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ABSTRACT

Sparse Bayesian Learning (SBL) is an efficient and well-studied
framework for sparse signal recovery. SBL relies on a parameter-
ized prior on the sparse signal to be estimated. The prior is chosen
(with estimated hyperparameters) such that it encourages sparsity
in the representation of the signal. However, SBL doesn’t scale with
problem dimensions due to the computational complexity associated
with matrix inversion. To address this issue, there exists low com-
plexity methods based on approximate Bayesian inference. Various
state of the art approximate inference methods are based on varia-
tional Bayesian (VB) inference or message passing algorithms such
as belief propagation (BP) or expectation propagation. Moreover,
these approximate inference methods can be unified under the op-
timization of Bethe free energy with appropriate constraints. SBL
allows to treat more general signal models by the use of hierarchical
prior formulation which eventually becomes more sparsity inducing
than e.g., Laplacian prior. In this paper, we study the convergence
behaviour of the mean and variance of the unknown parameters in
SBL under approximate Bayesian inference.

1. INTRODUCTION
The signal model for the recovery of a time varying sparse signal can
be formulated as, y = Ax+ v, where y is the observations or data,
A is called the measurement or the sensing matrix which is known
and is of dimension N × M with N < M . x contains only K
non-zero entries, with K << M . In Bayesian inference, the sparse
Bayesian learning (SBL) algorithm was first proposed by [1,2]. SBL
is based on a two or three layer hierarchical prior on the sparse coef-
ficientsx. The priors for the hyperparameters (precision parameters)
are chosen such that it induces sparsity allowing majority of the co-
efficients to tend towards zero. Nevertheless, matrix inversion step
involved in SBL at each iteration makes it a computationally com-
plex algorithm even for moderately large datasets. This is the moti-
vation behind looking for alternative solutions or approximate infer-
ence methods which has computational requirements proportional to
the number of sparse coefficients.

Belief propagation (BP) based SBL algorithm [3] is more com-
putationally efficient than the original algorithm. Due to space limi-
tations we skip the detailed discussion and instead refer the readers
to a more detailed discussion on the various approximate inference
methods for SBL to our paper [4].

Various studies on convergence analysis of Gaussian BP (GaBP)
can be found in [5–8]. Although BP achieves great empirical suc-
cess [9], not enough rigorous work exist to characterize the con-
vergence behaviour of BP in loopy networks. In [10], convergence
condition for GaBP is provided which requires the underlying dis-
tribution to be walk-summable. Their convergence analysis is based
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on the Gaussian Markov random field (GMRF) based decomposi-
tion, where the underlying distribution is expressed in terms of the
pairwise connection between the variables.
1.1. Contributions of this paper
• We first review low complexity sparse Bayesian learning

methods based on SAVE (space alternating variational es-
timation) [11, 12], BP, MF (mean field), EP (expectation
propagation) or a combination of them, which can be unified
under the optimization of Bethe free energy (BFE).

• We evaluate the convergence points of SBL solutions based
on BP, MF or EP and derive the conditions under which
they converge to the exact LMMSE (linear minimum mean
squared error) estimates.

• Existing low complexity solutions derived from BP such as
AMP or its generalizations converge only for a limited class
of measurement matrices A. So it becomes imperative again
to analyze the convergence behaviour of approximate infer-
ence methods such as BP (from which AMP or related algo-
rithms are derived) or variational Bayesian (VB) or EP under
more general measurement matrices A and we try to address
this problem in this paper.

• Utilizing the large system analysis derived in [13], we show
that the MSE (mean squared error) of BP converges to the ex-
act LMMSE under i.i.d measurement matrix A compared to
the previous works (for e.g. AMP) which shows the exactness
to LMMSE replica prediction method which is heuristic.

