
20

Analytical Models for the Scalability of Dynamic Group-key
Agreement Protocols and Secure File Sharing Systems

GOKCAN CANTALI, Dept. of Computer Engineering, Bogazici University

ORHAN ERMIS, Dept. of Computer Engineering, Bogazici University and EURECOM

MEHMET UFUK ÇAĞLAYAN, Dept. of Computer Engineering, Yasar University

CEM ERSOY, Dept. of Computer Engineering, Bogazici University

Dynamic group key agreement protocols are cryptographic primitives to provide secure group communi-

cations in decentralized and dynamic networks. Such protocols provide additional operations to update the

group key while adding new participants into the group and removing existing participants from the group

without re-executing the protocol from the beginning. However, the lack of scalability emerges as one of the

most significant issues of dynamic group key agreement protocols when the number of participants in the

group increases. For instance, frequent participant join requests for large groups may cause an effect similar

to a Distributed Denial of Service (DDoS) attack and violate the system availability due to the increase in

group key update time. Therefore, analyzing the scalability of dynamic group key agreement protocols is

crucial to detect conditions where the system becomes unavailable. In this article, we propose an analytical

performance model to evaluate the scalability of dynamic group key agreement protocols by using queueing

models. We also extend our performance model for evaluating the scalability of secure file sharing systems

that utilize group key agreement protocols. Moreover, we present a demonstrative use case to show the ap-

plicability of our performance model on an example group key agreement protocol and a secure file sharing

system.

CCS Concepts: • Security and privacy → Key management; • Networks → Network performance

evaluation; • Information systems → Information storage systems;

Additional Key Words and Phrases: Performance Model, Dynamic Group-Key

ACM Reference format:

Gokcan Cantali, Orhan Ermis, Mehmet Ufuk Çağlayan, and Cem Ersoy. 2019. Analytical Models for the Scal-

ability of Dynamic Group-key Agreement Protocols and Secure File Sharing Systems. ACM Trans. Priv. Secur.

22, 4, Article 20 (September 2019), 36 pages.

https://doi.org/10.1145/3342998

1 INTRODUCTION

Group key agreement protocols are instrumental to establish a secure communication for a set

of participants. In such protocols, the security of a communication is accomplished via using a

This work is supported by the Turkish Ministry of Development under the TAM Project number DPT2007K120610.

Authors’ addresses: G. Cantali and C. Ersoy, Dept. of Computer Engineering, Bogazici University, Istanbul, Turkey,

34342; emails: {gokcan.cantali, ersoy}@boun.edu.tr; O. Ermis, Dept. of Computer Engineering, Bogazici University and

EURECOM, Biot, Sophia-Antipolis, France, 06410; email: ermis@eurecom.fr; M. Ufuk Çağlayan, Dept. of Computer

Engineering, Yasar University, Izmir, Turkey, 35100; email: ufuk.caglayan@yasar.edu.tr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2471-2566/2019/09-ART20 $15.00

https://doi.org/10.1145/3342998

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

https://doi.org/10.1145/3342998
mailto:permissions@acm.org
https://doi.org/10.1145/3342998

20:2 G. Cantali et al.

common key computed by all cooperating participants in the group. Diffie-Hellman Key Exchange

Protocol is the first key agreement protocol that operates for a group of two participants. Then,

the idea was extended to multiple participants by Ingemarsson et al. in Reference [25]. Following

the multiple participant setup, two important group key agreement protocols with and without

authentication were proposed by Burmester and Desmedt in Reference [7]. Authentication

property is used for confirming the identities of participants in group communications. Another

significant security property is the fault-tolerance property [43], which is used for detecting and

removing the malicious participant from the group key computation. Forward secrecy property

[14] also plays an important role for the security of group key agreement protocols. The property

was adopted by Tseng [40] for protecting against the compromise of former and subsequent

group keys of a protocol, if the long-term key of a participant is compromised.

Former group key agreement protocols mostly operate on static groups [23, 42, 49], in which

the set of participants remains unchanged till the end of a communication session or the protocol

is re-executed from the beginning when the set of participants is altered. However, recent trends

in communication technologies require dynamic settings for the set of participants due to the

significant overhead of updating the group key. Accordingly, group key agreement protocols have

evolved to overcome such overhead by providing dynamic group operations [11, 19, 41]. The

most common dynamic group operations are the join of new participants into the group and the

leave of existing participants from the group. Such join and leave operations are sometimes called

auxiliary group key agreement operations. In contrast to static group key agreement protocols,

Dynamic Group Key Agreement Protocols (DGKAPs) support auxiliary operations by selecting

a small subset of participants as active participants. Active participants, which are entities in the

group, are responsible for updating the group key by re-executing the protocol from the beginning

after any join or leave has occurred. Since the set of active participants is a smaller group than

the original set, dynamic group key agreement protocols provide better performance than static

ones.

Performance analysis of DGKAPs is a significant issue for evaluating the applicability of a pro-

tocol in a real-life application. However, performance analysis of well-known DGKAPs only con-

sider numerical methods and simulation techniques, and to the best of our knowledge, there is no

analytical performance model for scalability analysis of DGKAPs. Therefore, it is not possible to

measure effects of auxiliary operations on the group communication. For instance, if there exist

frequent join requests to the group then, group members spend most of their time to update the

group key rather than communicating with each other. Consequently, such requests may result

in an effect like a Distributed Denial of Service (DDoS) attack that violates the availability of the

group communication. Provision of an extensive scalability analysis by employing queueing mod-

els is expected to help learn availability boundaries of the group communication, which is our

main motivation for the study. In addition, by using these models, we aim to address the following

issues: (i) the average waiting time of a joining participant before joining the group, (ii) the effects

of frequent participant arrivals on the availability of group communication, (iii) the interdepen-

dence between the average waiting time of a joining participant and the number of participants

in the group.

Our main contributions in this article are as follows:

• We propose an analytical performance model on DGKAPs by using queueing models to

analyze the scalability of protocols. Our performance model can be used for detecting the

conditions where the system availability is violated.

• We extend our performance model for secure file sharing systems that utilize group key

agreement protocols as a file confidentiality service.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:3

• Moreover, we model secure file sharing operations such as file download/upload and file

encryption/decryption by using queueing models.

• We illustrate the applicability of our model on different group key agreement protocols in

References [18, 19, 26, 48].

• We also present a demonstrative use case of our model on Private File Sharing System (PFSS)

[19], and we present numerical performance results of the system.

The rest of the article is organized as follows: In Section 2, we provide a comparison of perfor-

mance analysis methods used in secure multi-party communication systems. Section 3 explains the

proposed queueing-based performance model. In Section 4, application of our model on different

dynamic group key agreement protocols [18, 19, 26, 48] is given. Section 5 extends the proposed

performance model to secure file sharing systems with a demonstrative use-case scenario. Sec-

tion 6 concludes the article.

2 RELATED WORK

In this section, we first provide preliminary material on queueing theory. Then, we present a com-

parison of performance evaluation methods used in different secure multi-party group communi-

cation systems. Finally, we discuss how dynamic group key agreement protocols benefit from an

analytical performance model.

2.1 Preliminaries for Queueing Theory

Queueing Theory [37] is a mathematical model to analyze the number of participants in the queue

and the waiting time of participants in the queue by considering the nature of a specific application.

A queue can be formally represented by using the Kendall’s Notation as given in the following

definition:

Definition 2.1. Let Q be an X/Y/Z queue. Then, the distributions of X, Y, and Z can be expressed

as follows:

• X represents the distribution of participants’ arrival time and denoted as follows:

X :=

⎧⎪⎪⎨⎪⎪⎩
M if the inter-arrival time is exponentially distributed

D if the inter-arrival time is pre-determined

G if the inter-arrival time is arbitrarily distributed.

• Y represents the distribution of participants’ service time and denoted as follows:

Y :=

⎧⎪⎪⎨⎪⎪⎩
M if the service time is exponentially distributed

D if the service time is pre-determined

G if the service time is arbitrarily distributed.

• Z represents the number of simultaneously working servers. It is assumed that one server

can only serve one participant at a time.

Definition 2.2. Let Q be an X/Y/Z queue. We use the following input parameters as defined in

Reference [37]:

• Participant Arrival Rate (λ) represents the average number of arriving participants into

the system per unit time.

• Service Rate (μ) represents the mean number of participants that are served per unit time.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:4 G. Cantali et al.

• Mean Service Time (E[S]) represents the average time a participant spends in the server

and it is computed as follows:

E[S] =
1

μ
.

• Server Utilization (ρ) The server utilization represents the fraction of time in which a

server is busy. The server utilization can be expressed as:

ρ =
λ

Zμ
.

• Arrival Rate Variance (σ 2
a) is the variance of the inter-arrival time distribution and it is

zero if arrivals are deterministic:

X = D ⇒ σ 2
a = 0.

• Service Time Variance (σ 2
s) is the variance of the service time distribution and it is zero

if the service durations are deterministic:

Y = D ⇒ σ 2
s = 0.

The main performance metrics used in queueing theory are the average queue length and the

average waiting time. The list of widely used performance metrics are given as follows:

Definition 2.3. Let Q be a X/Y/Z queue. The list of performance metrics of Q are given as follows:

• The Average Participant Waiting Time (W): In the long run of a queueing simulation, the

average participant waiting time represents how much time, on average, a participant has

to wait in the system before the participant is served.W includes both the time spent in the

queue and the time spent in the server.

• The Average Participant Waiting Time in Queue (Wq): In the long run of a queueing simula-

tion,Wq represents how much time, on average, a participant has to wait in the queue before

the participant is served. The relation betweenW andWq can be expressed as follows:

W =Wq + E[S].

• The Average Number of Participants (L): The average number of participants represents

how many participants are expected to be in the system in the long run of a simulation. L
includes both the number of participants in the system and the number of participants in

the queue.

• The Average Number of Participants in Queue (Lq): The average number of participants in

queue represents how many participants are expected to be in the queue in the long run of

a simulation. The relation between L and Lq can be expressed as follows:

L = Lq + λE[S].

2.2 A Comparison of Performance Evaluation Methods Used in Secure Multi-Party

Group Communication Systems

While comparing DGKAPs and secure file sharing systems, we use the following comparison

criteria:

• Asymptotic Complexity: We consider asymptotic complexity analysis as a derivation of

an upper bound regarding time complexity of a system by using O notation.

• Numerical Methods: We consider numerical methods as a subset of asymptotic complex-

ity analysis. Numerical analysis is performed when time complexity of the system is esti-

mated for a fixed number of participants but not derived asymptotically by usingO notation.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:5

Table 1. Performance Evaluation Methods Used in Well-known Group Key Agreement Protocols

Numerical
Methods

Asymptotic
Complexity Simulation

Analytical
Performance Model

Abdel-Harfez et al. [2] ✓ ✗ ✓ ✗

Augot et al. [4] ✗ ✗ ✓ ✗

Change et al. [8] ✓ ✗ ✓ ✗

Chang et al. [10] ✓ ✓ ✓ ✗

Cheng et al. [11] ✓ ✗ ✓ ✗

Chung [13] ✓ ✗ ✗ ✗

KAP-PBC [16] ✓ ✓ ✓ ✗

GKAP-MANET [18] ✓ ✓ ✓ ✗

Gangwar et al. [20] ✓ ✓ ✗ ✗

Huang et al. [23] ✓ ✓ ✗ ✗

Li et al. [27] ✓ ✗ ✓ ✗

Teng et al. [39] ✓ ✗ ✗ ✗

Tzeng [42] ✓ ✗ ✗ ✗

Tzeng [43] ✓ ✗ ✗ ✗

Zhang et al. [48] ✓ ✓ ✗ ✗

Zhao et al. [49] ✗ ✗ ✓ ✗

• Simulation: Performance analysis is performed via simulation when the system runs on a

simulation environment for different ranges of parameters.

