
Efficient Approximate Inference with
Walsh-Hadamard Variational Inference

Simone Rossi∗
Department of Data Science

EURECOM

Sébastien Marmin∗
Department of Data Science

EURECOM
{name.surname}@eurecom.fr

Maurizio Filippone
Department of Data Science

EURECOM

Abstract

Variational inference offers scalable and flexible tools to tackle intractable Bayesian
inference of modern statistical models like Bayesian neural networks and Gaussian
processes. For largely over-parameterized models, however, the over-regularization
property of the variational objective makes the application of variational inference
challenging. Inspired by the literature on kernel methods, and in particular on
structured approximations of distributions of random matrices, this paper proposes
Walsh-Hadamard Variational Inference, which uses Walsh-Hadamard-based factor-
ization strategies to reduce model parameterization, accelerate computations, and
increase the expressiveness of the approximate posterior beyond fully factorized
ones.

1 Introduction and Motivation

Scalable Bayesian inference for non-trivial statistical models is achieved with Variational Inference
(VI, Jordan et al. [13]). Variational Inference has continuously gained popularity as a flexible approx-
imate inference scheme for a variety of models for which exact Bayesian inference is intractable.
Bayesian neural networks [20, 23] and in particular Deep Gaussian Processes with random features
expansions [5, 6] represent good examples of models for which inference is intractable, and for which
VI– and approximate inference in general – is challenging due to the nontrivial form of the posterior
distribution and the large dimensionality of the parameter space [10, 9]. Recent advances in VI allow
to effectively deal with these issues in various ways. A flexible class of posterior approximations can
be constructed using, e.g., normalizing flows [25], whereas large parameter space have pushed the
research in the direction of Bayesian compression [19, 22].

Let’s consider a classic supervised learning task with N input vectors and corresponding labels
collected in X = {x1, . . . ,xN} and Y = {y1, . . . ,yN}, respectively; furthermore, let’s consider
DNNs with weight matrices W =

{
W (1), . . . ,W (L)

}
, likelihood p(Y |X,W), and prior p(W). In

the variational setting, a lower bound to the log-marginal likelihood can be computed as follows:

log [p(Y |X)] ≥ Eq(W)[log p(Y |X,W)]− KL{q(W)‖p(W)} , (1)

where q(W) is a parameterized approximation of the true posterior p(W|X,Y ). This bound has
two undesirable charateristics: the first term, which acts as a model fitting term, depends on the
choice of the form of the variational distribution. Simple distributions might not have enough
expressiveness to efficiently characterize the learning task. On the other hand, the latter term –
which acts as a regularizer – penalizes solutions where the posterior is far away from the prior. This
term is the dominant one in the objective in case of over-parameterized models, and as a result, the
optimization focuses on keeping the approximate posterior close to the prior, disregarding the data fit
term [2, 28, 27].
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In this paper, we will try to solve both problems at once. Our proposal is to reparameterize the
variational posterior over model parameters by means of a structured decomposition based on random
matrix theory [30, 17, 32]. Without loss of generality, consider Bayesian DNNs with weight matrices
W (l) of sizeD×D. Compared with mean field VI, our proposal has a number of attractive properties.
The number of parameters is reduced from O(D2) to O(D), reducing the over-regularization effect
of the KL term in the variational objective. We derive expressions for the reparameterization and the
local reparameterization tricks, showing that, the computational complexity is reduced from O(D2)
toO(D logD). Finally, unlike mean field VI, we induce a (non-factorized) matrix-variate distribution
to approximate the posterior over the weights, increasing flexibility by modeling correlations between
the weights at a log-linear cost in D instead of linear. The key operation within our proposal is the
Walsh-Hadamard transform, and this is why we name our proposal Walsh-Hadamard Variational
Inference (WHVI).

