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Abstract

Recent advances in information technology such as the Internet of Things
enable businesses and organisations to collect large amounts of data and ap-
ply advanced machine learning techniques in order to infer valuable insights
and improve predictions. Unfortunately, such benefits come with a high cost
in terms of privacy exposures given the high sensitivity of the data that are
usually analysed/processed at third party servers. In this study, we aim at pro-
tecting health data, more precisely, Electro-Cardiogram (ECG) data while
enabling an efficient prediction of arrhythmia using neural networks. We
propose a solution named PAC that combines the use of Neural Networks
with secure two-party computation. To achieve a good trade-off between
privacy, accuracy, and efficiency, we first build a dedicated, efficient neural
network model for which the underlying operations can be further performed
while data is privacy protected. The resulting model consists of two fully
connected layers which perform small size matrix multiplication and one ac-
tivation layer which executes a square function. The solution is implemented
using the ABY framework and makes use of Arithmetic and Boolean cir-
cuits. Several approximations are performed over the representation of the
data, accordingly. PAC also supports classifications in batches when needed.
Experimental results run on the PhysioBank datasets show an accuracy of
96.34% which outperforms existing solutions.

Index Terms
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1 Introduction

Artificial intelligence and machine learning have gained a renewed popularity
thanks to the recent advances in information technology such as the Internet of
Things that help collect, share and process large datasets. This powerful technol-
ogy helps make better decisions and accurate predictions in many domains includ-
ing heavy industry, transportation, finance and healthcare. In particular, Neural
Networks (NN) can support pharmacists and doctors to analyse patients’ data and
quickly diagnose a particular disease such as heart arrhythmia that can cause sud-
den death. Nowadays, this disease can be detected at early stages with the help
of smart wearable devices such as Apple Watch 41 that can record electric heart
activities using Electro-Cardiograms (ECG) data.

Nevertheless, we are experiencing severe data breaches and these cause crucial
damages. A recent research [1] concludes that in 2018 the global average cost of a
data breach is 3.86 million dollars and the healthcare sector is the first sector facing
huge costs. ECG data is considered as very sensitive and is even sometimes used
for biometrics2. Therefore, there is an urgent need for tools enabling the protection
of such collected data while still being able to launch predictive analytics and hence
improve individuals’ lives. These tools will also help stakeholders be compliant
with the General Data Protection Regulations (GDPR)3.

In this work, we aim at addressing privacy concerns raised by the analysis of
the ECG data for arrhythmia classification. Our goal is to enable service providers
perform classification without discovering the input (the ECG data) to this opera-
tion. On the other hand, we also look into the problem from the service providers’
point of view as they care about keeping the design of their services confidential
from the users. Users using these systems/solutions should not be able to discover
the details about the underlying system (such as the Neural Network model). The
challenge often manifests as a choice between the privacy of the user and the se-
crecy of the system parameters. We propose to reconcile both parties, namely the
stakeholders and the users and combine the use of neural networks with secure
two-party computation (2PC). Since secure two-party computation protocols can-
not efficiently support all kinds of operations, we propose to revisit the underlying
neural network operations and design a new, customized neural network model that
can be executed to classify arrhythmia accurately, and this, without disclosing nei-
ther the input ECG data to the service provider nor the neural network parameters
to the users.

The first goal is to minimize the overhead incurred by the use of 2PC. Hence,
both the neural network architecture and the underlying operations should be cus-
tomized and simplified. Furthermore, to be compatible with 2PC, the input values
and the model’s parameters also need to be rounded to integers. For this respect,
two different methods have been proposed. To reduce the input size of neural net-

1https://www.apple.com/lae/apple-watch-series-4/health/
2https://findbiometrics.com/ecg-biometrics-connected-car-507264/
3https://eur-lex.europa.eu/eli/reg/2016/679/oj
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work, we employ Principal Component Analysis (PCA) [2]. The proposed method-
ology is illustrated with a case study whereby some arrhythmia dataset from the
PhysioBank database4 is used. With this dataset, we show that the newly designed
model only involves 2 layers with 54 hidden neurons. The resulting model is im-
plemented in a realistic environment and uses the ABY framework [3] for 2PC.
Experimental results show that the most optimal resulting model reaches an accu-
racy level of 96.34%. Our solution helps predict the class of a heartbeat in 1 second,
approximately. We also evaluate the performance of the system under three differ-
ent design choices based on the implementation (or not) of PCA (when PCA is
performed at the user, when PCA is integrated to 2PC, and when PCA is not used).
In order to improve the performance of the solution even further, we propose to
make predictions in batches and thus help the analyser (the doctor) receive the pre-
diction of a set of heartbeats for a given period (e.g., 30s). We show that by using
the Single Instruction Multiple Data (SIMD) packing method offered by ABY, the
computational overhead is significantly reduced.

The rest of the paper is organized as follows. In the next section, we introduce
the problem of arrhythmia classification and identify the main challenges to ensure
the privacy of the ECG data at the same time. Section 3 focuses on the case study
and presents the newly proposed privacy-preserving variant of the neural network
that we name PAC. Experimental results on its performance and accuracy are also
provided. In section 4, we describe the additional optimisation method which con-
sists of executing predictions in batches. Finally, we review the state of the art in
Section 5.

2 Problem Statement

2.1 Arrhythmia Classification with Neural Networks

As defined in [4], cardiac arrhythmias are abnormal heart rhythms, which cause
the heart to beat too fast (tachycardia) or too slow (bradycardia) and to pump blood
less effectively. These irregularities can be detected and classified by analyzing
the Electro-Cardiogram (ECG) signals of a heart. Doctors classify arrhythmia to
several types according to such behaviors of the heart.

In this work, we focus on the classification of heartbeats extracted from ECG
signals into different classes of arrhythmia using machine learning techniques. In
order to design an efficient arrhythmia classifier, we propose to use Neural Net-
works (NN). A NN, as defined by the inventor of one of the first neurocomputers,
Dr. Robert Hecht-Nielsen, is a computing system made up of a number of simple,
highly interconnected processing elements, which process information by their dy-
namic state response to external inputs. A neural network is typically organized in
layers. Layers are made up of a number of interconnected nodes called neurons.
Patterns are presented to the network via the input layer which communicates to

4https://www.physionet.org/physiobank/database/mitdb
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one or more hidden layers where the actual processing is done via a system of
weighted connections. Each neuron carries a value that represents its activation
bias and each connection between two neuron in two successive layers carries a
weight. Thus each layer has a bias vector B holding all the bias values and a
weight matrix W holding all the connections’ weights in the layer. The hidden
layers then link to an output layer where the answer is the output of the system.

