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ABSTRACT

Sparse Bayesian Learning (SBL) provides sophisticated (state)
model order selection with unknown support distribution. This al-
lows to handle problems with big state dimensions and relatively
limited data by exploiting variations in parameter importance. The
techniques proposed in this paper allow to handle the extension
of SBL to time-varying states, modeled as diagonal first-order
auto-regressive (DAR(1)) processes with unknown parameters to
be estimated also. Adding the parameters to the state leads to
an augmented state and a non-linear (at least bilinear) state-space
model. The proposed approach, which applies also to more gen-
eral non-linear models, uses a combination of belief propagation
(BP), Variational Bayes (VB) or mean field (MF) techniques, and
Expectation Propagation (EP) to approximate the posterior marginal
distributions of the scalar factors. We propose Fisher Information
Matrix analysis to determine the variable split between the use of BP
and VB allowing to stay optimal in terms of Laplace approximation.

1. INTRODUCTION
The signal model for the recovery of a time varying sparse signal can
be formulated as, yt = A(t)xt+vt, where yt is the observations or
data at time t, A(t) is called the measurement or the sensing matrix
which is known and is of dimension N × M with N < M . xt
contains only K non-zero entries, with K << M and is modeled
by a diagonal AR(1) (auto-regressive) process. In the static case,
in Bayesian learning, the sparse Bayesian learning (SBL) algorithm
was first proposed by [1, 2], which got extended to dynamic SBL
in [3]. However, in order to render low complexity or low latency
solutions, online processing algorithms (which process a small set
of measurement vectors at any time) will be necessary. Dynamic
autoregressive SBL (DAR-SBL) considered here is a case of joint
Kalman filtering (KF) with a linear time-invariant diagonal state-
space model, and parameter estimation, which can be considered an
instance of nonlinear filering.

In [4], they introduce a belief propagation (BP) based SBL al-
gorithm which is more computationally efficient than the original
algorithm. The authors use BP to infer the posterior pdf of x and the
hyperparameters are estimated using the EM algorithm. The authors
in [5] propose a message passing (MP) approach for inferring the
posteriors combining BP and mean field (MF) approximations. MF
is a special case of Variational Bayes (VB) in which the partitioning
of variables is pushed to the scalar granularity. The advantages of the
MF approach are that it always admits a convergent implementation
while BP yields a good approximation of the posterior marginals if
the factor graph has no cycles. The authors show that the MP fixed-
point equations for a combination of BP and the MF approxima-
tion correspond to stationary points of one single constrained region-
based free energy approximation and provide a clear rule stating how
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to couple the messages propagating in the BP and MF part. Hence, it
is advantageous to apply BP and the MF approximation on the same
factor graph in such a combination that their respective virtues can
be exploited while overcoming their drawbacks (complexity for BP,
potential suboptimality for MF). However, [6] does not treat at all
the topic of how to split nodes between BP and MF. We also note
that the approximate message passing algorithms [6, 7] suffer from
the limitation that the large system limits assume i.i.d. Gaussian or
right rotationally invariant A(t), and the algorithms may exhibit con-
vergence problems.
1.1. Contributions of this paper
• We propose new low complexity SBL algorithms for the static

and dynamic cases, with joint hyperparameter estimation.
• Building on the framework of [5], we combine BP and MF

approximations in such a way as to optimize the message
passing framework, unlike most of the existing applications
of the framework, which apply BP and MF to the variable
subsets with discrete and continuous distributions resp.

• Using Fisher Information Matrix (FIM) analysis, we propose
an optimal partitioning of the unknown parameters in the fac-
tor graph such that we can combine BP and (EP) VB in an
efficient way, with low complexity and no suboptimality in
terms of Laplace approximation (FIM).

• Various new algorithms in this paper are an application of
these parameter partitioning and BP/VB split guidelines. For
both a static (classic) compressed sensing model or a dynamic
case with autoregressive evolution of the unknown x (corre-
sponding to a classical linear state-space model apart from
sparsity considerations). We furthermore show in Lemma
1, in another application of the FIM analysis, that identi-
fiability of the hyperparameters (state space model parame-
ters) requires smoothing (filtering is not sufficient). Although
(regardless of sparsity) KF with joint parameter estimation
has been the subject of many approaches over decades, this
smoothing requirement has never been pointed out or cer-
tainly not been analyzed before.

