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ABSTRACT

In recent years, representation learning approaches have
disrupted many multimedia computing tasks. Among those
approaches, deep convolutional neural networks (CNNs)
have notably reached human level expertise on some con-
strained image classification tasks. Nonetheless, training
CNNs from scratch for new task or simply new data turns
out to be complex and time-consuming. Recently, transfer
learning has emerged as an effective methodology for adapt-
ing pre-trained CNNs to new data and classes, by only re-
training the last classification layer. This paper focuses on
improving this process, in order to better transfer knowledge
between CNN architectures for faster trainings in the case of
fine tuning for image classification. This is achieved by com-
bining and transfering supplementary weights, based on sim-
ilarity considerations between source and target classes. The
study includes a comparison between semantic and content-
based similarities, and highlights increased initial perfor-
mances and training speed, along with superior long term
performances when limited training samples are available.

Index Terms— Transfer learning, fine tuning, image
classification, model selection

1. INTRODUCTION

With the emergence of large, public and thoroughly anno-
tated datasets [1], along with the ever increasing computing
capabilities of GPUs, Deep Neural Networks, and especially
CNNs, have rapidly revolutionized many computer vision
tasks. Such quantities of data allow to learn visual feature ex-
tractors whose relevance and discrimination power surpasses
the best hand crafted ones [2], regardless of the problem
complexity or the model size. However, the time and asso-
ciated cost for creating such new huge datasets, and to make
new models converge over these are still a huge bottleneck in
real-world use cases, so that someone with limited resources
cannot reasonably compete with companies running each of
their models during weeks over hundreds of GPUs (or TPUs)
and gigantic datasets.

Transfer learning is a recent and still evolving approach
to address this issue. It consists in reusing a model developed

for a task as a starting point for another related task. This is
based on the assumption that two related tasks require some
common knowledge, so that some of the knowledge associ-
ated to a task could benefit another similar one. In deep learn-
ing, this is performed by using some of the model’s weights
as an initialization for the training over the new task, while
the usual practice is to initialize them randomly ([3]). In
computer vision tasks, well trained CNN low level and mid-
level layers generally detect basic shapes and textures, no
matter the specificity of the task. They consequently transfer
well between different computer vision problems, as shown
in numerous publications ([4][5][6] [7][8][9][10]).

Transfer learning can then be distinguished in two types
of applications : domain adaptation, aiming to adapt a pre-
trained network to a new task, out of this work’s scope, and
fine-tuning, which consists in adapting the network to new
target data, for the same task. In the latter case, one can
extend the transfer to the whole set of weights concerning
the features extraction, and just replace the output fully con-
nected layer with one shaped for his target classes. Almost
all the knowledge required to perform the task is already
present in the network, and can be aligned with the target data
by a small training procedure (not necessary on the entire set
of weights), lighter than the one required to train a model
“from scratch”. Note that fine-tuning a pre-trained CNN of-
ten leads to better performances, and requires fewer data than
a network trained from scratch, as most of the knowledge re-
quired for the task is already present in it ([5, 6]).

Fine tuning has become common practice, allowing
faster trainings on consequently smaller datasets, and giv-
ing the opportunity for researchers and companies to develop
their own systems. However, there may still be a lack of effi-
ciency in training a new fully connected layer from scratch,
and transfer learning can once again fulfill it. To further im-
prove the transfer, we thus propose to reuse some weights of
the last fully connected layer of the original model, based on
similarity between source and target classes.

The contribution of this work is fivefold: First, we show
that there is some important knowledge within the last layer
of pre-trained DNN models which when identified and used
properly can be somewhat transferred to the new model, to
speed up training and benefit model accuracy for fine tuning.



Second, we propose a novel method to reuse that knowledge
in combining multiple relevant source classes. Third, we
conduct a study over one visual and two semantic similar-
ity measures to select these relevant source classes. Fourth,
we propose an original analysis enabling us to separate cases
between three possible types of knowledge transfer, to attest
that we are performing well on each of them, and optimize
our process. Fifth, we monitor our method while decreasing
the amount of training data, to validate the consistency of the
results.