Building the arrhythmia classifier model involves the design of the architecture
of the Neural Network, such as the number of the layers, the size of the input, the
number of neurons in each layer and the underlying operations that each neuron
has to perform. A dataset of ECG heartbeats representing different arrhythmia
types should be prepared. The dataset is split into a training dataset (80%) and a
test dataset (20%). In order to come up with a model that accurately predicts the
actual arrhythmia type, we first train the model on a portion of the training dataset,
then we evaluate its performance on the remaining portion. We use the results of
the evaluation on the validation dataset to compare performance between different
models and to choose the most efficient one. Finally, we test the performance of
the chosen model by checking its performance on the test dataset.

2.2 Arrhythmia Classification with Data Privacy

ECG signals representing patients’ heartbeats can be considered as sensitive
information. Thus, outsourcing the arrhythmia classifier to online servers may put
the privacy of the patients at risk. Hence, we aim at finding a solution where a
party can execute the classification model without leaking and even discovering
information about the input data. On the other hand, the classification model can
also be considered as confidential against its users, namely parties who will send
their queries for classification. This model itself can also have some business value
and therefore be protected. For this respect, we assume that the model should be
unknown to the parties querying it.

Performing some operations over data while these are kept confidential requires
the use of advanced cryptographic tools such as homomorphic encryption [5–8] or
secure multi-party computation [9, 10]. While the integration of such tools offers
better privacy guarantees, they unfortunately introduce some non-negligible over-
head in terms of computation and communication. Furthermore, these tools may
not always be compatible with the complex NN operations. Therefore, we believe
that to design the privacy preserving variant of the classification tool, the actual
classification model should be revisited and built while taking the privacy require-
ments into consideration, as well. Hence, we propose to follow a privacy-by-design
approach and consider privacy requirements at the design phase of the neural net-
work. We have identified the following three main challenges when building a
neural network model customized for the use of privacy enhancing technologies:

• Large size of the NN: The size of the neural network directly depends on the
size of the input and output vectors, the number of layers, and the number

3



of neurons in the model. These parameters have a significant impact on the
complexity of the model. In order to reduce the overhead resulting from
introducing the privacy-preserving variants of the underlying operations, the
number of these operations, hence the size of the neural network has to be
optimized. Such an optimization, on the other hand, should not have an
impact on the actual accuracy of the model.

• Complex NN operations: A neural network involves various operations exe-
cuted by each neuron during the classification phase. These include sophisti-
cated operations such as sigmoid or hyperbolic tangent that may not be easily
and efficiently supported by existing cryptographic tools. Hence, the under-
lying operations should be optimized and sometimes even transformed when
designing the privacy-preserving variant of the neural network classification
model.

• Real numbers instead of integers: Most of the operations in the neural net-
work are executed over real numbers whereas cryptographic tools usually
support integers. Therefore, there is a need for either supporting floating
point numbers or approximating them to integers. Such an approximation
should nevertheless not have a significant impact on the accuracy of the
model.

To summarize, when designing a neural network model customized for the
use of privacy enhancing technologies, one should address the trade-off between
privacy, performance, and accuracy. The dedicated model should involve an opti-
mized number of “simple” operations that advanced cryptographic tools can sup-
port while reaching a good accuracy level.

2.3 Solution Idea

In order to address the three main challenges identified in the previous sec-
tion, we propose to build a neural network model from scratch. This approach is
illustrated with a case study where a publicly available arrhythmia dataset is used.
The design of the NN model is combined with secure two-party computation. Se-
cure two-party computation (2PC) is a sub-problem of secure multiparty compu-
tation (MPC). MPC considers the problem of different parties jointly computing a
function over their separate, private inputs without revealing any extra information
about these inputs than what is leaked by the result of the computation, only. This
setting is well motivated and captures many different applications to ensure privacy
protection5. We propose to use ABY [3], a mixed-protocol framework that effi-
ciently combines the use of Arithmetic shares, Boolean shares, and Yao’s garbled
circuits, to implement and evaluate the NN model. ABY supports many operations
and provides novel, highly efficient conversions between different shares.

5Lectures 1&2: Introduction to Secure Computation, Yao’s and GMW Protocols, Secure Com-
putation Course at Berkeley University

4



As for the design of the appropriate model, we propose to define a small neu-
ral network with two fully connected (FC) layers, one activation layer, and one
softmax layer. Experimental results (also detailed in the next section) show that
this architecture is sufficient to achieve a good accuracy level. The number of in-
termediate neurons can be optimized based on several simulations evaluating the
accuracy of a model for each case. Additionally, in order to reduce the number
of input neurons, we propose to apply Principal Component Analysis (PCA) [2]
and filter out the most significant inputs. Furthermore, because of the complexity
of the activation functions, we propose to use the ReLU or square functions, only.
These operations can be supported by 2PC more efficiently. The design of the new
model customized for the use of 2PC should not result in a significant decrease
on the accuracy of the classification. By definition, the accuracy of class x is the
probability that the model predicts the class x knowing that the heartbeat belongs
to class x (P (predict = x|class = x)). We use a confusion matrix to evaluate
the accuracy of the model. For each y ∈ Classes and x ∈ Classes the confusion
matrix presents the probability that the model predicts the class y knowing that the
heartbeat belongs to class x (P (predict = y|class = x)).

All operations within the newly designed neural network model will be exe-
cuted through a client-server system, whereby the client who could be considered
as the patient (Data Subject) or the hospital (Data Controller) holds the input vec-
tor and the server (Data Processor) holds the model’s parameters. The underlying
protocol should therefore ensure the following:

• The secrecy of the input supplied by the client. This means that the client
would like to get the prediction results without leaking any information about
the heartbeat signal.

• The secrecy of the model parameters supplied by the server. The server
cares about supplying the service to the client without leaking any infor-
mation about the model parameters. We assume that the client knows the
architecture of the model but not the parameters.

• The secrecy of the prediction results with respect to the server. The results
of the prediction should only be accessible to the client and no additional
information concerning it should be leaked to the server.

3 Privacy-preserving Neural Network Arrhythmia Clas-
sifier - A case study with PhysioBank

In this section, we describe the privacy by design approach in details and use
the PhysioBank database to show concrete results on the accuracy and efficiency
of the newly developed model.
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3.1 The optimized neural network model

In order to ensure data privacy during the arrhythmia classification phase, a
dedicated neural network model should be computed. Because the use of cryp-
tographic primitives adds a non-negligible overhead, the complexity of the model
should be optimized as much as possible. Hence, the primary goal while build-
ing a new prediction model, is to optimize the number of neurons at each layer
while keeping an adequate accuracy level. As mentioned in the previous section,
the cryptographic tool that we chose to ensure data privacy is 2PC [9] whereby
the first party holds the input vector, and the second party has the NN prediction
model, namely the weight matrices and bias vectors. Similarly to [11] and [12],
non-linear operations such as the activation functions should be replaced with more
efficient operations such as low degree polynomials. In this section, we describe
our approach with a case study using the MIT-BIH arrhythmia dataset from the
PhysioBank database6. The resulting neural network model is presented with an
incremental approach.

