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Objectives and Contributions
Initialization of variational parameters has a huge role in the conver-
gence of stochastic variational inference but received little to no attention
in current literature.

Contributions:
▶ New initialization for svi based on Bayesian linear models;
▶ Applied to regression, classification and CNNs;
▶ Experimental comparison against other initializations;
▶ SoTA performance with Gaussian svi on large-scale CNNs.

Stochastic Variational Inference - svi
A DNN is a composition of nonlinear vector-valued functions f (l)

f (x) =
(

f (L−1)(W(L−1)) ◦ . . . ◦ f (0)(W(0))
)
(x)

Objective of Bayesian inference

p(W|X, Y) = p(Y|X, W)p(W)

p(Y|X)Posterior over the weights
Intractable for DNNs

Prior on model parameters

Marginal Likelihood

svi reformulates this problem as minimization of the negative evidence
lower bound (or nelbo) under an approximate distribution qθ(W) [2]:

qθ̃(W) s.t. θ̃ = arg min
θ
{nelbo}

nelbo = Eqθ
[− log p(Y|X, W)] + kl (qθ(W)||p(W))

Commonly used family of variational distribution: mean field Gaussian
(or fully factorized Gaussian)

q(W(l)) =
∏
ij

N(w
(l)
ij |µ

(l)
ij ,σ(l)

ij ) θ = {(µ
(l)
ij ,σ(l)

ij ) : l = 0, . . . ,L− 1}

How do we initialize θ?
A poor initialization can prevent svi from converging to good solutions
even for simple problems. It is even more severe for complex architec-
tures, where svi systematically converges to trivial solutions.
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Iterative Bayesian Linear Modeling Initializer - I-BLM
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Figure: Representation of i-blm. On (top) we learn two Bayesian linear models, whose
outputs are used on the (bottom) for the following layer.

In a nutshell:
▶ Inspired by residual networks and greedy initialization of DNNs.
▶ Grounded on Bayesian Linear regression but extended to
classification and to convolutional layers.
▶ Regression on transformed labels obtained through the
interpretation of classification labels as the coefficients of a
degenerate Dirichlet distribution.
▶ Scalability achieved thanks to mini-batching.
But how does it work?
Transform the labels if it’s a classification task [3].
For each layer (l):
▶ Propagate a mini-batch of X up to the previous layer (l− 1);
▶ Extract the patches if it’s a convolutional layer;
▶ Learn a Bayesian linear model and use its solution to initialize
qθ(W(l)).

Bayesian Linear Regression - BLR

Likelihood:
p(Y|W,L) =

∏
i

N(Y·i|XW·i,L)

Prior:
p(W|Λ) =

∏
i

p(W·i) = N(W·i|0,Λ)

Posterior:
p(W·i|Y,X,L,Λ) =

∏
i

N(W·i|ΣiX
⊤L−1Y·i,Σi)

with Σi = (Λ−1 + X⊤L−1X)−1.

Effect of batch-size: the full training set
leads to a better estimate of the posteriors
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Some more insights!
Timing profiling (LeNet-5): before training, 3 out of 4 optimal initializers
are i-blm
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Figure: Comparison of initialization time versus test MNLL.

Regression and Classification on Bayesian DNNs
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Figure: Progression of test error and test mnll with different initializations on a 5x100
architecture.

I-BLM for Bayesian CNNs - vgg16
▶ Another initialization for Gaussian svi based on a map optimization
(map init).
▶ Loss optimized for the same amount of time required by i-blm.
Solution used to initialize the means, while the log-variances are −5.5.
▶ Models are trained for 100 minutes for the entire end-to-end
training (curves are shifted by the initialization time).
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vgg16: 3.5M+ params

mnll error
g-svi & i-blm 0.637 0.167
g-svi & map 0.750 0.201

mcd [1] 0.821 0.215
noisy-kfac [4] 0.750∗ 0.164

g-svi w. i-blm (this work) mcd noisy-kfac g-svi w. map init

Figure & Table: Comparison between Gaussian factorized svi, mcd and noisy-kfac on
vgg16 with cifar10
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Figure: Entropy distribution while testing on mnist and not-mnist (higher average
entropy on not-mnist means better uncertainty estimation).

Checkout the Full Paper!
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