• Analytical Performance Model: We consider networks of queues as analytical perfor-

mance models. If the performance of a communication system is analyzed by using a queue-

ing model, we state that analytical performance models are used.

Methods used for performance evaluation of well-known DGKAPs are as given in Table 1. Com-

parisons show that numerical methods are the most widely used by the protocols. Simulation is

the second most common method, and asymptotic complexity analysis is less widely utilized. Note

that only three protocols [10, 16, 18] use both simulation and asymptotic complexity analysis si-

multaneously. However, none of the example DGKAPs have been analyzed by using analytical

performance models. Although the study in Reference [17] compares four different DGKAPs with

respect to scalability of protocols, it does not provide any analytical performance model.

DGKAPs are also utilized in secure file sharing systems (SFSSs) as a file confidentiality service

by using the computed group key to encrypt and decrypt shared files. Methods used for perfor-

mance analysis of some well-known SFSSs are as given in Table 2. According to the comparison, all

SFSSs use numerical methods for evaluating their performance. HABE [45], which is a combina-

tion of hierarchical identity-based encryption [6] and ciphertext-policy attribute-based encryption

[46], uses proxy re-encryption [1] and lazy revocation [5] to improve performance of participant

removal operation. However, the study does not provide simulation results or analytical perfor-

mance models. None of the example SFSSs presented here use analytical performance models.

In this work, our main goal is to use analytical performance model while addressing the scala-

bility issues of DGKAPs, since such models have more advantages over other performance evalu-

ation methods. For instance, asymptotic complexity analysis yields results indicating the relation

between the number of participants in the group and the time required to complete a join oper-

ation. However, in DGKAPs new participants may keep coming and request to join the group. In

such case, the time required to complete a join operation increases as the number of participants

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:6 G. Cantali et al.

Table 2. Performance Evaluation Methods Used in Well-known Secure File Sharing Systems

Numerical
Methods

Asymptotic
Complexity Simulation

Analytical
Perfomance Model

System in [12] ✓ ✓ ✓ ✗

PFSS [19] ✓ ✓ ✓ ✗

System in [22] ✓ ✓ ✗ ✗

mCP-ABE [24] ✓ ✗ ✗ ✗

TimePRE [28] ✓ ✓ ✓ ✗

Mona [29] ✓ ✓ ✓ ✗

System in [30] ✓ ✗ ✓ ✗

FADE [38] ✓ ✗ ✗ ✗

HABE [45] ✓ ✓ ✗ ✗

System in [47] ✓ ✗ ✗ ✗

System in [50] ✓ ✗ ✓ ✗

in the group increases. However, it is difficult to observe the difference between performances of

consecutive join and/or leave operations in asymptotic complexity analysis and thereby it is also

difficult to observe the scalability of the protocol. Numerical evaluation can be defined as an al-

ternate approach for analytical performance model with more accurate results. However, we can

only make estimations for a fixed number of participants and for a fixed time period, but it is not

possible to obtain detailed estimations for a continuous time period.

Similar to the asymptotic complexity analysis, simulation techniques that are used in previous

studies do not provide general results for all possible scenarios when the scalability of DGKAPs are

concerned. Although they provide almost realistic performance results, simulations may need to be

executed for all possible cases such as different arrival rates of participants or varying waiting time

of participants, and so on. One important example for both asymptotic complexity analysis and

simulation-based performance analysis is the work proposed in Reference [3]. The proposed work

provides a comprehensive performance evaluation of five different DGKAPs and gives a compari-

son on their performance results based on both asymptotic analysis and simulations. Nevertheless,

the study does not consider the long-term execution of protocols in terms of varying residence

times of participants in the group, participant leaving and joining rates, or waiting time before

joining the group. For this respect, we propose an analytical performance model that employs

queueing theory to analyze the scalability of DGKAPs. Moreover, to the best of our knowledge,

queueing theory is first used in this work for the analysis of DGKAPs.

3 PERFORMANCE MODEL FOR DYNAMIC GROUP KEY AGREEMENT PROTOCOLS

In this section, we provide details about our performance model and explain how we model leave

and single/mass join operations of DGKAPs. For this respect, we analyze the scalability of DGKAPs

in terms of three different performance models, namely Residence Model, Join Model, and Leave

Model.

An overall view of the proposed analytical performance model is shown in Figure 1. Since the

number of participants in the group is the most important information while analyzing the per-

formance of DGKAPs, we first need to model the participants in the group. Therefore, we use

Residence Model to formulate the expected number of participants in the group and residence

time of participants in the group. Then, we use the expected number of participants to model

mass/single join and leave operations. In our analytical performance model, we assume that the

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:7

Fig. 1. An overall view of the proposed performance model for dynamic group key agreement protocols.

Fig. 2. The steady-state representation of an M/M/∞ queue.

number participants in the group affects join operation, in particular Join Model, and the num-

ber of joining participants affects Residence Model. Thus, Join Model and Residence Model are

dependent on each other. However, we also assume that the number of participants in the group

affects leave operation, therefore, Leave Model is also dependent on Residence Model. However,

residence time of each participant is defined by Residence Model not Leave Model, which makes

Residence Model independent from the Leave Model.

The number of participants in the group significantly affects the time required to perform the

group key computation. We consider the number of participants in the group as a parameter that is

represented with an infinite server queueing model, namely the residence model. In the residence

model, the service time is considered as the residence time of a participant in the group until

participants leave the group. Each participant in the group is served by a different server. Hence,

the number of busy servers at time t equals to the number of participants in the group at time t :

sb (t) = k (t), (1)

where sb represents the number of busy servers and k represents the number of participants in

the group.

We assume that inter-arrival time in the residence time model is exponentially distributed and

the residence time of participants is arbitrarily distributed. Thus, we use an M/G/∞ queue that

represents a system with infinite servers, arbitrarily distributed service time, and exponentially

distributed inter-arrival time. In this part of our analysis, we assume that each participant in the

group is also modelled as a server in the model, since group key computation is realized by all

cooperating group members. Therefore, in such circumstances, participants do not wait in the

queue and begin to get served as soon as they arrive into the system.

The study in Reference [34] shows that steady-state probabilities of an M/G/∞ queue are the

same as an M/M/∞ queue, and Figure 2 shows the steady-state representation of an M/M/∞

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:8 G. Cantali et al.

queue. By using Figure 2, we derive the performance metrics of an M/G/∞ as follows:

P1 =
λ

μ
P0, (2)

Pk =
λ

kμ
Pk−1, (3)

where k is the number of participants in the group, λ is the participant arrival rate, μ is the group

residence rate, and Pk is the steady-state probability that k participants are in the group. Then, the

closed-form expression for Pk (see Appendix A.2 for intermediate steps) is derived as

Pk =

(
λ
μ

)k
e−

λ
μ

k!
. (4)

We observe that Equation (4) is the probability mass function of the Poisson distribution with

rate λ/μ. Therefore, the number of participants in the group parameter is considered as a Poisson-

distributed variable.

3.1 Analytical Model of a Single Join Operation

We model the single join operation by using a queueing model. When a participant requests to join

the group, the request is considered as an arrival event into the queue. The completion of a join

operation is considered as a departure event from the queue. To model the arrival of new partici-

pants for a dynamic group key agreement protocol (DGKAP), we should examine empirical arrival

distributions for multi-party communication applications that can utilize DGKAPs. For instance,

References [36, 44] show empirical results that the inter-arrival time for a live video streaming

application is exponentially distributed. Since a DGKAP can be used in a live video streaming

application, we assume that the inter-arrival time for a single join operation is exponentially dis-

tributed. We also assume that the service time is exponentially distributed for simplicity. Therefore,

we use a single server queue with exponentially distributed inter-arrival and service time for the

join model.

For estimating the number of participants in the group, we use the residence model. We connect

the join model with the M/G/∞ queue in the residence model as shown in Figure 3. The output of

the join operation is supplied as the input into group residence model. Until we analyze the leave

operation in Section 3.3, we ignore the leave model in Figure 3.

Burke’s Theorem states that an M/M/1 queue with λ participant arrival rate produces an output

with rate λ. Therefore, a queue that is sequentially connected to the output of an M/M/1 queue

has exponentially distributed inter-arrival time. Since our join model consists of an M/M/1 queue,

our residence model has exponentially distributed inter-arrival time.

When participants arrive and request to join the group, they stay in the join queue until they

are ready to join. After a participant joins the group, the participant arrives at the group residence

server and stays in the server until deciding to leave the group. In Figure 3, λ represents the partic-

ipant arrival rate of joining participants, 1/μjoin represents the service time for the join operation,

and 1/μ represents the mean group residence time as explained in Table 3.

We now analyze the performance of the join operation by using both join and group residence

models. In our model, μjoin depends on the number of participants in the group, which is Poisson-

distributed with rate λ/μ as derived in Equation (4). Thus, the expected value of the number of

participants in the group, k , equals to

E[k] =
λ

μ
. (5)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:9

Fig. 3. Overview of our performance model.

Table 3. Definition of the Parameters Used in the Proposed Model

Parameter Explanation

λ The participant arrival rate of new participants

μjoin The service rate of join operation

E[Sjoin] = 1
μjoin

The mean service time of join operation

μ The group residence rate

E[Sres] =
1
μ

The mean group residence time

Sk
join The service time for a new participant to join the group when there are k

participants in the group

W The average waiting time of a new participant before joining

L The average number of participants waiting for join operation at an

arbitrary time

k The number of existing participants in the group

pk The probability that there are k existing participants in the group

sb The number of busy servers in the group residence model

We approximate the mean service time of the join operation by fixing the number of participants

in the group to the expression in Equation (5):

E[Sjoin] ≈
E

[
S
� λ

μ �
join

]
+ E

[
S
� λ

μ �
join

]
2

. (6)

Then, the average waiting time of a joining participant,W , is derived (see Appendix A.1 for inter-

mediate steps) as

W =
1

1
E[Sjoin]

− λ
(7)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:10 G. Cantali et al.

Fig. 4. The steady-state representation of the mass join operation.

and the average number of participants who are waiting to join the group, L, is derived (see Ap-

pendix A.1 for intermediate steps) as

L =
λ

1
E[Sjoin]

− λ
. (8)

3.2 Analytical Model of a Mass Join Operation

Mass join operation allows multiple participants to simultaneously join the group such as protocols

in References [16, 19]. During the modeling of the mass join operation, we use batch queues [9].

We assume that both inter-arrival time and service time of the mass join operation is exponentially

distributed. We also assume that new participants arrive one-by-one but join in bulks. Therefore,

we use a single server queue with batch service to represent the mass join operation.