Related Work. WHVI is inspired by a line of works that developed from random feature expansions
for kernel machines [24], which we briefly review here. A positive-definite kernel function κ(xi,xj)
induces a mapping φ(x), which can be infinite dimensional depending on the choice of κ(·, ·).
Among the large literature of scalable kernel machines, random feature expansion techniques aim at
constructing a finite approximation to φ(·). For many kernel functions [24, 4], this approximation
is built by applying a nonlinear transformation to a random projection XΩ, where Ω has entries
N (ωij |0, 1). If the matrix of training pointsX is N ×D and we are aiming to construct D random
features, that is Ω is D ×D, this requires N times O(D2) time, which can be prohibitive when D
is large. FASTFOOD [17] tackles the issue of large dimensional problems by replacing the matrix
Ω with a random matrix for which the space complexity is reduced from O(D2) to O(D) and time
complexity of performing products with input vectors is reduced from O(D2) to O(D logD). In
FASTFOOD, the matrix Ω is replaced by Ω ≈ SHGΠHB , where Π is a permutation matrix,
H is the Walsh-Hadamard matrix, whereasG andB are diagonal random matrices with standard
Normal distributions and Rademacher ({±1}), respectively. S is also diagonal with i.i.d. entries,
and it is chosen such that the elements of Ω obtained by this series of operations are approximately
independent and follow a standard Normal (see Tropp [30] for more details). The Walsh-Hadamard
matrix is defined recursively starting from H2 =

[
1 1
1 −1

]
and then H2D =

[
HD HD
HD −HD

]
, possibly

scaled by D−1/2 to make it orthonormal. The product ofHx can be computed in O(D logD) time
and O(1) space using the in-place version of the Fast Walsh-Hadamard Transform [8]. FASTFOOD
inspired a series of other works on kernel approximations [31, 1], whereby Gaussian random matrices
are approximated by a series of products between diagonal Rademacher and Walsh-Hadamard
matrices, for example Ω ≈HS1HS2HS3.

2 Walsh-Hadamard Variational Inference

WHVI [26] proposes a way to generate non-factorized distributions with reduced requirements in
memory and computational complexity. By considering a prior for the elements of the diagonal matrix
G = diag(g) and a variational posterior q(g) = N (µ,Σ), we can obtain a class of approximate
posterior with some desirable properties. LetW ∈ RD×D be the weight matrix and consider

W̃ ∼ q(W ) s.t. W̃ = S1Hdiag(g̃)HS2 with g̃ ∼ q(g). (2)

The choice of a Gaussian q(g) and the linearity of the oper-
ations, induce a parameterization of a matrix-variate Gaus-
sian distribution for W , which is controlled by S1 and S2.
These diagonal matrices can be optimized during the training.
We refer the Reader to check [26] for an extended analysis
of this factorization. Sampling from such a distribution is
achieved with the so-called reparameterization trick [14].
As we assume a Gaussian posterior for g, the expression
g = µ + Σ1/2ε separates out the stochastic component
(ε ∼ N (0, I)) from the deterministic ones (µ and Σ1/2).
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Figure 1: Normalized covariance of g and
vect(W )

To reduce the variance of stochastic gradients in the optimization and improving convergence, we
also report the formulation of the local reparameterization trick [15], which, given some input
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vectors h, considers the distribution of the productWh. The productWh follows the distribution
N (m,AA>) [11], with

m = S1Hdiag(µ)HS2h, and A = S1Hdiag(HS2h)Σ
1/2. (3)

A sample from this distribution can be efficiently computed thanks to the Walsh-Hadamard transform
as: W (µ)h +W (Σ1/2ε)h, withW a linear matrix-valued functionW (u) = S1Hdiag(u)HS2.

WHVI can be extended to handle parameters of any shapeW ∈ RD1×D2 .

When one of the dimensions is one so that the parameter matrix is a vector (W = w ∈ RD), WHVI
can be extended to handle these cases efficiently by reshaping the parameter vector into a matrix
of size 2d with suitable d, again by padding if necessary. Thanks to the reshaping, WHVI uses

√
D

parameters to model a posterior over D, and allows for computations in O(
√
D logD) rather than D.

This is possible by reshaping the vector that multiplies the weights in a similar way. We will explore
this idea to infer parameters of Gaussian processes linearized using random features.

3 Experiments

3.1 Bayesian Neural Networks

We conduct a series of comparisons with state-of-the-art VI schemes for Bayesian DNNs: MCD and
NOISY-KFAC (also referred to as NNG; [33]). MCD draws on a formal connection between dropout
and VI with Bernoulli-like posteriors, while the more recent NOISY-KFAC yields a matrix-variate
Gaussian distribution using noisy natural gradients. In WHVI, the last layer assumes a fully factorized
Gaussian posterior.

