
IEEE TRANSACTIONS, UNDER SUBMISSION 1

A Flexible Heuristic to Schedule Distributed
Analytic Applications in Compute Clusters

Francesco Pace, Daniele Venzano, Damiano Carra, and Pietro Michiardi

Abstract—This work addresses the problem of scheduling user-defined analytic applications, which we define as high-level
compositions of frameworks, their components, and the logic necessary to carry out work. The key idea in our application definition, is
to distinguish classes of components, including core and elastic types: the first being required for an application to make progress, the
latter contributing to reduced execution times. We show that the problem of scheduling such applications poses new challenges, which
existing approaches address inefficiently.
Thus, we present the design and evaluation of a novel, flexible heuristic to schedule analytic applications, that aims at high system
responsiveness, by allocating resources efficiently. Our algorithm is evaluated using trace-driven simulations and with large-scale real
system traces: our flexible scheduler outperforms current alternatives across a variety of metrics, including application turnaround
times, and resource allocation efficiency.
We also present the design and evaluation of a full-fledged system, which we have called Zoe, that incorporates the ideas presented in
this paper, and report concrete improvements in terms of efficiency and performance, with respect to prior generations of our system.

Index Terms—scheduling, distributed applications, distributed systems

F

1 INTRODUCTION

The last decade has witnessed the proliferation of numerous
distributed frameworks to address a variety of large-scale
data analytics and processing tasks. First, MapReduce [1]
has been introduced to facilitate the processing of bulk
data. Subsequently, more flexible tools, such as Dryad [2],
Spark [3], Flink [4] and Naiad [5], to name a few, have
been conceived to address the limitations and rigidity of
the MapReduce programming model. Similarly, specialized
libraries such as MLLib [6] and systems like TensorFlow
[7] have seen the light to cope with large-scale machine
learning problems. In addition to a fast growing ecosystem,
individual frameworks are driven by a fast-pace develop-
ment model, with new releases every few months, intro-
ducing substantial performance improvements. Since each
framework addresses specific needs, users are left with a
wide choice of tools and combination thereof, to address the
various stages of their data analytics projects.

The context depicted above has driven a lot of research
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21] (see Section 7 for a detailed discussion) in the area
of resource allocation and scheduling, both from academia
and the industry. These efforts materialize in cluster man-
agement systems that offer simple mechanisms for users to
request the deployment of the framework they need. The
general underlying idea is that of sharing cluster resources
among a heterogeneous set of frameworks, as a response to
static partitioning, which has been dismissed for it entails

• F. Pace, D. Venzano and P. Michiardi are with the Data Science Depart-
ment, Eurecom, Sophia Antipolis, France.
E-mail: name.surname@eurecom.fr

• D. Carra is with the Computer Science Department, University of Verona,
Verona, Italy. E-mail: damiano.carra@univr.it

Manuscript received ...; revised ...

low resource allocation [8], [9], [10]. Existing systems divide
the resources at different levels. Some of them, e.g. Mesos
and YARN, target low-level orchestration of distributed com-
puting frameworks: to this aim, they require non-trivial
modifications of such frameworks to operate correctly. Oth-
ers, e.g. Kubernetes [22] and Docker Swarm [23], focus on
provisioning and deployment of containers, and are thus
oblivious to the characteristics of the frameworks running
in such containers. To the best of our knowledge, no existing
tool currently addresses the problem of scheduling analytic
applications as a whole, leveraging the intrinsic properties
of the frameworks such applications use.

The endeavor of this paper is to fill the gap that exists in
current approaches, and raise the level of abstraction at which
scheduling works. We introduce a general and flexible def-
inition of applications, how they are composed, and how to
execute them. For example, a user application addressing
the training of a statistical model involves: a user-defined
program implementing a learning algorithm, a framework
(e.g., Spark) to execute such a program together with in-
formation about its resource requirements, the location for
input and output data and possibly parameters exposed as
application arguments. Users should be able to express, in a
simple way, how such an application must be packaged and
executed, submit it, and expect results as soon as possible.