The batch size of the join service, Y , is not constant, since it depends on the number of partic-

ipants waiting in the queue to join the group. In general, Y in bulk service queues is either fixed

or considered as a random variable that is smaller than the queue size [33]. However, we assume

that the system always allows all participants in the queue to join the group. Therefore, Y is equal

to the number of participants waiting in the queue.

Figure 4 shows the steady-state probabilities in the mass join operation. Since the batch size is

considered the same as the queue size, each state goes back to the empty state after a departure

event. In the mass join operation, the number of joining participants may affect the service time

of the operation. Each state has its own service time denoted as μ1, μ2 . . . We derive the balance

equations as

Pkλ = Pk+1 (λ + μk+1). (9)

By using Equation (9), the closed-form expression of P0 is derived as (see Appendix A.2 for

intermediate steps):

P0 =

⎡⎢⎢⎢⎢⎣1 +
∞∑

k=1

�� λk

∏k
i=1 (λ + μi)

�
⎤⎥⎥⎥⎥⎦
−1

. (10)

The closed-form of P0 given in Equation (10) can be applied to a dynamic group key agreement

protocol that supports the mass join operation. However, deriving concrete performance results

from such a complicated equation is difficult. Instead, we follow another approach to derive an

upper bound for the performance metrics.

Mass join operation allows every participant who waits in the queue to join the group. The

waiting queue is emptied when a mass join operation starts. If new participants arrive during a

mass join operation, they only wait in the queue until the next operation starts. Therefore, the

average waiting time in the queue,Wq , is less than or equal to the mean service time of the mass

join operation, E[S]. By usingWq ≤ E[S], we can derive an upper bound forW and L. The process

of upper bound derivation for mass join operation is thoroughly explained in Section 4.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:11

Table 4. Definition of the Parameters Used in the Leave Model

Parameter Explanation

E[Sres] The mean residence time of participants

E[Sleave] The mean service time of leave operation

E[Stotalres] = E[Sres] + E[Sleave] The total residence time that is the sum of the mean

residence time and the mean service time of leave

operation

μ = 1/E[Sres] The group residence rate

μleave = 1/E[Sleave] The service rate for leave operation

μtotal = 1/E[Stotalres] The total residence rate

3.3 Analytical Model of a Leave Operation

In group key agreement protocols, participants should not be able to take part in the group com-

munication after they leave the group. The group key needs to be updated for preventing the

leaving participants to access the encrypted communication. Therefore, most dynamic group key

agreement protocols provide a leave operation to update the group key after a participant leave

occurs. We now propose a model for the scalability analysis of a leave operation by adding a third

system as an output to the group residence model. When a participant requests to leave the group,

they are removed from the group residence model and added into the leave model where they

wait until the group key update process is completed. When the group key is updated, the leaving

participant is removed from the leave model.

In some group key agreement protocols [18, 19], multiple participants can leave the group si-

multaneously without waiting in a queue. A participant does not depend on every participant in

the group to leave. Instead, each participant, Pi , depends on a consecutive participant to perform

the necessary computations and communications. In the context of this article, two participants,

Pi and Pi−1, are called consecutive participants if their indices differ by one. For some protocols,

participant list is circular, where Pn+i = Pi and n is the number of participants in the group. For

the leave model, we assume that, in general, the leave of participant Pi is handled by its consec-

utive participants Pi−1 and Pi−2. In this study, we also assume that the likelihood of consecutive

participants leaving at the same time is considerably low. By using these assumptions, we model

a leave operation with parallel servers as shown in Figure 3 and the model parameters are given

in Table 4.

We sequentially connect residence servers and leave servers to derive the total residence time:

E[Stotalres] = E[Sres] + E[Sleave], (11)

which implies

1

μtotal
=

1

μ
+

1

μleave
, (12)

μtotal =
μ .μleave

μ + μleave
, (13)

where μ is the residence rate and μleave is the service rate for a leave operation. By using this

approach, we remove the leave queue and extend the scope of residence model to include a leave

operation. Accordingly, the steady-state probability distributions of the residence model need to

be modified. Equation (4) is modified to

Pk =

(
λ

μtotal

)k
.e
− λ

μtotal

k!
, (14)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:12 G. Cantali et al.

Table 5. A General Terminology for DGKAPs

Term Explanation

DGKAP operation An operation provided by a dynamic group key agreement

protocol, such as join, leave, mass join, and mass leave.

DGKAP function A function that is used during one of the DGKAP operations. For

instance, Group Key Computation and Session Key

Verification functions are used while executing the join

operation of KAP-PBC.

Mathematical operation An operation that is used in any DGKAP function such as

modular exponentiation and bilinear mapping, and so on.

Symmetric DGKAP A DGKAP is symmetric if the computed group key is used to

both encrypt and decrypt the messages. For instance, KAP-PBC

in Reference [19] is a symmetric DGKAP.

Asymmetric DGKAP A DGKAP is asymmetric if the group key is used only to encrypt

the messages and each participant uses unique decryption keys

to decrypt the messages. For instance, IBAAGKAP in Reference

[48] is an asymmetric DGKAP.

Round The time duration of a DGKAP operation in which participants

perform a set of computations and communications.

where μtotal is defined in Equation (13). Moreover, we can extend the expected service time of join

operation as follows:

E[Sjoin] =

E

[
S
� λ

μtotal
�

join

]
+ E

[
S
� λ

μtotal
�

join

]
2

. (15)

Updated E[Sjoin] is used for the derivation of performance metrics in Equations (7) and (8).

4 ANALYSIS OF DYNAMIC GROUP KEY AGREEMENT PROTOCOLS BY USING THE

PROPOSED PERFORMANCE MODEL

In this section, we explain the process of evaluating the performance of Dynamic Group Key Agree-

ment Protocols (DGKAPs) by using the proposed model in Section 3. First, we provide details on

computing the expected service time of a DGKAP operation, E[S], and then present how our model

can be applied on different DGKAPs in References [18, 19, 26, 48] by using the computed E[S]

of each protocol operation. Since every DGKAP has its own notation and terminology, we also

present general notations as given below and a common terminology as shown in Table 5:

• P: The set of participants in the group;

• PA: The set of active participants in the group who perform the computations and commu-

nications during the DGKAP operation, where PA ⊆ P;

• n: The number of participants in the group. n = |P |;
• R: The number of rounds in the DGKAP operation;

• T r
p : Time spent by a participant p to complete computations and communications at round

r , where 1 ≤ r ≤ R and p ∈ PA;

• F r : The set of DGKAP functions that are used in round r of the DGKAP operation;

• tf : The time required by a participant to execute DGKAP function f . tf is considered con-

stant for a specific f ;

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:13

Fig. 5. Inputs and outputs of our performance model.

• c
p

f
(n): The number of times participant p executes a DGKAP function f during the DGKAP

operation. c
p

f
takesn as an input parameter, because the number of participants in the group

affects the number of execution of a DGKAP function f .

While executing DGKAPs operations, a set of participants is selected as active participants PA

as defined in the notations above. Such participants are the ones that make more calculations than

other participants in the group. Therefore, we first formulate time spent by active participants for

each round r of DGKAP operation:

∀p ∈ PA , T
r
p =

∑
f ∈F r

c
p

f
(n) ∗ tf . (16)

Then, we consider the most time-spending participant among active ones for round r by computing

the maximum of T r
p values:

T r
max = max

({
T r

p : p ∈ PA

})
. (17)

We assume that participants perform all computations and communications at the same time for

each round. Therefore, round r takes at most T r
max time to complete. We repeat the procedure in

Equation (16) and Equation (17) for each round in the DGKAP operation, and then we obtain the

following total execution time for the operation:

Tmax =

R∑
r=1

T r
max, (18)

where Tmax is the time required to execute the DGKAP operation. Hence, the mean service time

E[S] for DGKAP operation S is as follows:

E[S] = Tmax =

R∑
r=1

T r
max. (19)

Throughout the article, we also assume that the participant arrival rate is λ and the group res-

idence rate is μ. Given λ, μ, and the derived E[S], we can compute the performance metrics for

a DGKAP operation. In the rest of the analysis, we separately analyze join, mass join, and leave

operations as shown in Figure 5. Our model takes average participant arrival rate, functions of the

protocol to be analyzed, and average group residence time as input and outputs the average time

spent in any operations of given DGKAP, average waiting time (W) of participants, and average

number of waiting participants (L).

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:14 G. Cantali et al.

In the join operation, the right side of Equation (16) contains terms with variable n and those

terms are transferred to E[S] in Equation (19). We approximate the value of E[S] as follows:

E[S] ≈ E[Sn←E[n]], (20)

whereE[Sn←E[n]] represents the mean service time of DGKAP operation when the value of variable

n is fixed to E[n].

Based on the results of our Residence Model in Section 3, the mean value of n is given by

E[n] =
λ

μ
(21)

for participant arrival rate λ and group residence rate μ. Therefore, we rewrite E[n] as

E[n] =
� λ

μ
� + � λ

μ
�

2
. (22)

We use floor function for E[n], since the number of participants has to be integer value and this

reduces to

E[n] =

⌊
λ

μ

⌋
+ 0.5. (23)

By replacing the n terms in Equation (16) with the value of E[n] in Equation (23), we obtain E[S]

with constant terms. Then, we obtain the performance metrics,W and L, by integrating E[S] into

the following equations:

W =
1

1
E[S] − λ

, (24)

L =
λ

1
E[S] − λ

. (25)

When we evaluate the performance of mass join operation of a DGKAP, we follow a different

approach. First, c
p

f
(n) in Equation (16) becomes c

p

f
(n,m),wherem represents the number of joining

participants. Therefore, E[S] in Equation (19) contains m terms in addition to n terms. There are

two possible approaches to handlem terms.

In the first approach, m is considered constant. In this case, our analysis focuses on the perfor-

mance of a DGKAP when there are always m joining participants. If m is a constant value, then

the performance analysis of mass join operation is similar to the analysis of single join operation.

Then, we can use Equations (20)–(25) to obtain the performance metrics.

In the second approach, m is considered as a random variable that changes for each mass join

operation during the analysis. In this case, finding a closed-form expression for W and L is a

significant issue. Instead, we derive an upper bound forW and L by using the following inequality:

Wq ≤ E[S], (26)

whereWq represents the average waiting time before the mass join operation starts and E[S] is the

mean service time of mass join operation. Participants who arrive during a mass join operation

wait in the queue until the subsequent mass join operation starts. If a participant arrives at time τ
after the operation is started, the participant waits E[S] − τ . Therefore, for each case, Equation (26)

holds. The subsequent operation joins all the participants waiting in the queue, and the expected

number of joining participants, E[m], is equal to the average number of waiting participants, Lq :

E[m] = Lq . (27)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:15

By using Little’s Law, we re-write Equation (26) as

Lq ≤ λE[S]. (28)

Then, we use a similar approximation as in the single join operation:

E[S] ≈ E[Sn←E[n] , m←E[m]], (29)

where E[Sn←E[n] , m←E[m]] represents the mean service time when the value of n is fixed to E[n] =

λ/μ and the value of m is fixed to E[m] = Lq . We integrate the value of approximated E[S] into

Equation (28) and obtain terms with Lq on both sides of the inequality. When we gather the Lq

terms on the left side, we derive an upper bound as

Lq ≤ E (. . .), (30)

where E (. . .) represents an expression related to the functions of the DGKAP operation and it

changes with the protocol. By using Little’s Law, we also obtain an upper bound forWq as

Wq ≤
1

λ
E (. . .). (31)

For the analysis of leave operation, active participants are also a proper subset of all participants

in the group PA ⊂ P. We make this assumption to ensure that multiple participants can leave

the group simultaneously, without waiting for the leave of other participants. For instance, when

participant Pi decides to leave, participants Pi−1 and Pi−2 may perform the necessary computations

and communications to update the group key after Pi leaves. In this case, we call Pi−1 and Pi−2

consecutive participants of Pi . In general, the circular participant list is used in DGKAPs, where

Pn+i = Pi and n is the number of participants in the group. If a DGKAP provides a consecutive

participant concept for leave operation, our model can be used to analyze the performance of

leave operation. Otherwise, our model ignores the cost of leave operation and the participant is

immediately removed from the system when their residence time is over.