The paper is organized as follows. We will first review
some works related to ours, then present our approach, before
discussing the experimental results. Finally, we will present
the conclusions of this work, and propose future develop-
ments.

2. RELATED WORKS

Datasets and architectures
The most common source dataset to apply transfer learn-

ing for computer vision tasks is ImageNet [1], since it
presents 1000 classes, shared between various semantic
fields (animals, flora life, vehicles, tools, etc...). It is thus
very likely to benefit the training of almost any kind of target
data, and its efficiency is demonstrated in [11].

As for the choice of the network to use, many state of the
art results in image classification tasks (including the Ima-
geNet dataset) have been achieved by (or built on) the ResNet
architecture [12, 13], and Inception [14, 15] structures (or
combinations of them). Their efficiency and simplicity often
places them as the best choice for transfer learning, be it for
other classification tasks, or using it as a backbone for other
tasks (object detection and segmentation, for example).

Transfer Learning process
Reusing some pre-trained weights for a new task has

been pioneered by [4] and [5], showing that the new task
can greatly benefit it, not only in terms of training speed, but
also of global performance.

However, the way to optimize a transfer learning process
is still unclear. We know that the deeper we go in a net-
work, the more specialized are its weights to the task they
are trained on [2, 5]. Concretely, if the first few layers of
a ResNet (detecting simple visual patterns like geometrical
shapes) can benefit any computer vision task, it is still un-
clear how deep the weights can efficiently be reused. [5]
experiments transfers of different depths, and highlights that
the transfer of specialized layers can hurt performance on the
target task, depending on their depth.

In [6] is given a study taking into account the amount of
data available. They show that if transferring weights has
only a moderate impact on performance in a context with a
lot of data, it becomes crucial for long-term performance as
the data decreases. For two sufficiently close tasks (source
and target), they generally advise to transfer all the layers
except the classification one before a global fine tuning. This
advice seems quite reasonable in the case we are investigat-

ing, since only the images contained in the dataset and their
classes change, while the classification objective remains the
same.

Hoewever, with enough populated classes, [5] shows that
training only the randomly initialized part of the transferred
CNN can break fragile co-adaptations at the boundary. Fine
tuning equally the whole network gives better results, allow-
ing to readjust those co-adaptations. [9] proposes a finer
process that consists in training the whole network in one
go with a lower learning rate applied to the transfered part.
This focuses the training on the new part, while allowing co-
adaptation between the two parts.

As shown in [10], transfer learning can also be improved
by deepening and/or widening the original network, giving
more rooms to small adjustments, under the condition of cor-
rectly managing the simultaneous training of both transferred
and newly created cells.

A systematic process in all these works is to discard the
classifying layer and to train a new one, adapted to the tar-
get classes, from scratch. We argue and show that, when the
source and target are similar to a certain extent, the knowl-
edge contained in the pre-trained classifier layer can be effi-
ciently reused for learning a new model.

Semantic similarity between textual content
One traditional way to get a similarity measure between

two concepts is to use the WordNet graph [16]: WordNet
is an english lexical database of nouns, verbs, adjectives, and
adverbs grouped under lexicalized concepts (named synsets),
interlinked by different types of semantic relations. There
are five main semantic similarity measures defined for Word-
Net in the literature : Jiang & Conrath [17], Leacock &
Chodorow [18], Lin [19], Resnik [20], and Wu & Palmer
[21]. Each of them evaluates the semantic distance between
two synsets. [22] evaluated the Wu & Palmer one, making
use of the path length between the synsets organized in a
’is-a’ hierarchy and the depth of their most specific ancestor
node, as the best one for semantic similarities.

