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Abstract—In this letter, the performance of a quantum key
distribution (QKD) free-space optical (FSO) system is analyzed
while taking a generalized pointing error model into account.
More specifically, closed-form expressions for the average re-
ceived powers at both the legitimate receiver and eavesdropper
are derived. In addition, their corresponding asymptotic results
valid in the high telescope gain regime are also presented. To
capture the secure performance, we also investigate the ratio
of received powers at the eavesdropper and at the legitimate
receiver. Further, in some special cases, we find the optimal
telescope gains for the received powers at both the legitimate
receiver and eavesdropper, as well as the power ratio, which
is important and useful for a secure QKD FSO system design.
Finally, some selected numerical results are presented to illustrate
the mathematical formalism and validate the accuracy of the
derived analytical expressions.

Index Terms—Free-space optical, generalized pointing errors,
secure performance, and quantum key distribution.

I. INTRODUCTION

To achieve confidential communications, a one-time-pad
scheme was proposed by [1], where a secret key is shared
between two legitimate parties. Due to the reliance only on
the computational complexity, this traditional key distribution
method is fundamentally insecure [2]. This is particularly true
with the fast development of large-scale quantum computers
over the last decade, which is making the current public key
infrastructure more and more vulnerable [3]. In this context,
quantum key distribution (QKD), a promising application of
cryptography, provides unconditional security based on the
law of quantum physics and quantum non-cloning theorem
[4]. QKD can be implemented in two kinds of medium,
namely optical fiber and free-space optical (FSO) links. Due to
its cost-effectiveness, high-bandwidth availability, deployment
flexibility and interference-immunity, FSO is an excellent
choice for the terrestrial backhaul solution [1] and the feeder
link of very high throughput satellites [2]. However, in the
FSO systems, stochastic jitter and vibration of the pointing
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direction caused by atmospheric turbulence or building sway
should be taken into account [5], [6], [7].

An inevitable drawback in the QKD FSO systems is back-
flash in the legitimate receiver side, when the legitimate receiv-
er adopts a common detection method, relying on a single pho-
ton avalanche photodiode (SPAD) [8], [9], [10]. Indeed, with
the SPAD detection scheme, an avalanche happens, resulting in
the emission of a secondary photon, i.e., backflash, which can
be captured by eavesdroppers. Kupferman and Arnon in [10]
have recently presented an analytical framework to evaluate
the impact of backflash on the performance of QKD FSO
systems. However, in their investigation, the adopted model
for the azimuth and elevation pointing error angles assumed
zero mean and equal variance for both angles, and the pointing
error angle at eavesdroppers was set to zero. However, for real
life deployment, QKD FSO systems may have to operate under
different and more general conditions. Further, the authors in
[10] did not investigate the optimal point of the telescope gain
to maximize the received power at the legitimate receiver.

In this letter, we consider a generalized pointing error mod-
el, in which the azimuth and elevation pointing error angles at
the legitimate receiver have arbitrary and different mean and
variance. In addition, we do not limit the pointing error angle
at the eavesdropper to be very close to zero. Under this general
setup, we are still able to offer closed-form expressions for the
average received powers at both the legitimate receiver and
eavesdropper. Moreover, the corresponding maximum point
of the telescope gain are found in some special cases. To
simplify the expressions and get obviously some additional
insights, we also derive simple asymptotic expressions when
the telescope gain is sufficiently large. Finally, the ratio of the
received powers at the eavesdropper and legitimate receiver is
analyzed, and the corresponding extreme point of the telescope
gain is also obtained in a particular case of interest.

II. SYSTEM MODEL

In an QKD FSO system, an absolutely static source (S)
transmits an information photon to a destination (D) on a
vibrating platform (such as a laser satellite), resulting in a
random pointing error at D. Due to the avalanche of the
SPAD detection method, a secondary photon will be emitted,
called backflash, which can be detected by a third party, i.e.,
eavesdropper (E). This communications scenario is presented
in Fig. 1 of [10].

