
A MEC-based Extended Virtual Sensing
for Automotive Services

Giuseppe Avino∗, Marina Giordanino†, Pantelis A. Frangoudis‡, Christian Vitale∗, Claudio Casetti∗, Carla
Fabiana Chiasserini∗§, Kalkidan Gebru∗, Adlen Ksentini ‡, Aleksandra Stojanovic †

∗ Electronics and Telecommunications Department, Politecnico di Torino, Italy
† CRF-FCA, Torino, Italy

‡ EURECOM, Sophia Antipolis, France

Abstract—Multi-access Edge Computing (MEC) promises to
enable low-latency applications and to reduce the impact of
edge service traffic on the core network. Leveraging on the
extension of the popular OpenAir Interface (OAI) architecture
to include MEC functionalities, in this paper we show the impact
of edge computing resources on a crucial vertical domain, i.e.,
the automotive domain. As a key example, we focus on a rele-
vant class of automotive services, namely, the Extended Virtual
Sensing (EVS) services. With EVS, the network infrastructure
collects and makes available measurements gathered by sensors
aboard vehicles, as well as by smart city sensors, to improve
road safety and passengers/driver comfort. Specifically, we select
the EVS application that extends the vehicle sensing capability
for supporting vehicle collision avoidance at intersections, and
we describe its implementation within the OAI MEC platform.
We evaluate the performance of the designed solution emulating
the Cooperative Awareness Messages (CAMs) of several vehicles,
using a Software Defined Radio (SDR) equipment. We then
show experimentally that the MEC infrastructure is pivotal
to meeting low-latency requirements and allows detecting all
collisions between vehicles, thus proving to be of great benefit to
the support of critical automotive services.

Index Terms—5G networks, Road safety services, Extended
virtual sensing, Multi-access edge computing, V2I communica-
tions.

I. INTRODUCTION

The death toll on our roads has reached staggering numbers:
every year, road accidents globally claim the lives of 1.25
million people, leaving up to 50 million with serious, perma-
nent injuries. Calls for a paradigm shift in people’s mobility
abound, and none is more promising than the use of accident
prevention technology on roadsides and onboard new vehicles.
The latter is a specific application of a class of automotive
services known as Extended Virtual Sensing (EVS), which
leverages vehicular communication to collect the output of
onboard vehicles sensors, merge them with smart city sensors,
and distribute up-to-date information to increase the awareness
of the surrounding environment.

While consolidated standard families for vehicular com-
munication by IEEE and ETSI have been around for more
than a decade, the rise of 5G networks is delivering the
vision of a one-stop solution for integrated vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-
to-pedestrian (V2P) operations. 5G networks are nearing the

commercial readiness and the automotive industry is eyeing
its first deployment by 2021. It is thus to the capabilities
of 5G networks that one must look to assess the potentiality
of the C-V2X (Cellular Vehicle-to-Anything) technology for
road safety. Among all the key performance indicators of
5G that operators, manufacturers, and researchers alike hope
to exploit, it is the low latency that matters most in view
of devising effective EVS services. The key piece of the
architecture that enables the reduction of the latency is the
localized computational infrastructure represented by Multi-
access Edge Computing (MEC).

In this paper, we take as reference EVS service the one
for collision avoidance between vehicles at an intersection.
We present a testbed implementation of such EVS service,
deployed on an OpenAir Interface (OAI) architecture including
MEC functionalities. We include a performance evaluation
with a hardware-in-the loop simulation approach showcasing
the effectiveness of both the collision avoidance algorithm and
its MEC implementation.

II. MULTI-ACCESS EDGE COMPUTING ARCHITECTURE

Edge computing comes with the promise of enabling
low-latency applications, exploiting distributed heterogeneous
computing and network resources close to the user end, and
reducing core network load by offloading traffic to edge
service instances. Recent standardization efforts have brought
about detailed architectures for MEC. The ETSI MEC Industry
Specification Group (ISG) has provided a reference MEC
architecture [2], specifying its components and their interfaces,
as shown in Fig. 1. The main entities it includes are as follows:
• MEC host: It provides the execution environment to

run (virtualized) Mobile Edge (ME) applications, and
includes a MEC Platform (MEP) and a virtualization
infrastructure, where ME applications are deployed.