We first extract heartbeats from the Electro-Cardiogram (ECG) signals. Each
heartbeat is composed of 180 samples with 90 samples before the R-peak, 1 sample
for the R-peak, and, 89 samples after the R-peak.

Table 1: Heartbeats for Arrhythmia classification and their frequency in our dataset

Arrhythmia Class Symbol # %
Normal beat N 14985 34.02%
Left bundle branch block beat L 6450 14.64%
Right bundle branch block beat R 5794 13.15%
Premature ventricular contraction V 5712 12.97%
Paced beat / 5608 12.73%
Atrial premature beat A 2042 4.64%
Rhythm change + 1005 2.28%
Fusion of paced and normal beat f 786 1.78%
Fusion of ventricular and normal beat F 647 1.47%
Ventricular flutter wave ! 378 0.86%
Nodal (junctional) escape beat j 184 0.42%
Non-conducted P-wave (blocked APB) x 155 0.35%
Aberrated atrial premature beat a 123 0.28%
Ventricular escape beat E 85 0.19%
Nodal (junctional) premature beat J 68 0.15%
Atrial escape beat e 26 0.06%

Once heartbeats were extracted, we have performed various filtering operations
to create an appropriate dataset to build the neural network model. The PhysioBank
database is shown in Table 4 in Appendix A and contains 23 different annotations
for the extracted heartbeats. We have decided to only consider 16 out of 23 anno-
tations representing meaningful arrhythmia classes that have significant number of
instances in the dataset. Secondly, we realized that normal beats were dominating

6MIT-BIH Arrhythmia Database: https://www.physionet.org/physiobank/
database/mitdb/
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the dataset (67.3%) and hence resulting in an unbalanced dataset for model train-
ing purposes. We have reduced the number of normal beats in order for the model
to predict anomalies more accurately while keeping this number sufficiently large
so that it reflects reality. Moreover, we have used the over-sampling method to
enforce the learning of low frequent classes such as class “e”. Table 1 provides de-
tails about the final dataset we are actually using. This dataset is further split such
that 80% of the heartbeats are used to train the network and 20% of the heartbeats
are used to test the performance of the model. We propose a model with two fully
connected layers involving matrix multiplications, one activation function and a
final softmax function that would provide the resulting arrhythmia class.
Output layer: The number of neurons in the output layer corresponds to the num-
ber of arrhythmia classes. As shown in Table 1, we decide to take the first 16 out
of the 23 arrhythmia classes in the studied dataset. Hence, the number of neurons
in the output layer is set to 16.

Figure 1: The accuracy of the model with different dimensions of the input vector

Hidden layers: In order to choose the appropriate number of neurons within
the hidden FC layer, we have evaluated the accuracy of models on the validation
dataset whereby the number of neurons varies from 2 to 100. We not only evaluate
the overall accuracy but compute the confusion matrix that indicates the accuracy
with respect to each arrhythmia class. We observe that although a model with more
than 38 neurons in the hidden layer may show a slightly better accuracy (see Figure
6 in Appendix B), 38 is a better choice as this implies less complexity in the model
as well as its corresponding confusion matrix shows better fairness toward less fre-
quent classes. Hence, from Figure 6, we observe that the accuracy of our model is
96.51% on the test data. We represent the model’s performance on the test dataset
with the confusion matrix as illustrated in Figure 2. Moreover, the model presents
a good precision value with 96.5%.

Furthermore, in addition to the optimization of the number of hidden neurons,
we have to select the most appropriate activation function that cryptographic tools
(in this case 2-party computation) can support. Although Figure 1 shows better
accuracy results when ReLU is used, we opt for the use of the square function

7



Figure 2: Confusion matrix of the model for each class in the test dataset

mainly for performance reasons. Indeed, the ReLU function involves comparison
operations that can incur higher overhead compared to the square function, the re-
sulting degradation is not very significant (0.34%). Finally, we replace the softmax
function with a simple argmax operation since the exponentiation cannot be easily
computed with 2PC. Note that this approximation does not incur any accuracy loss.
Input layer: The second parameter that affects the complexity of the NN model is
the size of the input vector. This inherently reduces the dimension of the first matrix
used for the FC layer. The main tool to adequately reduce the number of neurons of
the input layer is the principal component analysis technique (PCA) [13]. PCA uses
orthogonal linear transformations to find a projection of all input data (ECG heart-
beats) into k dimensions which are defined as the principal components. Hence,
PCA outputs the k features with the largest variance. The first k eigenvectors of
the covariance matrix (of the dataset) are the target dimensions. The efficiency of
using PCA for the ECG analysis domain has also been proved in [2]. It also helps
reduce the noise in the ECG signals and hence improve the accuracy of the model.
This is due to the fact that dimensions with low variance noise are automatically
discarded.

To identify the appropriate number of eigenvalues we run a simulation with 100
hidden neurons and change the value of the input size n starting from n = 180.
The same simulation is executed using the ReLU and the square operations as for
the activation functions. The choice of these two functions instead of more sophis-
ticated functions such as the widely used sigmoid function is due to their simplicity
and hence their easy integration. The results of the simulation - in terms of the ac-
curacy measured on the validation data - are as shown in Figure 1. We observe
that reducing the dimension of the input data can sometimes increase the accu-
racy of the prediction model. This is mainly due to the existence of low variance
noise in the ECG heartbeats. From this analysis, we choose to set the input size

8



to 16, mainly because the resulting prediction model provides good accuracy with
acceptable complexity. Hence, the number of neurons of the input layer is now set
to 16.
The resulting model: To summarize, the developed model, compatible with the
use of 2PC, consists of 2 fully connected layers, one activation layer implement-
ing a square function and one softmax function. The architecture of the proposed
neural network model is as shown in Figure 3. The first layer consists of a fully
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Figure 3: The proposed NN model

connected layer and its main operations are given in Equation (1):

Y ′h = XT .Wh +Bh (1)

where X represents the input vector (PCA transform of a heartbeat). This input
vector X of size 16 is multiplied with the weight matrix of the hidden layer, Wh,
of size 16 × 38. This intermediate result is further added to the bias vector of the
hidden layer, Bh, of size 38.

The resulting vector Y ′h becomes the input of the activation layer which consists
of computing the square of each element y′hi

of Y ′h described in (2).