The pointing error angle (θ) at D can be divided into two
parts, i.e., θ =

√
θ2
V + θ2

H , where θH and θV are the azimuth
and elevation pointing error angles, respectively. Like in [10],
we assume that θH and θV are Gaussian random variables
(RVs). However, we consider the general case in which these
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RVs are not necessarily with zero mean and the same variance.
That is θV ∼ N

(
µV , σ

2
V

)
and θH ∼ N

(
µH , σ

2
H

)
, where

µV and σ2
V (or µH and σ2

H ) are the mean and variance of
θV (or θH ). In this case, it is well known that θ follows
the Beckmann distribution [11], where the moment-generating
function (MGF) of θ2 is known to be given by [11]

Mθ2 (s) = E
{

exp
(
sθ2
)}

=
exp

(
µ2
V s

1−2σ2
V s

+
µ2
Hs

1−2σ2
Hs

)
√

(1− 2σ2
V s) (1− 2σ2

Hs)
,

(1)

where E{·} represents the average operator. By setting some
specific values for the parameters of the MGF of the Beck-
mann distribution in (6) of [12], the form of (1) can be also
easily obtained.

III. RECEIVED POWER AT D

From [5], [10], the received power at D is given by

PD (θ) = K1GDL (θ) , (2)

where GD is the telescope gain of D and L (θ) =
exp

(
−GDθ2

)
is the corresponding pointing loss factor. In (2),

K1 is constant, depending on the system characteristic, given
by

K1 = ηqPSηSηD
LA (D1)

D2
1

(
λ

4π

)2

, (3)

where ηq is the quantum efficiency, λ is the wavelength, PS
and GS are the transmit power and telescope gain of S,
respectively, LA(D1) is the atmospheric loss with respect to
the distance D1, and ηS and ηD are the optical efficiencies at
S and D, respectively.

The average received power at D with respect to θ can be
written as

PD = Eθ {K1GDL (θ)} = K1GDEθ
{

exp
(
−GDθ2

)}
= K1GDMθ2 (−GD) . (4)

Substituting the MGF of θ2 in (1) into (4) yields

PD =
K1GD exp

(
−GDµ

2
V

1+2σ2
V GD

+
−GDµ

2
H

1+2σ2
HGD

)
√

(1 + 2σ2
VGD) (1 + 2σ2

HGD)
. (5)

A. Asymptotic Result

When GD →∞, we have

lim
GD→∞

PD = lim
GD→∞

K1GD exp
(
−GDµ

2
V

1+2σ2
V GD

+
−GDµ

2
H

1+2σ2
HGD

)
√

(1 + 2σ2
VGD) (1 + 2σ2

HGD)

' K1

exp
(
− µ2

V

2σ2
V
− µ2

H

2σ2
H

)
√

2σ2
V 2σ2

H

=
K1

2σV σH
exp

(
− µ2

V

2σ2
V

− µ2
H

2σ2
H

)
,

(6)

which shows a bound for PD. It implies when the telescope
gain of D is sufficiently large, the received power at D reaches
a constant asymptotic value.

B. Maximization of PD
When σV = σH = σ, taking the natural base of both sides

in (5) yields

lnPD = lnK1 + ln

(
GD

1 + 2σ2GD

)
− GDµ

2
V

1 + 2σ2GD
− GDµ

2
H

1 + 2σ2GD
. (7)

Let x = GD

1+2σ2GD
and f(x) = lnPD. (7) can be further

written as

f (x) = lnK1 + lnx−
(
µ2
V + µ2

H

)
x. (8)

Let the first derivative of f(x) with respect to x be equal to
zero, and a unique stationary point can be obtained as

∂f (x)

∂x
=

1

x
−
(
µ2
V + µ2

H

)
= 0⇒ x? =

1

µ2
V + µ2

H

. (9)

From the first derivative of f(x), we can easily see that
for x > x?, ∂f(x)

∂x < 0, and for x < x?, ∂f(x)
∂x > 0.

Therefore, f(x) is an increasing function over (0, x?), and
a decreasing function over (x?,+∞). To summarize, x? is
the uniquely maximum point for f(x). In view of the positive
property of GD and the function property of x = GD

1+2σ2GD
,

the corresponding optimal point GD that maximizes PD can
be written as

G?D =

{(
µ2
V + µ2

H − 2σ2
)−1

, if µ2
V + µ2

H > 2σ2;

+∞, otherwise.
(10)

IV. RECEIVED POWER AT E

The information intercept relies on the backflash, so the
received power at E is given by [10]

PE = PD (θ)K2L (θE)GD = K1K2G
2
DL (θ)L (θE) , (11)

where L (θE) = exp
(
−GDθ2

E

)
, θE =

√
(θV + α)

2
+ θ2

H ,
and α is the pointing direction error angle due to backflash.
In (11), K2 is given by

K2 = ηfηqηBGEηE
LA (D2)

D2
2

(
λ

4π

)2

, (12)

where LA(D2) is the atmospheric loss with respect to the
distance D2, and ηf , ηE and GE are the backflash probability,
optical efficiency and telescope gain of E, respectively.