More recently, [23] designed an approach using neu-
ral networks to project words into feature vectors named
Word2Vec representations, to represent efficiently textual
content. In this feature space, distances between words are
shown to be quite accurate to attest and quantify some se-
mantic relationships [23, 24, 25].

3. SIMILARITY-BASED KNOWLEDGE TRANSFER

A standard, basic transfer learning process to train an image
classifier for some target classes is to reuse the convolution
weights of a network already trained on a similar task on
source classes. A fully connected layer fitting the target task
is then randomly initialized on top of the network, which is
fine tuned following a strategy adapted to the specificities
of the problem (amount of available data, possible computa-
tional power restrictions, etc...).

The fully connected layers of the pre-trained network
represents the knowledge of the task it is devised for. In cases



where the original classification problem and the destination
one are close, there might be a gain in transferring some of
the knowledge of the original network head (last layer) to the
target one.

We hypothesize that re-adjusting this available knowl-
edge to fit the target classes could be more efficient than cre-
ating it from scratch, in the usual way. Assume we dispose of
M source classes and N target ones, each target class (rep-
resented by its fully connected weights) could be initialized
with a combination of a relevant subset of those M source
classes, instead of randomly. We define the relevance of such
a subset of classes by using alternative similarity measures.

3.1. Similarity measures

We propose three of them. The first is a visual one, directly
based on the image content. The two others are label-based
semantic similarities :

Inference similarity. The images of the target classes
are input to the plain source network. The similarities be-
tween source and target classes are computed as F-score
measures for each ”source network output/target class” cou-
ples. In a more practical way, let oj be the jth output of the
source network and ci the ith target class with j ∈ {1, ...,M}
and i ∈ {1, ..., N}, we compute sim(i, j) as the F-score for
oj discriminating ci. This similarity measure aims at lever-
aging relations based more on pure visual content than se-
mantics.

WordNet similarity, using the Wu & Palmer ([21]) mea-
sure, as advised in [22].

Word2Vec similarity. Using some pre-trained
Word2Vec embeddings, we compute the standard co-
sine similarity between the Word2Vec embeddings of the
source and target class names.

In the following section, these three initialization tech-
niques are compared to the classic one (i.e. using random
initialization of the neural network weights).

3.2. Initialization

We consider the affinity values as the coefficients of a neigh-
boring structure, allowing us to approach the target class as
a combination of some source neighbors. We thus compute,
for each target class, the weights of its classifier as a linear
combination of its K closest source neighbors with respect
to the similarity measure, taking as coefficients these affinity
values (normalized, for them to sum to one over K).

W ′i =

K∑
j=1

(
sim(i, j)∑K
j=1 sim(i, j)

)
Wj

In this way, each of the K source classes neighbors con-
tributes to the construction of the target class initialization,
in proportion to its normalized similarity. The setting of K
with respect to the target classes is studied in the experimen-
tal part.

4. EXPERIMENTS AND RESULTS

4.1. Implementation Details

In the following, to combine architecture simplicity and high
performances, we use a ResNet-101 pre-trained on Imagenet,
and replace the last fully connected layer to fit the target
classes. We train weights from the fourth block (included)
to the end, and freeze the rest. One could use a finer transfer
strategy to optimize the results obtained [5, 6, 26, 9]. Input
images’ smallest sides are resized to 256 (preserving aspect
ratio), then cropped (randomly for training, center crop for
testing) to output 224× 224 images.

We used Adam optimizer with a learning rate of 10−3,
β1 = 0.9, β2 = 0.999 and ε = 10−8, with a batch size of 64.
We apply a dropout of 0.75 on the last fully connected layer
to prevent overfitting.

4.2. Dataset

For this experiment, we choose as source classes the 1000
classes of the ILSVRC challenge [1], which the ResNet-101
has been trained to classify. We take as target classes 90 Im-
ageNet synsets that are not part of those former 1000. They
can be separated in three types :

Included classes. The target synset is a child of a source
synset, thus representing a more restrictive class than the one
in the original problem.