2. DYNAMIC SBL SYSTEM MODEL
1 Sparse signal xt is modeled using an AR(1) process with a diago-
nal correlation coefficient matrixF , which can be written as follows,

State Update: xt = Fxt−1 +wt,

Observation: yt = A(t)xt + vt,
(1)

where xt = [x1,t, ..., xM,t]
T . Diagonal matrices F and Γ

are defined with its elements, Fi,i = fi, fi ∈ (−1, 1) and
1Notations: The operator (·)H represents the conjugate transpose or conjugate

for a matrix or a scalar respectively. The operators tr(·) represents trace if a matrix.
In the following, the pdf of a complex Gaussian random variable x with mean µ and
variance σ2 is given by CN (x;µ, ν). KL(q||p) represents the Kullback-Leibler
distance between the two distributions q, p. An,: or An represents the nth row or
nth column of A respectively. blkdiag(·) represents blockdiagonal part of a matrix.
diag(X) or diag(x) represents a vector obtained by the diagonal elements of the matrix
X or the diagonal matrix obtained with the elements of x in the diagonal respectively.



Γ = diag(α),α = [α1, ...αM ]. Here αi represents the inverse
variance of xi,t ∼ CN (0, 1

αi
). Further, wt ∼ CN (0,Λ−1), where

Λ−1 = Γ(I − FFH) = diag( 1
λ1
, ..., 1

λM
) and vt ∼ CN (0, 1

γ
I).

wt are the complex Gaussian mutually uncorrelated state innova-
tion sequences. Hence we sparsify the prediction error variance
wt also, with the same support as x0 and henceforth enforces the
same support set for xt, ∀t. vt is independent of the wt process.
Although the above signal model seems simple, there are numerous
applications such as 1) Bayesian adaptive filtering [8], 2) Wireless
channel estimation: multipath parameter estimation as in [9]. In
this case, xt = FIR filter response, and Γ represents e.g. the power
delay profile.

In Bayesian compressive sensing, a two-layer hierarchical prior
is assumed for the x as in [1]. The hierarchical prior is cho-
sen such that it encourages the sparsity property of xt or of the
innovation sequences vt. The state update gets represented as,

p(xt/xt−1,F ,Γ) =
M∏
i=1

CN (fixi,t−1,
1
αi

). For the convenience of

analysis, we reparameterize αi in terms of λi and assume a Gamma

prior for Λ, p(Λ) =
M∏
i=1

p(λi/a, b) =
M∏
i=1

Γ−1(a)baλa−1
i e−bλi .

The inverse of noise variance γ is also assumed to have a Gamma
prior, p(γ/c, d) = Γ−1(c)dcγc−1

i e−dγ , such that the marginal pdf
of xt (student-t distribution) becomes more sparsity inducing than
e.g., a Laplacian prior. The advantage is that the whole machinery of
linear MMSE estimation can be exploited, such as e.g., the Kalman
filter. But this is embedded in other layers making things eventually
non-Gaussian. Now the likelihood distribution can be written as,
p(yt/xt, γ) = (2π)−NγNe−γ||yt−A(t)xt||2 . To make these priors
non-informative (Jeffrey’s prior), we choose them to be small values
a = c = b = d = 10−5. For the AR(1) coefficients fk, we don’t
assume any prior distribution. We define the unknown parameter
vector θ = {x,Λ, γ,F } and θi represents each scalar in θ.

3. COMBINED BP/MF APPROXIMATION

The fixed points of the standard BP algorithm are shown to be
the stationary points of the Bethe free energy (BFE) [5]. How-
ever, for the MF approximation in variational Bayes, the approx-
imate posteriors are shown to be converging to a local minimum
of the MF free energy which is an approximation of the BFE.
Moreover, we observe in [10, 11] that for estimation of the sig-
nals from interference corrupted observations, MF is a poor choice
since it doesn’t give the accurate posterior variance (posterior vari-
ance of xi is observed to be independent of the error variances
of other xl, l 6= i). Assume that the posterior be represented as,
p(θ) = 1

Z

∏
a∈ABP

fa(θa)
∏

b∈AMF
fb(θb), where ABP ,AMF rep-

resent the set of nodes belonging to the BP part and MF part re-
spectively with ABP ∩ AMF = ∅. Z represents the normalization
variable. Throughout the paper, the vector θi represents a subset of
θ and θi represents a scalar parameter in θ. N (i),N (a) represent
the number of neighbouring nodes of any variable node i or factor
node a. NBP (i) represents the number of neighbouring nodes of
i which belong to the BP part, similarly NMF (i) is defined. Also,
we define IMF =