The average received power at E can be written as

PE = E
{
K1K2G

2
DL (θ)L (θE)

}
= K1K2G

2
DE
{

exp
(
−GDθ2 −GDθ2

E

)}
= K1K2G

2
DE
{

exp
(
−GD

(
2θ2
V + 2θ2

H + 2αθV + α2
))}

,
(13)

where the expectation term can be further written as

E
{

exp
(
−GD

(
2θ2
V + 2θ2

H + 2αθV + α2
))}

= exp
(
−GDα2

)
E
{

exp
(
−2GD

(
θ2
V + θ2

H + αθV
))}

= exp
(
−GDα2

)
E
{

exp
(
−2GDθ

2
H

)}
E
{

exp
(
−2GD

(
θ2
V + αθV

))}
. (14)
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By using the probability density functions of θV and θH ,
closed-form expressions for the two expectation operators in
(14) can be derived as

EθE
{

exp
(
−2GD

(
θ2
V + αθV

))}
=

exp
(
− µ2

V

2σ2
V

)
√

4GDσ2
V + 1

exp


(

2αGD − µV

σ2
V

)2

8GD + 2
σ2
V

 , (15)

EθE
{

exp
(
−2GDθ

2
H

)}
=

exp
(
− µ2

H

2σ2
H

)
√

4σ2
HGD + 1

exp


(
µH

σ2
H

)2

8GD + 2
σ2
H

 , (16)

respectively.
A closed-form expression for PE can finally be derived for

arbitrary µV , µH , σV , σH , and α as

PE =
K1K2G

2
D exp

(
− µ2

V

2σ2
V
− µ2

H

2σ2
H

)
√

(4GDσ2
V + 1) (4σ2

HGD + 1)

exp


(

2αGD − µV

σ2
V

)2

8GD + 2
σ2
V

+

(
µH

σ2
H

)2

8GD + 2
σ2
H

−GDα2

 .

(17)

A. Special Cases

If α = 0, which means that E is in the vicinity of S, PE
becomes

PE = K1K2G
2
DE
{

exp
(
−2GD

(
θ2
V + θ2

H

))}
=
K1K2G

2
D exp

(
−2µ2

V GD

1+4σ2
V GD

− 2µ2
HGD

1+4σ2
HGD

)
√

(1 + 4σ2
VGD) (1 + 4σ2

HGD)
. (18)

In the α = 0 case, when GD → +∞, PE is approximately
equal to

lim
GD→+∞

K1K2G
2
D exp

(
−2µ2

V GD

1+4σ2
V GD

− 2µ2
HGD

1+4σ2
HGD

)
√

(1 + 4σ2
VGD) (1 + 4σ2

HGD)

'
K1K2 exp

(
− µ2

V

2σ2
V
− µ2

H

2σ2
H

)
4σV σH

GD, (19)

which shows that PE is approximately proportional to GD for
GD → +∞ and α = 0.

B. Maximization of PE
For µV = µH = 0 and σV = σH = σ, PE can be simplified

as

PE =
K1K2G

2
D

4σ2GD + 1
exp

(
2σ2α2G2

D

4σ2GD + 1
−GDα2

)
. (20)

The first derivative of PE with respect to GD is given by (21),
where the positive or negative value depends only on the last
term, i.e.,

Θ =− 16σ4α2G3
D +

(
32σ4 − 8σ2α2

)
G2
D

+
(
24σ2 − 2α2

)
GD + 4, (22)

which is a standard univariate cubic equation with respect to
GD. If σ and α are known, we can easily find the roots for
Θ = 0 and the positive and negative value intervals for ∂PE

∂GD
,

and thereby finding the extreme points for PE . Specially, when
GD = 0, Θ = 4 is positive, so over GD ∈ (0,+∞), PE must
increase first. The trend and extreme point of PE are very
useful and important for the secure system design.

