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Abstract—We propose a smart offloading policy that dynami-
cally assigns data flows to the WiFi and cellular interfaces, so as
to minimize a given cost function (related to energy consumption
and cellular plan usage), while keeping the average per-flow delay
bounded. The basic insight of the proposed Threshold Policy
is to assign larger flows to the network that provides the best
rate (often WiFi), and smaller flows to the other, since energy
is generally related to the time needed to send/receive data.
However, choosing the size cutoff optimally must also consider
load-balancing and queueing aspects, WiFi availability, flow
size statistics, and user/application preferences. We validate our
model against simulations, and show that our policy outperforms
other standard or smart policies, achieving considerably better
energy-delay trade-offs, while only offloading a small percentage
of (large) flows. Initial measurements performed on an Android-
based offloading prototype further support our findings.

I. INTRODUCTION

The explosive growth of mobile data traffic, e.g. video on-

demand, YouTube, personalized radio [1], is raising concerns

both for mobile operators and for users. WiFi offloading is

seen as one potential solution for both. Operators can alleviate

congested base stations, and users can avoid using their data

plan and face potential charges. What is more, studies suggest

that WiFi-based offloading could save device battery power

(e.g. 55% reported in [6]), especially when WiFi offers better

rates than cellular.

Yet, a key disadvantage of WiFi is its sporadic availability.

At the moment, “offloading” consists of simply switching

all traffic from cellular to WiFi, when WiFi is available.

This type of offloading, referred to hereafter as On-the-spot

offloading [5], [25], can be chosen manually by the user or

even enforced by the operator [4]. The actual benefits of course

strongly depend on the WiFi availability.

To offload more data, Delayed offloading has been also

proposed, where data transfers can be delayed until WiFi is

available. The majority of proposals in this area are aggresive

policies that send all data initially to the WiFi interface, [6],

[7], [8], and associate each flow with a deadline: if the transfer

does not finish within its deadline, data is sent over the cellular

interface. A larger amount of data could be thus offloaded, if

long enough deadlines are chosen [6], [7], but this could also

lead to long delays for many flows.

Various studies have shown that users are willing to delay

some traffic if incentives are provided [9], [10] and a growing

number of applications are tolerant to longer delays, e.g.

episodic Video-On-Demand, or bulk data transfers such as

cloud synchronization and software updates, social network

feeds, etc. Nevertheless, long delays are generally considered

unwelcome for a user. Hence, aggresive policies that can

potentially delay most flows might impede their adoption. It

is preferable to selectively offload as few as possible.

The above two classes of policies, delaying all flows by

some deadline (delayed offloading) or no flows (on-the-spot

offloading), represent two extremes. A smart offloading policy

should choose which flows to assign to the cellular interface

and which to WiFi. While an abundance of criteria could be

imagined for this choice (e.g. application type, user prefer-

ences, network rates), a good policy would ideally offload

enough data to have an impact on performance metrics of

interest (e.g. on congestion, data plan usage, device battery),

but should not delay many user activities or data transfers.

The main argument in this paper is that the above seemingly

conflicting goals could be achieved by offloading only the

larger flows to WiFi, and keeping smaller flows, constituting

the majority, on cellular. This is reminiscent of task assignment

problems in queueing theory and server farms, where sending

large flows to a different server can greatly reduce average job

delay [12]. While the standard task assignment problem is to

minimize job delay, things are more complicated in the case

of data offloading. First, data plan usage costs and battery

consumption are equally, if not more important for users.

Second, WiFi is only intermittently available, and the ability

to delay some flows adds another important dimension to the

flow assignment decision. Finally, while size-based assignment

seems like an evident solution to the above problem, choosing

the actual size cutoff is non-trivial, and depends on the exact

objective and key network parameters (e.g. transmission rates,

traffic patterns, user mobility, etc.).

To this end, in this paper we propose an analytical frame-

work for the above problem, and use it to derive an optimal

size-based flow assignment policy, called “Threshold Policy”

(TP for short) Summarizing, the key contributions are:

(1) An analytical formulation of the problem of flow as-

signment over two heterogeneous network interfaces, and the

derivation of an optimal policy, called TP, in closed form, as

a function of key network parameters (Section II).

(2) An extension of the basic TP policy, to include strict

per flow deadlines (Section III).

(3) A detailed simulation-based validation of TP, showing

that the main results hold even when assumptions made in the

theoretical model are relaxed. (Section IV)



(4) An Android-based prototype of TP, and preliminary

experimental results supporting our findings (Section V)

To our best knowledge, this is the first work to consider

analytically the problem of optimal per-flow offloading, mak-

ing a useful first step beyond existing works that treat all

flows equally [6], [7], [24]. Finally, we note that TP could be

implemented both on the user device or on the network side

(e.g. at a BS offering both cellular and WiFi access). Due to

space limitations, we focus our discussion on the former case.

II. THRESHOLD POLICY

We introduce now the optimal flow assignment problem

more formally. The following assumptions are made:

A.1: We define a flow as a concatenation of uploaded (or

downloaded) packets corresponding to the same application

request (e.g., a downloaded file, a photo uploaded on Face-

Book). Identifying and delimiting flows is a well researched

problem [13]. A user’s activity generates flow requests accord-

ing to a Poisson Process with parameter λ.

A.2: Each flow has a size S, drawn from a generic prob-

ability distribution F (s), s ∈ [Sm, SM ], (with density f(s)
when F is continuous). Flow size distributions are often highly

skewed, exhibiting decreasing failure rate (DFR) [23].