⋃
a∈AMF

N (a), IBP =
⋃
a∈ABP

N (a). The
resulting free energy obtained by the combination of BP and MF
are written as below (Note that we use an abuse of notation and let
qi(θi) represents the belief about θi (the approximate posterior)),

FBP,MF =
∑

a∈ABP

∑
θa

qa(θa) ln qa(θa)
fa(θa)

−
∑

a∈AMF

∑
xa

∏
i∈N (a)

qi(θi) ln fa(θa)−
∑
i∈I

(|NBP (i)| − 1)
∑
θi

qi(θi) ln qi(θi).
(2)

Fig. 1: Factor Graph for the dynamic SBL (at time t). Note that
messages from the smoothing stage is not shown here.
The beliefs have to satisfy the following normalization and marginal-
ization constraints,∑
θi

qi(θi)=1, ∀i ∈ IMF \ IBP ,
∑
θa

qa(θa)=1, ∀a ∈ ABP ,

qi(θi)=
∑
θa\θi

qa(θa), ∀a ∈ ABP , i ∈ N (a).
(3)

Let ma→i represents the message passed from any factor node a to
variable node i and ni→a represents the message passed from any
variable node i to factor node a. The fixed point equations corre-
sponding to the constrained optimization of (2) can be written as
follows [5],

qi(θi) = zi
∏

a∈NBP (i)

mBP
a→i(θi)

∏
a∈NMF (i)

mMF
a→i(θi),

ni→a(θi) =
∏

a∈NBP (i)\a
ma→i(θi)

∏
a∈NMF (i)

ma→i(θi),

mMF
a→i(θi) == exp(< ln fa(θa) > ∏

j∈N(a)\i
nj→a(θj)),

mBP
a→i(θi) = (

∫ ∏
j∈N (a)\i

nj→a(θj)fa(θa)
∏
j 6=i

dθj),

(4)

where <>q represents the expectation w.r.t distribution q.
3.1. BP-MF based Static SBL
The figure 1 represents the factor graph (note that static case is
a special case with the state update nodes being not present),
where it is divided into two disjoint subsets ABP = fδn,t∀n, l, t
and AMF represents rest of the factor or variable nodes. To
combine BP and MF, we introduce the new variables hn,t =

A
(t)
n,:xt, sl,t = flxl,t−1 and the hard constraint factor nodes,

fδn,t = δ(hn,t − A
(t)
n,:xt), ∀n ∈ [1 : N ], t, f∆l,t = δ(sl,t −

flxl,t−1), ∀l ∈ [1 : M ], t. For the static case, the system model
will be y = Ax + v, so fl = 0, λl = αl,∀l. We omit subscript
t for simplicity. The message mfδn→xl from the hard factor fδn
to variable node xl is computed by the BP rule with the incom-
ing messages to the node, nhn→fδn (hn) = mfyn→hn(hn) and
nxl′→fδn (xl′), ∀l′ 6= l, later defined in (6). So mfδn→xl

(xl) =∫
fδnnhn→fδn (hn)

∏
l′ 6=l

nxl′→fδn (xl′)
∏
l′ 6=l

dxl′ . For notational

brevity, we denote subscript (l, n) or (n, l) to represent the mes-
sages passed from l to n or viceversa. All the messages (beliefs or
continuous pdfs) passed between them can be shown to be Gaus-
sian [4] and thus it suffices to represent them by the mean and
variance of the beliefs. With the hard constraints, the equivalent
observation model can be written as,

yn −
∑M
l′ 6=lAn,l′ x̂l′,n = An,lxl +

∑M
l′ 6=lAn,l′ x̃l′,n + vn, where,

x̃l′,n ∼ CN (0, νl′,n), andmfδn→xl
∝ CN (xl; x̂n,l, νn,l),

x̂n,l=A−1
n,l(yn − pn +An,lx̂l,n), pn =

∑M
l′=1An,l′ x̂l′,n,

νn,l= |An,l|−2(γ̂−1 + νn − |An,l|2νl,n), νn=
∑M
l′=1|An,l′ |

2νl′,n.
(5)