• MEP: This component acts as the interface between the
mobile network and ME applications. The MEP interacts
with the mobile network over the (non-standardized)
Mp2 interface to access the user data plane, while it
exposes MEC services via the Mp1 reference point. The
MEP Manager (MEPM) component is responsible for
MEP configuration and ME application lifecycle manage-
ment, under the control of the Mobile Edge Orchestrator
(MEO).

Fig. 1. ETSI MEC architecture [1].

• MEC services: These services are discovered and con-
sumed by ME applications over the Mp1 reference point.
The ETSI MEC standards specify a set of MEC services
that are provided natively by the MEC platform, as is
the case for the Radio Network Information Service
(RNIS) [3], local DNS or traffic rules control. At the
same time, via Mp1, third-party ME applications can
register and provide their own services. Note that not all
ME applications necessarily provide or consume MEC
services.

• Mobile Edge Orchestrator (MEO): This component
maintains a global view of the whole mobile edge net-
work and is in charge of managing ME applications.
The MEO is the interface between the BSS/OSS and the
MEC platform and host. By interacting with the MEP
and the virtual infrastructure, it supports the lifecycle
management (e.g., instantiation and termination) of ME
applications.

Further extensions of the MEC architecture towards network
slicing and for deploying a MEC framework in a Network
Function Virtualization (NFV) environment are currently un-
der study.

III. EXTENDED VIRTUAL SENSING APPLICATION

We now present the EVS application we chose for exempli-
fying the use of the MEC in the automotive domain. Details
on the implementation are provided in Section. IV-B.

The EVS application, running in a VM on a host machine
in the MEC platform, is activated in the proximity of an
intersection and aims at avoiding the risk of collisions involv-
ing approaching vehicles. The collision detector is designed

to alert drivers about the presence of unseen vehicles or
other unexpected obstacles and, possibly, it is the enabler
for vehicles to autonomously activate the emergency braking
system.

Vehicles can count on data coming from multiple informa-
tion sources: data generated by the ego vehicle on its own
dynamics, onboard ADAS sensors (ultrasonic, lidar, radar,
camera), and messages exchanged through V2I communi-
cation, which can be interpreted as virtual ADAS sensors.
Nevertheless, having a centralized view of the monitored
area, the EVS application can enhance the data provided by
the aforementioned sources and can be exploited to provide
key information to the control logic making decisions at
the vehicle. Specifically, the EVS application exploits real-
time data collected by a third-party entity, the Cooperative
Information Manager (CIM), about position, heading, speed,
and acceleration of all vehicles at the monitored crossing.
Based on such information, the EVS application evaluates
each pair of vehicles and estimates possible collisions with a
trajectory-based algorithm. In this paper, we base our results
on a state-of-the-art trajectory algorithm [4], which we report
in the following section.

A. The Collision Detection Algorithm

The core of the EVS application is the detection algorithm,
presented in Algorithm 1. Note that, although we focus on
collisions between vehicles, being the algorithm based on
generic trajectories, it can be applied to any kind of colliding
entity (e.g., for collisions between vehicles and pedestrians).
Also, for simplicity, we do not express in Algorithm 1 the

dependency on acceleration, even though it has been accounted
for in the implementation of the EVS application.

The algorithm is run at each new Cooperative Awareness
Messages (CAM) message generated by a vehicle travelling
across the monitored intersection. The collision detection
algorithm requires as input (Line 0):
• position and speed of the vehicle transmitting the last

CAM in the area of interest (denoted below as ego
vehicle), respectively identified by the two vectors ~p0
and ~s0, where the speed vector also includes information
on the heading;

• the latest CAM sent by all other vehicles traveling in the
area, which are stored in V .

In Line 1, the set Z of entities with whom the ego vehicle
could collide is initialized and, in Line 2, the future position of
the ego vehicle is evaluated for each future time instant. Then
the algorithm computes the position of each vehicle v ∈ V that
recently sent a CAM (Line 4) and the distance ~d(t) between
such a vehicle and the ego one (Line 5).

Thanks to the computation of ~d(t), we are now aware of
the distance between the ego vehicle and the generic vehicle
v, at any time t. To reduce false positives, our algorithm aims
at producing an alert only for imminent collisions, i.e., for
which the time to collision is below a given threshold t2c.
Furthermore, we take into account the fact that the vehicles
position available at the EVS application, i.e., ~pX , refers to
the front bumper of the vehicle. To consider the actual space
taken by of real vehicles, our algorithm raises an alarm if two
cars distance goes below a threshold s2c > 0.

