Good Initializations of Variational Bayes for Deep Models

Objectives and Contributions

Initialization of variational parameters has a huge role in the convergence of stochastic variational inference but received little to no attention in current literature.

Contributions:

- **New initialization** for svI based on Bayesian linear models;
- Applied to regression, classification and CNNs;
- Experimental comparison against other initializations;
- ► SoTA performance with Gaussian svI on large-scale CNNs.

Stochastic Variational Inference - SVI

$$= (\mathbf{I} \quad (\mathbf{V} \quad \mathbf{J} \cup \dots \cup \mathbf{I} \quad (\mathbf{V} \quad \mathbf{J}) \quad \mathbf{X})$$

Objective of Bayesian inference

Posterior over the weights Intractable for DNNs

 $-\underline{p}(\mathbf{W}|\mathbf{X},\mathbf{Y}) = \frac{p(\mathbf{Y}|\mathbf{X},\mathbf{W})p(\mathbf{W})}{p(\mathbf{W})}$

svi reformulates this problem as minimization of the **negative evidence lower bound** (or NELBO) under an approximate distribution $q_{\theta}(W)$ [2]:

 $q_{\tilde{\theta}}(\mathbf{W})$ s.t. $\tilde{\theta} = \arg\min\{\text{NELBO}\}$

 $\mathsf{NELBO} = \mathbb{E}_{q_{\theta}} \left[-\log p(Y|X, \mathbf{W}) \right] + \mathsf{KL} \left(q_{\theta}(\mathbf{W}) || p(\mathbf{W}) \right)$

Commonly used family of variational distribution: mean field Gaussian (or fully factorized Gaussian)

 $q(\mathbf{W}^{(l)}) = \prod \mathcal{N}(w_{ij}^{(l)} | \mu_{ij}^{(l)}, \sigma_{ij}^{(l)}) \quad \boldsymbol{\theta} = \{(\mu_{ij}^{(l)}, \sigma_{ij}^{(l)}) : l = 0, \dots, L-1\}$

How do we initialize θ ?

A **poor initialization** can prevent svI from converging to good solutions even for simple problems. It is even more severe for complex architectures, where svi systematically converges to trivial solutions.

References

- [1] Y. Gal and Z. Ghahramani. "Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference". Workshop track - ICLR. June 2015. [2] A. Graves. "Practical Variational Inference for Neural Networks". Advances in Neural
- Information Processing Systems 24. 2011. [3] D. Milios et al. "Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification". Advances in Neural Information Processing Systems 31. 2018.
- [4] G. Zhang et al. "Noisy Natural Gradient as Variational Inference". *Proceedings of the* 35th International Conference on Machine Learning. Oct. 2018.

Simone Rossi, Pietro Michiardi, Maurizio Filippone

In a nutshell

But how does it work?

For each layer (l):

Bayesian Linear Regression - BLR	Effect of leads to
Likelihood: $p(Y W, L) = \prod \mathcal{N}(Y_{i} XW_{i}, L)$	2.9
Prior: $n(W \Lambda) = \prod n(W_i) = \mathcal{N}(W_i 0 \Lambda)$	Z.0 Z 2.7 Z 2.6
$P(\mathbf{v}, \mathbf{v}) = \prod_{i} P(\mathbf{v}, i) = S(\mathbf{v}, i 0, \mathbf{v})$ Posterior :	2.5 2.4
$p(W_{\cdot i} Y, X, L, \Lambda) = \prod_{i} \mathcal{N}(W_{\cdot i} \Sigma_{i}X^{\top}L^{-1}Y_{\cdot i}, \Sigma_{i})$ with $\Sigma_{i} = (\Lambda^{-1} + X^{\top}L^{-1}X)^{-1}$.	

are I-BLM