2. SBL PROBABILISTIC MODEL
1In Bayesian compressive sensing, a two-layer hierarchical prior is
assumed for the x as in [1]. The hierarchical prior is such that it
encourages the sparsity property of x or of innovation sequences v.

p(x/Γ) =
M∏
i=1

CN (0,Γ−1), Γ = diag(αi). (1)

We assume a Gamma prior for Γ, p(Γ) =
M∏
i=1

p(αi/a, b) =

M∏
i=1

Γ−1(a)baαa−1
i e−bαi . The inverse of noise variance γ is also

assumed to have a Gamma prior, p(γ/c, d) = Γ−1(c)dcγc−1
i e−dγ ,

such that the marginal pdf ofx (student-t distribution) becomes more
sparsity inducing than e.g. a Laplacian prior. The advantage is that
the whole machinery of linear MMSE estimation can be exploited,

1Notations: The operator (·)H represents the conjugate transpose or conjugate for a
matrix or a scalar respectively. In the following, the pdf of a complex Gaussian random
variable x with mean µ and variance σ2 is given by CN (x;µ, ν). KL(q||p) repre-
sents the Kullback-Leibler distance between the two distributions q, p. An,: represents
the nth row of A. blkdiag(·) represents blockdiagonal part of a matrix. diag(X) or
diag(x) represents a vector obtained by the diagonal elements of the matrix X or the
diagonal matrix obtained with the elements of x in the diagonal respectively. 1M rep-
resents a vector of length M with all ones as the elements. For a matrix A, A ≥ 0
implies it is non-negative (all the elements of A are non-negative).



such as e.g., the Kalman filter. But this is embedded in other layers
making things eventually non-Gaussian. Now the likelihood dis-

tribution can be written as, p(y/x, γ) = (2π)−NγNe
−γ||y−Ax||2

2 .
To make these priors non-informative, we choose them to be small
values a = c = b = d = 10−5. We define the unknown parameter
vector θ = {x,Γ, γ} and θi represents each scalar in θ.

3. BETHE FREE ENERGY OPTIMIZATION
The fixed points of the standard BP algorithm are shown to be the
stationary points of the BFE. However, for the MF approximation
in variational Bayes [14], the approximate posteriors are shown to
be converging to a local minimum of the MF free energy which
is an approximation of the BFE. However, we observe in [11] that
for estimation of the signals from interference corrupted observa-
tions, MF is a poor choice since it doesn’t give the accurate poste-
rior variance (posterior variance of xi is observed to be independent
of the error variances of other xl, l 6= i). Assume that the pos-
terior be represented as, p(θ) = 1

Z

∏
a∈ABP

fa(θa)
∏

b∈AMF
fb(θb),

where ABP ,AMF represent the set of nodes belonging to the BP
part and MF part respectively with ABP ∩ AMF = ∅. Z repre-
sents the normalization variable. N (i), N (a) represent the num-
ber of neighbouring nodes of any variable node i or factor node a.
NBP (i) represents the number of neighbouring nodes of i which
belong to the BP part, similarly NMF (i) is defined. Also, we de-
fine IMF =

⋃
a∈AMF

N (a), IBP =
⋃
a∈ABP

N (a). The opti-
mization of the resulting free energy obtained by the combination of
BP and MF [4, eq.(2)] (Note that we use an abuse of notation and
let qi(θi) represents the belief about θi (the approximate posterior))
leads to the following message passing expressions. Let ma→i rep-
resents the message passed from any factor node a to variable node
i and ni→a represents the message passed from any variable node i
to factor node a. The fixed point equations are,

qi(θi) = zi
∏

a∈NBP (i)

mBP
a→i(θi)

∏
a∈NMF (i)

mMF
a→i(θi),

ni→a(θi) =
∏

a∈NBP (i)\a
ma→i(θi)

∏
a∈NMF (i)

ma→i(θi),

mMF
a→i(θi) = exp(< ln fa(θa) > ∏

j∈N(a)\i
nj→a(θj)),

mBP
a→i(θi) = (

∫ ∏
j∈N (a)\i

nj→a(θj)fa(θa)
∏
j 6=i

dθj),

(2)

where <>q represents the expectation w.r.t distribution q.
The constraints in BFE can often be too complex to yield com-

putationally tractable messages (ma→i, na→i), the following con-
straint relaxation leads to EP [15].

