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A Modular Prewindowing Framework for
Covariance FTF RLS Algorithms

Dirk T.M. Slock and Thomas Kailath

Abstract

In a companion paper [16], a Fast Transversal Filter (FTF) algorithm was derived for solving multi-
channel multiexperiment Recursive Least-Squares (RLS) problems arising in adaptive FIR filtering.
By introducing sequential processing of the different channels and experiments, the multichan-
nel multiexperiment algorithm was decomposed into a set of intertwined single-channel single-
experiment algorithms, resulting in a modular algorithm structure. The algorithm was derived
under the prewindowing assumption. However, using an embedding into multichannel and mul-
tiexperiment problems, we show how the conventional FTF algorithms for the Growing-Window
and Sliding-Window Covariance cases follow naturally from the modular prewindowed algorithm.
Furthermore, taking the sequential processing one step of granularity further, we derive modular
multichannel FTF algorithms for these covariance cases also.



1 Introduction

Two popular classes of algorithms for adaptive FIR filtering [5] are the Least-Mean-Square
(LMS) algorithm, which is based on a stochastic-gradient approach, and the Recursive Least-
Squares (RLS) algorithm, which minimizes a deterministic sum of squared errors. RLS algo-
rithms are usually made adaptive by introducing exponential weighting in the sum of squared
errors, to dampen the effect of data in the remote past (making the effective window length
finite). Exploiting the shift relation between two consecutive regression vectors, which is typi-
cal of the adaptive FIR filtering problem, so-called fast RLS algorithms can be derived with a
computational complexity of O(N) (N denotes the filter order), the same order of complexity
as for the LMS algorithm.

The simplest fast RLS algorithms are obtained by introducing the prewindowing assumption
[5] (in which all data before time zero are assumed to be zero). The covariance (or unwindowed)
method [12],[4] is an alternative approach in which no assumptions are made on unavailable
data. So the covariance method only starts considering regression vectors from the moment
they can be completely filled with available data. Covariance methods can perform noticeably
better than prewindowed algorithms for short window lengths. They come in two varieties,
the growing-window and the sliding-window covariance algorithms, (often considered) as alter-
natives for prewindowed algorithms without or with exponential weighting respectively. The
derivation of fast covariance algorithms has always been somewhat of an art, in that their deriva-
tion requires additional insight which goes still a step beyond that required for prewindowed
algorithms. In [8], a unified geometric theory was presented which tries to cover the derivation
of all fast RLS algorithms. However, only the prewindowed case falls out nicely from this theory.
In another attempt at unification, the two covariance cases were imbedded into prewindowed
problems in [13],[10]. However, the algorithms resulting from the prewindowed embedding did
not coincide with the existing covariance algorithms, and were in fact computationally more
complex.

We shall also consider the prewindowing embedding framework of [13],[10] and we shall
concentrate on the Fast Transversal Filter (FTF) RLS algorithm (in [13],[10], Fast Lattice RLS

algorithms were considered). In contrast to the results obtained in [13],[10], applying the mod-



ular prewindowed FTF algorithm of [16] to the embedded problems will enable us to recover
the existing covariance algorithms, modulo the numerical stabilization part which has only
recently been introduced in FTF algorithms [18]. Apart from providing a unified prewindow-
ing framework for the derivation of covariance algorithms, this approach will also enable us
to straightforwardly extend the numerical stabilization from prewindowed to covariance algo-
rithms. Then taking the modularity one level of granularity further, we shall straightforwardly
obtain modular multichannel covariance algorithms (see [5] or [16] for an introduction to mul-
tichannel adaptive FIR filtering problems). Exponential weighting will be superimposed on all
windowing schemes considered, and some numerical consequences of this will be discussed.
This paper is organized as follows. For the notation used in the prewindowed multichannel
multiexperiment framework, we refer to [16]. In section 2, we introduce some extra nota-
tion that is pertinent to the covariance method. In section 3, we describe the embedding of
the growing-window covariance problem into a prewindowed problem with one extra artificial
channel, followed by the algorithm derivation. The two-experiment prewindowed embedding
and the algorithm derivation for the sliding-window covariance method are described in section
4. In section 5, we describe the customization to the covariance algorithms of certain details
in the computational redundancies and error feedback that are used for the stabilization of
the propagation of roundoff errors in FTF algorithms. Finally in section 6, some concluding

remarks are given.

2 Problem Formulation and Notation

Again, for the formulation of and the notation used in the prewindowed multichannel multiex-
periment framework, we refer to [16]. We shall derive modular covariance FTF algorithms for
the case of a single experiment, but multiple (p) channels with possibly different filter lengths
in each channel (and we shall drop the experiment subscript 1 from the notation for covariance
quantities). This case is perhaps of most interest in practical applications. We shall embed the
growing- and sliding-window methods of the covariance formulation into various prewindowed
problems, and will thus be able to apply the general modular algorithm of [16] to derive modular

covariance FTF algorithms in a systematic way and with little extra effort. Given the frame-



work presented here, it will be possible to straightforwardly derive other modular covariance
algorithms than the ones presented here (e.g. involving multiple experiments), should the need
for such algorithms arise.