A.3: A UE is equipped with two network interfaces, cellular

and WiFi, that can be up and used concurrently for different

data. This is not currently the case for most smartphones, but

can already be manually implemented, as shown in Section V.

A flow A could be transmitted over WiFi while another flow

B sent, in parallel, over the cellular interface1.

A.4: Each interface is associated with a mean transmis-

sion rate, denoted as RC and RW for cellular and WiFi,

respectively. While the instantaneous rates might fluctuate,

depending on the location of the UE and load on the specific

AP or BS (i.e. other users), we assume that the above values

correspond to measured estimates, averaged over a longer

time-window to ensure stability. A potential implementation

is discussed in Section V.

A.5: W.l.o.g. we assume that cellular connectivity is always

available. WiFi availability is modeled as an ON-OFF alternat-

ing renewal process: “ON” are periods with WiFi connectivity,

and “OFF” are periods without. The durations of these periods,

TON and TOFF , are random variables, drawn from generic

distributions. These parameter values and distributions will

often be chosen according to the observations in two real

measurement studies found in [6], [7].

A.6 A cost per bit LC is associated with the cellular

interface. A cost per bit LW is associated with WiFi. These

costs depend on the objective considered, and might relate to

data plan usage, mean energy per transmitted/received bit, or

a combination. We discuss some examples later.

A.7 We consider two types of user quality of service (QoS)

requirements: In this section, we assume that a user only has

1We assume for simplicity that all packets of a flow must go over the same
interface. Interface aggregation, e.g. [2], [3], is beyond the scope of this paper.
Furthemore, in practice a few flows might be interrupted, if WiFi connectivity
is lost, and restarted over the cellular connection.

Fig. 1: Queueing system model.

a maximum value for the average delay over all her flows,

denoted as DM . In Section III, the user or application also sets

a strict, possibly different delay requirement for each flow.

The system model is shown in Fig. 1: A controler observes

incoming flow requests, and assigns each flow to the WiFi or

to the cellular interface queue, in order to minimize a cost

function (related to A.6) subject to QoE constraints (related to

A.7). Each interface serves all ongoing flows using Processor-

Sharing (PS), i.e. the “server” (either WiFi or cellular) capacity

is equally shared among all the current flows. While PS is

only approximately implemented in practice (e.g. round-robin

with a finite quota) it is very often used to describe the

bandwidth sharing of elastic traffic in TCP-based networks and

has been successfully applied to model the flow-level behavior

in various networks, including WLAN, UMTS-HSDPA [19]. It

is also known to have good delay and fairness properties [12].

Our proposed policy, called Threshold Policy (TP), is to

assign all flows larger than a certain threshold, namely ∆, to

the server with the lower cost per bit and all flows smaller

than ∆ to the other (in the remainder, the terms interface and

server are used interchangeably). In most cases, LC > LW ,

i.e. the WiFi cost is smaller than the cellular. Hence, without

loss of generality, the subsequent analysis will be presented

for the case of larger flows assigned to WiFi, as depicted in

Fig. 1. However, the framework is applicable to the case of

LC < LW , as well, (in which case the rule is flipped) and

we’ll refer back to it, where necessary.

To gain some insight, assume that the objective is monetary

cost. Then, LW is often 0, or in general LC > LW . We

would thus like to maximize the amount of data transmitted

over WiFi, or similarly, minimize the average cost per bit

over a long time horizon. Nevertheless, aggressively assigning

all flows to the interface with the lowest cost, might lead to

excessive delays, violating the average user requirement DM .

The delays incurred are of two types:

(Queueing/Transmission) If the load on an interface ap-

proaches or exceeds its capacity, queueing theory predicts that

the mean delay to transmit a flow grows to infinity.

(WiFi unavailability) If a flow is assigned to the WiFi

interface, and no WiFi is currently available (as in the Delayed

Offloading case), that flow will incur an extra delay, until the

next WiFi availability period.

Consequently, to satisfy the delay requirement, some data

will have to be sent over the more expensive interface, even

if this increases the total cost. The following theorem resolves

this tradeoff optimally.

Theorem 1. Among all the flow-assignment policies (not



necessarily size-based) for the system represented in Fig. 1,

the size-based policy with threshold ∆ given by the following

optimization problem, gives the minimum possible cost per

flow, subject to an average delay constraint of DM .

min∆ LW

∫

∞

∆
dF̄ (s) + LC

∫∆

0
dF̄ (s)

s.t. 1
RW

∫
∞

∆
dF̄ (s)

−λ
+ 1

RC
∫∆
0 dF̄ (s)−λ

+ F̄ (∆) ·DWF ≤ DM

λ
∫
∞

∆ dF̄ (s)

RW < 1,
λ
∫∆
0 dF̄ (s)

RC < 1

Sm ≤ ∆ ≤ SM

(1)

where DWF = 0 for on-the-spot offloading, and DWF =
E[T 2

OFF ]
2(E[TON ]+E[TON ]) for delayed offloading.

Proof. We define X =  [S≥∆] as an indicator random variable

that is equal to one if S ≥ ∆, and zero if S < ∆. The expected

value of X is: E[X] = 1− F (∆)
.
= p for each flow i. Thus,

each flow i is assigned to WiFi with probability p, and to

cellular with probability 1 − p. The objective function of (1)

represents the average transmission (reception) energy in the

system. Assuming that N flows are sent over a certain time

window, the total transmission (reception) cost is then

LW ·
N
∑

i=1

si · xi + LC ·
N
∑

i=1

si · (1− xi), (2)

where si, xi are instances of S, X for each flow i. Taking

expectations, we can compute the average cost per bit E[L] =
LW · E[S ·X] + LC · E[S · (1−X)], where

E[S ·X] = E[S|S ≥ ∆] · p =
∫
∞

∆ sf(s)ds

p
· p =

∫

∞

∆
sf(s)ds,

E[S · (1−X)] = E[S|S < ∆] · (1− p) =
∫∆

0
sf(s)ds.