Eqa(t(θi)) = Eqi(t(θi), leads to,

mBP
a→i(θi) =

Projφ(
∫ ∏
j∈N(a)

nj→a(θj)fa(θa)
∏
j 6=i

dθj)

ni→a(θi)
,

(3)

where φ represents the family of distributions charaterized by the
sufficient statistics t(θi). In the following sections, we give a brief
overview of the large system analysis techniques we propose to
use to evaluate the convergence behaviour of SBL using BP/VB/EP
based inference.

3.1. SBL using Belief Propagation
We first review the BP messages being passed between the variable
nodes and factor nodes corresponding to the factor graph in Figure 1.
All the messages (beliefs or continuous pdfs) passed between them
are all Gaussian [3]. So in message passing (MP), it suffices to rep-
resent them by two parameters, which are the mean and variance of
the beliefs. Also, for the first instance, we assume that all the hy-
perparameters are known. We remark that the estimation of hyper-
parameters can be done using VB as in [11]. Below, indices m,n is

Fig. 1. Factor Graph for the static SBL.

used for representing variable nodes and i, k is used for representing
factor nodes. We represent Sn,k as the inverse variance (precision)
of the message passed from variable node n (corresponding to xn) to
factor node k (corresponds to yk) and Mn,k be the mean of the mes-
sage passed from n to k, total NM of them. Similarly Sk,n,Mk,n

for messages from k to n. Let Ak,n represents the (k, n)th element
of A. We start with the message passing expressions derived in [3].

Sn,k=αn+
∑
i 6=k

Si,n, Mn,k = S−1
n,k

∑
i 6=k

Si,nMi,n.

Sk,n=A2
k,n( 1

γ
+
∑
m 6=n

A2
k,mS

−1
m,k)−1,

Mk,n=A−1
k,n(yk−

∑
m 6=n

Ak,mMm,k),

(4)

Note that instead of BP, if we use MF for the estimation of x, the
expressions above would remain the same except Sk,n which gets
written as Sk,n = A2

k,nγ. This can be interpreted as, MF does
not take into account the error variances in other xm,m 6= n while
passing the belief about xn from any factor node yk and hence it is
suboptimal. Further, substituting Sn,k in Sk,n, Sk,n = A2

k,n( 1
γ

+∑
m 6=n

A2
k,m(αm +

∑
i 6=k

Si,m)−1)−1, so this is now only in terms of

the message variances in the direction k to n. Finally, the belief
(estimates) computed for each xn is,

σ2
n = (αn +

∑
i Si,n)−1, µn = σ2

n(
∑
i Si,nMi,n). (5)

Further we simplify the messages and beliefs using the results from
random matrix theory, for the simplest case of i.i.d A in the large
system regime where M,N → ∞ at a fixed ratio N

M
> 0 (rep-

resented in short as M→∞−−−−→
a.s

. For the large system analysis, we

use Theorem 1 and Lemma 4 from [13]. We briefly summarize
the Lemma’s here. Lemma 4 in Appendix VI of [13] states that
xHNANxN

N→∞−−−−→ (1/N)trAN when the elements of xN are iid
with variance 1/N and independent of AN , and similarly when
yN is independent of xN , that xHNANyN

N→∞−−−−→ 0. Theorem 1
from [13] implies that any terms of the form 1

N
tr{(AN − zIN )−1},

where AN is the summation of independent rank one matrices with
covariance matrix Θi is equal to the unique positive solution of ej =

1
N

tr{(
K∑
i=1

Θi
1+ei
−zIN )−1}. In the large system limit, we can approx-

imate (neglecting terms of O(A2
i,j)) Sn,k = αn +

∑
i Si,n = Sn,

independent of k. Further we define S = diag(Sn). Considering
the term Sk,n = A2

k,n( 1
γ

+
∑
m 6=nA

2
k,mS

−1
m,k)−1, in the large sys-

tem it can be approximated by Sk,n = A2
k,n( 1

γ
+ Ak,:S

−1AT
k,:)
−1.