Since we are interested in the minimum value of D(t), in
Line 7 we compute t?, defined as the time instant at which
the distance between the two considered vehicles is minimum.
If t? < 0, the two vehicles are getting farther apart, whereas,
if t? is greater than the threshold t2c, a collision between
them is not considered as imminent. In both cases, no action is
required (Line 8). If t? is between 0 and t2c, Line 11 computes
the minimum distance d? at which the two vehicles will be at

Algorithm 1 Collision detection pseudocode
Require: ~p0, ~s0,V

1: Z ← ∅
2: ~p0(t)← ~p0 + ~s0t

3: for all v ∈ V do
4: ~pv(t)← ~pv + ~sv · t
5: ~d(t)← ~p0(t)− ~pv(t)

6: D(t) := |~d(t)|2 ← (~s0− ~sv) ·(~s0− ~sv)t
2+2(~p0− ~pv) ·

iiiiiiiiiiiiii · (~s0 − ~sv)t+ (~p0 − ~pv) · (~p0 − ~pv)

7: t? := t : d
dtD(t) = 0← −(~p0− ~pv)·(~s0− ~sv)

| ~s0− ~sv|2

8: if t? < 0 or t? > t2ct then
9: continue

10: d? ←
√
D(t?)

11: if d? ≤ s2ct then
12: Z ← Z ∪ {v}
13: return Z

time t?. The algorithm compares d? against the threshold s2c:
if d? is lower, then vehicle c is added to set Z , otherwise the
algorithm skips to the next iteration of the cycle.

Once all CAMs in set V have been processed, the algorithm
returns the set Z of vehicles with which the ego vehicle is on
a collision course. If the set Z is empty, no action is taken,
else an alert message is sent to the ego vehicle as well as to
all those that are in set Z . As discussed in [4], the optimal
values of t2c and s2c for maximising the number of correctly
detected collisions in the considered scenario are t2c = 3.5 s
and s2c = 3.7m.

IV. IMPLEMENTATION

We now illustrate the implementation details of our EVS
application. Our testbed can be divided into two main blocks,
namely, (i) the MEC-enabled EPC Network (Section IV-A);
(ii) the EVS and the CIM services running as ME applica-
tions (Section IV-B). Furthermore, in the testbed, two realistic
implementations of cellular User Equipments (UEs), based on
OAI, act as vehicles. Such UEs send periodically the infor-
mation related to position, speed, and direction of emulated
vehicles towards the CIM.

Fig. 2 provides an overview on the interactions between
such building blocks. Vehicle movements are taken from
simulated traces obtained by the well-known Simulation of
Urban MObility (SUMO) [5] tool. In turns, the MEC-enabled
EPC redirects the traffic received towards the CIM. The EVS
application retrieves periodically the latest vehicle information
from the CIM. When needed, the EVS application sends alerts
towards the vehicles.

A. The MEC Platform

Our system builds on OAI [6], an open source implementa-
tion of a full LTE network, spanning the RAN and the Evolved
Packet Core (EPC), with current developments focusing on 5G
technology. On top of this, we have implemented our MEC
platform, which exposes REST-based API endpoints to the
ME applications, so that the latter can discover, register, and
consume MEC services (e.g., the EVS application).

We provide extensions to the OAI RAN and the core
network elements to implement the Mp2 reference points.
Core network extensions are necessary for traffic offloading
to ME application instances, while specific support is needed
at the RAN level for retrieving radio network information from
eNBs, such as per-UE Channel Quality Indications (CQI), and
exposing them to subscribing ME applications. In our MEC
testbed, ME applications run on the MEC host as Virtual
Machines (VMs) directly on top of the kvm [7] hypervisor.
However, our MEC platform is also compatible with Virtual-
ized Infrastructure Managers (VIMs) such as OpenStack [8],
while it has been tested with containerized ME applications
managed by lxd [9].

Fig. 2 presents our MEC testbed setup and the interactions
and interfaces between its components. The OAI EPC is vir-
tualized, with the HSS, MME, and SPGW running as separate
kvm VMs on a single physical machine, which also hosts the
MEP. Note that the latter can also be executed as a virtual

Fig. 2. Interaction between the testbed building blocks.

instance on the MEC host. Due to its real-time constraints, the
OAI eNB software is running on a dedicated host, to which a
USRP B210 RF board is attached. Each UE RF front-end is
also connected to a dedicated host. Over-the-air transmissions
are carried out in LTE band 7; the transmission range of the
eNB is in the order of a few meters.