Our analysis for the leave operation differs from the analysis of single join and mass join opera-

tions. Since we assume that participants can leave simultaneously and without waiting for others,

there is no need for a queue to store leaving requests. We use an infinite server model similar to

Residence Model and connect leave servers to residence servers, as shown in Figure 3 in Section 3.1.

By taking the sum of the mean residence time and the mean service time of leave operation, we

derive

E[Stotalres] = E[Sres] + E[S], (32)

where E[S] is the mean service time of leave operation, obtained the same way E[S] of single join

operation is obtained. Since there is no queue for leave operation, we cannot computeW or L for

the leave operation. Instead, we consider the effects of leave operation on the performance metrics

of join operation by updatingW and L formulas of join operation. Equations (24) and (25) contain

terms with E[Sres]. We replace such terms with E[Stotalres] and re-calculate the performance metrics

of join operation. If the DGKAP supports mass join operations, the same re-calculations are also

made for the performance metrics of mass join operation.

We note that the analysis we have covered here focuses on the DGKAP functions instead of

mathematical operations. Therefore, derived results are in terms of time costs of DGKAP functions.

Our performance model also allows us to obtain the performance results of DGKAP operations

in terms of mathematical operations. Such results can be derived with a slight modification of

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:16 G. Cantali et al.

Table 6. DGKAP Functions Used in KAP-PBC

Function Parameter Symbol

Temporary Public Key Computation tpkc

Temporary Public Key Verification tpkv

Temporary Public Key Broadcast tpkb

Session Key Computation tskc

Session Key Verification tskv

Session Key Broadcast tskb

Group Key Computation tдkc

Equation (16) as follows:

∀p ∈ PA , T
r
p =

∑
f ∈F r

c
p

f
(n) ���

∑
o∈Of

c
f
o ∗ to
�� , (33)

where Of represents the set of mathematical operations performed in function f , c
f
o is the number

of times the mathematical operation o is executed in function f , to is the time required to execute

the mathematical operation o, and tf is the time required to execute DGKAP function f . If we use

Equation (33) instead of Equation (16) for the rest of the analysis, we obtain results in terms of

time costs of mathematical operations.

In our analysis, we assume that tf or to have arbitrary but fixed values. However, we can also

derive a more general result by expressing tf or to in terms of protocol-specific parameters. For

instance, let α and β be two protocol-specific parameters that affect tf and to . In this case, tf in

Equation (16) and to in Equation (33) becomes tf (α , β) and to (α , β), respectively. The terms with

α and β are moved through derivations. We note that α and β are not random variables such

as n or m. Instead, these are pre-defined parameters that are assigned constant values before the

DGKAP operations start. Therefore, terms with α and β remain in the final expressions of the

performance metricsW and L. By using different values for α and β parameters, we can estimate

how the performance of DGKAP operation changes with respect to these parameters. In the rest

of this sections, we apply our performance evaluation approach to different DGKAPs.

4.1 Illustration of the Performance Model on KAP-PBC [19]

In this subsection, we analyze the performance of join and mass join operations of Key Agreement

Protocol with Partial Backward Confidentiality (KAP-PBC)[19]. The list of DGKAP functions that

are used in KAP-PBC are as given in Table 6.

Based on the details given in Reference [19], Pn and Pn−1 are the active participants in the

group. It takes two rounds to complete a join operation with n participants in the group and m
joining participants. In the first round, Pn executes Temporary Public Key Computation once and

Temporary Public Key Broadcast for n +m − 1 participants. In the second round, each Pn and Pn−1

executes Session Key Computation once, Session Key Broadcast for n +m − 1 participants, Session

Key Verification for m + 2 participants, Temporary Public Key Verification for m + 1 participants,

and Group Key Computation once, Therefore, for n participants in the group and m joining par-

ticipants, we obtain

T 1
max = tpkc + (n +m − 1)tpkb, (34)

T 2
max = tskc + (n +m − 1)tskb + (m + 2)tskv + (m + 1)tpkv + tgkc. (35)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:17

Thus,

Tmax = tpkc + (n +m − 1)tpkb + tskc + (n +m − 1)tskb + (m + 2)tskv + (m + 1)tpkv + tgkc. (36)

For single join operation,m = 1 and Equation (36) are reduced to

Tmax = tpkc + ntpkb + tskc + ntskb + 3tskv + 2tpkv + tgkc, (37)

where Tmax represents the mean service time of single join operation, E[Ss j].

By replacing n terms in Equation (37) with the value of E[n] in Equation (23), we obtain E[Ss j]

with constant terms as

E[Ss j] = 2tpkv + 3tskv + tskc + tpkc + tдkc + (tskb + tpkb)

(⌊
λ

μ

⌋
+ 0.5

)
. (38)

Then, we obtain the performance metrics of join operation as

W =
1

1
E[Ss j] − λ

, (39)

L =
λ

1
E[Ss j] − λ

, (40)

where E[Ss j] is derived in Equation (38).

For the mass join operation, the mean service time is as given in Equation (36). We substitute

Lq and
(
� λ

μ
� + 0.5

)
intom and n, respectively, in Equation (36) to obtain

E[Smj] =

⌊
λ

μ

⌋
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1, (41)

where τ1 is given by

τ1 = tpkv + 2tskv + tskc + tpkc + tдkc − 0.5tskb − 0.5tpkb . (42)

Then, we use Equation (28) and leave the Lq terms in one side to derive an upper bound for Lq

as (see Appendix A.3 for intermediate steps)

Wq ≤
λ(tskb + tpkb) + μτ1

μ − λμ (tpkv + tpkb + tskb + tskv)
, (43)

and we use Lq = λWq to obtain an upper bound for Lq as

Lq ≤
λ2 (tskb + tpkb) + μτ1

μ − λμ (tpkv + tpkb + tskb + tskv)
. (44)

In addition to single join and mass join operations, KAP-PBC also provides a third and novel op-

eration for joining new participants, namely join with partial backward confidentiality (join-PBC).

In this operation, a chosen joining participant first computes the group key just before the join

operation that yields a single join operation in our performance model. Then, joining participants

are added into the group with a mass join operation to compute the new group key. Therefore, we

consider the join-PBC operation as a pipeline process of a single join and a mass join operation as

shown in Figure 6.

For the analysis of join-PBC operation, the mean service time is calculated by using the following

formula:

E[Spbc] = E[Ss j] + E[Smj], (45)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:18 G. Cantali et al.

Fig. 6. An overview of join-PBC operation in KAP-PBC.

where Ss j is single join operation and Smj is mass join operation. Therefore, we obtain a closed-

from expression by summing the values of E[Ss j] and E[Smj] in Equation (38) and Equation (41),

respectively:

E[Spbc] = 2

⌊
λ

μ

⌋
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1 + τ2, (46)

where τ2 is given as

τ2 = 2tpkv + 3tskv + tskc + tpkc + tдkc . (47)

Then, we obtain an upper bound for Wq and Lq (see Appendix A.5 for intermediate steps) as

follows:

Wq ≤
2� λ

μ
� (tskb + tpkb) + τ1 + τ2

1 − λ(tpkv + tpkb + tskb + tskv)
, (48)

Lq ≤
2λ� λ

μ
� (tskb + tpkb) + λτ1 + λτ2

1 − λ(tpkv + tpkb + tskb + tskv)
. (49)

We can also include the effects of leave operation into single join and mass join operations. In

KAP-PBC, when a participant Pi requests to leave, Pi−1 and Pi−2 are the active participants who per-

form the necessary operations. The probability that such participants decide to leave at the same

time is low enough to ignore. Therefore, we assume that leave operations for different participants

can be completed simultaneously, and we can use our leave model presented in Section 3.3.

In the first round of leave operation, Pi−1 executes Temporary Public Key Computation and

Temporary Public Key Broadcast functions. In the second round, Pi−1 and Pi−2 execute Temporary

Public Key Verification, Secret Key Computation, Secret Key Distribution, Secret Key Verification,

and Group Key Computation functions. Therefore, we obtain

T 1
max = tpkc + (n − 2)tpkb , (50)

T 2
max = tpkv + tskc + (n − 2)tskd + tskv + tдkc . (51)

Thus,

E[Sl] = Tmax = tpkc + (n − 2)tpkb + tpkv + tskc + (n − 2)tskd + tskv + tдkc . (52)

By replacing n terms with E[n], we obtain

E[Sl] = tpkv + tskv + tpkc + tskc + tдkc +

(⌊
λ

μ

⌋
− 1.5

)
(tpkb + tskb). (53)

The total residence time is the summation of E[Sl] in Equation (53) and the mean residence time.

The derivations are the same as we provide through Equations (72)–(76). Then, the total residence

time of KAP-PBC is computed as

μtotal =
μ

μE[Sl] + 1
. (54)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:19

Table 7. DGKAP Functions Used in GKAP-MANET

DGKAP function Parameter Symbol

Cluster Head Selection tchs

Temporary Public Key Distribution tpkd

Temporary Public Key Distribution tpkd

Temporary Public Key Verification tpkv

Secret Key Distribution tskd

Secret Key Verification tskv

Cluster Key Computation tckc

Finally, we replace the μ terms in Equation (38) with μtotal in Equation (54) to derive the updated

performance metrics of join, mass join, and join-PBC operations.

4.2 Illustration of Our Performance Model on GKAP-MANET

In this subsection, we analyze the performance of join and mass join operations of Group Key

Agreement Protocol for Mobile Ad Hoc Networks (GKAP-MANET)[18]. The list of DGKAP func-

tions that are used in GKAP-MANET is as given in Table 7.

For the analysis of join operation, we assume that there are n participants in the group and

a new participant requests to join the group. Based on the details given in Reference [18], P1,

Pn−1, and Pn are the active participants in the group. It takes two rounds to complete the join

operation. In the first round, Pn executes Temporary Public Key Computation and Temporary

Public Key Distribution functions. In the second round, P1, Pn−1, and Pn execute Temporary Public

Key Verification, Secret Key Computation, Secret Key Distribution, Secret Key Verification, and

Cluster Key Computation functions. Therefore, we obtain

T 1
max = tpkc + (n − 1)tpkd , (55)

T 2
max = tpkv + tskc + tskv + (n − 1)tskd + tckc . (56)

Thus,

E[Ss j] = Tmax = tpkc + (n − 1)tpkd + tpkv + tskc + tskv + (n − 1)tskd + tckc . (57)

By replacing n terms in Equation (57) with the value of E[n] in Equation (23), we obtain E[Ss j]

with constant terms as

E[Ss j] = tpkc +

(⌊
λ

μ

⌋
− 0.5

)
tpkd + tpkv + tskc + tskv +

(⌊
λ

μ

⌋
− 0.5

)
tskd + tckc , (58)

which corresponds to

E[Ss j] = tpkc + tpkv + tskc + tskv + tckc +

(⌊
λ

μ

⌋
− 0.5

)
(tpkd + tskd). (59)

Then, we obtain the performance metrics of join operation as

W =
1

1
E[Ss j] − λ

, (60)

L =
λ

1
E[Ss j] − λ

, (61)

where E[Ss j] is derived in Equation (59).

