A Timer-Based Connection Management
Protocol with Synchronized Clocks and its
Verification

Ernst W. Biersack and David C. Feldmeier*

July 7, 1992

Abstract

Connection management ensures that each message of a connection is ac-
cepted at-most-once and that a connection is not closed before all messages
and acknowledgements are received. We introduce a connection management
protocol that is based on timers, the use of approximately synchronized clocks
and unique connection identifiers. Synchronized clocks support accurate end-
to-end lifetime enforcement and, in combination with unique connection iden-
tifiers, simplify duplicate detection after recovery from a failure. Our protocol
has the following desirable characteristics: (1) no extra messages for connec-
tion setup or release, (2) no connection setup latency, (3) fast connection state
release, and (4) immediate resumption of communication after an endsystem
failure.

1 Introduction

A connection is an association between two users that exchange messages. A connec-
tion management protocol manages the state information that is needed to ensure
that any message received is accepted no more than once. The connection manage-
ment protocol keeps the state information until all messages are received (graceful
close)!. Connection management is a necessary building block in any protocol that
provides reliable transfer of data. It also can be used to implement a remote proce-
dure call protocol (RPC) with at-most-once semantics.

*E. W. Biersack: Institut EURECOM, 2229 route des Cretes, Sophia Antipolis, 06560 Valbonne,
FRANCE, e-mail:erbi@eurecom.fr D. C. Feldmeier: Bellcore, Morristown, NJ 07962-1910, USA,
e-mail: dcf@bellcore.com

'We consider the allocation of resources such as bandwidth or buffer space to be separate from
connection management.

1 INTRODUCTION 2

A connection management protocol keeps information about the state of a con-
nection in a connection record [WATS 81b]. For each connection there exists a
connection record at the sender and receiver that contains, among other things, in-
formation about the identifiers used, the lifetime of the identifiers, and the messages
received. The connection management system allocates a connection record at setup
time, updates its contents during the lifetime of a connection, and releases the con-
nection record when a connection terminates. The various connection management
protocols differ in the way they setup and release a connection record.

The mechanisms available for implementing a connection management protocol
are: (1) handshake [DOD 83], (2) timers [FLET 78, WATS 81la, WATS 83|, and (3)
(bounded) unique identifiers [CHER 88]. In a handshake-based connection setup,
the sender and receiver must exchange setup messages before the actual data are
transmitted to ensure that the setup message is not a duplicate. In a timer-based
protocol, the receiver keeps information on the messages “recently” received and
uses time to determine whether any message is a duplicate. Unique identifiers are
used to distinguish connections. A unique connection identifier (CID) is assigned
to every connection and all messages of a particular connection carry the same
CID. The assignment of CIDs can be done by each endsystem independently: The
CID is partitioned in a part uniquely identifies the endsystem and another part
that uniquely identifies each connection within that endsystem. Neither handshake
nor unique identifiers alone are sufficient for implementing a connection manage-
ment system [WATS 89]. Both mechanisms must be complemented with timers.
Handshake-based schemes need timers for gracetul close and a scheme based on
unique identifiers needs timers to determine when to reuse identifiers. Timers alone
however, are sufficient to implement connection management.

Handshake-based and timer-based protocols trade off the exchange of additional
messages and setup latency (handshake-based) for slightly later connection record
release (timer-based). RPC and transactions usually transmit only a small amount
of data that may even fit into a single message, in which case the overhead of a
handshake-based scheme is high. An explicit connection setup using a handshake
protocol introduces a latency of at least one round-trip time. In high bandwidth-
delay product networks, the time to complete the handshake can be larger than
the time to transmit the data. This disadvantage will become more pronounced as
the transmission speeds will further increase while the round-trip times, which are
largely determined by the signal propagation delay, will remain the same [KLEI 92].
With transmission speeds increasing and the round-trip times staying constant,
many file transfers soon may have less than a round-trip time worth of data to
send?. Timer-based connection management schemes do not introduce a setup la-
tency of one round-trip time. However, they release the connection records later
than handshake-based schemes and need, on the average, more memory to keep the

2If the setup latency is 100 msec and the bandwidth 150 Mbits/sec, 15 Mbits of data can be
transmitted during the setup time.

1 INTRODUCTION 3

connection records. With the dramatic increase in integration densities for memo-
ries, the higher memory requirement will not be a problem.

This paper describes a connection management protocol, referred to as Connection
Management with Synchronized Clocks, or CMSC' for short, that uses timers and
unique CIDs. CMSC requires that the clocks in the endsystems are approximately
synchronized. CMSC operates correctly as long as there exists a known e that
bounds the clock skew. Synchronizing clocks is not hard. Mills [MILL 91] describes
a synchronization protocol, called NTP, that synchronizes clocks in a large heteroge-
neous internetwork. NTP guarantees with high probability that the worst case clock
skew is in the order of tens of milliseconds. NTP is robust in the face of failures and
has a moderate communications overhead. A more accurate clock synchronization
can be achieved using the time signal received from the global positioning system

(GPS) [WELL 90].

As compared to connection management using three-way handshake, CMSC al-
lows user data to be transmitted with the first message exchanged. It requires no
separate control messages for connection setup or tear-down. When no connection
exists, as few as two messages are sufficient to reliably exchange data, as compared
to at least six messages for a three-way handshake®. Synchronized clocks and unique
CIDs make it possible for the receiver and sender to resume communication imme-
diately after a crash without waiting for old messages to have their lifetime expire
(see Section 6). The immediate resumption of communication is important when
the time to reboot an endsystem is smaller than the message lifetime.