We next consider the delay constraint in (1). . Flows arrive

as a Poisson process and go to WiFi, independently, with a

certain probability p or cellular interface with 1 − p. Hence,

according to the Poisson thinning theorem [12], the Poisson

nature of the arrival process to each queue is maintained. We

can thus use the mean response time for M/G/1/PS to derive

the mean per flow delay at the WiFi and cellular queues as

E[T
WF

] =
1

µWF − λp
, E[T

C
] =

1

µC − λ(1− p)
, (3)

where µWF = KRC

E[S|S≥∆] and µC = RC

E[S|S<∆] are the

respective service rates, and E[S|S ≥ ∆] =
∫∞

∆
dF̄ (s)/p,

and E[S|S < ∆] =
∫∆

0
dF̄ (s)/(1− p).

In the case of WiFi, in addition to transmission delay,

we need to consider the extra delay experienced by flows

due to WiFi unavailability periods. If we define poff as the

probability that a flow arrives during the WiFi OFF period,

then poff = E[TOFF ]
E[TON ]+E[TOFF ] . Thus, a percentage poff of all

flows sent to WiFi will have to wait until the next ON period to

start transmitting. This is the expected residual time of an OFF

period, which by the renewal-reward theorem can be found to

be
E[T 2

OFF ]
2E[TOFF ] [14]. Putting everything together, the mean per-

flow time in the system is: E[T ] = p · E[TWF ] + (1 − p) ·
E[TC ] + p ·DWF , which gives the first constraint in (1).

The last two constraints represent simply the allowed values

for ∆, and the stability condition for the two queues (ρWF < 1
and ρC < 1), and the allowed values for ∆.

The above optimization problem applies to both on-the-spot

offloading (when DWF = 0) and delayed offloading (DWF >
0), when the use of both interfaces in parallel (when available)

is allowed. It also applies to both cases where WiFi is faster

or cellular is faster (e.g. 4G/4G+ or femto-cell cases).

As mentioned earlier, if a user is interested in minimizing

her cellular plan usage, e.g., while roaming, one should set

LW < LC or simply LW = 0, in the above formulas. In the

case of energy consumption, although the cellular and WiFi

interfaces have multiple power states [15], a simple “1st order”

model where LW and LC capture the energy/bit for each

interface and are given by LW = PW

RW and LC = PC

RC . PW

and PC denote the average power consumption for the WiFi

and cellular interfaces, respectively2, and could be running

estimates, maintained by the device, in practice. In Section V,

we consider in more detail the potential impact of detailed

power transitions and potential “tail energy” issues [16].

A. Optimal Threshold

In the following, we show how we can compute the optimal

solution of (1). Due to space limitations, we only consider the

case of LC > LW . The opposite case is symmetric, assigning

large flows to cellular, and proceeding accordingly.

Proposition 1. Let K = RW /RC . Under any flow size

distribution, the objective function in (1), namely g(∆), is

monotonic in the threshold ∆. Thus, the optimal threshold that

minimizes g(∆), namely ∆∗, is either ∆∗ = Sm (for K > 1)

or ∆∗ = SM (for K < 1). If K = 1, ∆∗ can take any value

in (Sm, SM ).

It is sufficient to show that g′(∆) = ∂g
∂∆ > 0 if K > 1,

g′(∆) < 0 if K < 1, and g′(∆) = 0 if K = 1.

g′(∆) = P

RC

[

1
K

∂
∂∆

∫ SM

∆
sf(s)ds+ ∂

∂∆

∫ ∆

0
sf(s)ds

]

= P

RC

[

K−1
K

∆f(∆))
]

= c · (K − 1),
(4)

where c = P∆f(∆)
RCK

is always positive. Thus, if K ≥ 1 (WiFi

faster), then g′(∆) ≥ 0, and the objective is minimized at

∆∗ = Sm. Similarly, if K < 1, then g′(∆) < 0, and the

objective is minimized at ∆∗ = SM . If K = 1, then the

objective function is constant, and any assignment leads to

the same consumption. An illustration of g(∆) is shown in

Fig. 2 (left plot).

Proposition 2. Under any flow size distribution, the delay

constraint in (1) has a unique minimum in [Sm, SM ].

Proof. We focus on the case of K = RW /RC > 1, but the

argument is similar for K ≤ 1. Consider the behavior of the

delay function as ∆ → Sm (i.e., all flows are assigned to

WiFi). We can distinguish the following cases: (Case 1) If the

2Studies suggest that this average power is similar for WiFi and cellular [6],
[15], and this was also confirmed on our platform.



Fig. 2: Optimization function (left plot) and delay function for K > 1 (right plot) of

the problem in (1).

system load is high (i.e. ρWF → 1) the delay is high due

to queueing. (Case 2) If the system load is low but DWF is

large, the delay for ∆ values near Sm is still high. (Case 3)

Both system load and DWF are high. (Case 4) If both system

load and DWF are low then d(Sm) is low. (Case 5) If both

system load and DWF are low, and K ≫ 1 (cellular interface

is very slow) then d(Sm) is the lowest delay value. Cases 1-3

correspond to the top curve on Fig. 2 (right plot), while Case

4 to the bottom curve (Case 5 is not shown in the figure). Let

us now examine potential local minima and prove that they

also constitute global minima:

(Local minimum at ∆ = Sm) Then, sending a few flows

to the cellular interface increases the total delay. This is only

possible if the cellular interface is much slower than WiFi

(Case 5). But increasing the number of flows send to the

cellular interface, i.e., increasing ∆ will increase the cellular

interface utilization, and monotonically increase the delay.