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:20 G. Cantali et al.

For the mass join operation, we assume that the number of joining participants is m. Then, the

time required to perform computations and communications in rounds 1 and 2 becomes

T 1
max = tpkc + (n +m − 2)tpkd , (62)

T 2
max = mtpkv + tskc + (n +m − 2)tskd +mtskv + tckc . (63)

Therefore, the mean service time of mass join operation, E[Smj], is calculated as

E[Smj] = Tmax = tpkc + tskc + (n +m − 2)tpkd + (n +m − 2)tskd +mtpkv +mtskv + tckc . (64)

We substitute Lq and
(
� λ

μ
� + 0.5

)
into m and n (in Equation (64)), respectively, to obtain the

following equation:

E[Smj] = Tmax = tpkc + tskc +

(⌊
λ

μ

⌋
+ Lq − 1.5

)
tpkd +

(⌊
λ

μ

⌋
+ Lq − 1.5

)
tskd

+ Lqtpkv + Lqtskv + tckc . (65)

Then, we obtain an upper bound for Wq and Lq (see Appendix A.4 for intermediate steps) as

follows:

Wq ≤
� λ

μ
� (tpkd + tskd) + tpkc + tskc + tckc − 1.5tpkd − 1.5tskd

1 − λ(tpkd + tskd + tpkv + tskv)
, (66)

Lq ≤
λ� λ

μ
� (tpkd + tskd) + λtpkc + λtskc + λtckc − 1.5λtpkd − 1.5λtskd

1 − λ(tpkd + tskd + tpkv + tskv)
. (67)

We can also include the effects of leave operation into single join and mass join operations. In

GKAP-MANET, when a participant Pi requests to leave, Pi+1, Pi−1, and Pi−2 are the active par-

ticipants who perform the necessary operations. The probability that such participants decide to

leave at the same time is low enough to ignore. Therefore, we assume that leave operations for

different participants can be completed simultaneously, and we can use our leave model presented

in Section 3.3.

In the first round of leave operation, Pi+1, Pi−1, and Pi−2 execute Temporary Public Key Com-

putation and Temporary Public Key Distribution functions. In the second round, Pi+1, Pi−1, and

Pi−2 execute Temporary Public Key Verification, Secret Key Computation, Secret Key Distribution,

Secret Key Verification, and Cluster Key Computation functions. Therefore, we obtain

T 1
max = tpkc + (n − 2)tpkd , (68)

T 2
max = tpkv + tskc + (n − 2)tskd + tskv + tckc . (69)

Thus,

E[Sl] = Tmax = tpkc + (n − 2)tpkd + tpkv + tskc + (n − 2)tskd + tskv + tckc . (70)

By replacing n terms with E[n], we obtain

E[Sl] = tpkc +

(⌊
λ

μ

⌋
− 1.5

)
tpkd + tpkv + tskc +

(⌊
λ

μ

⌋
− 1.5

)
tskd + tskv + tckc . (71)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:21

Table 8. Mathematical Operations Used in IBAAGKAP

Operation Parameter Symbol

Scalar Exponentiation tse

Bilinear Map Computation tbmc

Hash Computation thc

Update Message Table Row tumtr

Send Signature tss

The total residence time is the summation of E[Sl] in Equation (71) and the mean residence

time:

E[Stotalres] = E[Sres] + E[Sl], (72)

E[Stotalres] =
1

μ
+ E[Sl], (73)

E[Stotalres] =
μE[Sl] + 1

μ
. (74)

Then, the total residence rate is computed as

μtotal =
1

E[Stotalres]
, (75)

μtotal =
μ

μE[Sl] + 1
. (76)

Finally, we replace μ in Equation (59) as μtotal in Equation (76) to derive the updated performance

metrics of join operation. Similarly, we replace μ in Equations (66) and (67) with μtotal to derive the

updated upper bounds for performance metrics of mass join operations.

4.3 Illustration of the Performance Model on IBAAGKAP [48]

In this subsection, we analyze the performance of join operation of a recently proposed asym-

metric group key agreement protocol namely Identity-Based Authenticated Asymmetric Group

Key Agreement Protocol (IBAAGKAP)[48]. IBAAGKAP is an asymmetric protocol in which the

encryption key is common and each participant has a unique decryption key. There is a group

manager who maintains the group and actively plays a role in the operations.

Reference [48] does not define high-level functions such as Secret Key Verification in KAP-

PBC. Therefore, we use the mathematical operations for the analysis. The list of mathematical

operations used in IBAAGKAP are as given in Table 8.

For the analysis, we assume that there are n participants in the group and a new participant

Pn+1 requests to join the group. Based on the details given in Reference [48], the group manager

and Pn+1 are the active participants during the join operation. It takes one round to complete the

operation. The group manager updates n − 1 rows of the message table and sends signature to

n − 1 participants. Pn+1 performs Scalar Exponentiation for n + 5 times, Hash Computation for

n + 1 times, and Bilinear Map Computation for 4 times. Therefore, we obtain

TGM = (n − 1) (tumtr + tss), (77)

TPn+1 = (n + 5)tse + (n + 1)tbmc + 4thc , (78)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:22 G. Cantali et al.

Table 9. Mathematical Operations Used in TGDH

Operation Parameter Symbol

Modular Exponentiation tme

Sign Message tsm

Verify Message tvm

Send Tree Structure tsts

where TGM and TPn+1 represents the time spent in join operation by the group manager and par-

ticipant Pn+1, respectively. Then, the mean service time of join operation is derived as

E[S j] = Tmax = max {(n − 1) (tumtr + tss); (n + 5)tse + (n + 1)tbmc + 4thc }. (79)

By replacing n terms with E[n], we obtain

E[S j] = max

{(⌊
λ

μ

⌋
− 0.5

)
(tumtr + tss);

(⌊
λ

μ

⌋
+ 5.5

)
tse +

(⌊
λ

μ

⌋
+ 1.5

)
tbmc + 4thc

}
. (80)

Then, we obtain the performance metrics of join operation as

W =
1

1
E[Sj] − λ

, (81)

L =
λ

1
E[Sj] − λ

. (82)

4.4 Illustration of the Performance Model on TGDH [26]

In this subsection, we analyze the performance of join operation of a protocol called Tree-based

Group Diffie Hellman (TGDH) [26]. The protocol utilizes key trees to achieve more efficient group

key computation. The group is represented with a tree in which the session key of a participant is

associated with a leaf.

We use mathematical operations for the analysis of join operation. The list of such operations

used in TGDH are as given in Table 9.

For the analysis, we assume that there are n participants in the group and a new participant

Pn+1 requests to join the group. We also assume that the tree height is h ≥ 3. Based on the details

given in Reference [48], one of the participants takes a special role called sponsor who performs

most of the computations and communications. In the first round, the sponsor performs 4 to 2h − 2

modular exponentiation operations, one message verification, one message sign, and sends the tree

structure to n participants. In the second round, every participant performs 2 to h − 1 modular

exponentiation operations, one message sign, and two message verifications. Therefore, we obtain

4tme + ntsts + tsm + tvm ≤ T 1
max ≤ (2h − 2)tme + ntsts + tsm + tvm , (83)

2tme + tsm + 2tvm ≤ T 2
max ≤ (h − 1)tme + tsm + 2tvm , (84)

which produces the lower and upper bounds for Tmax as

6tme + ntsts + 2tsm + 3tvm ≤ Tmax ≤ (3h − 3)tme + ntsts + 2tsm + 3tvm . (85)

Thus, the mean service time of join operation is

6tme + ntsts + 2tsm + 3tvm ≤ E[S j] ≤ (3h − 3)tme + ntsts + 2tsm + 3tvm . (86)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:23

By replacing n terms with E[n], we obtain

6tme +

⌊
λ

μ

⌋
tsts + 2tsm + 3tvm ≤ E[S j] ≤ (3h − 3)tme +

⌊
λ

μ

⌋
tsts + 2tsm + 3tvm . (87)

Then, we derive bounds for our performance metrics as follows:

1
1

6tme+ � λ
μ �tsts+2tsm+3tvm

− λ
≤W ≤ 1

1

(3h−3)tme+ � λ
μ �tsts+2tsm+3tvm

− λ
, (88)

λ
1

6tme+ � λ
μ �tsts+2tsm+3tvm

− λ
≤ L ≤ λ

1

(3h−3)tme+ � λ
μ �tsts+2tsm+3tvm

− λ
. (89)

TGDH protocol tries to preserve the tree height, h, for join operations. The minimum value of h is

�log2 n�. Since the protocol tries to preserve the height as much as possible, we can expect that

E[h] = �log2 n�, (90)

E[h] ≈
⌈
log2

⌊
λ

μ

⌋⌉
. (91)

By replacingh terms in Equations (88) and (89) with the approximated value of E[h], we can further

derive lower and upper bounds for our performance metrics as

1
1

6tme+ � λ
μ �tsts+2tsm+3tvm

− λ
≤W ≤ 1

1

(3 �log2 � λ
μ � �−3)tme+ � λ

μ �tsts+2tsm+3tvm
− λ
, (92)

λ
1

6tme+ � λ
μ �tsts+2tsm+3tvm

− λ
≤ L ≤ λ

1

(3 �log2 � λ
μ � �−3)tme+ � λ

μ �tsts+2tsm+3tvm
− λ
. (93)

4.5 Discussions on the Analytical Performance Models of Protocols

To give an insight for the comparison of the protocols, in this subsection, we discuss the analytical

performance models derived for the protocols in References [18, 19, 26, 48]. As we expressed in

the previous subsections, we use the average waiting time (W) and the average number of partici-

pants (L) as the performance metrics for the join operation. However, comparing the performance

of these protocols by only using these metrics is not that straightforward, since each protocol has

different mathematical operations and functions in the resulting formulations of these metrics.

Therefore, we also consider the most time-consuming operation for DGKAPs, the number of ex-

ecuted modular exponentiation operations in each function as a baseline for the comparison as

defined in Reference [19].

For KAP-PBC protocol, each function consists of only one modular exponentiation operation for

tpkc , tpkv , tskc , tskv , tдkc . Similarly, each of the following GKAP-MANET functions also consists

of one modular exponentiation operation for tchs , tpkv , tskv , tckc . When compared to the modular

exponentiation in the resulting formulations of GKAP-MANET in Equation (59) and KAP-PBC in

Equation (38), we expect that GKAP-MANET provides better performance than KAP-PBC. How-

ever, for the resulting formulation of IBAAGKAP protocol in Equation (80), there exist more modu-

lar exponentiation operations than KAP-PBC has in Equation (38). Therefore, we expect that KAP-

PBC has better performance than IBAAGKAP. Finally, for the resulting formulation of TGDH in

Equation (87), we can only obtain upper and lower bounds. Thus, it operates better in the best-case

performance than KAP-PBC, and it operates worse than KAP-PBC in the worst-case performance.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:24 G. Cantali et al.