In the prewindowed algorithm of [16], we considered vectors of length ¢ M and strictly speak-
ing, one should take M = oc (as time proceeds, the number of samples can exceed any finite
number). So we are working with semi-infinite strings of data which have only one endpoint at
which something happens as time proceeds. Now at time T, we do not have the infinite past
available in general, and so the way the prewindowing method gets around the infinity issue is
by assuming that all data before time ¢ = 0 are zero (only in the case this assumption coincides
with reality, we do have the infinite past available). Using the prewindowing assumption, the
effective number of terms in the LS cost function reduces from infinity to 741. In the covariance
method on the other hand, no extra assumptions on the data are made and the entries in all
regression vectors X y(7') used in the cost function are actual available data. Since in practice,
we can only have a finite window on the data at our disposal, strings of used data are now
marked by two endpoints.

Strictly speaking, it would be possible to describe the covariance algorithms with the no-
tation introduced in [16], as will soon become clear. However, one will get more insight from
considering this notation next to the conventional covariance notation (see [2],[4]) with its spe-
cific meaning. We shall introduce this conventional notation here also and find interesting
interpretations by comparing both points of view. For a windowlength equal to L, the LS cost
function for the covariance method is

T
Envip(T)= min > X|d(t) + W o Xn ()] (1)
NLT 71,41

We can reformulate the LS problem in a L-dimensional vector space in which we shall consider
vectors of the form!

pinr 2 [i(T) 25(T=1)--2;(T—L+1)]" 2)

with similar definitions for other vectors and data matrices. The weighting matrix appearing
L1

. . A . A . .
in the inner product < zr,yr, >o= z¥Qyy will be? Q = Ay = @ A¥. In this notation, we can
k=0

In this paper, superscript H denotes Hermitian (complex conjugate) transpose.

2The Kronecker product ® of two matrices is defined as A ® B £ [a;; B], a block matrix in which block (z, )



write

0 L H
Wnrr=—dirALKnLr , enopr=Pyprdir , Eni(T)=eyprArenrr - (3)

We will invariably denote the pinning vector by o, the shift matrix by S, and the weight-
ing matrix by €, regardless of whether we are considering the Mg-dimensional vector space
of the prewindowed formulation of [16], or the L-dimensional vector space of the covariance
formulation considered here.

In the covariance algorithms, we shall need to pin down data at the other endpoint of the
window as well, and hence we introduce a second L x 1 pinning vector m 2 [0---0 1] with the
property foyTw = zj(T—L+1). Note that if we introduce the exchange matrix J with ones on
the antidiagonal and zeros elsewhere, then we have m = Jo and the shift matrix corresponding
to mis S = JSJ. So the duality between both pinning mechanisms is modulo J. Note that
RsHXN’L,T;SHALS = ARnN,,—1,7—1 and RSXN,L’T;SALsH = Ry,—1,7- We can introduce a dual
Kalman gain Dx and associated likelihood variable dx, which can be defined (just as vx) as
both a prediction error and an error covariance. The dual version of equations [16]-1-(1-10)
(equations (1) through (10) in Table I in [16]) and [16]-(23) holds and one can find it by making
the substitutions (0,5, C,v) « (r, S, D, ). The predicted residuals (.)? in [16]-I-(5) are now
backwards predicted, instead of forwards, and we shall therefore call them smoothed residuals
and denote them by (.)* (as in [4]).

The single-experiment, modular multichannel covariance quantities are described in Table
I. Note that because of our compact algorithm description via fy7, fp and f; (see [16]), it is
strictly speaking not necessary to name all forward and backward prediction errors arising in
the algorithm. In Table I, we only give a detailed account of the error signals arising in the
joint-process filtering. The description and interpretation of the prediction errors arising in the

forward and backward prediction problems runs totally parallel.

Suitable position for Table 1

is a;; B. The direct sum & of matrices is defined as @ A=A QA DDA, 2 block-diag { A1, Aa, ..., An}.
k=1



3 The Growing-Window Covariance (GWC) FTF algorithm

The GWC method considers a window length that is growing with time, as in the prewindowing

method. However, the window only starts at the first point in time when the regression vector

XN (T) can be completely filled up with available data. Let Ny, = max Nj be the largest filter
<j<p

order in the different channels. Assuming that at time 7' we can dispose of the data in [0, 7],

the GWC method takes L =T — N,,, + 2.