The principles of timer-based connection management were explored first by
Watson and implemented in the Delta-t transport protocol [FLET 78, WATS 83].
CMSC adopts these principles and extends them: CMSC introduces e-synchronized
clocks for end-to-end lifetime enforcement and uses unique CIDs. The use of syn-
chronized clocks was suggested independently by Cheriton [CHER 89] and by Liskov,
Shrira and Wroclwaski [LISK 91]. Cheriton proposes synchronized clocks for end-
to-end lifetime enforcement at the transport protocol level. He sees as benefits that
(1) the correct operation of the transport protocol is independent of the operation
of intermediate nodes, (2) intermediate nodes are freed from the burden of lifetime
enforcement, and (3) the time-stamping information carried in the messages can be
used to accurately estimate the transit delay. Liskov et al. use synchronized clocks
for an at-most-once message delivery protocol called SCMP. SCMP detects only du-
plicates of the first message sent, which is one sub-problem connection management
must solve. Since SCMP cannot cope with reordering of messages, it can be applied
only to the first message received and not to a sequence of messages. SCMP does
not address the issues of graceful close, state release at the sender, and safe reuse of

identifiers, all of which are dealt with by CMSC.

3When using a three-way handshake, data could be transmitted with the setup message. How-
ever, the receiver cannot deliver the data to the application until it is sure that the setup message
received is not a duplicate. The receiver cannot decide this until the three-way handshake is

completed [WATS 81a).

2 TIMER-BASED CONNECTION MANAGEMENT 4

This paper is organized as follows. Section 2 describes the model and the princi-
ples of timer-based connection management. Section 3 and 4 describe the operation

of CMSC. Section 5 proves the correctness of CMSC. Section 6 extends CMSC to

deal with endsystem failures and Section 7 summarizes the features of CMSC.

2 Timer-Based Connection Management

2.1 Model and Assumptions

We assume that communication takes place between users that reside in differ-
ent endsystems, which are connected through a network. Users communicate by
exchanging messages. Messages can experience corruption, arbitrary transmission
delays, loss, misordering, and duplication. The transport protocol resides in the
endsystem and provides a reliable message transter to the users. It uniquely iden-
tifies each message by its connection identifier and sequence number. The connec-
tion identifier determines which connection the message is part of and the sequence
number denotes the position of a message within the messages exchanged across
a connection. Since the identifier spaces of the connection identifier and sequence
number are finite, the transport protocol must reuse these identifiers. To make this
reuse safe, each message carries an expiration time that limits the lifetime of the
sequence number. There are data and acknowledgment messages. A data message
carries user data. An acknowledgment message carries the sequence number of the
data message up to which all data messages were received correctly.

An endsystem can fail, in which case it will stop operating. We do not consider
Byzantine failures. Endsystems may be equipped with some stable storage to main-
tain state despite failures. The endsystems also have e-synchronized clocks. Let [
denote the set of endsystems. Every endsystem ¢ € [has a monotonic clock C; that
is kept e-synchronized by executing a clock synchronization protocol [MILL 91]. Let
Te, denote the current time that is obtained by reading the local clock C;. A set
{Ci|i € I} of clocks is e-synchronized, iff at any time Vj, k € I :|Te, —T¢,| < e. The
clock skew € is typically no more than a few tens of milliseconds. For CMSC it is
sufficient to have the clocks internally synchronized, i.e., the clocks are synchronized
with respect to each other but not necessarily with respect to any other system.

We assume that the number of available identifiers and the amount of storage
for keeping the state information are finite. Also, the field for the expiration time
is sufficiently large to prevent a wrap-around during the lifetime of the network.

2.2 Bounds on the Lifetime of Identifiers

When the identifier space and storage are finite, connection management must allow
for a safe reuse of identifiers and determine when it is safe to release a connection
record. Usually, it is not feasible to keep all connection records in stable storage.

2 TIMER-BASED CONNECTION MANAGEMENT 5

In this case connection management must cope with partial or complete loss of the
connection records due to failures of the endsystems.

The identifiers we are concerned with are sequence numbers and unique con-
nection identifiers (CIDs). To make the reuse of identifiers safe, the lifetime of the
identifiers is limited. An identifier must not be reused while its lifetime has not
yet expired. If LT is the lifetime of a sequence number and R the rate at which
sequence numbers are used, the size |SN| of the sequence number space must be
|SN| > LT - R to make sequence number reuse safe. A CID must not be released
while there exists a connection record associated with this CID at either end or
there are messages carrying this CID whose lifetime has not yet expired. Lifetime
enforcement discards messages with sequence numbers whose lifetime has expired.
Lifetime enforcement is usually performed by a separate protocol and on a hop-by-
hop basis [SLOA 79, SLOA 83]. CMSC takes advantage of the fact the clocks are
e-synchronized which allows end-to-end lifetime enforcement at the receiver. The
sender puts the expiration time of the sequence number in the header of a message
and the receiver discards a message if its expiration time is less than the current
time of the receiver’s clock.

2.3 Phases

A connection management protocol distinguishes an open, transfer, and close phase.
In timer-based connection management protocols, the open and close phases do
not require the exchange of separate messages. The open and transfer phases are
combined and the sender does not have to wait for the open phase to complete but
can start transmitting data immediately. The close occurs implicitly.

e Open: To set up a connection the sender sets a bit (FIRST = on) in the
header of the first message and the sender and receiver establish a connection
record at both ends. The issues we will address are: Lifetime of identifiers and
detection of duplicate setup messages.

o Transfer: During the transfer phase, the sender transmits data messages and
the receiver sends acknowledgment messages that indicate which messages
have been received. The issues we will address are: How to detect duplicate
messages, how to detect that a connection is dead — because either a path is
down or the receiver has crashed — and when to reuse a sequence number.

o Close: After the sender stops transmitting data, the sender and receiver will
implicitly close the connection by releasing their connection records and releas-
ing the CIDs used. The issues we will address are: How to close a connection
such that all data and acknowledgment messages transmitted can be received
and when to release the CIDs for reuse.