V. RATIO OF PE TO PD

An important metric for the secure analysis is the ratio of
PE to PD, which can be easily derived by using the closed-
form expressions for PE and PD, is given by

∆ =
PE

PD
=
K2GD

√
(1 + 2σ2

VGD) (1 + 2σ2
HGD)√

(4σ2
VGD + 1) (4σ2

HGD + 1)

exp

(
− µ2

V

2σ2
V

− µ2
H

2σ2
H

)
exp

(
GDµ

2
V

1 + 2σ2
VGD

+
GDµ

2
H

1 + 2σ2
HGD

)

exp


(

2αGD − µV

σ2
V

)2

8GD + 2
σ2
V

+

(
µH

σ2
H

)2

8GD + 2
σ2
H

− α2GD

 .

(23)

This expression is relatively complicated, and does not provide
us some useful insights for the secure system design. Here, we
consider some special cases to analyze this ratio.

For µV = µH = 0 and σV = σH = σ, the expression for
∆ can be simplified as

∆ =

(
1 + 2σ2GD

)
K2GD

4σ2GD + 1
exp

(
α2G2

D

2GD + 1
2σ2

− α2GD

)
.

(24)

The first derivative of ∆ with respect to GD is shown in (25),
where the positive or negative value of ∂∆

∂GD
depends only

on Θ2, a standard univariate quartic equation. If α and σ are
known, the roots for Θ2 = 0 can be easily derived, and the
positive and negative value intervals can be also determined.
Thus, we can analyze the changing trend of ∆ and derive the
extreme points.

When α = 0, µV = µH = 0 and σV = σH = σ, ∆
becomes

∆ =

(
1 + 2σ2GD

)
K2GD

4σ2GD + 1
. (26)

The first derivative of ∆ with respect to GD in (26) is

∂∆

∂GD
=
K2 + 4σ2K2G

2
D + 8σ4K2G

2
D (2GD − 1)

(4σ2GD + 1)
2 . (27)

It is obvious that for GD > 1
2 , ∂∆

∂GD
must be positive. As

GD � 1 in the most practical cases, we can treat ∂∆
∂GD

as
a positive value, and therefore, ∆ always increases as GD
grows. If GD is sufficiently large, ∆ can be approximately
obtained by

∆ ' K2GD
2

. (28)
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∂PE
∂GD

=

K1K2GD exp

(
−α

2GD(4σ2GD+2)
8σ2GD+2

)
2(4σ2GD + 1)

3

[
−
(
4σ2
)2
α2G3

D +
(

2
(
4σ2
)2 − 2 · 4σ2α2

)
G2
D +

(
6 · 4σ2 − 2α2

)
GD + 4

]
.

(21)

∂∆

∂GD
=

K2 exp

(
−α

2GD(2σ2GD+1)
4σ2GD+1

)
(4σ2GD + 1)

3

[
−16α2σ6G4

D −
(
16σ4α2 − 32σ6

)
G3
D −

(
6σ2α2 − 24σ4

)
G2
D −

(
α2 − 8σ2

)
GD + 1

]︸ ︷︷ ︸
Θ2

.

(25)

VI. NUMERICAL RESULTS

To simplify the parameter setting, D1 = D2 = 900 km,
LA(D1) = LA(D2) = 0.5, λ = 780 nm, PS = 0 dB, GS =
GE = 1011, ηf = 0.04, ηq = 0.1, and ηS = ηD = 0.9 are
assumed in the following simulation results. In each Monte-
Carlo simulation result, 107 realizations are generated to get
the corresponding average value according to the statistical
properties, i.e., µV , µH , σV and σH .

As shown in Fig. 1, the received power at D increases as
GD grows, due to the improved telescope gain. When GD is
sufficiently large, PD reaches an asymptotic bound, as proved
in (6). It is obvious that PD is improved with increasing µH ,
because a smaller µH means a better pointing direction. The
maximum points are also marked in Fig. 1, which are derived
from the maximization analysis for PD, where the maximum
points for µ2

V + µ2
H < 2σ2 are infinity.