3.1 Embedding into a prewindowed problem with one extra channel

Consider the following artificial (p+1)5t channel with input signal y(£) = (¢ 4 1), a unit pulse
at time t = —1. Let N = N + N,,,. Then considering the augmented prewindowed data matrix,

we have

A
~r = YN 1

X
Xn YN, 1] ~ [P)%Nm’TXN,T YNm,T} = ” N(’)L’T




“_o”

where the equivalence relation “~” means “has the same column space as”. Or more explicitly

(for p = 1 and omitting the channel subscript),

[ o(T)  (T—1) - H(T—N+1) ]
HT—1) 2(T—2) --- z(T—N)
0
H(N—=1) (1) 2(0)
2(N—2) 2(0) 0 0 0 1
0 0 0
2(0) 0 1
I 0 0 0 1 0 0_
(5)
[ o) a(r—1) H(T—N+1) ]
H(T—1) (T—2) 2(T—N)
0
H(N—=1) (1) 2(0)
- 0 0 0 0 0 1
0 0 0
0 0 1
I 0 0 0 1 0 --- 0_

where we have omitted the extra rows of zeros at the bottom. Since we now have an orthogonal

decomposition of the columnspace of X ., we can additively decompose the projection operator



Pyrr O
Py = + Pyy,, r (6)
0 0
or hence
ptr O
1
Pyr= ON,p : (7)
L 0 I

This means that working with the columnspace of X% . is equivalent to working with the

columnspace of Xy 7, 7. In terms of the filter operator K, we have
Kgr=[Knrr|*], T=DNp (8)

where “«” denotes “don’t care”. Indeed, for T' > N,,, the part Yy, (T) of the regression vector
H

X5(T) = [Xﬁ (T) YNHm (T)] will contain only zeros. Hence, K7 ; applied to all of Xz(T') will

produce the same output as Ky 7 applied to only Xy (7). Actually, the “«” entries in (8)

can easily be determined. They serve to produce zeros in the entries of an error vector Pﬁ Y

that correspond to the nonzero rows in Yy, 1 (consider the zero diagonal block Oy, in the

expression for PﬁT in (7)). So K ; X5(k—2) =0, k=1,..., Ny, and hence

El

= KO — —KyprXy(k=1) , k=0,...,Ny—1 (9)

where the “x” in (8) has been decomposed as * = [*0 w1 ... *Nm_l].

3.2 Algorithm Derivation

With the above embedding, we can apply the modular multichannel prewindowed FTF algo-
rithm with p + 1 channels to arrive at a modular multichannel GWC FTF algorithm for p
channels, which is described in Table II. Comparing the notation for the modular p-channel

GWC problem with that of the equivalent modular (p+ 1)-channel prewindowed problem, we

10



find
(

A gr=[Ane-1r[+]  a;xT)=eyn,L-1(T)
l<j=p: B, xr=[BjnL-11 | *] B 5(T)=Bj,N,.—1(T)
L éjW,T:[éﬁN’L*LT | * ] 'Vj,N(T):’Yj,N,Lq(T)
Ay wr=l0ixn [10ixnv,]  a (T)=ATF (10)
i=p+1l:q B xwr=[Dnrr|+] By 7 (D)=0N,1(T)
| Cpoma=[Cnir | ] Ypir 7T =7 x (T)
Wxr=IWnLr|*] E(T)=En,1.(T)

We see that the prediction problem for channel p+1 degenerates since the forward prediction
part becomes trivial. The backward predictor corresponds to the backward Kalman gain of the
covariance algorithm. Note that the 1 entry of the backward predictor B][J 11N appears in the
“¥” portion (namely at position N). However, for the stable operation of the FTF algorithm
and particularly the operator fp (see section 5), it is important that this entry is included in

the filter. This is especially important for the corresponding entry cN of the order-

p+1,N+1,T
updated Kalman gain. Therefore, we have embedded the filters for channel p+1 into vectors
with one extra position, as indicated in II-(4), without modifying the basic operation of the
order downdate. The only nontrivial output from the order update part in channel p+1 is

éﬁ

LN LT We can calculate this entry separately as follows. We have for the order-updated

Kalman gain
Cp+17ﬁ+1,T =[CpNL1T|*] 'Yp+1,ﬁ+1(T) = ’Vp,N,L—l(T) . (11)

Combining this with (9) gives II-(3). So the order-update part of channel p+1 is reduced to
just II-(3).

‘ Suitable position for Table II ‘

Note that upon putting the feedback coefficients K = 0 in the definition of the operator
fp (see [16]) and omitting II-(5), the algorithm of Table II for p = 1 corresponds exactly
to the GWC FTF algorithm that can be found in [2] (the algorithm in [4] is similar, but
uses so-called overnormalized filters). There are some differences in the computation of error
covariances, but those are non-essential. There is also a minor difference in notation in that the
covariance algorithms of [2],[4] assume z(1—N,,) to be the first available sample and start at

time 0, whereas we assume z(0) to be the first sample and hence start at time N,,, — 1. With

11



p = 1, the algorithm of Table II even gives the conventional multichannel GWC FTF algorithm
if the “scalar” signal z;(.) is appropriately defined as a vector of signals (as in [3],[4]). This
“vectorization” approach is straightforward for multichannel problems with the same filter order
in each channel. To obtain a multichannel covariance FTF algorithm in the conventional style
for the case of unequal filter orders in the different channels, one can again use p = 1 in Table 11,
and replace the simple permutation matrices Py and P; by the composite permutation matrices

appearing in [16]-(27),[16]-(28) (see [15] also).