Inclusive classes. The target class is an ancestor of some
source synset(s), thus representing a more general class.

Disjoint classes. Neither child nor ancestor of any al-
ready source synset.

For these 90 target classes we select some synsets con-
taining at least 1000 images and equally distributed into the
three types of target classes (30 classes each). Within each
target class, we pick 100 images for testing and 900 for train-
ing, producing balanced training and testing sets. Depending
on the experiments, only a certain portion of this training set
will be used for training. The list of synsets used for this
experiment along with the selected images is available on a
GitHub repository. 1

4.3. Similarities and Initialization

We compute the inference similarities as explained earlier,
with a pass of the training set through the pre-trained network
(with the 1000 class pre-trained classifier).

For the WordNet similarities, we use those given by the
WordNet module of the NLTK Python library to obtain a sim-
ilarity measure based on the shortest path that connects the
labels (or synsets) in the ”is-a” (hypernym/hyponym) taxon-
omy.

1https://github.com/lucaspascal/semantic-and-
visual-similarities-for-efficient-knowledge-
transfer-in-CNN-training.

https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficient-knowledge-transfer-in-CNN-training
https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficient-knowledge-transfer-in-CNN-training
https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficient-knowledge-transfer-in-CNN-training


To compute the Word2Vec embedding of a given label,
we average the embeddings 2 of all the words composing it,
since labels are not always denoted by a single word, but
often by an expression.

Each target class is then initialized with the weights of its
selected source(s), depending on the chosen similarity mea-
sure and the number of source neighbors. For the random
initialization baseline, we use a classic Xavier initialization
[3].

4.4. Neighboring optimization

We first show the global behavior of our initialization method
with a single source class neighbor as initialization for each
of the target class, in terms of F-score measure, averaged
over the 90 target classes. For this experiment, we populated
each of the 90 target classes with 500 training images (limit
above which the results did not change significantly), and
trained the networks over these. Fig.1 shows this evolution
in terms of F-score averaged over all the 90 target classes,
with the four initialization strategies (i.e Random, Inference,
WordNet and Word2Vec).

Fig. 1. averaged per-class Fscore

We observe that each of the three initialization strategies
performs better that the random baseline: the convergence is
accelerated, and the models produce interesting results even
without training (iteration 0): from 40% to more than 70%
of the F-score achieved at convergence, depending on the
model. The initialization by inference similarity is perform-
ing best, as one could have expected since the similarities
in this case have directly been evaluated with respect to the
task’s performance metric. The four models tend to converge
to the same value, provided with enough data to fill the gap.

We give in Table 1 an example of source/target class cor-
respondence given by each similarity measure, for the ”Bul-
let, slug” target class. The results of these transfers are shown
in Fig. 2. In this case, the Word2Vec method has been mis-
taken by the ”slug” term, and chose the mollusc as a source

2as trained on Flickr, and publicly available at https://github.
com/li-xirong/hierse/blob/master/README.md.

class (worst performing). WordNet found a logical source
class (”Projectile, missile”), according to the synsets seman-
tic, and the inference by similarity selected ”Lipstick, lip
rouge”, which has no obvious semantic link with a bullet,
but presents some very similar visual patterns, as shown on
the images (performing best).

From this example, along with the global results, we con-
clude that label-based semantic similarities are more likely to
select wrong matchings for visual classification, while the in-
ference similarity is able to bring out better ones, out of any
semantic consideration.

Table 1. Classes correspondances
Target
Class

Inference
Affinity

WordNet
Affinity

Word2Vec
Affinity

bullet,
slug

lipstick,
lip rouge

projectile,
missile slug

Fig. 2. Evolution of the models on the target class Bullet,
slug, for the different source classes determined by the simi-
larity measures.