We show that scheduling such applications represents
a departure from what has been studied in the scheduling
literature, and we present the design of a new algorithm
to address the problem. A key insight of our approach
is to exploit application properties and distinguish their
components according to classes, core and elastic, the first
being required to produce work, and the latter contributing
to reduced execution times. Our heuristic focuses cluster
resources to few applications, and uses the class of appli-
cation components to pack them efficiently. Our scheduler

IEEE TRANSACTIONS, UNDER SUBMISSION 2

aims at high cluster allocation and a responsive system. It
can easily accommodate a variety of scheduling policies, be-
yond the traditional “first-come-first-served” or “processor
sharing” strategies, that are currently used by most existing
approaches. We study the performance of our scheduler
using realistic, large-scale workload traces from Google [24],
[25], and show it consistently outperforms the existing base-
line approach which ignores component classes: application
turnaround times [26] are more than halved, and queuing
times are drastically reduced. This induces fewer applica-
tions waiting to be served, and increases resource allocation
up to 20% more than the baseline.

Finally, we present a full-fledged system, called Zoe, that
schedules analytic applications according to our original al-
gorithm and that can use sophisticated policies to determine
application priorities. Our system exposes a simple and ex-
tensible configuration language that allows application def-
inition. We validate our system with real-life experiments,
and report conspicuous improvements when compared to a
baseline scheduler, when using a representative workload:
median turnaround times are reduced by up to 37% and
median resource allocation is 20% higher.

In summary, the contributions of our work are:

• We define, for the first time, a high-level construct
to represent analytic applications, focusing on their
heterogeneity, and their end-to-end life-cycle;

• We establish a new scheduling problem, and propose
a flexible heuristic capable of handling heteroge-
neous requests, as well as a variety of scheduling
policies, with the ultimate objective of improving
system responsiveness under heavy loads;

• We evaluate our scheduling policy using realistic,
large-scale workload traces and show it consistently
outperforms the baseline approach;

• We build a full-fledge system which materializes the
ideas of analytic applications and their scheduling.
Our system has been in use for over two years,
serving a variety of analytic application workloads.
Using our new heuristic, we were able to achieve
substantial improvements in terms of system respon-
siveness and cluster allocation.

This article extends the work presented in [27] in several
respects: (i) we implement a malleable scheduler, and com-
pared the results with our solution; (ii) we study different
definitions of job size and discuss their impact on the
perfomance indexes; (iii) we implement and evaluate other
scheduling policies that fall in the category of SMART poli-
cies, such as SRPT (Shortest-Remaining-Processing-Time)
and HRRN (Higher-Response-Ratio Next).

The remainder of this paper is organized as follows.
We start by clarifying what analytic applications are, give
examples and formulate our problem statement in Section 2.
We then describe the details of our flexible scheduling
heuristic, in Section 3, which we evaluate using simulations
in Section 4. The system implementation is described in
Section 5, and its evaluation is presented in Section 6.
Finally, in Section 7 and Section 8 we discuss related work
and conclude, hinting at our current research agenda.

2 DEFINITIONS AND PROBLEM STATEMENT

2.1 Definitions
We define a data analytics framework as a set of one or more
software components (executable binaries) to accomplish
some data processing tasks. Distributed frameworks are
generally composed by a controller, a master and a number
of worker components. Examples of distributed frameworks
are Apache Spark [28], Google TensorFlow [29] and MPI
[30]. Another example of a simple data analytics framework
we consider is an interactive Notebook [31].

Distributed frameworks require a scheduler to orchestrate
their work: they execute jobs, each of which consists of one
or more tasks that run in parallel in the same program.
Such schedulers operate at the task level: they assign tasks to
workers, and they are highly specialized to take into account
the peculiarities of each framework.