Yh =


y′h1

2

y′h2
2

...
y′h38

2

 (2)

The resulting vector Yh is the final output of the hidden layer. This vector further
becomes the input for another FC layer as shown in (3):
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Y ′ = Y T
h .Wo +Bo (3)

Wo, Bo Y
′ denote the weight matrix, the bias vector and the result of the output

layer, respectively. The output is the vector Y ′ of size 16. Finally, a softmax func-
tion is executed over the components y′j of Y ′. The aim of this function is to mainly
identify the actual predicted class (the one that shows the greatest probability). The
result y is the index of one of the 16 arrhythmia classes as given in Equation (4).

y = max
j

ey
′
j∑16

i=1 e
y′i

for j = 1, 2 . . . 16 (4)

In total, the prediction phase consists of: 16 × 38 + 38 × 16 + 38 = 1254
multiplications, 15×38+38+37×16+16 = 1216 additions, 16 exponentiations,
16 divisions and 1 argmax operation.
Discussion on Principle Component Analysis:

As previously mentioned, the NN model is revised and designed from scratch
in order to be compatible with 2PC and remain as efficient as possible. To im-
prove the performance of the classification phase, the size of the input is reduced
using the PCA method. Principle component analysis (PCA) is a statistical method
which identifies patterns, highlights similarity between elements within the dataset
and finally reduces the dimension of the feature space. More formally, let S be a
dataset and xi an element of it with dimension d. The first step of PCA consists of
computing the mean µ of all the elements xi. Then the covariance matrix A of S is
computed. Evidently,Awill have the dimension d×d. The eigenvectors and corre-
sponding eigenvalues of matrix A are further evaluated and the first k eigenvectors
with the largest eigenvalues are selected. Thus, the final output of this method is a
d× k matrix of the most relevant eigenvalues.

We propose to make use of the PCA method to decrease the size of the input
vector. Thus, the client would transmit less data to the server when sending the
input to the model. At this step, the server will first compute the mean µ of his
dataset. Then it will compute the covariance matrix from the training dataset (for
this case study, 44048 heartbeats consisting of 180 samples) and obtain the 180×16
matrix of the most relevant eigenvalues. This matrix along with the vector µ is
sent to the client who reduces the dimension of its input to 16 (instead of 180)
by first normalizing his signal by subtracting it with the mean vector and further
multiplying the result with the received matrix. Consequently, this operation has
already reduced the complexity of the proposed NN.

Nevertheless, the use of the PCA transformation at the client side can result
in some information leakage. We propose to analyse which information and how
much information is leaked, and introduce two design approaches to avoid towards
the information leakage. The leakage resulting from the use of PCA is represented
by two components: the mean of the dataset and the 180 × 16 covariance matrix.
The mean of all the signals in the training dataset does not carry any valuable infor-
mation since the labels of the training signals are not included in the computation
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of the mean. On the other hand, the matrix of 16 eigenvectors does not correspond
to the entire matrix of eigenvalues. In addition to that, without the knowledge of
the eigenvalues there exist an infinite number of inverse transformations back to
the original covariance matrix. Therefore, one cannot discover the training dataset
and hence the model from this reduced and transformed matrix. If we choose not
to leak this information while designing the privacy-preserving NN classification,
then either we do not use PCA (high bandwidth and computational cost) or include
the PCA steps to the 2PC solution (additional overhead but less costly). Accord-
ingly, in this work, we propose the following three design approaches for PAC (as
shown in Figure 4) and evaluate the performance for each of them:

• Model 1: PCA is not integrated to 2PC (original and most efficient solution
implies some leakage),

• Model 2: PCA is integrated to 2PC (less efficient but no leakage),

• Model 3: PCA is not used (worse performance but no leakage).

Figure 4: PAC Overview
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Model 1 and Model 2 are similar: the only difference among them is on the in-
tegration of PCA into the 2PC (no information leakage if Model 2 is used). Model
3 is customized to support 2PC without disclosing any information. When im-
plementing Model 3, one can follow the similar idea of having less complex NN
operations and less NN complexity that we make use of when building models 1
and 2. The resulting model has the same architecture as models 1 and 2 in terms
of NN layers and the size of the output layer but the size of the input (180-sample
instead of 16) and the number of the hidden neurons (40 instead of 38 neurons)
are much higher. In the sequel of this section, we only describe the implemen-
tation of Model 1. Nevertheless, the three models for PAC are implemented and
performance results are provided in the next section.
SIMD circuits: In addition to reducing the size of the neural network and de-
creasing the cost of the underlying operations, we also take advantage of Single
Instruction Multiple Data (SIMD) circuits which allow the packing of multiple
data elements and the execution of operations in parallel. We use this technique to
perform the matrix multiplications and additions more efficiently. In more details,
since the number of hidden neurons is 38, the client creates the SIMD version of its
input X (of size 16) repeated 38 times (i.e. the size of the share is 38 ∗ 16 = 608).
Similarly, the server creates a SIMD version of the weight matrices Wh (of size
16x38) and Wo (of size 38x16) by flattening them to two vectors of 608 elements.
Once these versions obtained, one single SIMD multiplication gate can be used to
perform element-wise multiplication. Next, to finalize the matrix multiplication,
some elements of the resulting vector should also be added. The server also creates
a SIMD version of the bias vectors and adds them to the vector resulting from the
previous SIMD matrix multiplication. The square activation function can also be
computed using one SIMD multiplication gate. To implement the argmax function,
we transform the SIMD share of the previous layer to a non-SIMD share (i.e., the
SIMD share is composed of 1 wire holding all the 16 values of Y ′ while the non-
SIMD share is composed of 16 wires each wire will hold one value of Y ′). Due
to the inability of a comparison gates to compare between negative and positive
values, we use a comparison gate to check the sign of the value by comparing it
with the smallest negative number, namely -1, and then we replace negative values
with a zero using a multiplexer gate. Then, we loop on all the values (wires), and
compare each of them with the max value using a comparison gate. Eventually, in
each iteration two multiplexer gates are used to store the max value and max index
relying on the result of the comparison gate. Hence, Equation (1) involves 1 SIMD
multiplication and 16 SIMD additions; the activation function consists of 1 SIMD
multiplication; further, Equation (3) is computed using 1 SIMD multiplication and
38 SIMD addition gates; finally, to evaluate the argmax, 46 multiplexer gates and
31 comparison gates are used.

Moreover, we propose a secure computation of PCA in Model 2. As described
in Section 3.1, the computation of the PCA can eventually introduce a limited leak-
age of the training dataset. Therefore, a solution might be deployed by introducing
the computation of the PCA vector to the 2PC model. For this to happen, the server
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shares the mean of the dataset as well as the 16 eigenvectors using ABY (the same
way it shares the weights and biases). On the other hand, the client shares its sam-
pled heartbeat signal. The two parties will first collaboratively compute PCA of the
signal while the rest part of the circuit remains unchanged. This PCA computation
layer adds 181 SIMD addition gates and 1 SIMD multiplication gate.