Ak,:S
−1AT

k,:
M→∞−−−−→
a.s

1
M

tr{S−1} = τ ′BP . From (5), it follows that

MSE = τBP = tr{S−1}. Ak,: represents the kth row of A. Fur-
ther we obtain, Sn = αn+( 1

γ
+τ ′BP )−1∑

iA
2
i,n,
∑
iA

2
i,n

M→∞−−−−→
a.s

1, thus Sn = αn + ( 1
γ

+ τ ′BP )−1. Finally we can conclude that,
τ ′BP can be obtained as the unique positive solution of the following
fixed point equation,

τ ′BP =
M∑
n=1

(αn + ( 1
γ

+ τ ′BP )−1)−1. (6)



Next step is to simplify the expression for LMMSE posterior covari-
ance in the large system limit using similar techniques as above. The
posterior covariance can be written as,

ΣL = Γ−1 − Γ−1AT (AΓ−1AT + 1
γ

)−1AΓ−1,

AT (AΓ−1AT + 1
γ

)−1A
M→∞−−−−→

(a)
D, Di,i = e

1+ e
αi

,
(7)

where (a) follows from Theorem 1 in [13] and e is defined as the
unique positive solution of the following fixed point equation,

e = ( 1
N

M∑
i=1

α−1
i

1+ e
αi

+ 1
γ

)−1, tr{ΣL} = MSE =
M∑
i=1

α−1
i e

1+ e
αi

,

From e, 1
e
− 1

γ
= 1

N

∑M
i=1

α−1
i

1+ e
αi

= 1
N
MSE = τ

N
= τ ′,

1
e

= 1
γ

+ τ ′, τ ′ = 1
N

∑M
i=1

α−1
i ( 1

γ
+τ ′)

1
γ

+τ ′+ 1
αi

= 1
N

M∑
i=1

1

αi+( 1
γ

+τ ′)−1 .

(8)
Comparing (6) and (8), it can be observed that the MSE under BP,
τBP and the MMSE τ can be obtained as a unique positive solu-
tion of the same fixed point equation. This implies that in the large
system limit, under i.i.d A, if BP converges, the MSE of SBL (as-
suming the hyperparameters are fixed or known) converges to the ex-
act MMSE. Another remark is that the above large system analysis
based on [13] can be applied to more general measurement matrices
case, with rows of A being restricted to have different covariance
matrices, i.e. E(AH

i,:Ai,:) = Θi.
Certain remarks comparing the existing convergence conditions

for belief propagation is as follows. In [5], Jian Du et al. shows
that depending on the underlying graphical structure (GMRF or fac-
tor graph based factorization) GaBP may exhibit diffferent conver-
gence properties. They prove that the convergence condition for
the mean provided based on the factor graph representation encom-
passes much larger class of models than those given by the GMRF
based walk-summable condition [10]. Further they show that GaBP
always converges if the factor graph is a union of single loop and a
forest. Moreover, they also analyze the convergence of the inverse
of the message variances (message information matrix) and analyti-
cally show that with arbitrary positive semidefinite matrix initializa-
tion, the message information matrix converges to a uniques positive
definite matrix. So we can conclude that for BP there is a decoupling
between the dynamics of the variance updates and that of the mean
updates. And that we know that the mean converges to the LMMSE
estimate under certain conditions. But it is to be mentioned that the
convergence conditions and convergence values for the variance are
more tricky, still requires rigorous analysis to characterize its be-
haviour, which is the main motivation behind this paper.