Framework schedulers such as Mesos [8] and Yarn [21]
introduce an additional scheduling component to share
cluster resources among concurrent frameworks: sharing
policies are based on simple variations of Processor Shar-
ing. Similarly, cluster management systems such as Docker
Swarm [23] and Kubernetes [22] use a scheduler that assigns
resources to generic frameworks. The problem to solve is
the efficient allocation of resources by placing framework
components and their tasks on cluster machines that satisfy
a set of constraints.

We are now ready to define analytics applications,
which are the elements we schedule in our work. Our main
objective is to raise the level of abstraction by manipulating an
abstract entity encompassing one or more analytics frame-
works, their components and the necessary logic for them to
cooperate toward producing useful work by running user-
defined jobs. What sets apart our work from the state of the
art is that our scheduler takes into account the notion of
component classes, which allows modeling the specificity
of each framework. We have found two distinct component
classes to be sufficient to model existing analytic frame-
works: thus, framework components either belong to a core
or to an elastic class. Core components are compulsory for a
framework to produce useful work; elastic components, in-
stead, can contribute to a job, e.g. by decreasing its runtime.1

Consider, for example, Spark. To produce work, it needs
some core components: a controller (the spark client running
the DAG scheduler), a master (in a standalone deployment),
and one worker (running executors). We treat additional
workers as elastic components. An alternative example is an
application using TensorFlow, which only works with core
components: one or more parameter servers and a number
of workers. These two frameworks have different runtime
behavior: Spark is an elastic framework that can dynam-
ically integrate workers to dispatch tasks. TensorFlow is
rigid, and uses only core components to make progress.

To summarize, the nature of an application is that of raising
the level of abstraction and an application is considered as being a
collection of frameworks and their heterogeneous components as a
single entity to schedule and allocate in a cluster of computers.

1. Elastic components are not guaranteed to always reduce job run-
times: indeed, the presence of “straggler” tasks, might induce a given
job to enjoy little improvement from additional resources. This is
especially true if such “stragglers” are systematically assigned to an
elastic component.

IEEE TRANSACTIONS, UNDER SUBMISSION 3

2.2 Problem Statement
We now treat the applications defined above as abstract
entities that we call requests: they include one or more
components, which belong to a given class, either core
or elastic. The scheduler takes a “reservation-centric” ap-
proach, whereby a resource request expresses the worst-
case requirements for an application to complete. So, even
if resource usage varies over time, the scheduler only reasons
about resource reservation 2.

In the literature, the classical problem of scheduling
generic requests to be served by a distributed system has
been extensively studied [33], [34], [35]. Requests composed
solely by core components are usually referred to as rigid,
while requests composed solely by elastic components are
referred to as moldable (if the assigned resources are decided
when the request is served and they do not change for
the whole execution) or malleable (if the resources can vary
during the execution3). A key difference with respect to the
previous works, such as the literature on the divisible load
scheduling [37], is that we consider heterogeneous requests,
composed by both core and elastic components.

For simplicity of exposition, we assume system resources
that can be measured in units, and that there are R available
units overall to satisfy the requests. Each request i specifies
the amount of units for its core and elastic components,
labeled Ci and Ei respectively. A given amount of work Wi

is associated to each request: we assume that such amount
of work can be done by the elastic components, as well as
by the core components, except two. Indeed, if we consider
as an example frameworks such as Apache Spark, two
core components are dedicated to the Spark client and the
Spark master: therefore, they do not produce actual work,
but only coordinate the application. The service time can
be computed as Ti = Wi

Ci−2+xi(t)
, where Ci + xi(t) is the

amount of allocated resources (two core components do not
produce work) and 0 ≤ xi(t) ≤ Ei. This simple approach to
compute the service times has been adopted in the literature
[37] and allows updating Ti when a scheduling decision
modifies xi(t), by measuring the amount of work accom-
plished so far, and by computing the remaining amount of
work to be done. While more complex computation of Ti
can be conceived, for example taking into account the multi-
dimensional nature of system resources or different types
of scalability, the scheduling algorithm we present in this
work does not use, nor attempt to compute service times Ti:
such a computation or any approximation thereof serves the
sole purpose of giving the context of a general scheduling
problem.