We define dl = (
N∑
n=1

ν−1
n,l )
−1 , rl = dl(

N∑
n=1

x̂n,l
νn,l

). Given the mes-

sages, mfδn→xl(xl), the belief q(xl) can be obtained as (fλi(λi)=

p(λk/a, b)), q(xl)∝fλi(λi)
N∏
n=1

mfδn→xl∝CN (xl; x̂l, σ
2
l ),



where σ−2
l = λl + d−1

l , x̂l = rl
1+dlσ

−2
l

. (6)
One remark here is that compared to our previous work using VB
[10], combining BP and MF gives a more accurate approximation of
the error variance as shown in (6), where σ2

l incorporates the effect
of all σ2

l′ , l
′ 6= l. Since the factor node fδn ∈ ABP , the message

nxl→fδn (xl) from variable node xl to fδn is updated by the BP rule
as follows,

nxl,t→fδn (xl) = q(xl)
mfδn→xl

(xl)
∝ CN (xl; x̂l,n, νl,n),

where, ν−1
l,n = (σ−2

l − ν
−1
n,l ), x̂l,n = νl,n( x̂l

σ2
l
− x̂n,l

νn,l
).

(7)

3.2. Dynamic BP-MF-EP based SBL
The joint distribution of all the observations and parameters can
be written as, p(yt,θ/y1:t−1) = p(yt/θ)p(θ/y1:t−1), where
p(θ/y1:t−1) denotes the predictive distribution. Similar as in KF,
first we compute the posterior distribution of θi given the observa-
tions till (t − 1), which is called as the prediction stage. Since the
correlation coefficient matrix F is diagonal, all the xi,t are decou-
pled in the state update model and we exploit this fact to predict the
states and the hyperparameters in the state update model using MF.

3.2.1. Diagonal AR(1) ( DAR(1) ) Prediction Stage
Assuming that the belief q(γ) at time t, of noise precision γ
is known, the message mfyn,t→hn,t(hn,t) from the factor node
fyn,t ∈ AMF is calculated using the MF rulemfyn,t→hn,t(hn,t) =<

exp
(
ln fyn,t(hn,t, γ)

)
>q(γ), which becomes,mfyn,t→hn,t(hn,t) ∝

CN (hn,t; yn,t, γ̂
−1
t ). Here γ̂t =< γ >q(γ). For more detailed

derivation, we refer to our paper [12]. Now the mean and variance
of the message passed from f∆l,t to the variable node xl,t can be
computed as,
x̂l,t|t−1 = f̂l|t−1x̂l,t−1|t−1, σ

2
l,t|t−1 = |f̂l|t−1|2σ2

l,t−1|t−1+

σ2
fl|t−1(|x̂l,t−1|t−1|2 + σ2

l,t−1|t−1) + λ̂−1
l|t−1.

(8)
mf∆l,t

→xl,t(xl,t) is not a tractable distribution and thus using
EP [13], we project it into the class of Gaussian distribution (φ),
where the projection operator can be represented as Projφ[p] =
arg minq∈φKL(p||q). This leads to moment matching (approxi-
mated q ∈ CN (x;µ, ν) has the same mean and variance as p). So
we approximate,
mf∆l,t→xl,t (xl,t)=q(xl,t|t−1) ≈ CN (xl,t; x̂l,t|t−1, σ

2
l,t|t−1).

3.2.2. Measurement Update Stage
In the measurement update stage, the posterior for xt is inferred us-
ing BP as in Section 3.1.and we represent the messages by x̂(t)

n,l, ν
(t)
n,l

and the beliefs by x̂l,t|t, σ2
l,t|t. In the measurement stage, the prior

for xk,t gets replaced by the belief from the prediction stage and thus

the term rl need to be rewritten as, rl,t=dl,t(
N∑
n=1

x̂
(t)
n,l

ν
(t)
n,l

+
x̂l,t|t−1

σ2
l,t|t−1

).

3.2.3. Lag-1 Smoothing Stage
We show in Lemma 1 that KF is not enough to adapt the hyper pa-
rameters, instead we need at least a lag 1 smoothing (i.e. the com-
putation of x̂k,t−1|t, σ

2
k,t−1|t through BP). All the hyperparameters

λl, fl, γ belong toAMF . Note that the notations f̂k|t, λ̂k|t, γ̂t refers
to mean of the posteriors (which is equal to the LMMSE point es-
timates) for the respective hyperparameters at time t and σ2

fk|t rep-
resents the posterior variance of fk at time t. For the smoothing
stage, we use BP with Gaussian Markov Random Fields (GMRF)
based factorization. GMRF refers to the representation of BP [14],
when the underlying Gaussian distribution is expressed in terms of
pairwise connections between scalar variables xi,t. Substituting the
state update equation into the observation model (1), we obtain the
system model for the smoothing stage as follows,

yt = A(t)Fxt−1 + ṽt, where ṽt = A(t)wt + vt, (9)

where ṽt ∼ CN (0, R̃t) with R̃t = A(t)Λ−1A(t)H + 1
γ
I.