3.2. Iterations in Matrix Form

Let us denote d(A) as the vector with entries as the diagonal el-
ements of A. B is defined as the matrix with entries as A2

i,j . Let
L(of sizeM×N ), S,M (of sizeN×M ) be the matrix with entries
Sn,kMn,k, Sk,n and Mk,n, respectively. Defining T to be a matrix
of size M ×N , with entries as the inverse variance of the Gaussian
messages transmitted from the variable nodes, Sn,k, we obtain,

T = (d(Γ) + ST1N )⊗ 1TN − ST ,
L = d(STM)⊗ 1TN − (S ◦M)T , L′ = T−1 ◦ L.

(9)

We denote any matrix Ainv as a matrix with entries as the element
wise inverse of the matrix A. Similarly, for the messages at the
factor nodes, define C to be the matrix with entries A2

k,nS
−1
k,n,

C =
(

1
γ
1N + d(BTinv)

)
⊗ 1TM −B ◦TT

inv, S = Cinv ◦B,

V = (y − d(AL′))⊗ 1TM + A ◦ L′T , M = Ainv ◦V,
(10)

where V being the matrix with entries Ak,nMk,n. The computa-
tional complexity of all the matrix operations above is O(MN),
since the number of computations in the Hadamard product or Kro-
necker products in the above expressions is only MN . Assuming
the number of iterations required to converge is Nit, the total com-
plexity of the BP algorithm can be written as NitO(MN).

3.3. Convergence Analysis of BP

In this subsection, we consider the convergence analysis of the mean
and variance of the messages passed in BP. For the ease of analy-
sis, we consider a simplified case, where we neglect terms of the
order O(A2

i,j) under the large system limit M,N → ∞. Hence
the precisions of the posteriors passed A−1

k,nSk,n, Sn,k in (4) can
be approximated as Sn = αn +

∑
i

Si,k and A−2
k,nSk,n = ( 1

γ
+∑

m

A2
k,mS

−1
m,k)−1 ∆

= Sk. In fact, Sn, A−2
k,nSk,n represent the preci-

sion variables in the input and output stages of the GAMP algorithm
derived in [16, Algorithm 1]. Using theorem 1 in [16], we can show
that for any non-negative matrixB >= 0, Sn, Sk converge to a pos-
itive value. However, we remark that it remains to be understood to
which value these precision variables converge (and hence the pos-
terior variance σ2

n) and it is left as a future work.
Further we look at the convergence behaviour of the mean value

of the posteriors passed across the graph Mk,n. Substituting the
value of Mm,k in the expression of Mk,n in (4), we obtain,

Mk,n = A−1
k,n(yk −

∑
m 6=n

∑
i 6=k

Ak,mA
2
i,mS

∗−1
m S∗iMi,m), (11)

where S∗i , S
∗
m are the converged values of the precision vari-

ables Si, Sm, respectively. Defining m(t) as a vector of length
MN , representing the values Mk,n at iteration t. So m(t) =
[M1,1,M1,2, ...1,M , ...,MN,M ]T . Also, we define N to be a diago-
nal matrix of length MN ×MN with entries A−1

k,n and M to be a
MN ×MN matrix with ((i− 1)M +m)th entry of the kth row of
M being defined as Ak,mA2

i,mS
−1
m Si, but equal to zero when either

i = k or m = n or i = k and m = n.
m(t+1) = −Mm(t) + N(y ⊗ 1M ). (12)

The above iterations (12) converges if ρ(M) < 1.

3.4. Scalar Iterations

Further defining the following terms,

Zk,n = (yk −
∑
m 6=n

Ak,mMm,k), So Mk,n = A−1
k,nZk,n. (13)

Also, assume that in the large system limit, Mn,k can be written
as, Mn,k = Mn + δn−>k, where δn−>k is of the O( 1√

N
). This

approximation follows from writing Mn,k = S−1
n,k

∑
i6=k

Si,nMi,n =

S−1
n,k

∑
i

Si,nMi,n − Mk,n. Substituting Mn,k in Zk,n, Zk,n =

(yk−
∑
m

Ak,mMm−
∑
m

Ak,mδm−>k+Ak,nMn+O( 1
N

)) = Zk+

δk−>n, all the terms containing A2
i,jorAi,jδj−>i becomes O( 1

N
)

and δk−>n = Ak,nMn, also here Zk = (yk −
∑
m

Ak,mMm −∑
m

Ak,mδm−>k).