Hence, ∆ = Sm is a global minimum.

(Sm not a local minimum) This implies that by assigning

some flows to the cellular interface, we are reducing the total

delay. This is either because DWF is quite large (Case 2 or

3), or the WiFi interface is congested (Case 1). We can keep

increasing ∆, i.e., sliding to the right along the curve d(∆),
until we find a local minimum. If this occurs at ∆ = SM ,

then clearly SM is a global minimum. If we stopped at an

intermediate ∆ value, then it means that sending one more

flow to cellular would actually lead to worst total delay. Since

we have assumed that the WiFi interface is faster (K > 1),

for this local minimum to occur the marginal increase on the

queueing delay of the cellular interface should outweigh the

marginal decrease on the queueing plus unavailability delay

of the WiFi. In other words, the delay due to the cellular load

is the dominant component at that point, and the total delay

will keep increasing as we further move to the right on the

plot, towards SM . Hence, this is a unique minimum.

The following theorem, stems from Proposition 1 and 2,

and gives the optimal solution ∆∗ to the problem of Eq.(1).

Theorem 2. The optimal policy for K = RW /RC > 1 (K <
1) is:

1) If DM > d(Sm) (DM > d(SM )) then ∆∗ = Sm (∆∗ =
SM );

2) If DM < min{d(∆)} then the problem is infeasible;

3) Otherwise, it is the solution of equation d(∆) = DM . If

there are two solutions, then ∆∗ is the smaller (larger)

one, if K > 1 (K < 1).

The first case corresponds to the unconstrained problem

and the optimal solution follows from Proposition 1. To

find the optimal solution in the third case, when K > 1,

Proposition 2 says that it suffices to start from ∆ = Sm

(where d(Sm) > DM ) and move down the delay constraint

until d(∆) = DM . If there are two solutions d(∆) = DM (see

for example Fig. 2 (right plot)), the above methods will give

us the smaller of the two. Similarly, for K < 1, but starting

from ∆ = SM , it picks the larger of two solutions. Note that,

if K = 1, any feasible solution ∆ (such that d(∆) ≤ DM )

will do. Moreover, note that if the delay constraint is satisfied,

also the load constraints in (1) are satisfied (since otherwise

the delay would be infinite).

1) Case-study: Pareto distributed flow sizes: Real flow size

distributions have been shown to be heavy-tailed [13]. To this

end, we consider the Pareto distribution (Bounded Pareto in

the simulations) as a concrete example for our optimization

problem. We use Sm as the scale parameter, and α as the

shape parameter (the variance is finite if α > 2). The ccdf is

p = P(S ≥ ∆) =
(

Sm

∆

)α
, for ∆ ≥ Sm. Thus, we obtain E[S ·

X] =
αSα

m∆1−α

α−1 , and E[S · (1−X)] = α
α−1 (Sm − Sα

m∆1−α).
Hence, we can derive the objective function and constraint for

(1) in closed form:

min∆ LW ·
αSα

m∆1−α

α−1 + LC ·
α

α−1 ·
(

Sm − Sα
m ·∆

1−α
)

s.t.
αSα

m∆1−α

KRC(α−1)−λαSα
m∆1−α +

α(Sm−Sα
m∆1−α)

RC(α−1)−λα(Sm−Sα
m∆1−α)

+
(

Sm

∆

)α
DWF ≤ DM ,

λαSα
m∆1−α

KRC(α−1)
< 1,

λα(Sm−Sα
m∆1−α)

RC(α−1)
< 1,

∆ ∈ [Sm,∞)

III. THRESHOLD POLICY WITH HARD DEADLINE

So far we have derived the optimal size-based policy subject

to a constraint on the average per-flow delay. While the formu-

lation in Eq.(1) guarantees a desired average delay, it does not

guarantee that some individual flows will not be excessively

delayed, e.g. if a UE stays without WiFi connectivity for a long

period. To address this issue, each flow assigned to WiFi could

also have a strict deadline, e.g. user defined or application

specific. Some flows could even have a deadline of 0, if they

cannot be offloaded. Each new flow assigned to WiFi, will

wait in the WiFi queue only up to its deadline. If this expires,

it will be sent through the cellular interface. Such per flow

strict deadlines are used, for example, in [6], [8].

If such strict deadlines are implemented, Eq.(1) needs to be

revisited, in order to account for the potential re-routing. Let

dWF be a random variable denoting the delay a flow experi-

ences when assigned to the WiFi interface. This delay depends

on the duration of the WiFi unavailability periods as well as

the queueing delay. If dTi denotes the strict deadline for some

flow i, then the probability that this flow is sent back to cellular

is clearly equal to P (dWF > dTi ). Since, we are optimizing

performance over a time window with many flows, we need



an estimate of the above probability. If DT is the average over

all individual deadlines dTi , then the expected ratio of flows

rerouted to cellular will be 1− pd = P (dWF > DT ).
Probability pd can be approximated, in closed form, if

we further assume that transmission delay on the WiFi is

much smaller than the average unavailability period (this is

a reasonable assumption in most scenarios, including the ones

considered in our simulations and experimental validation).