3.2 PAC: Detailed description

As previously mentioned, we propose to use 2PC to obtain the privacy-preserving
variant of the arrhythmia prediction model, i.e., PAC. Since the underlying model
involves several different operations (such as additions, multiplications and com-
parisons), we propose to use the ABY framework which supports all basic op-
erations in a flexible manner using Arithmetic, Boolean or Yao’s circuits. ABY
supports Single Instruction Multiple Data (SIMD) gates. Furthermore, the cur-
rent ABY implementation7 also supports floating point representation if Boolean
circuits are used. Hence, we first implement the privacy-preserving model using
Boolean circuits.
PAC with Boolean shares: The first solution translates the NN model regrouping
the four previously described equations into Boolean circuits. Both the input vector
and the model are represented with matrices and vectors with floating points which
values are represented as doubles (64 bits variables). Each Boolean share consists
of 64 wires. When working with floating point numbers, ABY builds a specific cir-
cuit for each operational gate: For example, one floating point multiplication gate
consists of 3034 XOR gates, 11065 AND gates and 3 MUX gates. Consequently,
the total number of gates in the resulting circuit becomes 553,925 and the depth of
the circuit is evaluated as 4,513.
PAC with Arithmetic shares: Multiplication and addition of Boo-lean shares are
much more time and bandwidth consuming compared to multiplication and ad-
dition of arithmetic shares. We therefore consider the use of arithmetic circuits
only, and represent real numbers with fixed-point numbers. As the multiplication
of two fixed-point numbers can yield numbers with a number of bits higher than
the two initial numbers, hence to an overflow, these numbers need to be truncated
and/or rounded in order to ensure that all intermediate values can be represented
in 64 bits. We mainly propose two truncation methods: The first method consists
of applying truncation at intermediate stages in the circuit and hence try to keep
a good accuracy level whereas the second method truncates the inputs before the
prediction process starts, only. In this section, we only present the second trunca-
tion method since it shows better performance gains. The description of the first
truncation method is given in Appendix C. The problem with the first approach
is that it implies the modification of the actual circuit, specifically adding shifters
between layers. Although the shifters themselves do not add any overhead on the
resulting model, but since shifters can only process Boolean shares this introduces

7https://github.com/encryptogroup/ABY
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an arithmetic to Boolean conversion gate before every shifter and vice versa after
it. The conversion gates add significant delay in the computational time as well as
it increases the amount of data transferred between the client and the server. Still,
its good to mention that in general the first approach is more scalable as it does
not imply any restrictions on the number of layers of the computed model. But
since we have chosen our model, which happens to be a 2-layered model, we con-
sider a more simple truncation approach for which only the inputs to the circuits
are truncated and this before the actual execution of the circuit. Thanks to this
new approach, the actual circuit only consists of arithmetic gates except at the last
stage where an argmax operation needs to be executed. In order to avoid overflows,
we multiply X , Wo and Wh by 103, Bh by 106 and Bo by 1015 and truncate the
fractional part afterwards. We observe that this method is as safe as the maximum
number a signed 64-bit integer variable can take is 9.223372037 × 1018 and the
upper bound for the values of Y ′ is 9, 223 and the lower bound is −9, 223. We
observe that the risk of overflow is very low.

We have tested the accuracy of the new model using the test dataset and we
have achieved an accuracy of 96.34% which is very close to the accuracy of the
original model (96.51%). The confusion matrix of the new model shows the same
accuracies as presented in the original model (Figure 2).

Regarding the complexity of the circuit, thanks to the use of arithmetic gates
only, the number of gates is reduced from 553,925 to 34,329 and the depth is re-
duced from 4,513 to 146. Our final circuit is composed of an arithmetic circuit
represented in the diagram as shown in Figure 5 followed by a Boolean circuit rep-
resenting the argmax layer. On the other hand, with the first truncation approach,
the number of gates is reduced from 553,925 to 35,477 whereas the total depth is
reduced from 4,513 to 160. The decrease in the number of gates and the depth of
the circuit is due to the use of arithmetic gates instead of Boolean gates for multi-
plications and additions. Nevertheless, this decrease remain greater in the second
version because of the use of conversion gates in the first version to switch between
Arithmetic and Boolean shares in order to perform the shifting operations.

Figure 5: Arithmetic circuit representation of the model with Truncation v2

To evaluate the computational and communication overhead of the model, ex-
periments were carried out by a computer which has four 3.60GHz Intel Core i7-
7700 processors, 32GB of RAM acting as the server and a laptop which has two
1.70GHz Intel Core i5-4210U processors, 4 GB of RAM acting as the client. On
the other hand, the client and the server communicate through a local area network
(LAN). The client is connected to the LAN through a wireless access point. A
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Table 2: Performance results for each model

Boolean Circuits Truncation v1 Truncation v2

Proposed NN models Model 1 Model 1 Model 2 Model 1
without ARGMAX Model 1 Model 2 Model 3

Circuit
Gates 553925 35477 36418 128 34329 34696 34660
Depth 4513 160 168 5 146 147 146

Time (ms)
Total 117571.82 1218.613 2776.862 735.357 1082.804 2641.846 4723.203
Init 0.046 0.076 0.071 0.056 0.062 0.037 0.033

CircuitGen 0.046 0.074 0.062 0.067 0.078 0.055 0.047
Network 272.867 268.39 94.142 248.92 51.391 89.46 34.221
BaseOTs 288.047 309.288 310.06 311.387 291.705 294.698 298.294

Setup 107481.557 851.397 2373.818 714.511 817.807 2354.391 4409.689
OTExtension 106645.796 847.424 2369.377 714.278 816.069 2351.584 4407.521

Garbling 812.573 2.502 3.268 0.002 1.405 1.851 1.252
Online 10090.26 367.21 403.042 20.844 264.995 287.453 313.512

Data Transfer (Sent/Rcv, in KB)
Total 319269 / 309573 2629 / 2252 7113 / 6651 1910 / 1900 2171 / 2095 6560 / 6461 12266 / 12139

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48
Setup 305915 / 304815 2240 / 2227 6591 / 6579 1881 / 1881 2086 / 2071 6406 / 6391 12025 / 12010

OTExtension 301095 / 304815 2057 / 2227 6377 / 6579 1881 / 1881 2053 / 2071 6373 / 6391 11992 / 12010
Garbling 4819 / 0 183 / 0 214 / 0 0 / 0 33 / 0 33 / 0 33 / 0
Online 13354 / 4757 389 / 25 522 / 72 29 / 19 85 / 24 154 / 70 240 / 129

simulation of the bandwidth and the latency of the connection between the client
and the server showed the values of 39Mbit/sec for the bandwidth and 3.36 ms for
the latency. Furthermore, we run the client and the server on two separate pro-
cesses communicating through the localhost of the same computer, specifically the
one with the four 3.60GHz Intel Cores to evaluate the performance of the model
without considering the limitation of the bandwidth. In ABY, we set the security
parameter to 128 bits.