Mn,k = S−1
n,k( 1

γ
+ τ ′BP )−1∑

i6=k Ai,nZi,n
= S−1

n ( 1
γ

+ τ ′BP )−1∑
i 6=k Ai,nZi,n.

(14)

As in the papers by Montanari et. al. [17], for general priors, it is
possible to write Mn,k = fn(

∑
i 6=k Ai,nZi,n). Here fn is a linear

function for the Gaussian case (i.e. fn(x) = S−1
n ( 1

γ
+ τ)−1xn).



So if we consider the case of Gamma priors for α etc, then
this parameterization in terms of an f becomes easy to write
the recursions. Now doing a first order Taylor series approxi-
mation of f around

∑
i

Ai,nZi,n,Mn,k = fn(
∑
i

Ai,nZi,n) −

Ak,nZk,nf
′
n(
∑
i

Ai,nZi,n), f ′n being derivative evaluated at∑
i

Ai,nZi,n. Further substituting for Zi,n from (13),

Mn,k = Mn + δn−>k, Mn = fn(
∑
i

Ai,nZi +
∑
iAi,nδi−>n)

and δn−>k = −Ak,nZkf ′n(
∑
i

Ai,nZi).

(15)Note that term Ak,nδk,n becomes O( 1
N

). Substituting for δi−>n
and with the large system approximation

∑
iA

2
i,n− > 1, Mn =

fn(
∑
i

Ai,nZi+
∑
i

A2
i,nMn) = fn(

∑
i

Ai,nZi+Mn), Now further

writing as a vectorM (with each elementMn, ∀n). M = f(ATZ+
M), which is the AMP recursion for the mean and fn(·) represents
each of the scalar components in f(·). Also in (13), substituting for
δn−>k from (15),

Zk = (yk −
∑
m

Ak,mMm) + ( 1
δ
)Zk( 1

n
)
∑
m

f ′m(
∑
i

Ai,mZi)

= (yk −
∑
m

Ak,mMm) + 1
M
Zk
∑
m

f ′m(
∑
i

Ai,mZi),

(16)where ( 1
M

)Zk
∑
m f
′
m(
∑
i

Ai,mZi) is the Onsager term.

4. SBL USING MEAN FIELD APPROXIMATION
For MF or SAVE (space alternating variational estimation) [11], to
obtain the free energy F (q) = U(q)−H(q),
U(q) = −Eq ln p(x | y) = Eq( 1

2
xTΣ−1

L x− 2yTAx) =
1
2
µTΣ−1

L µ− 2yTAµ+
∑
i σ

2
i (Σ−1

L )i,i + c1,
H(q) = −

∑
i

Eqi ln qi = 1
2

∑
i lnσ2

i + c2,
(17)

ci being constants, independent of µ and σ2
i , also qi(xi) =

N (µi, σ
2
i ),µ = x̂ = [µ1, .., µM ]T . Now the MF free energy

can be written as,
F (q)= 1

2
µTΣ−1

L µ− 2yTAµ+
∑
i

σ2
i (Σ−1

L )i,i + 1
2

∑
i

lnσ2
i + c.

(18)
It can be noticed that F (q) is a convex function w.r.t µ and σ2

i ,
further optimizing this w.r.t µ leads to µ = ΣLATy and σ2

i =
1

(Σ−1
L

)i,i
. So we can conclude that the mean converges to LMMSE

in the case of SAVE while the variance is not exact. Further, we ana-
lyze the convergence conditions. The SAVE iterations for µ follow,

Let D = diag(γATA + Γ),H = offdiag(γATA),

x(t+1) = −D−1Hx(t) + D−1γATy,
(19)