3.3 Initialization

Using the prewindowing embedding, we can employ the initialization of the modular prewin-
dowed FTF algorithm. So consider the following noncausal part of the signals:

zi(t) = AWm /2.5 (t414+5+%;), j=1,...,p, t < 0 (we have advanced the noncausal
parts one time unit compared to the usual prewindowed algorithm, since for the GWC em-
bedding, channel p+1 starts at time ¢ = —1 instead of time zero, and we have scaled u; by a
power of A to simplify the expressions for the inital values in (12) below). Note that to consider
some noncausal part in the signals z;(.), we have to change the definition of vectors like z; 1, 7
(see (2)). However, such changes are obvious and we shall not consider them in detail here
(see [2],[4] for details). Now, since channel p+1 is just artificial, we have put p,41 = 0. But
this implies that RN,T does not become full rank until T' = N, —2. Since éN,T uses RW,Tfl
in its definition, we shall consider initializing all quantities at time 7" = N,, — 1, so that we
can start the algorithm of Table I at time T' = N,,,. Using the definitions of Table I, one can

straightforwardly obtain the following initial values

AjNoN,—1=1[0---0 1]P;_y, N0 (Nm—1) = X1 % il
BjNo.N,-1=1[0---0 1]P;, Bino (Np—1) = M=1H2%=1000 G =1, p
Conang = —XE (Nm=DA 'Ry 50 Yok Nm) = 1= Connm X (Np—1)

DnjaNy—1 = 70,N,1(Nm)OU,N,1,Nm ;o Ona (Nm—1) = Yo,N,1 (Nim)

(W N 1,81 (N =1)) = f5 (Wo, Co.x1N Yo,n0 (Non), d( Ny —1), Xx (Nyu —1) )
(12)

where

p ‘ [Nj -I
By N, 2 = @{V_HE]” [@ ANj_kJ ®Njﬂ§[} (13)

j=1 k=1

12



is an easily invertible block-diagonal matrix.

4 The Sliding-Window Covariance (SWC) FTF algorithm

The SWC method considers a fixed window length L. It offers an alternative to the prewindowed
method with exponential weighting for achieving a finite effective window-length. In [11], it was
shown that under certain conditions both windowing methods have an identical performance
for corresponding effective window-length. However, this equivalence only holds asymptotically
for large window-lengths. For short windows, the SWC method might still be preferable for

certain types of nonstationarities since its window really cuts off the past beyond time T — L.

4.1 Embedding into a two-experiment prewindowed problem

It is easy to see that the cost function for the SWC problem is related to the cost functions of two
related prewindowed problems with a similar relationship for the sample covariance matrices,
viz.
2 2 2
leverl® = llenrll® = A llenr—cl
(14)
Rnipr = Rnr—MRyr-p

When time progresses from 7' — 1 to T, the sample covariance matrix Ry ; 7—1 now undergoes

a rank two modification :
Ryrr =ARnp7—1+ Xn(DXE(T) - N Xn(T-D)XE(T-L) . (15)

Hence, an embedding of the SWC problem into a two-experiment prewindowed problem comes

naturally. Specifically, consider

21,§(T) = 2;(T) w =1 (16)
9§(T) = zj(T—L+1) wy = —\L-1

and similarly for the desired-response signal. Note that we use a window of length L — 1 for
reasons that will soon become clear. Note also that here we have an example of an indefinite
weighting w, but the cost function {x 1 1(T) is nevertheless positive definite since Ry 117 is

(assumed to be (for L > N)) a positive definite matrix.

13



4.2 Algorithm Derivation

With the above embedding, we can apply the modular multiexperiment multichannel prewin-
dowed FTF algorithm to arrive at a modular multichannel SWC FTF algorithm, which is
described in Table III. Comparing the notation for the modular p-channel SWC problem with

that of the equivalent modular prewindowed problem, we find for (A, «)

A NT=A N LT oy N(T)=aj N, (T
1<j<p: 1,5,N, J,N,L, 1,7, ( ) Js ( ) (17)

Asjnr=AjNL-1r  a2;N(T)=ajNr-1(T)

and similarly for (B, 3) and (W,¢). For the Kalman gains and likelihood variables, we find

Cinr=  ~XNTRjyir =Ciner
él,j,N,T = _XfN(T)Ailei,Jl\f,Lfl,Tfl = éj,N,L,T
= ’Y1,j,N(T) = ’Yj,N,L(T) (18)
Cojne =N XI(T—L+ )R,y 1= —MN"'"Djnrr
Cojnr= —XI(T—L+D)R 7 =M EDjnia
= Vo yn(T) = =AMV 8 (T)
for j =1,...,p. In the second experiment, it is interesting to note the correspondence between

v~ ! and 6 and the ensuing reversed role of the normalization as displayed in the correspondence

between (C,C) and (D, D). It clearly is convenient to introduce the following scaled quantities
~ A1 = A N1 7 = A\ _o(p—
Djnrr =N Diner, Diner =X Diver, onn(T) =372EV8 v (T) (19)

which can also be found from [16]-1-(1,2,3) by replacing 7 by @ 2 MLz in the definition of the

unscaled quantities.