Table 2 shows the performance results in terms of prediction time and band-
width consumption for the original Boolean circuits as well as for both truncation
approaches (namely Truncation v1 and v2) with PCA integrated and not integrated
into the 2PC. We further evaluate the model implemented by making use of the
Model 2 and not use of the PCA method, Model 3. Thus, we implement Model 3
to compare with Model 2. Moreover, we have repeated all evaluations on the local
set-up, i.e., the localhost on one machine, to give an insight about the overhead
incured by the low bandwidth (the results are given in the table 5 in Appendix D).
The Network time in the table of performance results represents the time for the
connection to be established. The Total time corresponds to the Setup time and
the Online time; moreover, the Setup time corresponds to the OTExtension time
and the Garbling time. Thus, the prediction time of one heartbeat is the Total time
added to the baseOT time.

Furthermore, we have evaluated the performance of the prediction model with-
out using any privacy enhancing technologies and making use of Tensorflow8. It
takes 7.29ms to predict a heartbeat in cleartext while this value becomes 117,859
ms with the privacy-preserving protocol, PAC (without any truncation). Never-

8https://www.tensorflow.org/
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theless, from Table 2, we observe some significant performance gain in terms of
computational and communication cost by employing the two truncation methods.
Compared to the model built with Boolean circuits, the Total time with the second
truncation method is reduced by a factor of 108. As expected, the second trunca-
tion method shows some improvement over the first truncation method in terms of
time and bandwidth consumption. This consumption resulted from the conversion
of the Boolean and Arithmetic gates causes overhead to the model with Truncation
v1.

From Table 2, Model 2 still provides a better results than Model 3, i.e., build-
ing the NN model without utilising the PCA method. In details, the time and
bandwidth consumption of Model 3 is larger with a factor of 1.8 than Model 2 and
as previously mentioned, the PCA method reduces the noise in the ECG signal and
results in gaining the accuracy. We have also implemented Model 2 without the
argmax layer (the output is a vector of 16-value where its argmax can be computed
locally by the client) to show the size and performance of the arithmetic circuit
without introducing any Boolean gates. Finally, the time performance presented in
the table is highly affected by the low bandwidth of the communication channel
between the client and the server. The time performance difference can be easily
seen by comparing the results in Table 2 with the one in Table 5 in Appendix D
which represent the result of when the client and the server resides on the same
machine and so no bandwidth limitation can affect the result. We observe that the
time consumption of the model evaluated locally on the same machine can reach
39.785 ms which is 27 times less than the remotely evaluated model. This limita-
tion comes from the core of the 2PC protocol which suffers from high bandwidth
consumption. We believe this problem can be easily solved by a decent connection
between the client and the server.

4 PAC in batches

In this section, we propose to perform arrhythmia predictions in batches, namely,
with several heartbeat inputs. This can be justified as the classification of a single
heartbeat may not be sufficient to diagnose the disease for a patient and the doctor
may need to receive the classification of the n consecutive heartbeats. In the sequel
of this section, we describe this new solution that uses the SIMD technique once
again and show that the performance can be improved even more.

4.1 Description

Experiment results show that the use of Arithmetic circuits as an optimization
together with the second truncation method (Truncation v2) significantly improves
the performance. We also realize that, with this optimization, the online time re-
mains short relatively and that 21.2% (82.2% in case of evaluation on the same
machine) of the Total time corresponds to the BaseOT phase. This phase is only
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processed once the two parties initiate the protocol. Hence the overall time may
again be decreased by performing predictions in batches (i.e. performing predic-
tion of many ECG signals at once) using the SIMD technique, once again.

Indeed, the client may first record N signals, prepare the inputs and further
store them in a matrix S(N). Let xi,j be the value of the jth PCA component of
the signal belonging to the individual i in the dataset.

S(N) =


s1
s2
...
sN

 =


x1,1 x1,2 . . . x1,16
x2,1 x2,2 . . . x2,16

...
...

. . .
...

xN,1 xN,2 . . . xN,16


The client further creates the following vector X(N) from S(N).

X(N) =

[
s1 . . . s1︸ ︷︷ ︸

38

. . . sN . . . sN︸ ︷︷ ︸
38

]
︸ ︷︷ ︸

16× 38×N

On the other hand, the server creates the weight matrix vectorWh(N) from the
original weight matrix Wh of the hidden layer.

Wh(N) =



wh1
...

wh38
...

wh1
...

wh38




16× 38×N where Whi =


wh1,i

wh2,i
...

wh16,i



Similarly, the output layer’s SIMD weight vectorWo(N) transforms the weight
matrix of the output layer Wo as follows:

Wo(N) =



wo1
...

wo16
...
wo1

...
wo16




38× 16×N where Woi =


wo1,i

wo2,i
...

wo38,i



The server also creates the vectors Bh(N) and Bo(N) from the two bias vec-
tors Bh and Bo, respectively.
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Bh(N) =



bh1
...

bh38
...

bh1
...

bh38




38×N Bo(N) =



bo1
...

bo16
...

bo1
...

bo16




16×N

The Arithmetic circuit of the NN model is implemented as illustrated in Fig-
ure 5 whereby only the structure of the inputs and output differ (ie. SIMD vectors
result in larger size). The number of SIMD multiplications does not change since
all values are regrouped in one SIMD share and the multiplication is further per-
formed. The number of SIMD additions also remains the same. For the sake of
clarity, we describe the following matrix whereby each column represents one of
the 16 SIMD shares (1 ≤ i ≤ N and 1 ≤ j ≤ 38):

x1,1.wh1,1 x1,1.wh2,1 . . . x1,16.wh16,1

x1,1.wh1,2 x1,2.wh2,2 . . . x1,16.wh16,2

...
...

. . .
...

x1,1.wh1,38 x1,2.wh2,38 . . . x1,16.wh16,38

...
...

. . .
...

xi,1.wh1,j xi,2.wh2,j . . . xi,16.wh16,j

...
...

. . .
...

xN,1.wh1,1 xN,2.wh2,1 . . . xN,16.wh16,1

...
...

. . .
...

xN,1.wh1,38 xN,2.wh2,38 . . . xN,16.wh16,38





38×N

After adding the 16 SIMD shares, we add the bias to complete the evaluation
of (1). The square function is computed by one simple SIMD multiplication as
described before. The result of equation (2) will thus be:

Yh(N) =



yh1,1
...

yh1,38
...

yhN,1
...

yhN,38


=


yh1
yh2

...
yhN


 38×N
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A new vector Y new
h (N) is further created in order to be able to evaluate (3) with

the same number of SIMD multiplication and SIMD addition gates.

Y new
h (N) =



yh1
...
yh1

...
yhN

...
yhN




16× 38×N

For the next layer, the same procedure performed in the hidden layer is repeated:
Namely, starting from the vector Y new

h (N), at the output we get the vector Y (N)
of length 16×N which holds the outputs of the prediction of each signal.