B. The Automotive MEC Service

As previously mentioned, we run two automotive MEC
services: (i) the CIM, which acts as a collector of CAMs
transmitted by the vehicles in the monitored area, and (ii)
the EVS application onboarding a trajectory-based algorithm,
which aims at avoiding collisions between vehicles.

At run time, the CIM decodes received CAMs messages
and then performs the following two actions:
(i) it stores a record of the received CAM in a PostgreSQL

database for post-processing purposes,
(ii) it passes a copy of the received CAMs to the so called

CAM managers. A CAM manager is an agent that is initi-
ated by the CIM to keep in memory only CAMs related to
a specific circle of the monitored area. When CAMs are
passed to the CAM manager, the CAM manager checks
if the CAMs fall in the assigned circle and, if so, it stores
them in a dedicated area of the RAM memory, ready for
the queries of the EVS application.

The EVS application onboards the algorithm we described in
Sec. III-A. Furthermore, the EVS application queries the CAM
managers at the CIM covering the area of interest. The EVS
application queries the latest CAMs to the CAM managers
every 5 ms over a dedicated TCP connection. When the CAM
managers provide new CAMs, the detection algorithm checks
if its sender is at risk of collision. When the EVS application
detects a pair of vehicles on a course of collision, they are
warned by unicast alert messages (Decentralized Environmen-
tal Notification Messages (DENMs)).

Fig. 3. Screenshot of the scenario simulated in SUMO.

V. PERFORMANCE EVALUATION

We now present the scenario we used for our performance
evaluation Sec. V-A, and then we evaluate our MEC imple-
mentation in terms of: (i) end-to-end delay, and (ii) percentage
of correctly detected collisions.

A. Reference Scenario

Two UEs emulate flows of vehicles traveling on the roads
of the map shown in Fig.3. Vehicles only traverse the scenario
from north to south (or viceversa), and from east to west (or
viceversa). Collisions happens only between vehicles belong-
ing to the opposite groups, since we assume that all cars travel
with constant speed (namely, 50 km/h). The mobility traces
describing the pattern of the vehicles are obtained with SUMO.
We sample the mobility traces of each vehicle every 0.1 s (10
Hz) and we derive key information of their movement, among
which, speed, acceleration, and direction. For each obtained
sample, we create a CAM, which we transmit through one of

the UEs towards the eNB of the OAI cellular network. Finally,
to evaluate how performance changes with the number of cars
in system, we used three different values of vehicle density:
(i) high, i.e., 20 vehicles, (ii) medium, i.e., 15 vehicles, and
(iii) low, i.e., 10 vehicles.

B. End-to-end Delay

The end-to-end delay is computed considering only CAMs
that trigger an alarm, and it is defined as the time that elapses
between the transmission of a CAM message by a vehicle
and the reception, by the same vehicle, of the alarm that such
CAM triggered.

Fig. 4. CDF of the end-to-end delay for varying vehicle density.

Fig. 5. CDF of the minimum distance reached by vehicles on collision cource.

Fig.4 reports the delay experimental cumulative distribution
function (CDF): each curve has been obtained averaging the
values of end-to-end latency of 5 different runs. In our tests,
the average number of collisions for the “high density” case is
6, 4 for the medium density and 2 for the low density. Given
the algorithm used and the parameters set (i.e., the threshold
t2c and s2c), the maximum number of DENMs that can be
generated for a given collision is 70. Indeed, in the best case,

two cars in course of a collision start receiving DENMs t2c =
3.5 s in advance, once for every CAM they transmitted, i.e.,
two CAMs every 100ms.

In all scenarios, the 80% of the end-to-end latency values
we obtained is below 45ms. In particular, the average end-to-
end latency is 32.5ms for the low-density case, 37.2ms for
the medium density, and 37.7ms for the high density. The
lower end-to-end latency for the low-density case is due to
the smaller number of CAMs processed by the EVS/CIM ap-
plications. Indeed, while the delay introduced by the network
remains constant (on average 22.5 ms), the processing time
at the EVS/CIM applications is proportional to the number of
cars in the system. Finally, we can observe that 99.999% of
the latency values we recorded are lower than 60ms.