Suitable position for Table 111 ‘

It can be seen from IT1-(7,8) that the algorithm produces both Wy, 1,17 and Wy 1, 7. Hence,
an SWC algorithm with a window of length either L — 1 or L will produce Wy ;7. However,
only the choice L — 1 will produce ey (1), since this error signal only comes about in the
update of the window-length (processing experiment 1). When we omit I11-(5,6), the algorithm
of Table III for p = 1 and A = 1 corresponds again exactly to the SWC FTF algorithm that
can be found in [2]. Also the other comments that we made on the comparison of GWC FTF

algorithms apply here to the SWC case.
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4.3 Initialization

Two strategies are possible: a prewindowing initialization, which will have a prewindowing
effect for a duration of L + N, — 1 samples (in the SWC method, the emphasis usually is not
on initialization effects, but on the rectangular window shape in steady-state operation), or a
GWoC initialization, enforcing the covariance character from the very start. In the first strategy,

we can readily apply the general initialization methodology of [16] to arrive at

Ajni1-1=[0---0 1Pj_1, ajnn_1(=1)= 112,
Binr-1,1=[0---0 1JP;,  Binra(=1)=XN""=1 5=1,....p
éO,N,L,O =[0---0] , Yo,n, (0) = (20)
Donzo=1[0---0] , So.n.1 (0) =

Wnr—1,-1=Wy

where (; = ujwu;q are some positive constants. This initialization allows one to start the SWC
algorithm of Table III at time 7' = 0. In the second strategy, one starts to run the GWC
algorithm of Table II and lets the window-length grow until time T' = L + N, — 2 at which
point the desired length L is reached, and then one switches to the SWC algorithm of Table II1,
starting at time 7' = L+ N,, — 1. At time T' = L+ N,, — 2, one will have to scale the quantities
D, ¢ to lA), ;5\, but there is time for that since the GWC algorithm takes less computation per

time step than the SWC algorithm.

5 Numerical Considerations

We refer to [16] for a description of the introduction of redundancies and error feedback for
the stabilization of the propagation of round-off errors in the general modular prewindowed
FTF algorithm. Here we describe some specific details that are particular for the covariance

algorithms.

5.1 The GWC Covariance Algorithm

In the GWC algorithm, the two ways of computing the backward prediction error in channel p+1
correspond to the two ways of computing the “cross-likelihood” quantity ny,.(7") as indicated

in Table I. The numerical stabilization mechanism introduced in [18] and extended in [16] for

15



the general modular FTF algorithm works best in a stationary environment. However, the
impulse in channel p+41 of the multichannel prewindowed embedding of the GWC algorithm
represents anything but a stationary signal. Indeed, the whole purpose of this channel is to take
care of some initial conditions, whose influence is very much of a transient nature. Especially in
the presence of exponential weighting, the quantities dn 1 (T') and Dy 17 decay exponentially
as AT, Therefore the influence of these quantities on the rest of the algorithm state becomes
negligible after a few time constants ﬁ, at which point one could put these quantities equal
to zero, which is equivalent to switching to the (p-channel) prewindowed algorithm.

More precisely, the quantity dy r(T) behaves as dn 1 (T) = A=t 4+ O ()\QL), where L =
T — Ny, +2 in the context of the GWC algorithm. Now, the open-loop (K7 = 0) eigenvalue
associated with the error propagation for Dy 1 7, the backward prediction filter for channel
p+1, is given by %. In a stationary channel, this value would average out to %, the
familiar unstable mode. However, because of the exponential decay of dn.1.(T), the open-loop
eigenvalue averages out to 1! Hence it is very easy for the feedback loop (involving K7) to
stabilize this marginal instability and we can conclude that the nonstationarity in channel p+1
is actually beneficial for its numerical behavior.

However, II-(5) reveals a problem that renders the algorithm as presented in Table II not
quite amenable to a practical implementation. Indeed, the quantity A=, which diverges to
infinity, has to be multiplied with dx,7,(T"), which converges to zero. This becomes a numerically
ill-conditioned operation as time grows (not to mention representation problems). The GWC
FTF algorithm presented in [4] suffers from the same problem. It is clearly desirable to work

instead with the scaled quantity
Sy.(T) 22 Vsy (1) = 1-0(AF) (21)

which is initialized as 5N’1(Nm —1) = 0n1(Nm—1) < 1 and converges to one. Introducing

) ~,(T') into the algorithm requires some changes in the handling of channel p+1. The following

16



rearrangement leads to a mere change of the feedback coefficients in fp. Replace 11-(4,5) by

Xn(T)
0

(22)

IT— (4'): ([DN,L,T 1], 0n,0(T), [C'N,L,T 0] a'YJ_V?L(T))