3 INFORMAL DESCRIPTION OF CMSC 6

3 Informal Description of CMSC

We describe the connection management for a simplex connection where the sender
transmits data messages and the receiver transmits acknowledgment messages. Each
simplex connection has a data channel from the sender to the receiver and an ac-
knowledgment channel from the receiver to the sender. Note that all timers are set
to the absolute time values at which they will expire relative to the local clock of
their endsystem.

CMSC uses the following fields in the message header that uniquely identify each
message, determine the lifetime of a message, and indicate if a message is the first
one.

Texpire: Time at which the lifetime of the sequence number in this message will
expire.

C'id: Connection identifier of this message.

Type: Message is either a data or an acknowledgment message.
Sn: Sequence number of this message.

Lt: The lifetime of the identifiers for this connection.

Wrap: Ratio of |SN| over the maximum transmission rate R.

First: A single bit set to on or off. The bit indicates whether this message is the
first message of a connection. If it is set to on it indicates a request for a new
connection.

The field Texpire contains for a data message the expiration time of its sequence
number and for an acknowledgment message it contains the expiration time of the
sequence number in the cumulative acknowledgment. Whenever a data message
is generated, its expiration time is set to Texpire « 7¢, + LT, where 7¢_ is the
current time of the sender’s clock and LT the lifetime of the sequence number. A
message that is retransmitted retains its original expiration time. A message with
an expiration time smaller than the current time has its lifetime expired and is
considered invalid. The sender does not retransmit a message whose lifetime has
expired and the receiver will discard such a message when received.

Each connection in CMSC'is uniquely identified by its CID. The benefits of using
a CID are that a single sender-receiver pair can have several connections simultane-
ously, with each connection distinguished by its connection identifier. Since CIDs
also can be made unique across endsystem failures (see Section 6), it is unnecessary
for the sender to delay its communication after a crash until all messages prior to
the crash have exceeded their lifetime.

3 INFORMAL DESCRIPTION OF CMSC 7

The CMSC protocol uses timers to ensure liveness (a message transmitted of-
ten enough eventually will be accepted) and safety (a message will not be accepted
more than once). As we will see, the initial values of the timers, which are the
values these timers are initialized with, depend on the lifetime LT of the sequence
numbers. CMSC explicitly bounds the lifetime of sequence numbers. The lifetime
LT is connection-specific and should be large enough to allow for multiple retrans-
missions and for the transmission of the acknowledgment as well. Typically, LT will
be much larger than e. By making LT the lifetime of a sequence number, LT will
also bound the time that a sender will spend retransmitting a given message, the
lifetime of the acknowledgment message that acknowledges a given message, and the
maximum interval between two successive transmissions.

In CMSC the receiver performs lifetime enforcement and rejects any message
that has exceeded its lifetime. In contrast, Delta-t [WATS 81b] relies on lifetime
enforcement by the network. Delta-t must divide the total lifetime LT into the
time during which retransmissions are allowed, the maximum packet lifetime of a
message in the network, and the time that elapses at the receiver between receiving
and acknowledging a message. In Delta-t, a transmission will fail and the message
is dropped when the estimate for the maximum packet lifetime is smaller than the
actual transit time. In CMSC this cannot happen as long as the total lifetime LT is
larger than the transmission time of the message.

In the following we will discuss each of the five timers used in CMSC, their
purpose, and how they are set and reset.

3.1 Liveness

The receiver and the sender must assure that they can receive any valid message.
At the sender there is a timer Tg; that does not expire while there exists a se-
quence number whose lifetime has not yet expired. FEvery time a new data message
X with expiration time X.Texpire (= T¢c. + LT) is transmitted, the sender sets
Ts1 « X.Texpire. The connection record of the sender is released when Tg; expires.
Because the expiration time of an acknowledgment message is the expiration time of
the sequence number in the cumulative acknowledgment, the sender will wait long
enough to receive any valid acknowledgment.

The receiver needs a timer 1,7 similar to T; to ensure that it will not close a con-
nection while the transmission of new data messages is ongoing. The value for T}
is derived from the expiration times of the messages received. The receiver knows the
expiration times of all data messages received and computes maxgemessages received @- TeTpire.
The receiver also knows that the maximum difference between the expiration times
of two consecutive! data messages is LT (for a proof see Lemma 1). Therefore, the
expiration time of the message that is consecutive to message M with M. Texpire =
MAXQemessages received & 1expire cannot exceed M. Texpire + LT + ¢ as measured

*Two messages are consecutive if their sequence numbers are adjacent.

3 INFORMAL DESCRIPTION OF CMSC 8

on the receiver’s clock, which can differ from the sender’s clock by up to ¢. Ev-
ery time a non-duplicate data message X is accepted, the receiver sets T, «
MAaXQemessages received - 1expire + LT + ¢ and updates the connection record to re-
member that message X has been received. When 7,1 expires, the connection record
of the receiver is released. Timer T;; also ensures that all duplicates of data mes-
sages can be detected, since the connection record is not released before the lifetimes
of all received messages have expired.

3.2 Safety

In order to assure at-most-once semantics, the sender and receiver must avoid am-
biguities as to what connection a message is part of and where its position is within
the data of this connection.