Essentially, the problem of scheduling the execution of
an incoming workload of requests amounts to: i) sorting
requests to decide in which order to serve them; ii) allo-
cating distributed resources to requests selected for service.
The sorting phase can be solved using naive approaches,
e.g. FIFO ordering, or more sophisticated policies, that use
request size information. Even more generally, requests can
be placed into “pools” and be assigned priorities, to mimic

2. The possibility of changing the resources to an application rep-
resents a difficult, different problem, which needs to be studied with
different tools – the interested reader may refer to [32] for details.

3. An example of malleable framework is Spark [36]. Worker can be
added or removed without destroying the application execution.

resources

time
(s)

10

5

Baseline, rigid
approach

B C D

10 20 30 40
resources

time
(s)

10

5

Malleable
approach

D

10 17.5 25 35

B

C

resources

time
(s)

10

5

Our flexible
approach

10 17.5 26.5 33.5

B
D

C

A
C = 3
E = 4

W = 50

B
C = 3
E = 3

W = 40

C
C = 3
E = 5

W = 60

D
C = 3
E = 2

W = 30

A

A

A

Fig. 1. Illustrative examples of request scheduling: (top) rigid, (middle)
malleable, (bottom) flexible approaches.

the hierarchical organization of the users, for example. The
allocation phase is more tricky: in the abstract, it is a “pack-
ing” problem that determines how to shape requests being
served. Even if we consider the offline, static problem – i.e.,
if we assume that both service times and the sequence of
jobs to be known a-priori (e.g., Ti is given as an input, as
well as the arrival times of each job) – it is simple to show
that such a problem is NP-hard [34]. Therefore, we need
to find a suitable heuristic to approximate a solution to the
scheduling optimization problem. In our case, this amounts
to minimizing the application turnaround times, which is
the interval of time between request i submission and its
completion. In the context we consider, optimizing the aver-
age turnaround time represents a meaningful performance
metric [26], as it caters system responsiveness.

Our scheduling problem does not directly take care of
data locality constraints. As we saw in [38], recently cloud
providers tend to disaggregate compute and storage layer
at different levels: a compute and data node can reside
on the same host, on different hosts or even on different
data centers. Next, we motivate our problem with a simple
illustrative example.
Illustrative example. We consider a system with 10 avail-
able resource units, and four requests waiting to be served,
as shown in Figure 1. Each request needs 3 units for the core
components, and different units for the elastic components.
For each request, we also specify Wi, the amount of work
to be done. In this example we focus on the allocation
phase only and we use the FIFO policy to sort the pending
requests.

Given these requests, a traditional, rigid approach to

IEEE TRANSACTIONS, UNDER SUBMISSION 4

scheduling – which does not make the distinction between
component classes – assigns all required resources to each
request. Since all requests need at least 5 units (Ci+Ei ≥ 5),
and since any pair of requests have an aggregated need
that exceeds 10 units, the scheduler serves one request at
a time (Figure 1, top): the average turnaround time is 25s.
Note that, in this case, backfilling is not possible, i.e., even
by changing the order in which requests are served the
situation does not change.

Another scheduling approach comes from the literature
of malleable job scheduling. The scheduler assigns all re-
sources to the first request in the waiting line, then assigns
the remaining resources (if any) to the next request, and so
on, until no more free resources are available. This heuristic
has been shown to be close to optimal [34]. Figure 1, middle,
illustrates the idea: request B can be served along with
request A. When request A has completed, the scheduler
first assigns more resources to request B, and then tries
to serve the next request. Similarly, when request B has
completed, the scheduler first assigns more resources to
request C, then attempts at serving request D. However,
since request D needs at least Ci = 3 units, the scheduler
is blocked (note that request C uses 8 units), so request D
needs to wait, and some system resources remain unused.
The average turnaround time is 21.875s.