In (2), we observed that MF can also be implemented as message
passing in a factor graph. Hence, it is evident from the above ex-
pression that the factor graph representation for SAVE corresponds
to the case when all the yi’s are treated jointly and all the xi’s at the
scalar level. Noting that LMMSE estimate of x can be written as
the solution of Jx = b, with J = γATA + Γ and b = γATy.
In fact, SAVE corresponds to the Jacobi iterations [18] for solving
this linear system with the splitting of J = D − H , which con-
verges to the true value only if ρ(D−1H) < 1, where ρ represents
the spectral radius. Further, we observe that if we rewrite the SAVE
iterations as, x(t+1)

i = σ2
iA

T
i

(
y − A ¯i−x

(t+1)
¯i− −A ¯i+x

(t)
¯i+

)
γ,,

where in the update of xi at iteration (t + 1) we include the up-
dated values of xk, k = 1, ..., i − 1. These updated recursions cor-
respond to Gauss-Siedel method [18] for solving the linear system
Jx = b. In Gauss-Siedel version, J is split as J = D − L −U,
where L being a matrix which represents the lower triangular portion

of H and U representing the upper triangular portion. Hence for
Gauss-Siedel, the SAVE iterations (19) can be rewritten as, x(t+1) =
(D−L)−1Ux(t) +(D−L)−1γATy. Certain remarks on the con-
vergence behaviour follows as below,
Remarks:
• From [18], if J is an M−matrix, then Jacobi and Gauss-

Siedel iterations for SAVE converge to the true values x∗ =
J−1b, for any arbitrary b. For J to be anM−matrix, it should
be nonsingular and A−1 >= 0. Morever the off-diagonal el-
ements, aij < 0, ∀i, j, j 6= i. Also, the diagonal elements of
J represented by D is nonnegative and nonsingular.

• Another sufficient condition for convergence follows from the
diagonal dominance theorem in [18], which says that if J is
strictly or irreducibly diagonally dominant then x̂ converges
to x∗.

• To further accelerate the convergence, one possibility is to
employ the successive over-relaxation method (SOR) [18],
in which case, the SAVE iterations gets modified as follows.
x(t+1) = x(t)+ω(x(t+1)−x(t)), where x(t+1) corresponds
to the Jacobi SAVE iterations (19) or the Gauss-Siedel itera-
tions.

• To fix the convergence of SAVE (when ρ(D−1H) > 1), we
can use the diagonal loading method similar to [19]. The
modified iterations (with a diagonal loading factor matrix Λ)
can be written as,
(D + Λ)x(t+1) = −(H −Λ)x(t) + γATy, =⇒
x(t+1) =−(D + Λ)−1(H −Λ)x(t)+(D + Λ)−1γATy,

(20)
The convergence condition gets modified as ρ((D+Λ)−1(H−
Λ)) < 1. Another point worth noting here is that, if the
power delay profile Γ is also estimated using VB as in [11],
then we can write D = γdiag(ATA)+Γ̂, where Γ̂ = Γ+Γ̃.
In this case, Γ̃ may represent an automatic correction factor
(diagonal loading) to force convergence of SAVE for cases
where ρ(D−1H) > 1.

4.1. Sparsity Analysis with SAVE

In this subsection, we focus on the sparsity analysis of the SAVE it-
erations described above. We use the approach described in [20,21],
where they compute the stationary point of the precision components
αi. The expression for mean value of αi (for the resulting Gamma

posterior from [11]) is, α̂i =
a+ 1

2(
<x2

i
>

2
+ b

) ,where, < x2
i >= x̂2

i +

σ2
i . Further substituting for x̂2

i in α̂i,

α̂−1
i

(a)
= γ2

(γATi Ai+α̂i)2
[tr{yyTAiA

T
i }+ tr{AT

i AiΣiAiAi}]+
1

γATi Ai+α̂i
,

(21)We define ci = tr{yyTAiAi}, di = tr{AT
i AiΣiAiAi}, where

Σi is a diagonal matrix with entries σ2
n, ∀n 6= i. Also, we made the

large system approximation (M,N → ∞) that AT
i yx̂

H
i

AH
i

Ai →
tr{E(x̂H

i
AH
i

AiA
T
i y)} = 0. After some algebraic manipulations,

solving (21) which is of the form α−1
i = F(αi) leads to the follow-

ing stationary point for αi,

α̂i =

{
γ(ATi Ai)