In that case, dWF is the “excess” or “residual” time of a

WiFi OFF period, distributed according to some Foff (x)
with mean value E[Toff ]. Using the formula for excess time

distribution [14] we get

pd =

(

1

E[Toff ]

)
∫ DT

0

(1− Foff (x)) dx. (5)

Based on this probability, we can now reformulate the

optimal TP policy for scenarios with strict per flow deadlines.

Theorem 3. Assume that flows arriving in the system of Fig. 1

have an average delay requirement DM . Assume further that

each flow additionally has a strict deadline, as described

earlier, and that the average value among all such deadlines

is DT . Then, among all the flow-assignment policies, the size-

based policy with threshold ∆ given by the following opti-

mization problem, gives the minimum possible cost per flow

among all policies satisfying both the average and individual

deadlines.

min∆ LW · pd
∫

∞

∆ dF̄ (s) + LC ·
[

(1− pd)
∫

∞

∆ dF̄ (s) +
∫∆
0 dF̄ (s)

]

s.t.
pd

RW
∫
∞

∆
dF̄ (s)

−λ·pd

+
1−F̄ (∆)·pd

RC
∫∆
0 dF̄ (s)−pd

∫
∞

∆
dF̄ (s)

−λ(1−F̄ (∆)·pd)

+F̄ (∆)
[

(1− pd) ·D
T + pd · poff ·D

T
]

≤ DM ,

λ·pd·
∫
∞

0 dF̄ (s)]

RW < 1,
λ(1−F̄ (∆)·pd)·[

∫∆
0 dF̄ (s)−pd·

∫
∞

∆ dF̄ (s)]
RC < 1

Sm ≤ ∆ ≤ SM
(6)

Sketch of Proof. While the above formulation appears less

intuitive than the simpler case without strict deadlines, we

sketch here the main differences and refer the reader to the

proof of Theorem 1 for comparison: A percentage (1 − pd)
of “large” flows get rerouted to cellular, adding an additional

(1 − pd) · E[S · X] bits to the cellular interface, where

E[S ·X] =
∫∞

∆
dF̄ (s) is the average size for flows routed to

WiFi initially. This is easy to see in the objective. Furthermore,

when calculating the expected delays, these rerouted flows

must be discounted from the load of the WiFi. The total arrival

rate is now λ ·pd · F̄ (∆) which is smaller than the WiFi arrival

rate λ · F̄ (∆) in the original formulation of Theorem 1. The

service rate µWF remains unchanged, since the average flow

size assigned to WiFi is still E[S|S ≥ ∆]. Finally, the queueing

delay of the WiFi interface (µWF − λ · pd · F̄ (∆))−1 must be

weighed by pd ·F̄ (∆), since this is the number of flows finally

served by WiFi (Note that F̄ (∆) is cancelled out from both the

numerator and the denominator, as in the case of Eq.(1)). The

queueing delay for the cellular interface is slightly more diffi-

cult to calculate, because the service rate µC now also changes:

a percentage F (∆) of files served are small (E[S|S < ∆]), as

before, but an additional percentage pd · F̄ (∆) are large files

(E[S|S ≥ ∆]) that were initially assigned to WiFi, but their

deadline expired. Finally, we approximate the average WiFi

unavailability delay, DWF = E[dWF |dWF ≤ DT ], with its

upper bound poff ·D
T .

Remark: As a final note, we stress here that using DT in

the formulation does not mean we require all flows to have the

same strict deadline DT , or that the policy only guarantees

yet again an average delay: a flow will always get rerouted

to cellular as soon as its deadline expires, no matter what the

choice of ∆ is. This is also visible in the simulation results.

What the above policy does is to estimate that percentage of

flows rerouted (for which it uses the average value DT ), and

its impact on the objective and mean delay constraint, in order

to still choose the best threshold ∆, costwise.

IV. PERFORMANCE EVALUATION

In this section, well use simulations to study the perfor-

mance of the Threshold Policy (TP), considering several sce-

narios and network conditions. To focus on realistic scenarios,

we will use the results and observations made in two studies

of real users and measured WiFi and cellular connectivity: a

study of (mostly) pedestrian, low mobility users performed

in [6], which we will be the basis of most our scenarios, and

a second one studying a trace of vehicular users [7] that we

consider in Section IV-C.

Specifically, unless otherwise stated, we assume that the

average duration of WiFi availability period (ON) is 110 min,

while the average duration of OFF period is 45 min [6].3

Thus, we obtain poff ≃ 0.3 and DWF ≃ 13 min (assuming

that OFF periods are exponentially distributed). Throughout

this section, we focus on the specific cost function of energy

comsumption, due to its importance for modern smartphones,

where we use the simple 1st order energy model described

earlier: LW = PW /RW and LC = PC/RC , measured

in energy/bit. Note however, that depicted results could be

easily read in terms of other costs (e.g. monetary cost) with

an appropriate change in units and relative costs. We set:

P = 1 Watt [20], RC = 0.5 Mbit/s, as reported in [6]. This

value depends on the cellular technology and we are targetting

scenarios where cellular cannot always offer peak rates (e.g.,

we have measured higher values in our experimental platform,

but we did so using a business-class plan).

The flow arrival rate is λ = 0.004 flows/s, and DM = 6 min

(or 360 sec). We consider flow sizes following the Bounded

Pareto (BP) distribution with support in the interval [Sm, SM ],
with E[S] = 10 MB. We compare our TP policy with some

other baseline policies. Specifically, we consider the following

ones:

3These values capture “nomadic” groups of users. We stress that we have
tried a number of ON/OFF value combinations, with similar results. We thus
prefer to focus on the values reported in that real study, and juxtapose it to
the high mobility scenario of Section IV-C.
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Fig. 3: Average energy vs K.
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Fig. 4: Average delay vs K.