In this work we advocate the need for a new approach
to scheduling, which distinguishes component classes. The
idea is to exploit the flexibility of elastic components and
use system resources more efficiently. Intuitively, a solution
to the problems of existing heuristics is to reclaim some re-
sources assigned to elastic components of a running request
and assign them to a pending request. This is shown in the
bottom of Figure 1: the scheduler reclaims just one unit from
request C so that it can provide 3 units to request D, which
are sufficient for its core components and produce useful
work. With this approach, the average turnaround is the
same, but the overall completion time decreases, freeing the
resources for any additional request.

While the above solution seems simple, it poses many
challenges: how many units assigned to elastic components
can be sacrificed for serving the next request? How many
requests should be served concurrently? Should the sched-
uler focus on core components alone, to make sure many
requests are served concurrently? How can scheduling take
into account the priorities assigned by the sorting phase?

The last point introduces an additional challenge, related
to preemptive scheduling policies. If a high priority request
arrives, since it is not possible to interrupt core components,
for this would kill the request, how can we select and pre-
empt elastic components to accommodate the new request?

Given heterogeneous, composite requests, which are neither
rigid, nor malleable (but both), available scheduling heuristics in
the literature fall short in addressing the sorting and allocation
problems: a new approach is thus truly desirable.

3 A FLEXIBLE SCHEDULING ALGORITHM

3.1 Design guidelines
We characterize a request by its arrival time, its priority (to
decide the order in which the requests should be served), the
resources it asks for (core and elastic) and the execution time

(in isolation, i.e., when all required resources are granted to
the application). Given an incoming workload, our goal is
to optimize the sum of the turnaround times τi, that is:

min
∑
i

τi ⇒ min
∑
i

(queuingi + executioni)

The actual execution time depends on the amount of re-
sources assigned over time to the request. Now, recall that
the scheduling problem can be broken into sorting and allo-
cation phases. Sorting determines when a request is served,
thus it has an impact on its queuing time. The allocation
phase contributes both to queuing and actual execution
times. Depending on allocation granularity [9], a request
might need to wait for a number of resources to be available
before occupying them, thus increasing – albeit indirectly –
the queuing time. The execution time is directly related to
the allocation algorithm and to the workload characteristics.

In this work we decouple request sorting from allo-
cation:4 our scheduler maintains the request ordering, as
imposed by an external component, and only focuses on
resource allocation. Sorting can be simply based on arrival
times (which amounts to implement a FIFO queuing disci-
pline), or can use additional information, such as request
size (thus implementing a variety of size-based disciplines).

Overall, we optimize request turnaround times through
careful resource allocation, and design an algorithm that
strives at allocating all available cluster resources, by serving the
least number of requests at a time. Intuitively, by “focusing”
resources to few requests, we expect their execution times to
be small. Consequently, queued requests also enjoy smaller
wait times, because resources are freed more quickly.

3.2 Algorithm Details
Although we support preemptive scheduling policies, to
simplify exposition, we first consider the case with no pre-
emption: resources assigned to a request can only increase,
and a new request can be placed, at most, at the head
of the waiting line, depending on the sorting component.
We stress that the output of our scheduling algorithm is a
virtual assignment, i.e., the mechanism to physically allocate
resources according to the computed assignment (core and
elastic components for running applications) is separate
from the scheduling logic, and considered as an implemen-
tation detail.

Our resource allocation procedure is called REBALANCE,
and it is triggered by two events: request arrivals and
departures – see Algorithm 1. When a new request arrives
(procedure ONREQUESTARRIVAL), the resource assignment
is done only if such a request is placed at the head of
the waiting line and there are unused resources that are
sufficient for running its core components. When a request
is completed (procedure ONREQUESTDEPARTURE), the re-
leased resources are always reassigned.