Finally, the Boolean circuit which represents the argmax layer is also per-
formed with SIMD gates. Values of each class in each individual output in the
vector Y (N) are grouped in seperate SIMD vectors. The the same comparison and
multiplexers gates described before will be used but this time the inputs are SIMD
shares. The output of the Boolean circuit will be the vector y(N) where each value
represents the index of the class of the corresponding heart beat.

Table 3: Performance results for the multi-signal model

# Input signals
1 10 100 200 400

Circuit
Gates 33741 39552 40918 42422 45426
Depth 148 148 148 148 148

Time (ms)
Total 1084.713 8002.287 77867.26 160114.6 314311
Init 0.061 0.09 0.062 0.059 0.058

CircuitGen 0.041 0.043 0.052 0.053 0.066
Network 7.115 7.681 7.513 5.34 4.307
BaseOTs 290.672 294.094 293.867 300.302 285.169

Setup 814.036 7575.32 75821.76 155921.4 306985
OTExtension 808.49 7509.797 75149.46 154673.2 304616

Garbling 5.056 62.455 650.642 1214.046 2310
Online 270.673 426.961 2045.492 4193.194 7325.77

Bandwidth (Rcv/Sent in KB)
Total 2095 / 2167 21010 / 21652 209912 / 216247 419805 / 432465 839588 / 864898

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48
Setup 2071 / 2084 20782 / 20936 207647 / 209107 415276 / 418186 830533 / 836342

OTExtension 2071 / 2053 20782 / 20612 207647 / 205947 415276 / 411876 830532 / 823732
Garbling 0 / 31 0 / 315 0 / 3159 0 / 6309 0 / 12609

Online 24 / 83 227 / 716 2264 / 7139 4528 / 14278 9055 / 28555

4.2 Evaluation

We have run experiments with different batch sizes using the local and remote
setups. The results are given in Table 3 for the remote setup and Table 6 in Ap-
pendix D for the local setup. We can observe that the number of gates y increases

19



slightly with respect to the number of signals, which is much better than perform-
ing prediction on signals individually which will cost y = 34329N gates. Also,
the depth is constant in this model regardless of the number of input signals the
model predicts.

The time performance for different number of signals is as shown in Table 3.
We observe that the Total time t still increases linearly with the number of signals
but with a much better rate. More specifically, the batches model can decrease the
time consumption with a percentage of 27% (70% in case of local evaluation) com-
pared to performing prediction on signals one by one which takes t = 1082.8N ms
(t = 39.7N in case of local evaluation). Finally, the BaseOT time is approximately
290ms and remains constant regardless to the number of input signals the model
predicts. This is, again, much better than performing prediction on signals, one by
one, where the BaseOT time bt costs bt = 290 ms. Table 3 also shows that the data
grows perfectly linear with the number of signals.

To summarize, prediction in batches does improve performance in terms of
computational cost but the size of the batch should be bounded according to band-
width limitations.

5 Related Work

Existing privacy-preserving neural network classification techniques mostly fo-
cus on Convolutional Neural Networks (CNN) with the goal of classifying images
and achieve data privacy using homomorphic encryption [11, 12, 14–20] or secure
multi-party computation [21–29] or both techniques [30–32] or the trusted hard-
ware [33–35]. Similarly to our work, these methods aim at reducing the complex-
ity of the underlying neural networks. However, the application scenarios (image
classification with CNNs) significantly differ from ours (arrhythmia classification).
Thus, the models in previous work are not easily comparable to our solution since
authors are dealing with more complex NNs that use convolutions. Furthermore,
datasets containing images (hence the use of CNNs) are different.

Differently to our work, Jun et al. [36] propose a CNN based on ECG arrhyth-
mia classification. ECG signals are taken from the MIT-BIH arrhythmia database
and converted into the images that are made use of inputs of the deep CNN. Al-
though this work is very interesting, authors did not use any privacy enhancing
technologies to ensure the data privacy.

The closest study to our work is [37] which specifically focuses on privacy-
preserving arrhythmia classification with neural networks. Authors in [37] use 2PC
combined with a partially homomorphic encryption [7]. Their protocol is executed
between the client who protects the input vector and the server who stores the
model. Similarly to our model, their neural network is also composed of two lay-
ers: one hidden layer with SATLIN (a symmetric saturating linear) as an activation
function and the output layer implementing the argmax function to decide on the
arrhythmia class. Although this work uses the same dataset from the PhysioBank
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datasets as we do, authors achieve an accuracy of 86.3% whereas PAC reaches
96.43% for the classification of each heartbeat. Furthermore, whilw our model
seems slightly more complex than the one in [37] (38+16=54 neurons instead of
6+6=12 neurons), it shows better accuracy and performance results: The commu-
nication channel used in [37] is set to 1 Gbit/sec which is much larger than our
bandwidth estimation (39 Mbit/sec). Authors evaluated the timing complexity to
be about 7 seconds whereas our solution predicts one heartbeat in 1 second within
a more realistic scenario (less performance in the client-side and lower bandwidth).
This may be considered acceptable in applications wherein heartbeats are classi-
fied at the same pace at which they are produced. Additionally, the accuracy of the
predicted heartbeat is higher and further, the number of output neurons is set to 16,
PAC detects more arrhythmia classes. Moreover, the solution in [37] combines the
use of homomorphic encryption with garbled circuits. The use of both techniques
renders the prediction protocol more time consuming compared to PAC whereby
mostly arithmetic circuits are used. Finally, while both solutions use packing at the
encryption stage and thus allow for prediction in batches, our solution additionally
parallelizes each operation in the model (using the SIMD packing method, once
again) and hence optimizes the timing complexity.