Since the sequence number field of a message has a finite size, the sequence
numbers are bounded and wrap around. To avoid sequence number ambiguities, the
sender knows must control the maximum the rate R at which sequence numbers are
used. If [SN| is the total number of sequence numbers, the lifetime LT must be

chosen such that LT < % to make sure a sequence number can be safely reused.

Let X denote the message with sequence number x and X the message with sequence
number (z+|SN|) mod |SN|. The sender has a timer Ty to ensure the safe reuse of a
sequence number and to suspend the transmission in the case that the path between
sender and receiver is disrupted or the receiver is dead. Tg9 prevents the sender
from generating message X before message X has been acknowledged. Tyo is set
every time an acknowledgment ACK is received: Ty «— ACK.Texpire — LT + %.
When Tjo expires the transmission of new data messages is suspended®. If a new
acknowledgment arrives before Tgo expires, Tys will be reset and the sender can
resume transmitting new messages.

To avoid ambiguities in the use of connection identifiers, the sender must not
release a connection identifier CID while the receiver has a connection record asso-
ciated with this CID. The sender uses a timer Tg3 to control the release of a data
channel CID. Since T}; determines the release of the connection record at the re-
ceiver, we require Tg3 > T,; as measured on the sender’s clock. The sender knows
that T}7 < X.Texpire+ LT + ¢, where X is the data message with the greatest expi-
ration time that was transmitted by the sender. Every time a new (non-duplicate)

SIf % is large compared to LT the sender will be allowed to transmit new messages for a long
time after the last acknowledgment message was received. Such an “optimistic” strategy makes
sense 1f the sender assumes that the path between the sender and receiver is only temporarily
disrupted. However, if the disruption persists the sender will waste bandwidth by transmitting
new messages until it will eventually abort. To limit this waste, 1t might be sensible to suspended
sending earlier. If the sender sets Tg9 — ACK.Texpire + min(LT, % — LT) + € it will be
suspended, if no new acknowledgment arrives, no later than when the lifetime of the next message
the be acknowledged expires. Such a change in the initial value of Tg9 will also affect the initial
value of 1}9.

4 FORMAL DESCRIPTION OF CMSC 9

message X is transmitted, the sender sets: Tg3 « X.Texpire + LT + 2e. When T3
expires, the CID is released.

The receiver has a timer T} to control the release of the acknowledgment channel
CID. T,9 makes sure that the receiver does not release a CID while the sender has
a connection record associated with this CID. Since Tg; determines the release of
the sender’s connection record, we require that Ty; < Tp9 as measured on the
receiver’s clock. The worst case scenario for 7,9 is one in which the sender keeps
transmitting new data messages and resetting T; while these data messages never
arrive at the receiver. The sender will eventually be suspended when Tgy expires.
Let Y denote the message with the greatest expiration time that was received by
the receiver. The receiver knows that Ty < Y. Texpire — LT + % + ¢ as measured
on its clock and that the sender can generate new messages until Tgo expires. We
have Tg; < Tgo 4+ LT < Y. Texpire + % + ¢ as measured on the receiver’s clock.
Therefore, to satisfy Ty; < T,2 as measured on the receiver’s clock, we can choose
Tho > Y. Texpire + % + €. Whenever a non-duplicate data message is received, the

receiver sets 1,9 «— Y. Texpire + % + €. When T} expires, the acknowledgment
channel CID is released.

Ty; and Tg3 at the sender and T} and T}5 at the receiver are always set simul-
taneously. Since Ty; < Tg3 and T, < T,9 the sender can instead set Ty3 when
Ty1 expires to T3 «— Tg; 4+ LT and the receiver can set Tp9 when T,; expires to
Tro «— Ty — LT + %. This modification increases the efficiency by reducing the
number of timers active any time without affecting the behavior of the protocol.
Table 1 lists the timers used per connection.

| Timers || Where || Function | Set when | Set to
Tqq Sender | liveness new message is To. + LT
transmitted M

Ty Sender safe reuse of ACK is received max(Ty9, ACK . Texpire—
sequence number LT+ %)

Ty3 Sender safe reuse of CID | Ty expires Teg + LT +2-¢

T,q Receiver | liveness and new valid message | max(1,7, DT. Texpire+
safety DT is received LT +¢)

T Receiver | safe reuse of CID | T,; expires T,y — LT+ %

Table 1: Timers per connection.

4 Formal Description of CMSC

The data and acknowledgment messages exchanged between the sender and the
receiver have the following fields:

4 FORMAL DESCRIPTION OF CMSC 10

Texpire
Wrap
Cid
Type
Sn

Lt

First
Data

/* expiration time */

/* %, I. e., the minimum time to cycle through the sequence number space */
/* connection identifier */

/* message type: DATA or ACK */

/* sequence number */

/* lifetime */

/* indicates request for a new connection */

/* user data */

The sequence number field Sn is only defined for data messages.

We use the following notation:

Tc. denotes the clock at the sender and 7¢,, denotes the clock at the receiver.
& denotes addition modulo [SN|.

|| denotes the concatenation operator.

undefined denotes a value different from any other value used.

