constraint (9b) will always be satisfied if the UAV moves along

any edges of the graph. So, problem (9) is cast as finding a

shortest path between vI,vF in graph G. Similar to Section III,

we use the Dijkstra algorithm to find the shortest trajectory.

V. NUMERICAL RESULTS

We consider a dense urban Manhattan-like area of size

2 × 2 km2, consisting of a regular street grid and buildings.

The building heights are Rayleigh distributed within the range

of 5 to 70 m [17]. Propagation parameters for the UAV-

BS links are selected as αLoS = 2.2, αNLoS = 2.8, βLoS =
10−4, and βNLoS = 10−4 according to an urban micro scenario

in [21]. The UAV’s path originates at vI = (300, 300, 80) m

and terminates at vF = (1500, 1500, 80) m. The cellular

network consists of K = 25 BSs which are randomly scattered

over the city. All the BSs have the same height hg = 20 m

and we assume that the UAV flies with the fixed altitude

h = 80 m. Fig. 3 illustrates BSs and the coverage map where

the highlighted regions represent the areas where the minimum

SNR constraint (3) is satisfied.

The base trajectory and the optimized trajectory described

in Sections III and IV are shown in Fig. 3. We have compared

our method to the other graph based approaches proposed in

[12] where the whole map within the flying area needs to be

quantified into grids. We consider the quantization unit to be
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10 × 10m2 which results in total ∆2 = 4 × 104 number of

nodes in the graph. It can be seen from Fig. 3 that our method

provides the best solution in terms of the path length. The base

trajectory has the maximum length among all the solutions as

it is forced to visit BSs along its way to the destination.

In Fig. 4, we evaluate the performance of the different

approaches in terms of the outage over 1000 Monte-Carlo

simulations with different BS locations. The outage is defined

as the amount of time the SNR constraint in (3) is not satisfied

while following the devised trajectory. The outage of the

straight trajectory between the starting and the terminal points

is illustrated as well. It can be seen that constraint (3) is

always guaranteed when the UAV moves along our proposed

trajectories while there is no hard guarantee for the other

approaches. In general, our graph-based trajectory performs

better than the other methods.

Finally, we compare the complexity of our proposed al-

gorithms. Our approach which requires only discretizing the

coverage border of each BS into Q samples (ref Sec. III)

which are later used as nodes in the graph. An upper bound

on the overall complexity of our graph-based algorithm is

given by O(|Ub|2Q2 + KQ logKQ). It is shown that the

complexity of the optimal algorithm introduced in [12] is given

by O
(

K∆2 +∆2 log∆
)

, where ∆ relates to the quantization

of the map. In this simulation we assumed grid size to be

10 × 10m2 which resulted in total ∆2 = 4 × 104 number

of nodes. It is clear that the complexity of our proposed

algorithms are considerably less than the method in [12],

since Q ≪ ∆. Moreover, the complexity of our algorithm

just increases with the number of BSs rather then the size of

the flying area, since Q is related to the discretized coverage

border of each BS which does not change by increasing the

size of the flying area.

VI. CONCLUSION

This study investigated the problem of UAV trajectory

design under cellular connectivity constraints to minimize

its trajectory length between a predetermined initial location

and a given destination point in an urban environment. We

proposed a novel approach to trajectory design that strikes a

trade-off between performance (i.e. path length reduction) and

complexity by exploiting the 3D map of the environment and

employing the graph theory. We established a graph theory

based framework to first evaluate the feasibility of the problem

and then to obtain a high-quality approximate solution to

the UAV trajectory design problem. The performance of the

proposed solutions was validated with a set of Monte-Carlo

simulations.
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