The joint distribution can be factorized as, p(yt,θ/y1:t−1) =
p(yt/θ)p(xt−1/y1:t−1)p(F ,Λ, γ | y1:t−1).

ln p(yt,θ/y1:t−1) = −1
2

ln det R̃t − |fi|2|xi|2A(t)T
i R̃−1

t A
(t)
i

+2<(fHi x
H
i A

(t)H
i R̃−1

t (yt −A
(t)

i
Fixi,t)) + cf ,

(10)
where cf being the terms independent of fi, A

(t)

i
,xi,t represents the

matrix A(t) or the vector xt with ith column or element removed.
Note that we propose to compute R̃t by substituting the point es-
timates of Λ, γ. We also define F̂i|t = diag(f̂j|t, j 6= i) with ith

element removed. Further applying the MF rule from (4), we write
the mean and variance of the resulting Gaussian distribution as,

σ−2
fi|t

= (|x̂i,t−1|t|2 + σ2
i,t−1|t)A

(t)T
i R̃−1

t A
(t)
i ,

f̂i|t = σ2
fi|tx̂

H
i,t−1|tA

(t)H
i R̃−1

t (yt −A
(t)

i
F̂i|tx̂i,t−1|t).

(11)

The entire algorithm (a combination of BP, MF and EP, we call it as
Combined BP-MF-EP DAR-SBL) is described in Algorithm 1. Also
we remark that for the estimation of λk, γ, we follow the same ap-
proach as in our paper [12] and we refer to it for more details. One
remark here is that another version called as Combined Vector BP-
MF-EP DAR-SBL follows immediately from the derivations for Al-
gorithm 1, where all the components of xt are considered jointly in
the factor graph. Even though the performance will be higher (as ob-
served in the simulations) for the vector case, it comes at the cost of
a higher complexity due to the matrix inversion involved. Note that
in Algorithm 1, we introduce temporal averaging for certain quanti-
ties (represented by <>|t) in hyperparameter estimates and β being
the temporal weighting coefficient which is less than one, see [12]
for more details.

Algorithm 1: Combined BP-MF-EP DAR-SBL
Initialization f̂l|0, λ̂l|0 = a

b , γ̂0 = c
d , x̂l,0|0 = 0, σ2

l,0|0 = 0, ∀l. Define

Σt−1|t−1 = diag(σ2
l,t|t−1).

for t = 1 : T do
Prediction Stage:

1. Compute x̂l,t|t−1, σ
2
l,t|t−1 from (8).

Filtering Stage:
1. Compute x̂(t)

n,l, ν
(t)
n,l from (5) and update x̂l,t|t, σ

−2
l,t|t from (6).

2. Compute ν(t)
l,n, x̂

(t)
l,n from (7). 3. Continue steps 1) to 2) until convergence.

Smoothing Stage:
Initialization: Σ

(0)

t−1|t = Σt−1|t−1, x̂
(0)

t−1|t = x̂t−1|t−1. Define B(t) =

FTA(t)T R̃−1
t A(t)F + Σt−1|t−1,ht = FTA(t)T R̃−1

t yt.

1. Pi,j=
−B(t) 2

i,j

B
(t)
i,i

+
∑

k∈N(i)\j
Pk,i

, µi,j=(hi,t+
∑

k∈N(i)\j
Pk,iµk,i), ∀i, j.

2. σ−2
i,t−1|t = B

(t)
i,i +

∑
k∈N(i)

Pk,i, x̂i,t−1|t = σ2
i,t−1|t(hi,t +∑

k∈N(i)

Pk,iµk,i)

Estimation of hyperparameters (Define: x′k,t = xk,t−fkxk,t−1, ζt = βζt−1+

(1− β) <
∥∥∥yt −A(t)xt

∥∥∥2
>) :

1. Compute f̂l|t, σ
2
fl|t

from (11), γ̂t= c+N
(ζt+d)

and λl|t=
(a+1)

(<
∣∣∣x′k,t∣∣∣2>|t+b) .