4.1 Sender

The connection record CRg at the sender contains the following components for
each connection:

LT

R
WRAP
CID
Ts;

Tso

Ts3

/*
/*
/*
/*
/*
/*
/*

lifetime */

maximum transmission rate */

i

connection identifier of data channel */

timer to ensure graceful close */

timer to ensure safety */

timer to ensure correct reuse of the data channel CID */

ACK_CID /* CID of acknowledgment channel */

NSN

/*

next message sequence number */

The sender uses the following auxiliary functions:

get free_cid()

Return a CID that is currently not in use

get LT ()

Return the lifetime LT of a particular connection based on peak
transmission rate such that: 0 < LT < WRAP

Connection setup:
CID «— get_free_cid()

R «— max. transmission rate

WRAP — 1211

4 FORMAL DESCRIPTION OF CMSC 11

allocate a connection record CRg[CID]
LT «— get _LT() /* max. lifetime of sequence numbers */
NSN « 0 /* initialize sequence number */

Send data message DT of connection CID:
if DT is transmitted for the first time /* generate message header */
then DT.Cid «— CID
DT . Texpire «— ’]'CS + LT
DT Wrap «— WRAP
DT.Lt — LT
DT . Type «— DATA
if DT is the first message of connection CID to be sent
then DT . First «— on /* request connection setup */
Tso «— Te, + WRAP
else DT .First «— off
endif
NSN «— NSN & 1
DT .Sn «+— NSN
Ts; — Te, + LT /* (re-)set send timer */
endif
DT.Data +— data part of message
send DT

ACK is received that acknowledges the data messages received on connection CID:
if ACK.Texpire > Tc, and ACK . First = on and ACK_CID = undefined
then /* setup message for Ack channel */
ACK _CID «— ACK.Cid
endif
if ACK.Texpire > Tc, and ACK_CID = ACK.Cid
then pass ACK on to error control module
Tso «— max(Tg2, ACK.Texpire — LT + WRAP) /* reset whenever ACK arrives */
endif
else discard ACK

Ty; for connection identifier CID expires:
Tsg — Tsy + LT +2-¢
Ty « 00
Tgp « o0
release connection record CRg[CID]
send disconnect notification to application

Tso for connection identifier CID expires:
stop transmitting new data messages

4 FORMAL DESCRIPTION OF CMSC 12

T3 for connection identifier CID expires:
Ts3 o0
make CID available for reuse

4.2 Recelver

The receiver uses a data structure msg_entry:

struct msg_entry { /* contains information about a received message */
m_sn /* sequence number of message */
m_expire /* time when the lifetime of sequence number expires */

}

The connection record CRp of the receiver contains the following components for

each connection:

11 /* timer to ensure duplicate detection and graceful close */

T2 /* timer to ensure correct reuse of the CID of the ACK channel */
CID /* CID of data channel */

ACK_CID /* CID of acknowledgment channel */

LT /* lifetime of the sequence numbers of the data channel */
WRAP /* % as chosen by sender */

MSGS_RECEIVED /* list of elements of type msg_entry */

CUM.SN /* sequence number up to which all messages have been received */
The receiver uses the following auxiliary functions:

update_msgs(cid, sn, expire)
Add a new entry new_msg of type msg_entry to the list
CRp[cid]. MSGS_RECEIVED and set
New_msg.m_sn «— sn
new_msg.m_expire «— expire
cum_ack(cid) /* return cumulative acknowledgment */
Return the sequence number of the message up to which all messages on
CID cid have been received
expire_cum_ack(cid, sn) /* return lifetime of cumulative acknowledgment */
Return (M.m_expire | M in CRp[cid].MSGS_RECEIVED and M.m_sn = sn)
is_duplicate(cid, sn)
Return true if there exists an entry M in CRplcid]. MSGS_RECEIVED with
(M.m_sn = sn) and (M.m_expire > Tc).
Return false otherwise.

Message DT is received:
if DT . Texpire < ¢y, [/* check lifetime */

4 FORMAL DESCRIPTION OF CMSC

then discard DT
goto END received
endif
if DT . First = off and CRg[DT.Cid] does not exist
then discard DT
goto END received
endif
if DT . First = on and CRg[DT.Cid] does not exist
then /* create connection record and establish ACK channel */
allocate a connection record CRr[DT.Cid]
CID «+ DT.Cid
ACK _CID « get_free_cid()
LT «— DT.Lt
WRAP «— DT . Wrap
T, «— DT . Texpire + LT + €
endif
if is_duplicate(DT.Cid, DT.Sn)
then discard DT
goto END received
endif
Tr1 — max(Ty, DT.Texpire + LT + €)
update_msgs(DT.Cid, DT.Sn, DT.Lt)
store DT'.Data
END _received

Periodically for each existing connection record CRy[CID]:
store in CUM_SN the value of the sequence number up to which
all data messages were received
remove all entries M from CRg[CID].MSGS_RECEIVED with
M.m_sn < CUM_SN or M.m_expire < I,

Receiver generates an acknowledgment ACK for connection CID:
ACK .Data «— cum_ack(CID) || CID
ACK.Cid «— ACK _CID
ACK . Type +— ACK
ACK . Texpire — expire_cum_ack(CID, cum_ack(CID))
if ACK is first acknowledgment to be sent
then ACK.First < on
else ACK .First «— off
endif
send ACK

13

5 PROTOCOL CORRECTNESS 14

T;1 for connection identifier CID expires:
Ty — Ty — LT + WRAP
Tpp < o0
release connection record CRg[CID]

T2 for connection identifier CID expires:
T,y «—
make CID available for reuse

5 Protocol Correctness

The correctness of CMSC' can be established by proving that it meets the safety and
liveness properties:

o [ts safety is shown by proving that at any time there are never two messages
with (i) the same (cid,sn), (ii) different data, and (iii) un-expired lifetimes,
and that no duplicate messages will be accepted.

o Its liveness is shown by proving that once a connection is setup the receiver
will accept any valid message whose lifetime has not yet expired. The receiver
will acknowledge the received data and never terminate while there exists a
messages whose lifetime has not yet expired. Also, the transmitter of the
data messages, i.e. the receiver of the acknowledgment messages, will never
terminate while there exist acknowledgments whose lifetime has not expired.