= for ([DN,L—l,T—l 1], 0n, 01 (T 1), [C’p,N,L—l,T éﬁlﬁﬂj} YN =1 (1),

p

M= (5): Yo (1) = Yaer (1) = Mool [T (Binp-a(T)ajh o1 (1))
j=1
The downdate operator fp» is defined as fp in Table [16]-IV except for the following changes
related to K1, Ko
1
V(1) = (1) = R(T) N (T)
BN(T) = n(T=1) +r{ (T ™ (T)

if 1-dn7(T) < €™ then

(23)
Dyrr=0
Snn(T) =1
end if

where €P is the machine precision. The above changes correspond to taking K; = 1, which is
clearly sufficient here for stabilizing ADy 1 7. The error propagation associated with ) ~N,.(T)

on the other hand is exponentially unstable. From (22),(23), we get

Adn.1,(T) on.1.(T) SNH
- : = = : = 1-Dy 171 Xn(T)C W =
AéN’L_l(T o 1) 6N’L_1(T o 1) NzL 17T 1 N( ) p+17N+1,T

=140 (M) > 1.
(24)
However, since 5N’L(T) does not have a constant average value during the transient period
considered here, it is more relevant to consider the relative errors. And (24) leads immediately
to Alog 5N,L(T) = Alog 5N,L_1(T—1). So we have a random walk for the relative errors, a
mild instability. The quantity 5N’L(T) increases to one during the transient period. Due to
round-off errors, the built-in switch to the prewindowed algorithm (see (23)) may occur a bit
prematurely, but the effect of this will be negligible for reasonable values of €™P. Simulation
experience with the algorithm indicates a stable behavior.
In the case of A = 1, the quantities 0n(7") and Dy decay as % In this case however,
the numerical error propagation shows a random walk behavior (digital integrator, see [18]),

irrespective of the feedback coefficient values. So A < 1 is desired for numerical stability.
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5.2 The SWC Covariance Algorithm

With the feedback coefficients proposed in [16]-(44), the range of stable operation for A decreases
as the disparity of the weights w; in the different experiments increases. This remark is especially
relevant for the SWC algorithm with its indefinite weighting coefficients w; = 1 and wy =
—\E~1. With an exponential weighting factor A present, the following approximation will often
hold: % | w; = 1-AE"1 ~ 1. This leads us to consider the following modification to [16]-(44)

075 'Yi,j,N(T)
wi Vig,N+1(T)

K1,ij(T) = Ka;(T) -1 = (25)

where the y-ratio could be omitted. Note especially the alternating sign of Ki, Ko —1 as the
experiments get processed. However, the closeness of the choices in [16]-(44) and (25) will get
lost as A approaches unity. In particular, we get for A = 1 that Z?Zl w; = 0! This reflects
the fact that the average value of the sample covariance matrix becomes zero for such a choice
of weighting coefficients in a general two-experiment case (with identical signal statistics in
the two experiments). However, in the SWC case, there is a strong correlation between the
signals in the two experiments (one being a delayed version of the other). So the average sample
covariance matrix will not be zero but proportional to L—1. Because of this, it is desirable to
let the feedback coefficients K1, Ko —1 not go to zero as A approaches one, but to some finite
value, for instance the value provided in (25). With the choice of feedback coefficients given in
(25), preliminary simulation experience indicates stable operation for A € (1— ﬁ, 1] when L is
not too large.

Paralleling some of the analysis in [16] for the general modular FTF algorithm, one can show
that with the choice of feedback coefficients as in (25), the numerical error propagation in the
SWC algorithm is exponentially stable for A = 1. This is in sharp contrast with the prewindowed
and GWC algorithms, where the absence of exponential weighting leads to random-walk-type
numerical errors, irrespective of the feedback coefficients. We had originally expected to find the
same phenomenon for the SWC algorithm and had therefore added the exponential weighting
factor. Though the LS cost function would then be influenced by two parameters, L and A\, we
had expected to determine the (effective) window length mainly via L and to adjust A within a
range very close to unity for optimal numerical performance. However, it can be shown that for

a given L, the optimal numerical stability is obtained for A = 1. F33 (see [18],[16]) is the critical
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part in this consideration. With an optimal choice for K1, the maximal stabilizing effect of the
rank-one correction term in F3 (see [16]-(42)) can be shown [1],[14] to be approximately 7!
(for large N). In the SWC algorithm, this maximal stabilization can be achieved irrespective
of A. So we get for the combined effect of the two experiment updates

1 1
Fy3 = —(1——= 1 2
w ~ 1 (1- ) (26)

Maximum stability is obviously achieved for A = 1. The property of exponential stability for
A = 1 is actually a great asset of the SWC algorithm, which shows in ill-conditioned cases.
Indeed, when we have non-persistent excitation, the rank-one feedback term in Fj3 (or even
Fyq) is inactive in the nullspace of the input covariance matrix. This means that with A < 1,
there will be exponential error blow-up in this subspace (as in the conventional RLS algorithm
[17]). The SWC FTF algorithm, which has a finite memory length even for A = 1, will show
the much milder random-walk behavior in this subspace (if A = 1), just like the robust LMS
algorithm.