C. Collision Detection Performance

To evaluate the ability of our EVS implementation to detect
imminent dangers in the area of interest, we first build a
ground truth for the collisions. Thanks to the SUMO error-log
file, for a specific mobility trace, we obtain the actual collisions
between vehicles. Given the fact that the same mobility trace is
also used in our testbed, we can easily compute the percentage
of detected collisions analyzing the DENM messages delivered
in the testbed. Furthermore, if the alert for a collision was
correctly transmitted, we also look at when it was received
and processed by the involved entities. In this way, we can
determine if the vehicle had sufficient time to brake before
the impact. To do so, we compute the distance at which
the colliding vehicles stop after having received the DENM
(Fig.5).

To compute the position in which the two vehicles stop,
we retrieve their position at the moment of the first DENM
reception. The driver cannot start braking as soon as the
alert message is received for two different reasons: first, the
vehicle human-to-machine interface (HMI) needs some time to
elaborate the warning message; second, a human driver does
not react immediately to a danger. We set the HMI time to
400 ms, whereas the human reaction time to 1 s. Considering
these two factors, we can compute the position ~pf of the front
bumper when a car stops. Finally, we reconstruct the shape
of the vehicles (approximating to a rectangle) and find the
minimum distance between these two polygons.

The result of our evaluation is that all collisions occurred in
SUMO are avoided by the EVS application and, on average,
the distance at which the vehicles on a collision course stop
is between 20 and 21m. Furthermore, the results found here
are consistent with what was observed in the previous section.
Indeed, in the high-density case, the processing time of the
EVS/CIM applications is higher, the end-to-end latency grows,
DENMs are delayed, and drivers travel larger distances before
starting to brake (see Fig.5).

VI. RELATED WORK

Several works have dealt with applications in the automotive
domain (e.g., [10]). Many of them, e.g., [11], [12], propose
collision avoidance and collision detection applications that do
not leverage any mobile network infrastructure. In particular,

[11] focuses on collisions between vehicles and pedestrians
in industrial plants, with no specification on the type of
wireless communication used. [12] proposes instead a way
to automatically detect a collision after it has occurred, using
smart-phone accelerometers to reduce the time gap between
the actual collision and the first aid dispatch.

The use of the cellular network for the automotive domain
as supporting infrastructure has been considered in the last few
years. A considerable body of works, e.g., [13]–[15], perform
comparisons between IEEE 802.11p and the standard LTE
network (non-V2V) for vehicular applications. In particular,
[13] highlights the higher capacity, coverage, and penetration
of LTE with respect to 802.11p, which is also affected by
scarce scalability and unreliable transmissions. [15] confirms
these observations stating that LTE offers superior network
capacity with respect to 802.11p and is suitable for all case
studies. On the contrary, [14] considers LTE unsuitable for
collision avoidance applications, due to issues caused by the
Doppler effect and LTE handoff procedures. The choice of the
best communication technology is still subject of an intense
debate in the scientific community.

To assess the ability of the cellular network to support
automotive services, in this paper we present a first real
implementation of a road safety application. Furthermore,
contrarily to all previous approaches, our work shows how
latency and reliability may be improved when the automotive
domain is assisted by the cellular network and the availability
of computational capabilities at the edge of the network.

An extensive body of works focuses on MEC [16], but
concrete MEC system implementations are few. On this front,
[17] presents the design and implementation of a MEC plat-
form with the design goal of requiring no modifications at
the RAN and EPC. CDS-MEC [18] aims to eliminate the
interactions between the EPC and the mobile edge system.
However, no implementation allows a full, yet transparent
to the network, MEC implementation. Thus, we opted for
tailoring our solution to OAI, particularly regarding the RAN
part. In fact, our work is closer to the LL-MEC [19], a
MEC design also focused on OAI. LL-MEC uses SDN
techniques for control-user plane separation, as well as the
same southbound protocol [20] as ours for retrieving RAN-
level information from OAI eNBs. Nevertheless, apart from
implementation differences (e.g., different interfaces towards
the EPC), our MEC system further includes a standards-
compliant implementation of the Mp1 reference point of the
MEO towards the OSS/BSS, an RNIS interface that fully
complies with ETSI MEC 012 [3], and platform components
for MEC service discovery and registration.