Assumption 1 7¢_ and T¢, are monotonically increasing.
Assumption 2 |7, — 7, | < ¢

The following parameters are used in the code.
Parameter 1 The number of available sequence numbers is |SN|

Parameter 2 The maximum rate at which sequence numbers are allocated is R.

Parameter 3 The mazimum lifetime LT of a connection is LT < %.
The following lemma states a property about the sequence numbers that will be

used in our proofs.

Lemma 1 The mazimum time interval as measured on the sender’s clock between
the generation of the sequence numbers X.Sn and Y.Sn of any two consecutive mes-
sages X and Y on a single connection is LT.

5 PROTOCOL CORRECTNESS 15

Proof: Let tx denote the time at which message X is generated. Messages (except
for the very first message) can be sent on a connection only if Tg; > 7¢.. Thus the
generation time ty of message ¥ must satisfy

ty < Ty
Since Ty; was reset the last time at ¢y,
ty <tx + LT =Ty

Therefore,
ty —tx < LT

5.1 Safety

We first prove the safety for the data channel and then for the acknowledgment
channel.

5.1.1 Safety of the Data Channel

First we shall discuss a system that has no failures. We want to show that the
system never accepts a message incorrectly. We must be sure that the connection
state is not left over from the past and that no old messages are accepted as part
of a new connection. If connection state exists, then we have the sequence numbers
of the messages that have been accepted. As long as there is no ambiguity about
which data a sequence number refers to, then we never accept duplicates. We can
avoid sequence number ambiguity if the receiver detects the loss of sequence number
x before sequence number & + n - |SN| arrives, where n = {1,2,3,...}.

We must show that duplicate messages are detected and that messages of one con-
nection are not mistaken for messages of another connection.

Theorem 1 A setup message (First = on) is accepted at-most once.
Proof: After a setup message X is received the first time:
X.Texpire < X.Texpire + LT 4+ € = T}

Duplicates of X will be detected and rejected since the connection record will be
held until the lifetime of X expires.

Theorem 2 There will never be two messages arriving at the receiver with the same
CID and un-expired lifetimes that belong to different connections.

5 PROTOCOL CORRECTNESS 16

Proof: To prove the theorem we must show

(i) The sender does not release a data channel CID until the receiver has dropped its
connection state, i.e., Tg3 —Tc, > 0 if Ty — 1o, > 0. Thus the receiver will never
accept a “new” message as part of an “old” connection.

Let X be the last message transmitted and Y the received message with the greatest
expiration time. Starting with the definition of Tg3,

Tsy3 = Ts1 + LT +2- ¢
Using the definition of Tgy,
Ts3 = X.Texpire + LT +2 - €
Using the definitions of T}; and Y,
Tyy —Tc, = Y. Texpire + LT + ¢ — T,

We know that Y.Texpire < X.Texpire, due to Assumption 1 and the fact that every
received message must have been transmitted, thus,

Ty; — 1o, < X.Texpire + LT + ¢ —1c,,
Substituting from above, we get,
Typ —Tep, < Tsz —e—1ey,
Using Assumption 2 above,
—e < T, —Teg
Therefore,
Trl _I]'CR S TS3 _I]'CS

(ii) The sender does not release a data channel CID until all data messages have
exceeded their lifetime. Thus no “old” message X with connection identifier CID
from a previous connection is accepted as part of a “new” connection with connection

identifier CID.
By definition of Ty,
X.Texpire < Ty

Using definition of Tg3,
X.Texpire < Tg; < T3

Therefore, the lifetime of any message X will have expired before the connection
identifier CID is released by the sender. a

Theorem 3 The receiver will never accept a message with sequence number x as a
message with sequence number x & n - |[SN|, where n = {1,2,3,...}.

5 PROTOCOL CORRECTNESS 17

Proof: The only way for confusion to occur is if sequence number x is never received
and the next sequence number received is & + n - |[SN| (from Parameter 1). Let X be
the message with sequence number x and let X denote any message with sequence
number & + n - |SN|.

By definition of Ty, X, and Parameters 2 and 3, we know that

SN
Tso < X.Texpire — LT + %

By definition of X and X and Parameters 2 and 3 we know that

[SN]

X. Texpire + R < X. Texpire

Substituting Tyo, .
Tso < X.Texpire — LT

Since)A(.Te:szire — LT is the time X is generated, the sender is suspended before
X can be generated. O

5.1.2 Safety of the Acknowledgment Channel

The proof of the safety of the acknowledgment channel is analogous to the proof for
the data channel.

Theorem 4 A setup message (First = on) on the acknowledgment channel is ac-
cepted at-most once.

Proof: We will show that no acknowledgment message is accepted more than once.

For any acknowledgment message ACK,
ACK . Texpire < Ty

Since the connection record is kept long enough, duplicate acknowledgment messages
are detected. O

Theorem 5 There is never an ambiguity at the receiver as to which connection an
acknowledgment message with connection identifier CID is part of.

Proof: The proof is similar to the proof of theorem 2. To prove the theorem we
must show

(i) The receiver does not release the acknowledgment channel CID until the sender
has dropped its connection state, i.e. Tro—"Tc, > 0 if Ty —Tc, > 0. Thus the sender
will never accept a “new” acknowledgment message as part of an “old” connection.
Let X be the last message transmitted, Y the received message with the greatest
expiration time, and 7 the acknowledged message with the greatest expiration time.