1010 1011 1012 1013 1014 1015 1016

GD

10-7

10-6

10-5

10-4

10-3

P
D

Simulation

Analysis

Asymptotic

Maximum Point

µH = 3, 2.5, 2, 1, 0.1× 10−7

Fig. 1. PD versus GD with various values of µH for σ2
V = σ2

H =
1.44 × 10−14, and µV = 1 × 10−7.

Fig. 2 plots PE versus GD for different values of α. PE
for α > 0 increases first, and reaches a vertex before a
sharp decline, while PE for α = 0 always increases with
increasing GD, where the asymptotic results are derived by
(19). When GD is sufficiently large, PE becomes lower as α
grows, because a larger α means a larger distance between the
transmitter and eavesdropper. The maximum points in Fig. 2
are obtained in the analysis of Subsection IV-B.

To validate the correctness of (17) for the general pointing
errors, we also vary the values of µV and σ2

V in Figs. 3-4,
respectively. From Figs. 3-4, we can easily see that a large

1010 1011 1012 1013 1014 1015 1016

GD

10-30

10-25

10-20

10-15

10-10

10-5

P
E

Simulation

Analysis

Asymptotic for α = 0

Maximum Point

α = 3, 2, 1, 0× 10−7

Fig. 2. PE versus GD with various values of α for σ2
V = σ2

H = 1×10−14,
and µV = µH = 0.

µV (or σ2
V ) results in a larger PE . More specifically, PE

under different values of µV almost converges in the low and
high GD regions, and the gap is only obvious in the medium
GD region. In the σ2

V changing case, the gap of PE under
different σ2

V becomes larger with increasing GD.

1010 1011 1012 1013 1014 1015 1016

GD

10-40

10-30

10-20

10-10

P
E

Simulation

Analysis

µV = 4, 3, 2, 1, 0× 10−7

Fig. 3. PE versus GD with various values of µV for σ2
V = σ2

H =
1 × 10−14, µH = 1 × 10−7, and α = 2 × 10−7.

In Fig. 5, ∆ for α > 0 increases first before achieving a
vertex after which this figure is rapidly falling, rather than
a continuous growth in the figure for α = 0, where the
asymptotic results are obtained by (28). The maximum points
for (24) are also presented in Fig. 5, where the decreasing
trend of maximum points are obvious with increasing α.

To present more general pointing error cases, we consider
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Fig. 4. PE versus GD with various values of σ2
V for σ2

H = 1 × 10−14,
µV = µH = 1 × 10−7, and α = 2 × 10−7.
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Fig. 5. ∆ versus GD with various values of α for σ2
V = σ2

H = 1×10−14,
and µV = µH = 0.

different values of µV and µH , and set the same variance of
θV and θH in Fig. 6. There is an increasing trend of ∆ as the
variance grows, although the difference of ∆ among different
variances is not obvious in the low GD region.
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Fig. 6. ∆ versus GD with various values of σ2
V = σ2

H = σ2 for µV =
1 × 10−7, µH = 0, and α = 1 × 10−7.

VII. CONCLUSION

In this letter, closed-form expressions for PD, PE , and ∆
were derived, and simplified expressions in some special cases
were also given. To get more design insights, we performed
an analytical maximization for PD, PE , and ∆ based on

some special settings of some selected parameters. In the
numerical section, we used the Monte-Carlo simulations to
validate the correctness of our newly derived expressions.
From both the derived expressions and numerical results, we
can get some design guidelines for the telescope gain at the
legitimate receiver to achieve a specific purpose, shown as
follows:
• If the legitimate receiver only wants to improve its

received power (without taking the eavesdropper into
account) in the σ2

V = σ2
H case, the optimal GD can be

found by (10), which depends on the parameter setting,
i.e., may not just make GD as large as possible (shown
in Fig. 1).

• If we only want to make PE lower, the legitimate receiver
should avoid the optimal GD for PE , where the impact
of PD is neglected due to the priority of security. From
Fig. 2, we should make GD as small (or large) as possible
to avoid the vertex for α 6= 0. When α = 0, decreasing
GD is the only way to get better security.

• If we need to balance the received power performance
between the legitimate receiver and eavesdropper, ∆
should be taken into account, which reflects the joint
effect of GD on PD and PE . From Figs. 5-6, to make PD
larger and PE smaller for α 6= 0, the legitimate receiver
can increase GD until arriving to a specific threshold. If
α = 0, we have no choice but to decrease GD.
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