2

γ(ci+di)−ATi Ai
, if, γ(ci + di) > AT

i Ai

∞, if, γ(ci + di) ≤ AT
i Ai

(22)

The above threshold condition can be intuitively interpreted as fol-
lows: ci + di can be interpreted as the signal power in y′ = y −
Aixi. Hence the threshold above checks whether the signal-to-noise
ratio of the residual signal (after the matched filtering by Ai) is
greater than 1. As observed in [20], this should further accelerate
the convergence of the SAVE iterations.



5. BAYESIAN SAGE (BSAGE)

In this section, we consider a Bayesian version of the space alter-
nating generalized EM (SAGE) algorithm proposed in [22, 23]. In
BSAGE, we consider the estimation of xi by fixing the other vari-
ables and splitting xk = x̂k + x̃k, ∀k 6= i. We define Σi is the
diagonal matrix with entries as the posterior variances σ2

k, k 6= i. So
we write the observation model as,

y −Aix̂i
∆
= yi = Aixi + Aix̃i + v, (23)

Further we obtain the LMMSE estimate of xi as,
σ2
i = αi + AT

i (AiΣiA
T
i

+ 1
γ
IN )−1Ai,

x̂i = σ2
iA

T
i (AiΣiA

T
i

+ 1
γ
IN )−1yi

(24)

We further define, Ei as the diagonal matrix with ith entry 1
αi

and
rest of the elements same as Σ. Also, define Vi = A(E−1

i γ−1 +
ATA)−1AT . Further applying matrix inversion lemma [13] and
substituting for yi, we obtain,
x̂i = γ

αi
AT
i y −AT

i Vi
γ
αi
y − γ

αi
AT
i Aix̂i + AT

i Vi
γ
αi

Aix̂i.
(25)Further, in order to write it in the vector form, we define the ma-

trix BT (of size M × N ) with the rows as AT
i Vi. We obtain the

expressions in the vector form as,

x̂(k+1) = −Mx̂(k) + Ny, where, M = γΓ−1(H − L),
L = (BTA− diag(BTA)), H = (ATA− diag(ATA)),
N = γΓ−1(A−B)T .

(26)The per-iteration complexity of BSAGE is also O(M2N), hence
same as BP. The convergence condition can be written as ρ(M) <
1. Further comparing the convergence conditions for SAVE and
BSAGE, ρSAV E = ρ([γdiag(ATA) + Γ]−1offdiag(γATA)) and
ρBSAGE = ρ(Γ−1offdiag(γ(A − B)TA)). It can be observed
that if ATA is diagonally dominant (which is also one of the con-
ditions for the convergence of SAVE to the true means), then the
effect of the offdiagonal terms of (A − B)TA or ATA is negli-
gible and the dominating factor is the first term in the expression
of ρ. Since [γdiag(ATA) + Γ]−1 < Γ−1, we can conclude that
ρSAV E < ρBSAGE explaining the faster convergence of SAVE as
noted in [11] and [4].

6. CONCLUSIONS
Motivated by the need for low complexity solutions for sparse sig-
nal recovery, we looked at various approximate inference techniques
for SBL whose complexity is of the order of the length of the sparse
signal. In this paper, we attempt to provide convergence analysis for
SBL under approximate inference techniques such as VB, BP or EP.
However, much remains to be done. The convergence values of the
posterior variances for BP still needs to be understood. One pos-
sible future direction is to analyze the convergence behaviour with
estimated hyperparameters. Another extension of the present work
is when the dictionary matrix is unknown, for e.g. structured dictio-
nary matrices as in [24, 25].
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