1) “Cell-only”: all flows are sent over the cellular interface;

2) “WiFi-only”: all flows are sent over the WiFi interface;

3) “On-the-spot”: flows go to WiFi when it is available, as in

the existing offloading policy;

4) “FB” (Flow Balancing): it balances the number of flows

per interface regardless of the size, thus exploiting the parallel

availability of the interfaces;

5) “LB” (Load Balancing): it balances the load between the

two interfaces, thus improving the queueing delay [12].

A. Model validation

In this section, we want to validate our model. Wherever we

refer to “model” or “analytical” plots, these plots correspond

to the analytical predictions, for the average cost and per flow

delay, derived in Theorem 1. For simulations, the optimal

threshold ∆ is calculated with the methodology of Theorem 2,

and this threshold is used, simulating the queueing system of

Fig. 1, and whose assumptions might depart from those made

in the model (we will explain how in each scenario).

Fig. 3 compares the model-based and simulated average

energy consumption vs. different values of K in the range

[0.7 − 4]. As expected, we can observe that the energy

consumption decreases as K increases, as higher WiFi rates

imply less time to transmit the same amount of data, and thus

less energy. Fig. 4 further reports the corresponding average

delay and compares it to the theoretical delay requirement

DM = 360 s. It is important to note that the simulated results

match well the analytical model predictions.

To better understand the energy consumption trend versus K,

we report the average load (ρW and ρC) at the two interfaces in

Fig. 5 (left y-axis). Observe how, for K < 1, the TP uses more

the cellular network (cellular load is higher than the WiFi one),

while for K > 1 it exploits more the WiFi network. Fig. 5

(right y-axis) also reports the corresponding flow ratio, i.e., the

number of flows that go over WiFi (cellular) divided the total

number of flows. In the model, this flow ratio corresponds to

the probability pd and 1−pd, respectively. Interestingly, we can

note that for K > 1 only a few large flows are sent/received

over WiFi contributing the most to load. E.g, for K = 2, about

20% of the (WiFi) flows contribute the 80% of the system load

(total load is ρW + ρC), thus exhibiting a 80-20 rule.

This behavior, which is a key reason why the TP policy

outperforms other policies, as we will see, becomes even

more pronounced as the delay requirement DM decreases:

the tighter the user delay requirement, the lower will be the

number of flows sent through WiFi. As an example, Fig. 6
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Fig. 5: Average load and flow ratio vs

K (DM = 360 s).
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Fig. 6: Average load and flow ratio vs

K (DM = 260 s).
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Fig. 7: Average delay vs K for different

flows arrival distributions.
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Fig. 8: Average delay vs K under differ-

ent WiFi ON-OFF times distributions.

shows the load and flow ratio for a smaller delay constraint,

DM = 260s. Observe that the percentage of flows assigned to

WiFi is only 24%, for K = 4. Nevertheless, considerable cost

savings can be achieved, because these few flows amount for

a large chunk of the total bytes transmitted.

1) Validation versus assumptions: In Section II, we as-

sumed flows arrive according to a Poisson process. Here we

depart from this assumption and simulate our system for

(a) flow arrivals according to a Weibull distribution (shape

parameter h = 0.7), and (b) uniformly distributed arrivals.

Weibull is used to emulate more burst arrival patterns, and

was found to be a good model for traffic arrivals in [6], while

uniform has lower variability than both Poisson and Weibull

(“regular” arrivals). Fig. 7 shows the average delay under the

TP for Poisson, Weibull (the shape parameter is h = 0.7)

and Uniform flow arrival distributions. The average delay is

comparable in all cases, suggesting that our model does not

underestimate the predicted delay, leading perhaps to major

constraint violations, if the arrival model is different.

Furthermore, we simulate the system under different

WiFi ON-OFF time distributions: Exponential, Uniform and

Bounded Pareto (as in [6]). Fig. 8 shows the average delay

under the considered WiFi availability patterns. Observe how

simulation results under different distributions are comparable,

with the average delay sligthly smaller for the Uniform and

Bounded Pareto cases.

B. Threshold Policy gains

We will now compare the performance of TP against other

policies. The relative energy savings are depicted in Fig. 9.

Observe how the TP outperforms all the others in terms of

energy except of WiFi-only policy. This is expected, as the

latter is the optimal unconstrained policy for K > 1. However,

the WiFi-only policy, as well as the rest of the policies violate

the delay constraint, sometimes significantly. Fig. 10 reports
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the average delay for each policy. Note the logarithmic scale

on the y-axis, implying up to an order of magnitude worse

delays. Note also that the FB and LB policies outperform

the baseline options (i.e., Cell-only, WiFi-only and On-The-

Spot) in terms of energy-delay trade-off, since they make

an attempt to balance the load between the two interfaces.

However, as proven in Section II, our policy can do better, by

also taking into account WiFi unavailability statistics and flow

size variability. In fact, the higher the flow size variability the

more TP outperforms the other policies.

Summarizing the results of Sections IV-A and IV-B, they

show that: 1) for K > 1, the TP policy alleviates the cellular

load, dropping utilization from 0.6 to less than 0.1 (more than

a 6× improvement); 2) energy consumption compared to the

Cell-only policy is very low (e.g. 70% of energy saved for

K = 4), and always lower than other load-balancing policies;

3) the above savings can be achieved by offloading to WiFi

only a small subset of (large) flows (as little as 10%, in

the scenarios considered); even fewer of them will actually

experience an extra delay due to WiFi unavailability, since

only a subset of flows arrive during an OFF period.