Table 10. Simulated Execution Time for the Core Functions of KAP-PBC and GKAP-MANET Protocols

Function
Symbol Execution Time (msec.)

KAP-PBC GKAP-MANET KAP-PBC GKAP-MANET

Temporary Public tpkc tpkc 611 536

Key Computation

Temporary Public tpkv tpkv 15 6

Key Verification

Temporary Public Key tpkb tpkd 21 1

Broadcast/Distribution

Session/Secret tskc tskc 23 12

Key Computation

Session/Secret tskv tskv 32 20

Key Verification

Session/Secret tskb tskd 2 2

Key Broadcast

Group/Cluster tдkc tckc 1 10

Key Computation

Fig. 7. The average waiting time of single join operation with respect to participant arrival rate for KAP-PBC
and GKAP-MANET.

As a consequence, we observe that GKAP-MANET has the best performance and IBAAGKAP has

the worst performance among other protocols.

To provide more precise comparison for the performance of DGKAPs, we also compare KAP-

PBC [19] and GKAP-MANET [18]. Therefore, we use the simulation results for the execution time

of each function as given in Table 10 by using simulation results on a computer with 1.8GHz Intel

Core i5 processor and 4GB RAM. Figure 7 shows the average waiting time of single join operation

for 15mins fixed residence time according to the given participant arrival rates. As shown in the

figure, GKAP-MANET provides better performance than KAP-PBC as expected.

5 USING OUR PERFORMANCE MODEL ON SECURE FILE SHARING SYSTEMS

In this section, we extend our performance model to be used for secure file sharing systems (SFSS).

First, we list our assumptions for the extension process. Then, we provide a demonstrative use case

by choosing a SFSS and design a scenario where our performance model can be used to analyze

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:25

the performance of the chosen system. We reduce the number of possible scenarios by using the

following assumptions:

• Assumption 1 (Encryption/Decryption Time Complexity). The time required to encrypt or

decrypt a file depends only on the size of the file.

• Assumption 2 (Network Environment of Participants). Participants in a group share the

same characteristics in terms of networking capability. Participants have more or less the same

Internet connection bandwidth.

• Assumption 3 (Constant Internet Connection Bandwidth). The change in Internet connec-

tion bandwidth of participants is relatively small compared to the computational time com-

plexity of the group key update operation.

5.1 Demonstrative Example of Our Performance Model on an Example Secure File

Sharing System

We employ Private Files Sharing System (PFSS) in Reference [19] as a demonstrative example.

PFSS utilizes Key Agreement Protocol with Partial Backward Confidentiality (KAP-PBC). During

the performance modelling of PFSS, we consider the service time as the combination of the file

transmission time and the file encryption time.

In PFSS, files are stored in an encrypted manner. AES-256 in CBC mode is used to provide

confidentiality. Assumption 1 holds, because AES has linear time complexity with respect to the

size of encrypted files. In addition, with Assumption 2, the time required for a file transmission

can be expressed for each participant as follows:

tF =
|F |
B , (94)

where |F | is the size of the transmitted file andB is the network connection bandwidth. File trans-

mission time, tF , depends on the Internet connection bandwidth and the size of the transmitted

file. Due to Assumption 3, B is considered as a constant value and tF is linearly proportional to

the size of the file. The transmission time has the same underlying probability distribution as the

file size. Therefore, service time can be modelled by a file size distribution.

PFSS uses join-PBC function of KAP-PBC protocol to add new participants into the group. While

executing the function, one of the new participants is selected to compute the group key just

before joining the group. Therefore, this participant is able to re-encrypt shared group file(s) as

shown in Figure 8. First, the selected participant joins the group by computing the group key just

before joining the group. Then, all participants compute the new group key. After that, the selected

participant re-encrypts the shared files by following steps shown in the Figure 8. The process is

displayed in four steps: (i) downloads the shared group file(s), (ii) decrypts the file by using the

existing group key, (iii) encrypts the file by using the new group key, (iv) uploads the re-encrypted

file into the file system of PFSS.

To make more realistic numerical evaluations, we also consider studies in the literature regard-

ing the distribution of file size such as in References [15, 21, 31, 32]. In general, the distribution

of the size of a file can be expressed by using Pareto and Lognormal distributions. Therefore, we

model the service time based on these distributions. Since Pareto and Lognormal distributions are

non-Markovian, we assume that the service time is generally distributed. For simplicity, we also

assume that the inter-arrival time is exponentially distributed. Therefore, we can use an M/G/1
queue for the file sharing operations as a general case. Instead, to deliver a more concrete example,

we come up with a scenario and obtain numerical performance results based on this scenario.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:26 G. Cantali et al.

Fig. 8. An illustration of file re-encryption process in PFSS.

5.2 A Demonstrative Use-case Scenario for Healthcare System

We present an example use-case scenario for the use of Private File Sharing System [19] as a

Healthcare System that securely stores medical records of patients. In this scenario, we assume that

medical records of each patient are stored as an encrypted file in PFSS and each file is associated

with a group of medical personnel. We also assume that an average size of files is approximately

300MB as reported in Reference [35]. Therefore, the chosen joining participant in our scenario

re-encrypts a 300MB file after new participants join the group.

Performance metrics of PFSS in this scenario depend significantly on the Internet connection

bandwidth. Consequently, we categorize the network connection bandwidth capacity into three

different ranges for the analysis:

(1) Less than 10Mbps: In this case, the file download and the file upload operations are the

bottleneck due to negligible group key update time. Since both the file size and the band-

width are assumed as constant values, we use anM/D/1 queue to model upload and down-

load operations. The expected service time is calculated as the time required to upload and

download a medical file size, given by

E[S] =
2 × 300 × 106

B =
6 × 108

B (sec) =
6 × 1011

B (msec), (95)

whereB is the Internet connection bandwidth in terms of bits per second (bps). As a result,

the service rate is expressed as:

μ =
1

E[S]
=

B
6 × 1011

. (96)

Note that performance metrics of an M/G/1 queue is derived in Pollaczek-Khinchine

formula:

L =
ρ2 + λ2σ 2

s

2(1 − ρ)
+ ρ, (97)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:27

W =
ρ + λμσ 2

s

2(μ − λ)
+

1

μ
, (98)

where ρ equals to λ/μ, λ is the participant arrival rate, μ is the service rate, and σ 2
s is

the variance of service time. By using the Pollaczek-Khinchine Formula with σ 2
s = 0, we

derive the mean number of waiting participants of M/D/1 queue as

L =
λ2

2μ (μ − λ)
+
λ

μ
(99)

and the mean waiting time as

W =
λ

2μ (μ − λ)
+

1

μ
. (100)

(2) Between 10Mbps and 1Gbps: File operations and key update mechanism require approx-

imately the same time. File operations are modelled by an M/D/1 queue, whereas the key

update process, join-PBC operation, is modelled by an M/M/1 queue. The summation of

one deterministic and one exponential service time is closer to exponential distribution.

Therefore, we use a single server queue with exponential inter-arrival and service time to

obtain a lower bound for performance metrics. The service time of the join-PBC operation

is derived in Equation (46). We add the expected time required for the file download/upload

and the file encryption/decryption operations into the expression in Equation (46) to

obtain

E[S] = 2

⌊
λ

μ

⌋
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1 + τ2

+ tupl+dow + tenc+dec , (101)

where tupl+dow represents the total amount of time required to upload and download a

file and tenc+dec represents the total amount of time required to encrypt and decrypt a

file. For the average file size used in healthcare scenario, tupl+dow is

tupl+dow =
6 × 1011

B (msec), (102)

where B is the network connection bandwidth. Then, the mean service time is expressed

by

E[S] = 2

⌊
λ

μ

⌋
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1 + τ2

+
6 × 1011

B + tenc+dec . (103)

Then, by combining the inequality in (26) and Equation (103), we derive an upper bound

for the average waiting time of joining participants as given below:

Wq ≤
2� λ

μ
� (tskb + tpkb) + τ1 + τ2 +

6× 1011

B + tenc+dec

1 − λ(tpkv + tpkb + tskb + tskv)
, (104)

where μ is the group residence rate, λ is the participant arrival rate of joining participants,

and B is the Internet connection bandwidth. Also, we use τ1 and τ2 from Equation (42)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:28 G. Cantali et al.

and (47), respectively. Then, by using Lq =Wqλ, we derive an upper bound for the average

number of joining participants waiting in the queue:

Lq ≤
2λ� λ

μ
� (tskb + tpkb) + λ

(
τ1 + τ2 +

6×1011

B + tenc+dec

)
1 − λ(tpkv + tpkb + tskb + tskv)

. (105)

(3) More than 1Gbps: File operation time is negligible compared to the time required to up-

date the group key. We focus on the key update process and use a single server queue

that is used to model join-PBC operation. The service time is considered as the time re-

quired for the join-PBC operation plus file encryption/decryption time. The service time

is expressed as:

E[S] = 2
λ

μ
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1 + τ2 + tenc+dec . (106)

By making the same derivations in the previous case, we derive an upper bound for the

performance metrics:

Wq ≤
2λ(tskb + tpkb) + μ (τ1 + τ2 + tenc+dec)

μ − λμ (tpkv + tpkb + tskb + tskv)
, (107)

Lq ≤
2λ2 (tskb + tpkb) + λμ (τ1 + τ2 + tenc+dec)

μ − λμ (tpkv + tpkb + tskb + tskv)
. (108)

5.3 Numerical Results for the PFSS Use-case Scenario

In this subsection, we obtain numerical performance results for PFSS based on the healthcare

scenario. We consider the average file size as 300MB. We also use the simulated execution time of

KAP-PBC functions [19], which is as given in Table 10 in Section 4.5.

According to Ermis et al., the encryption/decryption time increases linearly with the size of the

file in PFSS [19]. Moreover, it takes 3,772ms to encrypt/decrypt a 100MB file and 8,756ms to en-

crypt/decrypt a 500MB file on the platform specified in Table 10. Since the encryption/decryption

time has linear relation to the size of a file, we can say that the encryption/decryption pro-

cess would consume approximately (3,772 + 8,756)/2 = 6,264ms. Therefore, we conclude that

tenc+dec = 2 ∗ 6,264 = 12,528ms. By using this approximation and execution times reported in

Table 10, we derive the numerical results for performance metrics under three different bandwidth

conditions:

(1) The Internet connection bandwidth is less than 10Mbps: In this case, the performance

metrics are as follows:

W =
λ

2μ (μ − λ)
+

1

μ
, (109)

L =
λ2

2μ (μ − λ)
+
λ

μ
, (110)

where λ is the participant arrival rate, μ = B
6× 1011 , and B is the Internet connection band-

width.

(2) The Internet connection bandwidth is between 10Mbps and 1Gbps: In this case, the

upper bounds for performance metrics are as follows:

Wq ≤
2λ(2 + 21) + μ (691 + 761 + 6× 1011

B + 12528)

μ − λμ (15 + 21 + 2 + 32)
, (111)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:29

Fig. 9. Average waiting time in KAP-PBC against participant arrival rate for different mean residence time.