4. OPTIMAL PARTITIONING OF BP AND MF NODES
In this section, we show that the partitioning of BP and MF
nodes can be characterized through the computation of FIM =

E( ∂ ln p(y,θ)
∂θ

∂ ln p(y,θ)
∂θ

H
) . For our analysis, we will allude briefly to

an extended concept of Cramer-Rao bound (CRB), the mismatched
CRB (mCRB) [15] of VB (mCRBV B), which is a version of the
CRB under model misspecification, and corresponds to the Laplace
approximation covariance. Let CRB corresponds to the proper
Bayesian CRB and mCRBBP refers to the mCRB for the BP.



Theorem 1 If the parameter partitioning in VB is such that the dif-
ferent parameter blocks are decoupled at the level of Fisher Infor-
mation Matrix, then VB is not suboptimal in terms of (mismatched)
Cramer-Rao Bound. If a finer partitioning granularity is used (such
as up to scalar level as in MF), then VB becomes quite suboptimal,
which can be alleviated by using BP instead.

mCRBBP = blkdiag(CRB) = blkdiag(FIM−1),
mCRBV B = (blkdiag(FIM))−1,
So,mCRBBP = mCRBV B ifFIM = blkdiag(FIM).

(12)

Proof: We briefly outline the proof here. Laplace approximation
refers to the evaluation of marginal likelihood or free energy using
Laplace’s method [16]. This is equivalent to a Gaussian approx-
imation of the posterior q(θi/y) around a maximum a posteriori
(MAP) estimate (θ(0)

i ), motivated by the fact that in the asymptotic
limit (large amount of data or high SNR), the posterior approaches a
Gaussian around the MAP point. Under the Laplace approximation,
the belief becomes q(θi) = CN (θ

(0)
i ,Σ

(0)
i ). Further we evaluate

the free energy [14] (F denotes the free energy and L = ln p(y,θ)),

F = L(θ(0)) + 1
2

M∑
i=1

(Gi + ln det Σ
(0)
i + ki ln(2πe)),

ln qi(θi) = L(θi,θi) + 1
2

M∑
j=1,j 6=i

Gi, Gi = tr{Σi
∂
∂θi

( ∂L
∂θi

)H}.

(13)Here ki refers to the number of scalars in θi and ln(2πe) is the
entropy of a Gaussian random variable. Now by differentiating
ln qi(θi) w.r.t the posterior covariance, we obtain the approximate
covariances as,

Σi = −( ∂
∂θi

(L(θ(0))
∂θi

)H)−1 = (blkdiag(FIM))−1 (14)
The posterior covariance in (14) is computed by evaluating the Hes-
sian at the variational mode or maximum a posteriori (MAP) point.
This variational mode can be obtained as θ(0)

i = maxθi ln q(θi).
In the Laplace approximation, all pdfs are Gaussian with CRB (por-
tions) as covariance and LMMSE estimates as means. So in the too
fine partitioning case, the VB partitioning is applied to the FIM, tak-
ing a too fine blockdiagonal part, and since that partitioning is finer
than the blockdiagonal FIM structure, then the inverse of the too fine
blockdiagonal part of the FIM does not give the correct CRB. So
mCRBV B 6= CRB. So the nodes in the factor graph are decided
based on the partitioning of the blocks in the FIM block diagonal
structure, such that the mCRBV B = CRB. Here ends the proof.

4.1. Optimal Partitioning for Static SBL:
We define Jθiθj = E( ∂ ln p(y,θ)

∂θi

∂ ln p(y,θ)
∂θj

H
), which represents the

part of the FIM which shows the correlation of θi,θj . For brevity of
notation, we denote Jθiθi = Jθi . First we consider the static case
when fl = 0, ∀l. We omit the index t for simplicity. fαi(αi) =
p(αi | a, b), αi = λi represents the prior distribution of the preci-
sion parameter αi which is chosen as Gamma.

