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Simone Rossi∗ , Cristian Rusu† , Lorenzo A. Rosasco‡ , and Maurizio Filippone∗

We would like to congratulate with the Authors for this interesting development of
probabilistic numerical methods applied to the ubiquitous problem of solving linear
systems. We structured this discussion around two main points, namely the use of
Bayesian Conjugate Gradient (bcg) for Gaussian processes (gps), and the possibility
to accelerate the solution of linear systems thanks to parallelization of bcg.

Bayesian Conjugate Gradient for Gaussian Processes

Consider a regression task where X and y denote the set of input points and the set of
targets, respectively, and assume a gp with an rbf kernel to model the mapping between
X and y (Rasmussen and Williams, 2006). We are going to assume that gp hyper-
parameters are optimized through standard marginal likelihood optimization, although
it is possible to reformulate the problem of optimizing gp hyper-parameters in terms of
linear systems (Filippone and Engler, 2015) where bcg could be applied. We are going
to focus on the predictive distribution and the additional uncertainty stemming from the
use of bcg. The gp predictive distribution is p(ỹ|X,y, X̃,α) = N (KX̃Xα,Σỹ) , where
α is the solution of the linear system (K + λI)α = y. As bcg provides a distribution
over the solutions for α (i.e. α ∼ N (αm,Σm)), we can integrate out p(α) obtaining

p(ỹ|X,y, X̃) = N
(
KX̃Xαm,Σỹ +KX̃XΣmKT

X̃X

)
,

The topic of preconditioning for solving linear systems involving kernel matrices is an
active area of research (Cutajar et al., 2016; Rudi et al., 2017), so we can leverage this
in bcg given the connections established in the paper between Σ0 and preconditioners.

We report the test mnll and the test rmse (20% of held-out data) as a function of
bcg iterations for two datasets. Figure 1 shows that better preconditioners yield faster
convergence. Figure 2 shows the error metrics as a function of time for gps using bcg

and sparse gps (Matthews et al., 2017). There are configurations where bcg allows to
reach better performance for a given computational budget, so this is an interesting
possible application of this method.

Bayesian Model Averaging for multiple BCG solutions

One of the advantages that we see in the Bayesian formulation of conjugate gradient,
is the possibility to speedup convergence through parallelization. To test this, we solve
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Figure 1: Comparison test mnll and test rmse for different priors (e.g. preconditioners)
of bcg on two regression datasets. As preconditioners we consider Nyström (Williams
and Seeger, 2000) with

√
n ( ) and 4

√
n ( ) inducing points, pitc (Candela and Ras-

mussen, 2005) ( ), and random svd (Halko et al., 2011) ( ). Experiment repeated 25
times.

multiple linear systems with bcg using different priors (possibly concurrently) and

aggregate the solutions by means of Bayesian model averaging. Formally, let Σ
(i)
0 denote

one of such multiple priors (corresponding to preconditioners) and let p(xm|Σ(i)
0 ) be the

solution at iteration m corresponding to the choice of the ith prior. Assuming a prior on

the set of all Σ
(i)
0 , the marginalization yields the mixture p(xm) =

∑
i p(xm|Σ(i)

0 )p(Σ
(i)
0 )

We project this back to a Gaussian distribution on p(xm) by moment matching. We

assume a uniform prior for p(Σ
(i)
0 ), but we could think of relaxing this by setting a prior

proportional to the complexity of (or time spent in) inverting the preconditioner.

In Figure 1, the line ( ) shows this result. Using the same setup as before, we
infer the posterior distribution of a gp using a Bayesian averaging of 16 independent

Figure 2: Analysis of the Pareto front ( ) of inference time vs error metric for full gp
with bcg ( – Nyström preconditioner is assumed to be precomputed) and sparse gp

( ). Points corresponds to different amount of bcg iterations and number of inducing
points (with their kernel parameters optimized). Experiment repeated 500 times.



996 Contributed Discussion

solutions with
√
n random centers for the Nyström preconditioner (the comparison is

with ). This suggests that it is possible to benefit from combining multiple intermediate
solutions of bcg, and this is rather intuitive in the context of Bayesian model averaging.
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