Even with A = 1 though, the proposed feedback mechanism is crucial to obtain a stable
numerical behavior in the SWC algorithm. This is illustrated in the following example in which

L =30, N =10, A = 1, and the input is a white noise signal of unity variance. In Fig. 1,

the error signal, log(‘r%L_l(T) - r’]’\f,L_l(T) ), is plotted as a function of time. The feedback
coefficients are chosen as in (25) for the stabilized algorithm, whereas they are K; =0, K9 =1
for the unstable algorithm. Even though A = 1, the (surprising) exponential instability of the
unstable algorithm can be understood in the same way as the exponential stability of the sta-
bilized algorithm. Summarizing, we may compare the SWC algorithm with the prewindowed
algorithm with exponential weighting and conclude that the SWC algorithm is a more numeri-

cally robust algorithm for comparable (if not more desirable?) tracking characteristics, at twice

the computational cost.

‘ Suitable position for Figure 1 ‘

6 Concluding Remarks

The prewindowing assumption leads to the simplest algorithms for fast RLS adaptive filtering,

and is therefore widely used. Furthermore, this assumption is a good approximation for the real
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data in certain communications applications. From an algorithmic point of view on the other
hand, this paper also establishes the fundamental nature of the prewindowing case for RLS
problems. Indeed, we have shown how the growing- and sliding-window covariance methods
can be embedded into prewindowed problems. Applying the modular prewindowed algorithm
then yields the existing covariance algorithms with little extra effort beyond the prewindowing
framework. The covariance algorithms though were originally derived using ‘scalar” opera-
tions (as in the modular approach), but based on more extensive clever exploitation of the
specific structure of the covariance problems. This unifying character of modular prewindowed
algorithms holds for all RLS-type algorithms, including besides the FTF group also the Fast
Lattice RLS algorithms [6],[12],[8],[9],[7] (the embedding of covariance lattice algorithms into
prewindowed lattice algorithms was considered in [13] but failed to produce a framework be-
cause of the absence of modularity), and even the conventional RLS algorithms, though the
issues become fairly trivial there. Actually, modularity is the missing element in the “unified
geometric theory” of [8], which was essentially geared towards the prewindowed case and failed
to accommodate the covariance cases nicely.

The prewindowed embedding has allowed us to straightforwardly extend the numerical sta-
bilization of prewindowed FTF algorithms to the covariance algorithms and these considerations
have revealed the stabilized SWC algorithm to be a numerically very robust FTF algorithm.
Also, since the modular approach corresponds to factorized estimation, the underlying trian-
gular factorizations discussed in [16] apply to the covariance algorithms (even in the single-
channel case!) in several ways. Finally, we feel that the added performance that covariance
algorithms may bring about, in fast start-up problems for the GWC algorithms or in tracking

non-stationarities for the SWC algorithms, is often overlooked.
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List of Footnotes appearing in the Text

Footnote 1: In this paper, superscript H denotes Hermitian (complex conjugate) transpose.

Footnote 2: The Kronecker product ® of two matrices is defined as A ® B 2 l[a;jB], a
block matrix in which block (i, ) is a;;B. The direct sum @ of matrices is defined as

m
DA = A& A6 & Ay = block-diag {A1, As, ..., A }.
k=1
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Table I

Definition of Modular Multichannel Covariance FTF Quantities

Variable

Definition

TF Computation

Kalman gains

CjN,L,T

CjN,L,T

Dj N1

Dj N1

H
—0"ALK; N LT
H —1p-1
—XiNTA T RN 17
—_1HA K.
T ALK N.L,T

_XfN(T_L+1)Rj7,11V,L71,T

Yo (T) Cjnnr

6 n.o(T) Djn LT

likelihood variables

'yjNL(T) HALP NLTO 1+ CjnorX;n(T)
Vi (T) 1= Cjnr.rXjn(T)
JNL(T) AL Py g o MNYA+Dj N rX;n(T—L+1))
8; n.p(T) ML — D NprX;N(T—L+1)
nj,~N,L(T) HALP N,L,TO /\L_IX]‘I:IN(T_L+1)C£IN,L,T
= Djn.r7X;N(T)
nf’N’Lil(T) predicted Dini-1,7-1X;n(T)
5 N 1(T)  smoothed XfN(T—LH)CfN’LfLT
filters
Aj N [ —2f p ALK i N 1] Pia
Bjn,L,r [_meT_N].ALKj,N,L,T I] P;
Wn, LT —df PALKN LT
error covariances
a;j.N,L(T) ﬂ?fL ALPy N LTl AjN X e
Bine(T)  afp p N AP prTiea—N;,  Binoa X nrALwinr-n,
En,r(T) di pALPy p pdr,T di pArdrr + W Lo X L pArdrr
joint-process errors
en.n(T) di pALPy o d(T) +Wn . 7XNn(T)
en.r_1(T) predicted d(T)+ Wy —1,07-1XN(T)
vn,(T) df pALPy | g7 M= (d(T—L+1) + W, 7 XN(T—L+1))
v (1) smoothed d(T—L+1)+Wn-1,7Xn(T—L+1)
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Table II
Modular Multichannel GWC FTF Algorithm