FIM =Js =

[
AHA + I 0M

0M Jαα 0M
0M 0M Jγγ

]
(15)

The non block diagonal elements of the FIM are crosscorre-
lation as follows, Jγx = E( ∂ ln p(y,x,γ,Γ)

∂γ
ln p(y,x,γ,Γ)

∂x

H
) =

(N/γ − vHv)(γAHv − Γx) = 0. Similarly the crosscorrela-
tion between x and Γ will be zero and also for Γ and γ. The cross
correlations are zero because of zero mean circularly symmetric
complex Gaussian variables because 3rd order moments of zero
mean v and x are zero. Thus the resulting FIM will be block di-
agonal. In this block diagonal structure, the crosscorrelation matrix
Jxx = AHA + I will be full and thus requires the estimation of
x using BP, while scalar factors which are decoupled γ, αi can be
estimated using MF. This explains the optimality of our BP-MF
partitioning as shown in the Figure 1.

4.2. Optimal Partitioning for DAR-SBL:
In this section we formulate the optimal partitioning between VB
and BP for the dynamic SBL case. Here we need to consider the
FIMs recursively, i.e. FIM of the time update stage followed by
the measurement stage. For the time update stage, we abbreviate
p(xk,t, xk,t−1, fk, λk/y1:t−1) = p for convenience here. ln p =
lnλk−λk|xk,t−fkxk,t−1|2−σ−2

k,t−1|t−1|xk,t−1− x̂k,t−1|t−1|2 +
M∑
k=1

ln qλk (λk). The measurement FIM (15) is the prior FIM for the

next time update. Thus it follows that BP is needed for the inference
of xt and MF for γ. One remark here is that the prior xt covariance
for the measurement update is the inverse FIM of the time update
and is diagonal here.
Lemma 1 The AR(1) model parameters require (at least lag 1)
smoothing for identifiability.

Proof: Considering, with augmented state θt = [xt; f ; diag(Λ); γ]
(3M + 1 dimensional), we obtain the FIM, Jt =
blkdiag(Jx,t,JF ,t,JΛ,t,Jγ,t). In [17], Tichavský et al. derived
an elegant recursive approach to calculate the FIM recursions for a
general discrete-time nonlinear filtering problem. Based on a similar
derivation, we arrive at the following recursions for the sequence
Jθi,t of posterior information submatrices for estimating θi,

Jx,t = Λ + γA(t)HA(t) + ΛF (FΛFH + Jx,t−1)−1ΛFH ,
JF ,t = JF ,t + D− JFx,t(FΛFH + JF ,t−1)−1JTxF ,t
with D = (I− FFH)−1, JxF ,t = FΛ[Jx,t + FΛF ]−1JxF ,
JΛ,t = D−D(D + JΛ,t−1)−1D with D = Λ−2, Jγ,t = N/γ2.

(16)Note that ifJxF ,−1 = 0, then JxF ,t = 0, ∀t ≥ 0. FIM recur-
sions show that filtering may be enough for the estimation of AR(1)
parameters. However, closely looking at the expressions for f̂k|t de-
rived in our work [12, eq. (24-25)] shows that f̂k|t = fk. This
implies that we need to know the true fk to estimate it, in the joint
estimation framework. Further to prove the unidentifiability, we use
the concept of global identifiability provided in [18].

p(f/xt,yt) = p(yt/xt)p(xt/f)p(f)/p(yt,xt)
= p(xt/f)p(f)/

∫
p(xt/f)p(f)df = p(f/xt)

(17)
The above expression (17) suggests that posterior of f given xt does
not depend on yt or in other words the observations doesn’t provide
any extra information about f other than the prior p(f/xt) and hence
f is globally not identifiable. This proves the Lemma. (17) also
shows that f ,xt are coupled in the estimation unlike the decoupling
property shown by the FIM analysis.

Few remarks follows: Th mCRB analysis in Theorem 1 indi-
cates that the x part needs to be treated jointly, motivating joint VB
or BP. We conjecture that whatever local identifiability analysis indi-
cates as necessitating joint treatment for optimality requires indeed
joint treatment. But local analysis may not capture all dependen-
cies. The local analysis (recursive CRB) shows that filtering would
be sufficient for local identifiability of f and that the fi and the xi
are decoupled. However, global identifiability analysis reveals that
filtering is not enough for identifiability of f and that the estimation
of xi and fi is coupled. The gap between local and global analysis
may perhaps be reflected in the observation that the hyperparame-
ters could be estimated (in what corresponds to filtering) by Type-II
Maximum Likelihood (ML) [19] (ie ML for hyperparameters, with
the random parameters x integrated out). Such Type-II ML approach
for hyperparameter estimation in the dynamic problem considered
here will be investigated further in future work.