Wq ≤
46λ + μ (13980 + 6× 1011

B)

μ − 70λμ
, (112)

Lq ≤
2λ2 (2 + 21) + λμ (691 + 761 + 6× 1011

B + 12528)

μ − λμ (15 + 21 + 2 + 32)
, (113)

Lq ≤
46λ2 + λμ (13980 + 6× 1011

B)

μ − 70λμ
. (114)

(3) The Internet connection bandwidth is more than 1Gbps: In this case, upper bounds

for performance metrics are as follows:

Wq ≤
2λ(2 + 21) + μ (691 + 761 + 12528)

μ − λμ (15 + 21 + 2 + 32)
, (115)

Wq ≤
46λ + 13980μ

μ − 70λμ
, (116)

(117)

Lq ≤
2λ2 (2 + 21) + λμ (691 + 761 + 12528)

μ − λμ (15 + 21 + 2 + 32)
, (118)

Lq ≤
46λ2 + 13980λμ

μ − 70λμ
. (119)

The average waiting time of the join operation with respect to the participant arrival rate is

shown in Figure 9 and Figure 10 for KAP-PBC and PFSS, respectively. We have analyzed the aver-

age waiting times for three different mean residence time values: 1min, 10mins, and 50mins. In our

scenario, PFSS is used as a file sharing system, where medical personnel share records of patients

among each other. We assume that each participant has a 1Gbps Internet connection bandwidth

and the average waiting time for a participant before joining the group is between 20 and 60s. If we

consider the waiting time threshold as 20s, then the limiting participant rates for each curve are

33 participants, 149 participants, and 664 participants at every 100s, respectively. If we consider

the waiting time threshold of 60s, the limiting participant rates for each curve are 235 participants,

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:30 G. Cantali et al.

Fig. 10. Average waiting time of PFSS with respect to participant arrival rate for different mean residence
time.

Fig. 11. Average waiting time of PFSS with respect to participant arrival rate for different Internet connection
bandwidth.

866 participants, and 2,202 participants at every 100s, respectively. Therefore, we conclude that

PFSS can be used in applications where the participant arrival rate is high and the mean residence

time is less than a few minutes. In such applications, the average waiting time for joining a

participant does not exceed 20ms as long as the participant arrival rate is less than 10 people

per second, which is very high for a file sharing application. However, the average waiting time

becomes significantly long if PFSS is used in an application with frequent arrival rate and long

mean residence time.

We also present a graphical representation regarding the effect of participant bandwidth on the

average waiting time in PFSS, as shown in Figure 11. We fix the mean residence time to 15mins

and plot the average waiting time of the join operation with respect to the participant arrival rate

for three different Internet connection bandwidth values: 5Mbps, 50Mbps, and 1Gbps. As shown

in Figure 11, the average waiting time is significantly longer when the bandwidth is 5Mbps. In this

case, file upload and download operations become the bottleneck. Even at a participant arrival rate

of 100 participants at every 10,000s, the system becomes unavailable. Therefore, we deduce that

PFSS should not be used in a file sharing application where the average file size is high but the

Internet connection bandwidth of participants is low. When the bandwidth is 50Mbps or 1Gbps,

results are similar. The difference between the average waiting time of the two cases is more visible

when the participant arrival rate is low. When the participant arrival rate is higher, the number of

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:31

participants in the group increases and the file transmission time becomes negligible compared to

the group key update time. Eventually, the average waiting time of the two cases converges when

the participant arrival rate is approximately 10 participants per second.

6 CONCLUSION AND FUTURE WORK

In this article, we have proposed a general analytical performance model for the scalability of

dynamic key agreement protocols. First, we have modelled the join and the mass join operations

using networks of queues. Then, we have presented illustrations for the use of our model on differ-

ent DGKAPS in References [18, 19, 26, 48]. In addition, we have derived the average waiting time

for joining the group in terms of the participant arrival rate and the computational time complex-

ity of cryptographic operations. Our performance models can help group key agreement protocol

designers to estimate the average waiting time of joining participants with respect to the group

residence time of participants. Moreover, we have proposed a model for the average waiting time

of leaving participants.

To show the applicability of our model on a real-life scenario, we have extended the model

for secure file sharing systems that use dynamic group key agreement protocols for the security

of group communication. For a demonstrative example, PFSS in Reference [19] is employed as a

health-care system scenario to securely share records of patients among medical personnel, since

we have deduced that KAP-PBC could be used in applications with short residence time or low

participant arrival rates such as one new participant at every 1,000s. We perform a numerical anal-

ysis on the scenario and conclude that PFSS should be used in applications where the participant

arrival rate is high and the mean residence time is less than a few minutes. In addition, we obtain

the average waiting time for joining participants with respect to the participant arrival rate for

different bandwidth capacity values. We observe that using PFSS in applications where the aver-

age file is as large such as 500MB and the participants have low bandwidth capacity such as 5Mbps

may violate the system availability. These results can be used for estimating the performance of a

file sharing system. In addition, by adjusting the average file size and bandwidth parameters, our

performance models can be applied to various applications. File sharing system admins can utilize

these models to estimate the time required for the re-encryption process of a shared file.

We are planning to extend our analytical performance model as a framework to analyze the

performance and scalability of dynamic group key agreement protocols to be used as a comparison

tool for these protocols. Moreover, analysis of the applicability of the proposed models for different

file sharing systems by employing well-known file size distributions and deriving performance

metrics based on these distributions is another future research direction based on this study.

APPENDIX

A EQUATION DERIVATIONS

In this appendix, we present derivation details for equations in the article.

A.1 Derivations for Equation (7)–(8)

The performance metrics,W and L, of an M/M/1 queue are derived in Reference [37] as follows:

W =
1

μ − λ , (120)

L =
λ

μ − λ , (121)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:32 G. Cantali et al.

where μ represents the service rate of the queue server and λ is the arrival rate. We can replace μ
with 1/E[S]. Thus,

W =
1

1
E[S] − λ

, (122)

L =
λ

1
E[S] − λ

. (123)

We replace E[S] with the approximated value of E[Sjoin] in Equation (6) to obtain

W =
1

1
E[Sjoin]

− λ
, (124)

L =
λ

1
E[Sjoin]

− λ
. (125)

A.2 Derivations for Equation (10)

The steady-state probability that there are k participants in an M/G/∞ queue is given by the

following expression [34]:

Pk =
λ

kμ
Pk−1, (126)

which reduces to

Pk =

(
λ

μ

)k
1

k!
P0. (127)

Since
∑∞

k=0 Pk = 1, we also derive P0 in terms of λ and μ by using Taylor’s Expansion:

P0

(
1 +

λ

μ
+

(
λ
μ

)2

2!
+

(
λ
μ

)3

3!
+ · · ·

��� = 1, (128)

P0e
λ
μ = 1, (129)

P0 = e−
λ
μ . (130)

By substituting P0 in Equation (130) into Equation (127), we derive the closed-form expression for

Pk as

Pk =

(
λ
μ

)k
e−

λ
μ

k!
. (131)

Balance equations for the Mass Join Model are given as follows:

Pkλ = Pk+1 (λ + μk+1), (132)

which equals to

Pk = �� λk∏k
i=1 (λ + μi)

� P0. (133)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:33

By substituting the above equation into
∑∞

k=0 Pk = 1, we obtain

P0 + P0

∞∑
k=1

�� λk

∏k
i=1 (λ + μi)

� = 1, (134)

P0 =

⎡⎢⎢⎢⎢⎣1 +
∞∑

k=1

�� λk

∏k
i=1 (λ + μi)

�
⎤⎥⎥⎥⎥⎦
−1

, (135)

as the closed-form expression of P0.

A.3 Derivations for Equation (43)

The upper bound for the average waiting time of a mass join operation is derived as follows:

Wq ≤
λ

μ
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1, (136)

Wq ≤
λ

μ
(tskb + tpkb) + λWq (tpkv + tpkb + tskb + tskv) + τ1, (137)

Wq (1 − λ(tpkv + tpkb + tskb + tskv)) ≤ λ

μ
(tskb + tpkb) + τ1, (138)

Wq ≤
λ(tskb + tpkb) + μτ1

μ − λμ (tpkv + tpkb + tskb + tskv)
. (139)

A.4 Derivations for Equations (66)–(67)

We substitute the expression in Equation (65) into Equation (26) to derive an upper bound for the

average waiting time in the queue for joining participants as follows:

Wq ≤ E[Smj], (140)

Wq ≤ tpkc + tskc +

(⌊
λ

μ

⌋
+ Lq − 1.5

)
tpkd +

(⌊
λ

μ

⌋
+ Lq − 1.5

)
tskd + Lqtpkv + Lqtskv + tckc ,

(141)

Wq ≤ tpkc + tskc +

(⌊
λ

μ

⌋
+ λWq − 1.5

)
tpkd +

(⌊
λ

μ

⌋
+ λWq − 1.5

)
tskd+λWqtpkv + λWqtskv+tckc ,

(142)

Wq ≤ tpkc + tskc + tckc − 1.5tpkd − 1.5tskd +

⌊
λ

μ

⌋
(tpkd + tskd) + λWq (tpkd + tskd + tpkv + tskv),

(143)

Wq −Wqλ(tpkd + tskd + tpkv + tskv) ≤ tpkc + tskc + tckc − 1.5tpkd − 1.5tskd +

⌊
λ

μ

⌋
(tpkd + tskd),

(144)

Wq ≤
� λ

μ
� (tpkd + tskd) + tpkc + tskc + tckc − 1.5tpkd − 1.5tskd

1 − λ(tpkd + tskd + tpkv + tskv)
. (145)

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:34 G. Cantali et al.

Then, by using Equation (145) and Lq = λWq , we compute an upper bound for Lq as follows:

λWq ≤ λ
� λ

μ
� (tpkd + tskd) + tpkc + tskc + tckc − 1.5tpkd − 1.5tskd

1 − λ(tpkd + tskd + tpkv + tskv)
, (146)

Lq ≤
λ� λ

μ
� (tpkd + tskd) + λtpkc + λtskc + λtckc − 1.5λtpkd − 1.5λtskd

1 − λ(tpkd + tskd + tpkv + tskv)
. (147)

A.5 Derivations for Equations (48)–(49)

We substitute the expression in Equation (46) into Equation (26) to derive an upper bound for the

average waiting time of joining participants in join-PBC operation:

Wq ≤ 2

⌊
λ

μ

⌋
(tskb + tpkb) + Lq (tpkv + tpkb + tskb + tskv) + τ1 + τ2, (148)

Wq ≤ 2

⌊
λ

μ

⌋
(tskb + tpkb) + λWq (tpkv + tpkb + tskb + tskv) + τ1 + τ2, (149)

Wq (1 − λ(tpkv + tpkb + tskb + tskv)) ≤ 2

⌊
λ

μ

⌋
(tskb + tpkb) + τ1 + τ2, (150)

Wq ≤
2� λ

μ
� (tskb + tpkb) + τ1 + τ2

1 − λ(tpkv + tpkb + tskb + tskv)
. (151)

We also derive an upper bound for the average number of participants waiting to join by using

Little’s Law in Equation (151):

Wq ≤
2� λ

μ
� (tskb + tpkb) + τ1 + τ2

1 − λ(tpkv + tpkb + tskb + tskv)
, (152)

λWq ≤ λ
2� λ

μ
� (tskb + tpkb) + τ1 + τ2

1 − λ(tpkv + tpkb + tskb + tskv)
, (153)

Lq ≤
2λ� λ

μ
� (tskb + tpkb) + λτ1 + λτ2

1 − λ(tpkv + tpkb + tskb + tskv)
. (154)

REFERENCES

[1] 1998. In Proceedings of the Conference on Advances in Cryptology (EUROCRYPT’98). Vol. 1403. Helsinki, Finland, 127–

144.