C. High-mobility case-study

To complement our results, we also study the performance

of TP in a high-mobility scenario (i.e., lower duration for

ON and OFF periods), motivated by the measurement study

of [7]. In addition to the higher mobility, this scenario is

interesting because of the more pessimistic conditions for

offloading reported there, due to lower data rates for WiFi

and lower availability (this is also partly due to slow WiFi

rate adaptation and association mechanisms, not optimized

for vehicular mobility). Specifically, reported downlink rates

of WiFi and cellular (3G) are 280 Kbps and 600 Kbps,

respectively. Thus, K ∼ 0.5. Moreover, WiFi availability can

drop to 11% (e.g., poff ≃ 0.9, DWF = 132 s). For this

scenario, we assume E[S] = 5 MB (variance of 650 MB) and a

shorter delay constraint, namely DM = 121 s. Fig. 11 and 12

show the average energy saving and the corresponding delay

for this scenario, as a function of K, ranging from K = 0.5
(WiFi slightly worse) to K = 1.5 (WiFi slightly better). Note

that, to improve the readability of Fig. 12 the y-axis is upper

limited (e.g., the delay of WiFi-only is equal to 1000 s for

K = 0.5).

It can be observed that, for K > 1 the TP always outper-

forms the LB, FB, and cell-only in terms of both energy and

delay, and performs better than the WiFi-only policy in terms
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age delay vs K.

of delay. For K < 1, as expected, the best policy in terms

of energy is the Cell-only one. However, we can note that,

even if WiFi rate is smaller than the cellular one and WiFi

availability is low, the TP still exploits the WiFi network by

using both interfaces in parallel to reduce the transmission

delay, thus keeping the average delay below the constraint

DM . In addition, the higher is the load, the more traffic will

be offloaded from cellular to WiFi network, when available.

Note that the high-mobility case is a worse mobility scenario,

because of poorer WiFi availability and lower WiFi rates, due

also to rate adaptation and association mechanisms.

D. Threshold Policy extensions

1) Hard-Deadline case: In Theorem 3, we considered a

system where each WiFi flow has a hard deadline (assigned by

the user or application) after which it is sent/received over the

cellular interface, if not yet transmitted/received through WiFi.

Hence, flows have an average delay requirement DM = 360
s, as before, but now also have a maximum delay requirement

DT , which we set equal to 900 s for all flows (we stress

again that our policy does not require equal flow deadlines, as

explained in Section III). The former bounds the average delay

among flows, while the latter bounds the tail. To illustrate this,

Fig. 13 reports the CDF of the per-flow delay, for the policy

of Theorem 1 without the deadline (“No HD” label) and the

policy of Theorem 3 with hard-deadline (“HD” label), with

DT = 900s depicted as a vertical line.

In the case of no hard deadline, while the respective

assignment maintains the average delay bounded (to 360s), we

can see that 30% of the flows exceed the maximum deadline

DT . Specifically, the 5% of flows with the highest delay have

a mean value of about 9900 s, i.e., exceed DT by more

than 10×. In contrast, when the policy takes into account the

hard-deadline (HD plot), we can observe that the tail of the

distribution is correctly bounded by DT .4 To ensure this, the

HD policy is forced to be a bit more conservative, and thus

results in slightly lower average delay as well (334 s). Also,

as more flows now go over the cellular interface, the energy

consumption is 13% higher in the HD case.

Specifically, the 5% of flows with the highest delay has an

average delay of 1212 s in case of HD, and this delay is about

9917 s (more than ten times higher than DT ) in case of no

deadline. Finally, the average delay is slightly lower than DM

4A small percentage of flows slightly exceeds this value due to the
transmission delay approximation, explained in Section III.
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ferent network power models.

in the HD case (334 s), while it is equal to DM = 360 s in the

case with no deadline. Concerning the energy consumption, it

is 13% higher in the HD case. In this example and in all

the cases we considered, we noted that there is a trade-off

between energy consumption and delay (our QoS metric). This

is due to the fact that, in the HD case, the tighter is DT (i.e.

stricter QoS constraint) the lower is the average per-flow delay

at the penalty of an higher energy consumption. However,

this behavior depends on several factors: if the bottleneck is

the cellular network service time (e.g. high load) then the

stricter the deadline is the more the TP policy will exploit

the WiFi network; otherwise, if the bottleneck is WiFi (e.g.

high unavailability delay) the more the TP policy will exploit

the cellular network.

2) Energy model approximation: As we have so far only

considered a simple energy model, we conclude our simulation

scenarios by considering a more realistic energy model, and

its impact on TP. Specifically, we implemented the detailed

3G and WiFi power state and transition models represented

in Fig.1 of [16]. We defer to future work the modeling of

the more sophisticated 4G power management. The 3G model

consists of three states: High-power state (DCH) in which the

interface is transmitting/receiving, low-power state (FACH),

and Idle state. WiFi model also consists of three states: Active,

PSM (Power Saving Mode) and Idle. Transition timeouts

and delays between states are also implemented, in order to

investigate if tail energy phenomena might lead to largely

different energy consumption than the one assumed by TP.

To this end, Fig. 14 reports the relative energy savings of

the TP policy computed using the energy model from [16].