Corollary 1.1 For the smoothing stage (9), an optimal partitioning
is to apply BP for estimation of the sparse vector, x̂t−1|t and MF for
the correlation coefficient F .
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Proof: The FIM recursions for smoothing stage can be obtained
as (detailed derivation is skipped due to space constraints), Jt =
blkdiag(Jx,t,JF ,t,Jp,t), where Jp,t representing the information
submatrix for the precision parameters Λ, γ. We obtain Jx,t =

F TA(t)HR̃−1
t A(t)F + Λ − ΛF (FΛFH + Jx,t−1)−1ΛFH ,

which is a full matrix.

JF ,t = JF ,t−1 + Γdiag(A(t)HR̃−1
t A(t)) + D−

JFx,t(D + JF ,t−1)−1JxF ,t,
with D = (I− FFH)−1, JxF ,t = ΛF [Jx,t + FΛF ]−1JxF ,t,

Jp,t =
[

JΛ,t JΛγ,t
JΛγ,t Jγγ

]
, where, Jγγ = 1

γ4 tr{R̃−1
t R̃

−1
t },

JΛ,t = CΛ,t + D−D(D + JΛ,t−1)−1D with D = Λ−2,

(CΛ,t)i,j = 1
λ2
iλ

2
j

tr{R̃−1
t A

(t)
i A

(t)H
i A

(t)
j A

(t)H
j R̃−1

t },

JΛγ,t = cΛγ,t, (cΛγ,t)i = 1
λ2
i γ

2 tr{R̃−1
t A

(t)
i A

(t)H
i R̃−1

t }.
(18)

(cΛγ,t)i represents the ith element of the vector cΛγ,t. Here also, if
JxF ,−1 = 0, then JxF ,t = 0,∀t. Thus the FIM for xt is full and
it follows from Theorem 1 that optimal partitioning is to apply BP
for xt and MF for the correlation coefficient F (since JF ,t is diago-
nal and also positive definite at any time instant t) in the smoothing
stage. Here ends the proof.

5. SIMULATION RESULTS
For the observation model, the parameters chosen areN = 100,M =
200,K = 30. All signals are considered to be real in the simulation.
All the elements of A(t) (time varying) are generated i.i.d. from a
Gaussian distribution with mean 0 and variance 1. The rows of A(t)

are scaled by
√

30 so that the signal part of any scalar observation
has unit variance. Taking the SNR to be 20dB, the variance of each
element of vt (Gaussian with mean 0) is computed as 0.01.

Consider the state update, xt = Fxt−1 + wt. To generate
x0, the first 30 elements are chosen as Gaussian (mean 0 and vari-
ance 1) and then the remaining elements of the vector x0 are put to
zero. Then the elements of x0 are randomly permuted to distribute
the 30 non-zero elements across the whole vector. The diagonal el-
ements of F are chosen uniformly in [0.9, 1). Then the covariance
of wt can be computed as Γ(I − FFH). Note that Γ contains the
variances of the elements of xt (including t = 0), where for the
non-zero elements of x0 the variance is 1. Following observations
can be made from the simulations. In Figure 2, for SBL with esti-
mated hyperparameters, there is substantial improvement in normal-
ized MSE (NMSE) by using BP instead of MF method for estimat-
ing x. Bayesian SAGE (Space Alternating Generalized EM) corre-
sponds to the application of [9] to SBL. In Figure 3, we evaluate the
performance of the proposed BP-MF-EP DAR SBL and show that
the parameter estimation benefits from BP. “MF DAR-SBL” refers
to the sub-optimal version with no BP and only MF for filtering or
smoothing of xt. Also we show that there is a drastic improvement
in performance with lag-1 smoothing for hyperparameter estimation
compared to just using filtering.

6. CONCLUSIONS
We presented a fast SBL algorithm called BP-MF-EP DAR-SBL,
which uses a combination of BP, MF and EP techniques to approxi-
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Fig. 3: DAR-SBL: NMSE as a function of time.
mate the posteriors of the data and parameters and track a time vary-
ing sparse signal. BP-MF-EP DAR-SBL helps to circumvent the ma-
trix inversion operation required in the original SBL algorithm. We
propose for the first time in the literature an optimal way to select the
partitioning of BP and MF nodes with CRB as a performance evalua-
tion criteria. Future work include extension of the combined BP-MF
framework for Kronecker structured dictionary learning [20].
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