# Computation Cost (%)
Prediction Problem L=T—-Np+2
For j=1,...,p do:
1 (AJUNﬁL*LTiaj_,JlV,L—l(T)aOJ,N+1,L71,T:’Yj_,JS\H-l,L—l(T)) (1+)
= fu (Aj,N,L72,T71;Ailajjjlv,L—z(T_l): [CYJA,N,LA,T 0} ijh’}’;fl,N,L,l(T),Xj,N+1(T)) 3N +6
2 (Bj,N,L—1,T,3j,N,L—1(T), [éj,N,L—LT 0} ,Pja,y;j\f’[,fl(T)) (1+)
=fp (Bj,N,L—Q,T—la ABinN—2(T—-1), C’j,N+1,L—1,Ta’Yj_,Jsv+1,L_1(T)aXj,N+1(T)) 3N +38
end do.
3 CY;)\;LN+1,T = —Cynr17XN(Nyp—1) N
4 ([DN’L’T 1], 0n.2(T), [C’N’L’T 0} ,’y;\,fL(T)) (see section 5.1 also) (1+)
~ N _ H
=fp ([DN,L—1,T—1 1], AN, -1(T-1), [Cp,N,L—l,T C‘l])\j’l,N‘Fl’T“ Ypn.na (), [XN(T) 0] ) 3N +38
_ p
5 [ Ynn (1) = Yo (1) = ATy (1) [T (Bivear (Mg x 1 (1)) 2p+4
j=1
Yoo (T+1) = 'L (T) Conrr+1=Cnrr
Joint-Process Extension
6 | (Wnrreno(T)) = f1 (WN,L—1,T—1,CN'N,L,T,’YN,L(T)ad(T)aXN(T)) 2N +1
p-channel total cost (2p+1 divisions): (6p+6) N + 16p + 13

25




Table 111
Modular Multichannel SWC FTF Algorithm

# Computation Cost (x)
Prediction Problem
For j=1,...,p do:
1 (AJ,N,L,Ta a5 n (1), CiNt1,L, 1, Vi nsa, L(T)) (1+)
ZfU( N T A gy (T=1), [C‘jfl,N,L,T 0 ijlvvgjl,N,L(T)vXj,N+1(T)) 3N +6
2 (Bj,N,L,T,,Bj,N,L(T), [@,N,L,T 0} Pj,’Y;?V’L(T)) (1+)
=/fp (Bj,N,L_1,T_1, ABjn,p—1(T—1), CN’j,N+1,L,T"Yj_,JSV+1,L(T)an7N+1(T)) 3N +8
end do. Onir=Conrri1=ConiT
For j=1,...,p do:
3 (Aj,N,L—l,Ta @GN (T), Djnya o, _S;',N+1,L(T)) (1+)
= fu (Ainers 0 x (), [Diinpr O] Pya, =83y v o (1), Xynia(T=L+1)) | 3N +5
4 (Bj,N,L,LT,ﬂj,N,L,l(T), [ﬁj,N,L,T 0} Py, _g]s‘,N,L(T)) (1+)
=/fp (Bj,N,L,T,Bj,N,L(T), Dj N1, _S;,N+1,L(T)vXj7N+1(T_L+1)) 3N +7
end do. f)N,L,T = ﬁO,N,L,T+1 = ﬁp,N,L,T
7
5| Teven: Yy (T) ="k (T)= A1 15;, 2MT] (ﬂj,N,Lfl(T)aj_’]l\LL_ﬂT)) =Yon.r (T+1) 2p+3
j=1
ONLT) = 8 xp(T) = &y (T+1)
6 | Todd : 03"y (T) = d3% (T) = WH 1y o (T H (Biv (D)o h o1 (D) =055 T+1) | 243
j=1
Vli\f?L(T) = ’V;,?V,L(T) = ’Y(ISN,L (T+1)
Joint-Process Extension
7 (Wn.o1,en(T)) = fs (WN,Lfl,Tfl;CYN,L,T;’YN’L(T);d(T);XN(T)) 2N +1
8 | (Wa,po1m, =M (T)) = fy (WN,L,T,BN,L,T, —S;V}L(T),d(T—L+1),XN(T—L+1)) N +1

p-channel total cost (4p divisions):

(12p+4) N +28p+ 5
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List of Figures

Figure 1: log (‘T%L,l(T) — rﬁ’\f’Lil(T)D as a function of time for a white input signal with

variance equal to unity, L =30, N =10, A =1, 4 = 0.1 . The simulations are performed
in double-precision floating-point (€™ = 2. 10716). The feedback coefficients are chosen
as in (25) for the stabilized SWC FTF algorithm, whereas they are K3 = 0, Ky = 1 for
the unstable algorithm.
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