VII. CONCLUSION

The provision on a global scale of low-latency communica-
tion services to vehicular applications will soon be realized
by the deployment of 5G networks and the introduction
of edge infrastructure such as MEC. Such a technological
enabler will be a key in the development of sophisticated
road safety applications, of which the intersection collision
avoidance is one of the most egregious examples. In this paper

we have presented a MEC-based architecture and its testbed
implementation, supporting a collision avoidance algorithm
that leverages inter-vehicular communication to alert drivers
of impending, potential crashes. A hardware-in-the-loop sim-
ulation campaign has shown the effectiveness of our approach
in avoiding collisions and stopping vehicles well clear of their
potential crash.

ACKNOWLEDGMENTS

This work was supported by the European Commission
through the H2020 5G-TRANSFORMER project (Project ID
761536).

REFERENCES

[1] F. Giust, X. Costa-Perez, and A. Reznik, “Latency Critical IoT Applica-
tions in 5G: Perspective on the Design of Radio Interface and Network
Architecture,” IEEE 5G Tech Focus, vol. 1, no. 4, Dec. 2017.

[2] Mobile Edge Computing (MEC); Framework and Reference Architec-
ture, ETSI Group Specification MEC 003, Mar. 2016.

[3] Mobile Edge Computing (MEC); Radio Network Information API, ETSI
Group Specification MEC 012, Jul. 2017.

[4] M. Malinverno, G. Avino, C. Casetti, C.-F. Chiasserini, F. Malandrino,
and S. Scarpina, “Performance analysis of c-v2i-based automotive
collision avoidance,” in 2018 WoWMoM. IEEE, 2018, pp. 1–9.

[5] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility,” in The Third International Conference
on Advances in System Simulation (SIMUL 2011), Barcelona, Spain,
vol. 42, 2011.

[6] “OpenAirInterface, 5G software alliance for democratising wireless
innovation,” http://www.openairinterface.org, accessed: 2018-14-12.

[7] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux virtual machine monitor,” in Proc. Linux Symposium, 2007.

[8] “Openstack webpage,” https://www.openstack.org/, 2019, [Online; ac-
cessed 10-March-2019].

[9] “Linux container 1xd webpage,” https://linuxcontainers.org/lxd/, 2019,
[Online; accessed 10-March-2019].

[10] L. Gallo and J. Haerri, “Unsupervised long-term evolution device-to-
device: A case study for safety-critical v2x communications,” IEEE
Vehicular Technology Magazine, vol. 12, no. 2, pp. 69–77, June 2017.

[11] Z. Riaz, D. Edwards, and A. Thorpe, “SightSafety: A hybrid information
and communication technology system for reducing vehicle/pedestrian
collisions,” Elsevier Automation in construction, 2006.

[12] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt,
“Wreckwatch: Automatic traffic accident detection and notification with
smartphones,” Springer Mobile Networks and Applications.

[13] G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro, “Lte
for vehicular networking: a survey,” IEEE Communications Magazine,
vol. 51, no. 5, pp. 148–157, May 2013.

[14] Z. Xu, X. Li, X. Zhao, M. H. Zang, and Z. Wang, “Dsrc versus 4g-lte for
connected vehicle applications: A study on field experiments of vehicu-
lar communication performance,” Journal of Advanced Transportation,
2017.

[15] Z. Hameed Mir and F. Filali, “Lte and ieee 802.11p for vehicular
networking: a performance evaluation,” EURASIP Journal on Wireless
Communications and Networking, vol. 2014, no. 1, p. 89, May 2014.
[Online]. Available: https://doi.org/10.1186/1687-1499-2014-89

[16] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys
and Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[17] T. Subramanya, G. Baggio, and R. Riggio, “lightmec: A vendor-agnostic
platform for multi-access edge computing,” in Proc. 14th International
Conference on Network and Service Management (CNSM ’18), 2018.

[18] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun,
“CDS-MEC: nfv/sdn-based application management for MEC in 5g
systems,” Computer Networks, vol. 135, pp. 96–107, 2018.

[19] N. Nikaein, X. Vasilakos, and A. Huang, “LL-MEC: enabling low
latency edge applications,” in Proc. IEEE CloudNet, 2018.

[20] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. P. Kon-
tovasilis, “Flexran: A flexible and programmable platform for software-
defined radio access networks,” in Proc. ACM CoNEXT, 2016.