5 PROTOCOL CORRECTNESS 18

Thus
X.Texpire > Y.Texpire > 7Z.Texpire.
From the definition of T;, Tg9, and T}9,

SN SN
Ty = X.Texpire < Tgo + LT = 7. Texpire + % < Y. Texpire + % =Ty —c¢

Subtracting 7¢, from each side,
TS] _I]—CS S TIQ_G_I]'CS

Using Assumption 2,
TS] _I]—CS S TI’2 _I]'CR

(ii) The receiver does not release an acknowledgment channel CID until all acknowl-
edgment messages have exceeded their lifetime. Thus no “old” acknowledgment mes-
sage ACK with connection identifier CID from a previous connection is accepted as
part of a “new” connection with connection identifier CID.

By definition of 7T}7 and Tho:
ACK . Texpire < Ty1 < T

Therefore, the lifetime of any acknowledgment message ACK will have expired be-
fore the connection identifier CID is released by the receiver. O

Theorem 6 The receiver of the ACK message will never confuse data sequence
number x with data sequence number x & n - |SN|.

The proof is identical to the proof of Theorem 3.

5.2 Liveness
5.2.1 Liveness of the Data Channel

We now show that a non-duplicate message that is received before its lifetime has
expired is accepted as long as no previous messages have expired before they were
received®,

Theorem 7 At the receiver, a new (non-duplicate) message X always is accepted
at time t as measured on the receiver’s clock if X.Texpire + ¢ > t and all messages
Q) such that Q). Texpire + € < t have been received.

50Omnce a data message has not been received and has its expiration time exceeded, the trans-
mission has failed and the receiver i1s no longer required to accept any messages.

6 OPERATION OF CMSC IN CASE OF FAILURES 19

Proof: X.Texpire + € > t implies via Lemma 1 that there exists a message Y such
that Y. Texpire + ¢ >t — LT.
By definition of T},

Ty1 = max(Q.Texpire) + LT + ¢ > Y. Teapire + LT +e>t — LT+ LT =1

Therefore,
Ty =t

Because T,; has not expired at time ¢ and X is not a duplicate it must be accepted.
O

5.2.2 Liveness of the Acknowledgment Channel

We now show that the sender will accept any acknowledgment message that is
received before its lifetime has expired.

Theorem 8 The transmitter always accepts an acknowledgment message ACK that
has been received before its lifetime expired.

Proof: By definition of Ty,
ACK . Texpire < Ty

Therefore, the sender will not release his connection record while there exits an
acknowledgment message that has not exceeded its lifetime. O

6 Operation of CMSC in Case of Failures

So far, we have discussed the operation of CMSC in absence of failures. Failures
may cause connection state to be lost. We assume that when the system fails it will
simply halt. To ensure the correctness of CMSC in case of failures, we make some
additions to its operation.

6.1 Sender Failure

If the sender loses state, it must not reuse a CID until it is assured that the timer
Ts3 would have expired. In the following we discuss various strategies to cope with
sender failure. The strategies differ in the waiting time after a failure until the
communication can be resumed and the amount of stable storage required.

The first approach keeps the maximum value M T3 of all CID release timers T3
in stable storage. MTg3 is recomputed every time a new message is sent. After a
failure, a connection identifier can be reused when 7¢, > MTg3, i. e. no connection
can be opened until all timers T3 would have expired.

6 OPERATION OF CMSC IN CASE OF FAILURES 20

The second approach keeps in stable storage the maximum lifetime £g that no
existing connection exceeds. After a failure no connection may be established for
a period of 2 (Ls + €). This approach requires stable storage for a single value
(Ls). Compared to the first approach, the number of writes to stable storage is
reduced at the expense of a longer waiting time after a failure. In case of greatly
varying lifetimes, one may use a hybrid approach in which the system keeps track
of individual connections with long lifetimes and stores a single lifetime Lg to cover
all connections with short lifetimes.

The third approach keeps the lifetime of each connection in stable storage. After
a failure, a connection identifier can be reused 2 - (LT + €) time units later, which
is long enough to ensure the timer T3 for this connection would have expired. The
advantage of this approach is that a new connection can be opened immediately
after a failure, if not all connection identifiers were in use at the time of the failure,
or after a timer Tg3 for a connection has expired, otherwise. The disadvantage is
that stable storage is needed for each connection identifier in use.

The fourth approach partitions the connection identifiers and introduces a sub-
field whose value changes after each failure. If the value of this subfield is kept in
a variable epoch, each time the system crashes, epoch is incremented. Therefore,
any new connection identifier that is generated after a failure will be different from
any connection identifier a receiver may associate a connection record with and new
connections can be established immediately. The value of epoch is kept in stable
storage. The number of different values epoch must assume can be small. All we
have to assure is that
(Max value of epoch) * (Min time between two failures) > 2 - (Ls + €), where Lg is
defined as in the second approach.

6.2 Receiver failure

When the receiver recovers after a failure, it must avoid accepting duplicates. The
four approaches that are available for dealing with failures of the sender could also be
used to deal with receiver failures. However, there is a simpler solution that takes
advantage of the fact the clocks are e-synchronized and monotonically increasing
and that all messages carry an expiration time. Whenever a message is accepted,
the receiver updates the value of the highest expiration time HTFE of any message
accepted and keeps HTFE in stable storage [LISK 91]. After a failure, the receiver
resumes communication immediately. It recovers the value of HTFE and rejects any
incoming message X with X.Texpire < HTE.

7 CONCLUSION 21

6.3 Handshake to Speed up the Release of Connection
Records

In an environment with many short-lived connections, a significant amount of storage
might be tight up for connection records of connections that are no longer active.
To reduce the holding time of a connection record , we modify the operation of
CMSC as defined in Section 4 and introduce a handshake to speed-up the release of
a connection record. The header of a message contains another field for the LAST-
bit: The sender sets the LAST-bit when it has no more data to send and wants
to close the connection. After the sender has received the acknowledgements for
all messages transmitted, it releases the connection record immediately. When the
receiver receives a message X with the LAST bit set, it sets T,; « X.Texpire. This
modification does not change any other property of CMSC.