Data is randomly divided into 90%/10% splits for training and testing. We standardize the input
features x while keeping the targets y unnormalized. Differently from the experimental setup in
[18, 33, 12], the network has two hidden layers and 128 features with ReLU activations for all the
datasets and its output is parameterized as y = f(x)� σy + µy .

We report the test RMSE and the average predictive test negative log-likelihood (MNLL). A selection
of results is showed in Table 1. On the majority of the datasets, WHVI outperforms MCD and
NOISY-KFAC. Empirically, these results demonstrate the value of WHVI, which offers a competitive
parameterization of a matrix-variate Gaussian posterior while requiring log-linear time in D.

3.2 Gaussian Processes with Random Feature Expansion

We test WHVI for scalable GP inference, by focusing on GPs with random feature expansions [16, 5].
We compare WHVI with two alternatives; one is VI of the Fourier features GP expansion that uses less
random features to match the number of parameters used in WHVI, and another is the sparse Gaussian
process implementation of GPFLOW [21] with a number of inducing points (rounded up) to match the
number of parameters used in WHVI.

We report the results on five datasets (10000 ≤ N ≤ 200000, 5 ≤ D ≤ 8), generated from space-
filling evaluations of well known functions in analysis of computer experiments (see e.g. [29]).
Dataset splitting in training and testing points is random uniform with ratio 80%/20%.

Table 1: Test RMSE and test MNLL for regression datasets
TEST ERROR TEST MNLL

MODEL MCD NNG WHVI MCD NNG WHVI
DATASET

BOSTON 3.91± 0.86 3.56± 0.43 3.14 ± 0.71 6.90± 2.93 2.72 ± 0.09 4.33± 1.80
CONCRETE 5.12± 0.79 8.21± 0.55 4.70 ± 0.72 3.20± 0.36 3.56± 0.08 3.17 ± 0.37
ENERGY 2.07± 0.11 1.96± 0.28 0.58 ± 0.07 4.15± 0.15 2.11± 0.12 2.00 ± 0.60
KIN8NM 0.09± 0.00 0.07 ± 0.00 0.08± 0.00 −0.87± 0.02 −1.19 ± 0.04 −1.19 ± 0.04
NAVAL 0.30± 0.30 0.00 ± 0.00 0.01± 0.00 −1.00± 2.27 −6.52 ± 0.09 −6.25± 0.01
POWERPLANT 31.65± 0.07 4.23± 0.09 4.00 ± 0.12 49.78± 0.17 2.86± 0.02 2.71 ± 0.03
PROTEIN 4.23 ± 0.10 4.57± 0.47 4.36± 0.11 2.76 ± 0.02 2.95± 0.12 2.79± 0.01
YACHT 1.90± 0.54 5.16± 1.48 0.69 ± 0.16 2.95± 1.27 3.06± 0.27 1.80 ± 1.01
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Figure 2: Comparison of test errors with respect to the number model parameters.

The results are shown in Figure 2 for both with diagonal covariance and with full covariance. In both
mean field and full covariance settings, this variant of WHVI using the reshaping ofW into a column
largely outperforms the direct VI of Fourier features. However, it appears that this improvement of
the random feature inference for GPs is still not enough to reach the performance of VI using inducing
points. Inducing point approximations are based on the Nystroöm approximation of kernel matrices,
which are known to lead to lower approximation error on the elements on the kernel matrix compared
to random features approximations. This is the reason we attribute to the lower performance of WHVI
compared to inducing points approximations in this experiment.

4 Discussion and Conclusions

Inspired by the literature on scalable kernel methods, this paper proposed Walsh-Hadamard Variational
Inference (WHVI). WHVI offers a novel parameterization of the variational posterior as it assumes a
matrix-variate posterior distribution, which therefore captures covariances across weights. Crucially,
unlike previous work on matrix-variate posteriors for VI, this is achieved with a low parameterization
and fast computations, bypassing the over-regularization issues of VI for over-parameterized models.

The key operation that contributes to accelerate computations in WHVI is the Walsh-Hadamard
transform. This has obvious connections with other matrix/vector operations, such as the Discrete
Fourier Transform and other circulant matrixes [7, 3], so we are currently investigating whether it
is possible to generalize WHVI to other kinds of transforms to increase flexibility. Finally, we are
looking into employing WHVI for other models, such as deep generative models.
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