[2] Ahmed Abdel-Harfez, Ali Miri, and Luiz Orozco-Barbosa. 2007. Authenticated group key agreement protocols for ad

hoc wireless networks. Int. J. Netw. Secur. 4 (2007), 90–98.

[3] Yair Amir, Yongdae Kim, Cristina Nita-Rotaru, and Gene Tsudik. 2004. On the performance of group key agreement

protocols. ACM Trans. Inf. Syst. Secur. 7, 3 (Aug. 2004), 457–488.

[4] Daniel Augot, Raghav Bhaskar, Valerie Issarny, and Daniele Sacchetti. 2007. A three round authenticated group key

agreement protocol for ad hoc networks. Pervas. Mobile Comput. 3 (2007), 36–52.

[5] M. Backes, C. Cachin, and A. Oprea. 2005. Lazy revocation in cryptographic file systems. In Proceedings of the 3rd

IEEE International Security in Storage Workshop (SISW’05).

[6] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical identity based encryption with constant size ciphertext.

In Proceedings of the Conference on Advances in Cryptology (EUROCRYPT’05), Ronald Cramer (Ed.). 440–456.

[7] Mike Burmester and Yvo Desmedt. 1994. A secure and efficient conference key distribution system (extended abstract).

In Proceedings of the Conference on Advances in Cryptology (EUROCRYPT’94). Springer, 275–286.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

Analytical Models for the Scalability of DGKAPs and SFSSs 20:35

[8] Chin-Chen Chang, Hao-Chuan Tsai, Pen-Yi Chang Lijun Chu, Xuefeng Zheng, and Shaojie Wang. 2007. A collabora-

tive conference key agreement scheme by using an intermediary node. In Proceedings of the International Conference

on Convergence Information Technology. IEEE, 54–59.

[9] M. L. Chaudhry and J. G. C. Templeton. 1983. A First Course in Bulk Queues. Wiley, New York.

[10] Jiin-Chiou Cheng and Chi-Sung Laih. 2009. Conference key agreement protocol with non-interactive fault-tolerance

over broadcast network. Int. J. Inform. Sec. 8 (2009), 1.

[11] Zi-Yao Cheng, Yun Liu, Chin-Chen Chang, and Cheng Guo. 2013. A fault-tolerant group key agreement protocol

exploiting dynamic setting. Int. J. Commun. Syst. 26 (2013), 259–275.

[12] Cheong Hyeon Choi. 2013. Adaptation of Weil pairing IBE for secure file sharing. In Proceedings of the 5th International

Conference on Advances in Databases, Knowledge, and Data Applications (GlobeNet’13). 59–65.

[13] Yu-Fang Chung. 2013. The design of authentication key protocol in certificate-free public key cryptosystem. Security

and Communication Networks 7, 11 (2013), 2125–2133. DOI:10.1002/sec.924 (2013).

[14] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. 1992. Authentication and authenticated key exchanges.

Des. Codes Cryptogr. 2 (1992), 107–125.

[15] Allen B. Downey. 2001. The structural cause of file size distributions. SIGMETRICS Perform. Eval. Rev. 29, 1 (June

2001), 328–329.

[16] Orhan Ermiş, Şerif Bahtiyar, Emin Anarım, and M. Ufuk Çağlayan. 2013. An improved fault-tolerant conference-key

agreement protocol with forward secrecy. In Proceedings of the 6th International Conference on Security of Information

and Networks (SIN’13). 306–310.

[17] Orhan Ermiş, Şerif Bahtiyar, Emin Anarim, and M. Ufuk Çağlayan. 2017. A comparative study on the scalability of

dynamic group key agreement protocols. In Proceedings of the 12th International Conference on Availability, Reliability

and Security (ARES’17). 62:1–62:6.

[18] Orhan Ermiş, Şerif Bahtiyar, Emin Anarım, and M. Ufuk Çağlayan. 2017. A secure and efficient group key agreement

approach for mobile ad hoc networks. Ad Hoc Netw. 67, C (Dec. 2017), 24–39.

[19] Orhan Ermis, Serif Bahtiyar, Emin Anarim, and M. Ufuk Caglayan. 2017. A key agreement protocol with partial

backward confidentiality. Comput. Netw. 129, Part 1 (2017), 159–177.

[20] Rakesh Chandra Gangwar and Anil K. Sarje. 2006. Secure and efficient dynamic group key agreement protocol for

an ad hoc network. In Proceedings of the International Symposium on Ad Hoc and Ubiquitous Computing (ISAUHC’06).

IEEE, 56–61.

[21] G. Gonçalves, I. Drago, A. P. C. d. Silva, A. B. Vieira, and J. M. Almeida. 2014. Modeling the dropbox client behavior.

In Proceedings of the IEEE International Conference on Communications (ICC’14). 1332–1337.

[22] K. H. Huang, E. C. Chang, and C. L. Chang. 2013. Secure file sharing scheme for mobile devices. In Proceedings of the

4th International Conference on Networking and Distributed Computing. 82–84.

[23] Kuo-Hsuan Huang, Yu-Fang Chung, Hsiu-Hui Lee, Feipei Lai, and Tzer-Shyong Chen. 2009. A conference key agree-

ment protocol with fault-tolerant capability. Comput. Stand. Interf. 31 (2009), 401–405.

[24] Luan Ibraimi, Milan Petkovic, Svetla Nikova, Pieter Hartel, and Willem Jonker. 2009. Information security applica-

tions. In Information Security Applications, Heung Youl Youm and Moti Yung (Eds.). Springer-Verlag, Berlin, 309–323.

[25] Ingemar Ingemarsson, Donald T. Tang, and C. K. Wong. 1982. A conference key distribution system. IEEE Trans.

Inform. Theor. 28 (1982), 714–719.

[26] Yongdae Kim, Adrian Perrig, and Gene Tsudik. 2004. Tree-based group key agreement. ACM Trans. Inf. Syst. Secur. 7,

1 (Feb. 2004), 60–96.

[27] Mingchu Li, Xiaodong Xu, Cheng Guo, and Xing Tan. [2016]. AD-ASGKA—Authenticated dynamic protocols for

asymmetric group key agreement. Secur. Commun. Netw. 9, 11 (2016), 1340–1352.

[28] Qin Liu, Guojun Wang, and Jie Wu. 2014. Time-based proxy re-encryption scheme for secure data sharing in a cloud

environment. Inf. Sci. 258 (Feb. 2014), 355–370.

[29] Xuefeng Liu, Yuqing Zhang, Boyang Wang, and Jingbo Yan. 2013. Mona: Secure multi-owner data sharing for dynamic

groups in the cloud. IEEE Trans. Parallel Distrib. Syst. 24, 6 (June 2013), 1182–1191.

[30] M. Malarvizhi, J. A. J. Sujana, and T. Revathi. 2014. Secure file sharing using cryptographic techniques in cloud. In Pro-

ceedings of the International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE’14).

IEEE, 1–6.

[31] Toshiko Matsumoto, Takashi Onoyama, and Norihisa Komoda. 2014. Efficient Operational Management of Enterprise

File Server with File Size Distribution Model. Springer Netherlands, Dordrecht, 599–609.

[32] Michael Mitzenmacher. 2003. Dynamic models for file sizes and double Pareto distributions. Internet Math. 1, 3 (2003),

305–333.

[33] T. S. R. Murthy, Sivarama Krishna, and G. V. S Raju. 2012. Interdependent queueing model with varying bulk service.

Int. J. Math. Soft Comput. 2, 1 (2012).

[34] G. F. Newell. 1966. The M/G/∞ queue. SIAM J. Appl. Math. 14, 1 (1966), 86–88.

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

20:36 G. Cantali et al.

[35] Anthony J. Saibert. 2018. Archiving: Fundamentals of Storage Technology. Retrieved from: http://siim.org/page/

archiving_chapter2.

[36] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. 2004. An analysis of live streaming workloads on the

Internet. In Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement (IMC’04). 41–54.

[37] V. Sundarapandian. 2009. Queueing Theory. PHI Learning, India. 686–749 pages.

[38] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia Perlman. 2012. Secure overlay cloud storage with access control

and assured deletion. IEEE Trans. Depend. Secur. Comput. 9, 6 (Nov. 2012), 903–916.

[39] J. Teng and C. Wu. 2016. An identity-based group key agreement protocol for low-power mobile devices. Chinese J.

Electron. 25, 4 (2016), 726–733.

[40] Yuh-Min Tseng. 2005. An improved conference-key agreement protocol with forward secrecy. Informatica, Lith. Acad.

Sci. 16 (2005), 275–284.

[41] Yuh-Min Tseng. 2007. A communication-efficient and fault-tolerant conference-key agreement protocol with forward

secrecy. J. Syst. Softw. 80 (2007), 1091–1101.

[42] Wen-Guey Tzeng. 2000. A practical and secure fault-tolerant conference-key agreement protocol. In Proceedings of

the International Workshop on Public Key Cryptography. Springer, 1–13.

[43] Wen-Guey Tzeng. 2002. A secure fault-tolerant conference-key agreement protocol. IEEE Trans. Comput. 51 (2002),

373–379.

[44] F. Wang, J. Liu, and Y. Xiong. 2008. Stable peers: Existence, importance, and application in peer-to-peer live video

streaming. In Proceedings of th 27th Conference on Computer Communications (IEEE INFOCOM’08). 1364–1372.

[45] Guojun Wang, Qin Liu, Jie Wu, and Minyi Guo. 2011. Hierarchical attribute-based encryption and scalable user

revocation for sharing data in cloud servers. Comput. Secur. 30, 5 (July 2011), 320–331.

[46] Brent Waters. 2011. In Proceedings of the 14th International Conference on Practice and Theory in Public Key Cryptog-

raphy(PKC’11). Springer Berlin, 53–70.

[47] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. 2010. Attribute based data sharing with attribute revocation.

In Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS’10). 261–

270.

[48] L. Zhang, Q. Wu, J. Domingo-Ferrer, B. Qin, and Z. Dong. 2015. Round-efficient and sender-unrestricted dynamic

group key agreement protocol for secure group communications. IEEE Trans. Inform. Forens. Secur. 10, 11 (2015),

2352–2364.

[49] Jianjie Zhao, Dawu Gu, and Yali Li. 2010. An efficient fault-tolerant group key agreement protocol. Comput. Commun.

33 (2010), 890–895.

[50] Zhongma Zhu and Rui Jiang. 2016. A secure anti-collusion data sharing scheme for dynamic groups in the cloud.

IEEE Trans. Parallel Distrib. Syst. 27, 1 (Jan. 2016), 40–50.

Received August 2018; revised April 2019; accepted June 2019

ACM Transactions on Privacy and Security, Vol. 22, No. 4, Article 20. Publication date: September 2019.

http://siim.org/page/archiving_chapter2
http://siim.org/page/archiving_chapter2