One can observe that simulation results are very similar to the

ones obtained in Section IV-B (see Fig. 9 for comparison),

thus corroborating the applicability of our model. Indeed,

while our model does not account for tail/transition energy

consumption, it can be seen as a worst-case model since it

assumes the interface (cell./WiFi) is always either in high

power (transmitting/receiving) state, or Idle.

V. IMPLEMENTATION AND EXPERIMENTS

To further validate the proposed TP in realistic conditions,

we develop a prototype of the proposed offloading policy using

an Android-based mobile OS, CyanogenMod (v10.1) [22],

and modify the Connectivity Service to enable simultaneous

usage of WiFi and cellular interfaces. Fig. 15 illustrates the

offloading application prototype composed of a download
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Fig. 15: System view of the prototype. Fig. 16: Application GUI.

application and an offloading service. The application will

use the default interface to send and receive user traffic.

To decouple the WiFi variability from the application, this

is set to be the cellular interface, but it could also be a

virtual interface as described in [3]. The offloading service

determines the optimal threshold based on the passive rate

measurements of both WiFi and cellular computed through a

moving average based on estimates of past flow transmissions,

then marks the outgoing/incoming traffics in Linux Netfilters

using iptables utility, and add appropriate changes in the

routing tables using ip utility to enable match-action of flows

in post (re)routing phase. For the delayed offloading, when a

filter is matched, packets will be stored in the Netfilter queues

for later transmission.

In our experiments, we use Google Nexus 4 with superuser

privilege downloading 400 files across 6 servers located in

USA (with sizes in the range [18.19Mbits, 358.45Mbits]).
The average rate measured with cellular connection (HSPA+)

is about 5 Mbps, and the average WiFi rate is about 7.5Mbps,

thus K ≃ 1.5. We note that this cellular rate is very high, due

to access to a nearby underutilized BS with a business class

plan, and is not representative of actual cellular connections

that are typically much slower (as in Section IV). The arrival

rate of new requests for downloads λ to 0.15 flows/second

In the application, whose GUI is shown in Fig. 16, we

implement three policies, namely TP, WiFi-only, and Cell-

only. When the TP policy is selected, upon arrival of a file

request, the target interface will be selected based on the file

size and the measured rates. While for uplink the file size is

known to the user, in downlink this is obtained by sending an

additional request to the server via the default interface (worst

case scenario). For each policy, the downloading application

collects the key performance indicators (KPI) in terms of per-

centage of battery consumption, average throughput, average

per-flow delay, and connection rates. The average delay for TP

includes the waiting time to get the file size from the server.

We present here some preliminary results from our pro-

totype. In the left plot of Fig. 17, we present the average

flow delay for different size threshold values ∆. We observe

the single minimum behavior discussed in Proposition 2 and

shown in Fig. 2. The percentage of bytes sent on each interface

is also depicted in Fig. 17(right plot). E.g., for the ∆ value

achieving minimum delay (highlighted with a red circle),

around 40% are sent over the cellular, while 60% is sent on



Fig. 17: Average flow delay (left) and % of offloaded data (right) for the Android

experiment.

TABLE I: Experimental results

Policy Mean delay [s] Battery Consumption (%)

TP 23.23 1

WiFi-only 40 8

Cell-only 115 20

the WiFi. However, as predicted by the theory, this is achieved

by only sending 27% of the total flows to WiFi.

For this setup, we ran our TP policy to calculate the optimal

threshold. The average delay requirement was DM = 23s),

hence the optimal threshold from an energy point of view is

slightly higher than the one minimizing the delay (we remind

the reader that our goal is not to minimize delay, but rather the

cost function, subject to the delay constraint). Table I compares

(i) the total battery consumption to download all files, and (ii)

the average per flow delay, for three policies: TP, WiFi-only,

and Cell-only policies.

While these results are preliminary, sensitive to our crude

online rate estimates, and other components consuming bat-

tery, we can already observe the main behaviors predicted

in theory. Namely, TP manages to download all files with

50% energy savings compared to Cell-only. WiFi-only has

somewhat lower energy consumption, as our theory predicts

(given the higher WiFi rate, the unconstrained optimal policy

is to download all files from WiFi.). However, WiFi-only had

2× higher delay than TP, and Cell-only more than 5×.

VI. DISCUSSION AND CONCLUSION

We have proposed a threshold policy that assigns flows

to both cellular and WiFi network interface based on their

size, and shown that it can minimize a cost function related

to battery consumption and plan usage at the UE, while

keeping the average per-flow delay bounded. Results obtained

from simulations and an Android-based prototype support our

assumptions and validate our policy. Among a number of

interesting future directions, we briefly state two here.

Algorithm convergence: While TP considers the impact

of other users through variations on the measured interface

rates, if TP is implemented on many UEs associated with the

same BS-AP tuple, all UEs might switch large amounts of

traffic, at the same time, possibly leading to oscillations. To

avoid such phenomena one could introduce one or both of the

following: (low pass filter for ∆) if conditions change such

that TP suggests a different, much smaller than the one used

(e.g. better WiFi is found), the UE does not immediately use

this new threshold, but only reduces its by some constant

amount; Also, some randomization can be introduced between

when a UE measures radio conditions, and when it decides to

apply its policy. While this improves convergence, a game-

theoretic analysis could possibly reveal whether the point of

convergence is indeed the optimal.

Network-side implementation: To achieve better load bal-

ancing, and resolve convergence issues, the policy could be

implemented by the operator. The operator could observe

all flows coming from all users connected in one or more

{BS, AP} sets, and calculate a threshold that is suggested

(or enforced) for each user, dependent on both network-wide

conditions but also user load and profile.
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