The initial values of the timers Tg3 and T}2, which are defined with respect
to 11 and Ty respectively must be modified. The requirements for T3 and Ty2
were: (i) Tg3 —Te, > Typ — Tey, and (ii) Tpo — To,, > Ty — 1o, Let X denote the
message with the LAST-bit set. To meet (i), set Tgg « X.Texpire + ¢ when Ty
expires. Since Ty < Tp; we only must account for the clock skew. To meet (ii) we
set Tp9 «+ ¢ when T,; expires.

These modifications reduce the holding times of the connection records and the
connection identifiers. At the sender the release of the connection record is sped
up by the difference between X.Texpire and the time at which the acknowledgment
for X arrives. The release of the connection identifier is sped up by LT. At the
receiver the release of the connection identifier is sped up by LT and the release of

. SN
the connection record by %.

7 Conclusion

CMSC combines the various mechanisms available for connection management:
It uses timers, unique connection identifiers, stable storage, handshake, and e-
synchronized clocks. The use of e-synchronized clocks in CMSC' is novel. Syn-
chronized clocks support an accurate and easy to implement end-to-end lifetime
enforcement. Unique connection identifiers allow multiple connections between the
same sender-receiver pair. Sender and receiver can resume communication immedi-
ately after a crash by generating unique connection identifiers across crashes and by
using synchronized clocks to filter out duplicate messages at the receiver. The release
of connection records is sped up if the connection is closed by handshake. CMSC
can be incorporated in any protocol that must provide at-most-once semantics.

Acknowledgements

We thank Brian Coan and the anonymous referees for their constructive comments.
This work was carried out while the first author was with Bellcore.

REFERENCES 22

References

[CHER 88]

[CHER 89]

[DOD 83]

[FLET 78]

[KLEI 92]

[LISK 91]

[MILL 91]

[SLOA 79]

[SLOA 83]

[WATS 8la]

[WATS 81b]

[WATS 83]

D. R. Cheriton, “VMTP: A Versatile Message Transaction Protocol”,
Internet Request for Comments, RFC 1045, February 1988.

D. R. Cheriton, “SIRPENT: A High Performance Internetworking
Approach”, Proc. ACM SIGCOMM 89, pp. 158-169, Austin, TX,
September 1989.

Department of Defense, “Transmission Control Protocol”, MIL-STD-
1778, May 1983.

J. G. Fletcher and R. W. Watson, “Mechanisms for a Reliable Timer-
Based Protocol”, Computer Networks, 2(4/5):271-290, September
1978.

L. Kleinrock, “The Latency/Bandwidth Tradeoff in Gigabit Net-
works”, IEEE Communications Magazine, 30(4):36-41, April 1992.

B. Liskov, L. Shrira and J. Wroclawski, “Efficient at-most-once Mes-
sages Based on Synchronized Clocks”, ACM Transactions on Com-
puter Systems, 9(2):125-142, May 1991.

D. L. Mills, “Internet Time Synchronization: The Network Time Pro-
tocol”, IEEE Transactions on Communications, 39(10):1482-1493, Oc-
tober 1991.

L. Sloan, “Limiting the Lifetime of Packets in Computer Networks”,
Computer Networks, 3(6):435-445, 1979.

L. Sloan, “Mechanisms that Enforce Bounds on Packet Lifetimes”,
ACM Transactions on Computer Systems, 1(4):311-330, November
1983.

R. Watson, “Timer-Based Mechanisms in Reliable Transport Protocol
Connection Management”, Computer Networks, 5:47-56, 1981.

R. W. Watson, “IPC-Interface and End-to-End Protocols”, B. W.
Lampson, M. Paul and H. Siegert, Eds., Distributed Systems, Archi-
tecture and Implementation, volume 105 of Lecture Notes in Computer

Science, chapter 7, pp. 140-174, Springer Verlag, New York, Berlin,
Heidelberg, Tokyo, 1981.

R. W. Watson, “Delta-t Protocol Specification”, UCID-19293,

Lawrence Livermore Laboratory, Livermore, CA, April 1983.

REFERENCES 23

[WATS 89] R. W. Watson, “The Delta-t Transport Protocol: Features and Expe-
rience”, Proc. 14th Conf. on Local Computer Networks, pp. 399407,
Minneapolis, MN, October 1989, IEEE.

[WELL 90] D. Wells, Guide to GPS Positioning, Canadian GPS Associates, 1990.

CONTENTS

Contents
1 Introduction

2 Timer-Based Connection Management
2.1 Model and Assumptions L
2.2 Bounds on the Lifetime of Identifiers
2.3 Phases L

3 Informal Description of CMSC
3.1 Liveness e e
3.2 Safety

4 Formal Description of CMSC
4.1 Sender e

4.2 Recelver e,

5 Protocol Correctness
5.1 Safety
5.1.1 Safety of the Data Channel
5.1.2 Safety of the Acknowledgment Channel
5.2 Lavenesso Lo e e
5.2.1 Liveness of the Data Channel
5.2.2 Liveness of the Acknowledgment Channel

6 Operation of CMSC in Case of Failures
6.1 Sender Failure
6.2 Receiver failure oL
6.3 Handshake to Speed up the Release of Connection Records

7 Conclusion

24

10
12

14
15
15
17
18
18
19

19
19
20
21

21