We then extend the study to the use of multiple source
classes neighbors to compute the different initializations:
Fig. 3 shows the F-scores of the models directly after ini-
tialization (without training), with respect to the number of
source class neighbors selected, for each type of target class
(i.e disjoint, included and inclusive).

The initialization by inference similarity benefits the
most from extending the number of source class neighbors:
for any type of initialization, the built classifiers smoothly
gain in performances by adding neighbors. Beyond the se-
lection of one best source class, this confirms the superiority
of the visual similarity over the semantic ones to estimate the

https://github.com/li-xirong/hierse/blob/master/README.md
https://github.com/li-xirong/hierse/blob/master/README.md


Fig. 3. Immediate inference results for each type of classes and initialization, with respect to the number of source classes
selected to compute the initialization.

Table 2. Evolution of the four methods through data reduction. Performances after initialization (left columns) and best
registered performances (right columns) are reported, with respect to the number of training samples for each class.

Images
per class

Random Visual similarity WordNet semantic
similarity

Word2Vec semantic
similarity

First Best First Best First Best First Best
100 0.00 0.72 0.59 0.73 0.39 0.72 0.35 0.72
50 0.00 0.68 0.58 0.69 0.39 0.68 0.35 0.68
25 0.00 0.62 0.58 0.64 0.39 0.63 0.35 0.63
10 0.00 0.53 0.54 0.54 0.39 0.54 0.35 0.53
5 0.00 0.41 0.50 0.50 0.39 0.43 0.35 0.45
2 0.00 0.26 0.44 0.44 0.39 0.39 0.35 0.35
1 0.00 0.16 0.40 0.40 0.39 0.39 0.35 0.35

relevance of any source class for a transfer. For the WordNet
and Word2Vec cases, there is also a significant gain, even if
the evolution over the number of neighbors is more chaotic,
and it appears to be a good way to compensate bad matchings
(like the Word2Vec case in Table 1).

4.5. Data reduction study

We then study how well this process generalizes while de-
creasing the amount of training data. For each of the initial-
ization methods, we initialize a new model, taking for each
target class the optimal number of neighbors source classes
depending on its type (disjoint, included or inclusive). These
optimal numbers are taken from Fig.3. Table 2 shows the
scores of these models compared to the random baseline for
100, 50, 25, 10, 5, 2 and 1 training images per class. For
each model, the initial performance after initialization (with-
out training) and the best registered performance until con-
vergence are reported.

The source classes selection by inference similarity
varies with the number of training images (unlike the two
others), since it is computed with those images. Its perfor-
mance at initialization thus decreases with the amount of
training data. However, it still always achieves better perfor-
mances, which puts aside the idea of combining both types
of similarities [27]. Under 5 training images per class, a con-
sequent performance gap remains between the baseline and
our models even after training. Under 2 images per class (5

for inference similarity), the best scores are achieved right
after initialization, and training only degrades performances.
Building the best possible initialization is thus crucial in such
cases.

5. CONCLUSION AND PERSPECTIVES

This paper addresses transfer learning in an image classifi-
cation context. In particular, we proposed to study alterna-
tive approaches to re-use the knowledge inherent within the
original pre-trained deep network in the target one (handling
new image classes). Rather than only transferring network
weights corresponding to the feature extraction part, we in-
vestigated several initialization strategies to re-use and com-
bine specifically identified weights from the pre-trained clas-
sifier into the target model. To validate the impact of our
method, we presented and tested three different similarity es-
timators, one visual and two semantics, optimized the mod-
els across the different types of target classes, and monitored
them while reducing the amount of data.

In the end, our method produced systematically bet-
ter initializations, faster trainings, and significantly superior
long term performances in limited training data configura-
tions. The consistency with which the best model, based on
visual similarities, outperforms the baseline across the dif-
ferent types of target classes and amounts of data, along with
its computational lightness (a few supplementary inferences
in the network) suggest that it can be systematically adopted



when performing transfer learning in this context.
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