6 Conclusion

In this paper, we have presented PAC, a new Privacy-preserving Arrhythmia
Classification that keeps users’ ECG data confidential against service providers
and the neural network model confidential against users. As a case study, we have
designed a new model based on the PhysioBank dataset. The proposed model in-
volves a customized two-layer neural network with 54 neurons. This model was
built from scratch in order to be compatible with 2PC. The solution is implemented
with the ABY framework which required the truncation of input values and model
parameters. The second truncation method combined with Arithmetic circuits con-
sists of multiplying the input values with 103 and shows significant improvement
in terms of performance and accuracy. PAC achieves an accuracy of 96.34% and
experimental results show that the prediction of one heartbeat takes 1 second in
real world scenarios. We show that more savings can be achieved with the use of
SIMD for performing predictions in batches. Looking forward, we plan to release
the source code of PAC.
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A The arrhythmia dataset from the PhysioBank database

Table 4: Heartbeats for Arrhythmia classification and their frequency from the
PhysioBank database

Arrhythmia Class Symbol # %
Normal beat N 59926 66.593%
Left bundle branch block beat L 6450 7.168%
Right bundle branch block beat R 5794 6.439%
Premature ventricular contraction V 5712 6.347%
Paced beat / 5608 6.232%
Atrial premature contraction A 2042 2.269%
Rhythm change + 1005 1.117%
Fusion of paced and normal beat f 786 0.873%
Fusion of ventricular and normal beat F 647 0.719%
Signal quality change ∼ 508 0.565%
Ventricular flutter wave ! 378 0.42%
Comment annotation ” 352 0.391%
Nodal (junctional) escape beat j 184 0.204%
Non-conducted P-wave (blocked APB) x 155 0.172%
Aberrated atrial premature beat a 123 0.137%
Isolated QRS-like artifact — 112 0.124%
Ventricular escape beat E 85 0.094%
Nodal (junctional) premature beat J 68 0.076%
Unclassifiable beat Q 29 0.032%
Atrial escape beat e 13 0.014%
Start of ventricular flutter/fibrillation [ 5 0.006%
End of ventricular flutter/fibrillation ] 5 0.006%
Premature or ectopic supraventricular beat S 2 0.002%
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B Accuracy evaluation with different numbers of hidden
neurons

Figure 6: Accuracy with different hidden neurons (# input: 16, # output: 16)

C First truncation method with 2PC using Arithmetic Cir-
cuits

We discuss how we implement the first version of the truncation model. The
precision of the inputs of the arithmetic circuits is in the order of the 6th floating
point: thus weight matrix’s and input vector’s values are multiplied by 224 and the
biases by 248. These are further converted to integers without having an impact on
the precision of the value. Once (1) is executed using arithmetic gates, the interme-
diate shares of (Y ′h) are amplified by a factor of 248. Thanks to the initial truncation,
this equation does not incur any overflow. However, moving to the square function,
the values need to be truncated once more. To make these truncations efficient, we
propose to use a simple shift operation. Hence, shares of Y ′h are first transformed
to Boolean shares and their bits are shifted by 24: This is equivalent to dividing
the values by 224. To implement the shift function, the wires of position 2,3,...,40
(wire 1 represent the most significant bit (MSB) and wire 64 represent the least
significant bit (LSB)) are moved to the position of the 40 most right wires (we do
not move the first wire since it represent the sign bit). Then the wires of position
2,3,...,24 are set to the same value of the wire of position 1. This ensures correct bi-
nary representation of the values and it is compatible with negative numbers since
it respects the 2’s complement representation. Note that this method is also imple-
mented in SIMD form as we perform the shift of the bits of all the values in the
vector with a single operation. Once the truncation is applied, the Boolean share
is re-converted to an arithmetic share and the arithmetic circuit corresponding to
the activation function can be applied. Because of the multiplication operation, the
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resulting shares of Yh will again be amplified by a factor of 248. The same trunca-
tion method will thus be repeated. A truncation is not needed at the fourth stage as
the argmax operation only outputs the index and not the actual value. Finally, we
convert Y ′ again to a Boolean SIMD share since comparison operations cannot be
efficiently computed with arithmetic gates and implement the argmax function the
same way it was implemented before.

This first truncation method is evaluated on the test data and it showed good ac-
curacy. The accuracy of the new model with the first truncation method is 96.34%
which is similar to what we get from the model with the second truncation method.
Also, the confusion matrix of the results is the same as the one corresponding the
original model. The evaluation of the model in terms of time and bandwidth con-
sumption was shown in table 2 and discussed in section 3.2

D Evaluation of models using the localhost

Table 5: Performance results for each model (Local evaluation)

Boolean Circuits Truncation v1 Truncation v2

Proposed NN models Model 1 Model 1 Model 2 Model 1
without ARGMAX Model 1 Model 2 Model 3

Circuit
Gates 553925 35477 36418 128 34329 34696 34660
Depth 4513 160 168 5 146 147 146

Time (ms)
Total 2307.122 44.148 92.071 25.24 39.785 79.934 116.689
Init 0.031 0.027 0.033 0.035 0.032 0.034 0.031

CircuitGen 0.032 0.028 0.031 0.043 0.033 0.031 0.032
Network 0.253 3.458 10.799 10.98 9.78 10.903 8.668
BaseOTs 180.536 180.885 182.411 184.171 183.823 188.162 181.041

Setup 2053.517 32.513 72.795 22.594 29.63 63.531 94.145
OTExtension 2010.62 30.547 70.059 22.462 28.488 62.172 92.311

Garbling 28.847 1.71 2.185 0.001 0.945 0.948 1.23
Online 253.604 11.634 19.274 2.645 10.154 16.402 22.543

Data Transfer (Sent/Rcv, in KB)
Total 309573 / 319269 2252 / 2629 6651 / 7113 1900 / 1910 2095 / 2171 6461 / 6560 12139 / 12266

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48
Setup 304815 / 305925 2227 / 2240 6579 / 6591 1881 / 1881 2071 / 2086 6391 / 6406 12010 / 12025

OTExtension 304815 / 301095 2227 / 2057 6579 / 6377 1881 / 1881 2071 / 2053 6391 / 6373 12010 / 11992
Garbling 0 / 4829 0 / 183 0 / 214 0 / 0 0 / 33 0 / 33 0 / 33
Online 4757 / 13344 25 / 389 72 / 522 19 / 29 24 / 85 70 / 154 129 / 240
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Table 6: Performance results for the multi-signal model (Local evaluation)

# Input signals
1 10 100 200 400

Circuit
Gates 33741 39552 40918 42422 45426
Depth 148 148 148 148 148

Time (ms)
Total 37.062 156.838 1124.62 2336.923 4205.39
Init 0.024 0.028 0.025 0.026 0.023

CircuitGen 0.048 0.04 0.054 0.051 0.053
Network 0.323 0.306 0.329 0.327 0.35
BaseOTs 169.302 171.583 173.831 175.802 175.938

Setup 27.101 142.906 1077.62 2245.578 3999.312
OTExtension 26.169 139.448 1049.156 2190.003 3897.242

Garbling 0.747 2.47 19.689 38.629 69.013
Online 9.96 13.931 46.998 91.344 206.077

Bandwidth (Rcv/Sent in KB)
Total 2095 / 2167 21010 / 21652 209912 / 216247 419805 / 432465 839588 / 864898

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48
Setup 2071 / 2084 20782 / 20927 207647 / 209107 415276 / 418186 830532 / 836342

OTExtension 2071 / 2053 20782 / 20612 207647 / 205947 415276 / 411876 830532 / 823732
Garbling 0 / 31 0 / 315 0 / 3150 0 / 6300 0 / 12600

Online 24 / 83 227 / 725 2264 / 7139 4528 / 14278 9055 / 28555
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