The scheduler maintains two ordered sets: the requests
waiting to be served (L), and the requests in service (S).
Each request req needs req.C core components and req.E
elastic components; depending on the allocation, request

4. This approach is similar to the one used in SLURM [39], where the
order of the pending jobs is given by an external pluggable component,
and the scheduler processes the jobs in that order.

IEEE TRANSACTIONS, UNDER SUBMISSION 5

Algorithm 1: Resource assignment procedures (no
preemption)
1 procedure ONREQUESTARRIVAL(req)
2 INSERT(req, L)
3 if req == L.head and req.C ≤ avail then
4 REBALANCE()

5 procedure ONREQUESTDEPARTURE()
6 REBALANCE()

7 procedure REBALANCE()
8 while

∑
j∈S

(reqj .C + reqj .E) < total and (L not ∅)

do
9 req ← L.head

10 if req.C +
∑
j∈S

reqj .C < total then

11 INSERT(POP(L), S)
12 else
13 break

14 avail← total −
∑
j∈S

reqj .C

15 forall req ∈ S do
16 req.G← 0

17 req ← S.head
18 while avail > 0 and (req not NULL) do
19 req.G← min(req.E, avail)
20 avail← (avail − req.G)
21 req ← req.next

req is granted 0 ≤ req.G ≤ req.E elastic components. The
core of the procedure REBALANCE (lines 18-21) operates as
follows: each request req in the serving set S has always
at least req.C resources assigned. Excess resources are as-
signed to the requests in S following the request order. The
scheduler assigns as many elastic components as possible to
the first request, then to the second, and so on, in cascade.

Following the design guidelines, the set S should only
contain the requests that are strictly necessary to use all the
available resources. This is accomplished by the first part of
the procedure REBALANCE (lines 8-13): a request is added
to S if the current requests in S are not able to saturate the
total resources (total, line 8). Note that we add a request to
S only if there is room to allocate all of its core components.

Our exposition glosses over the details of a multi-
dimensional packing problem, but our implementation con-
siders both CPU and RAM resources. The greedy heuristic
we present in Algorithm 1 can be amended with a simple
rationale. First, if possible given the current system state,
we allocate CPU resources of core components; then, if
possible, we allocate RAM resources of core components.
Only once both CPU and RAM resources are allocated
to core components, our algorithm proceeds similarly to
allocate elastic components.

This is different from a joint optimization of both types
of resources, and therefore it may be suboptimal. Although
simple, our heuristic provides significant gains, as will we
show through our experimental results in Sect. 4.

Algorithm 2: Resource assignment procedures
(with preemption)
1 procedure ONREQUESTARRIVAL(req)
2 if req.P > S.tail.P then
3 if req.C ≤

∑
j∈S

reqj .E then

4 INSERT(req, S)
5 REBALANCE()
6 else
7 INSERT(req,W)
8 else
9 INSERT(req, L)

10 if req == L.head and req.C ≤ avail then
11 REBALANCE()

12 procedure ONREQUESTDEPARTURE()
13 whileW.head.C +

∑
j∈S

reqj .C < total and (W not

∅) do
14 INSERT(POP(W), S)
15 REBALANCE()

3.3 Preemptive policies
We now consider preemptive policies: request arrivals can
trigger (partial) preemption of running requests, e.g. if new
requests have higher priority than that of the last request
in service. In this case, the tuple describing a request also
stores its priority, req.P . It is important to note that, in
this work, the preemption mechanism only operates on
elastic components of running applications, whereas core
components (that are vital for an application) cannot be
preempted.

Algorithm 2 shows the modifications to the procedures
ONREQUESTARRIVAL and ONREQUESTDEPARTURE to sup-
port preemption. When a new request arrives, if its priority
is higher than the requests in service, we check if its core
components can be allocated using the resources occupied
by the elastic components of currently running requests. If
so, we insert the request into the set S and call REBALANCE
(defined in Algorithm 1). Otherwise, we insert the request
into an auxiliary waiting line W , which is given priority
when resources become available. Indeed, procedure ON-
REQUESTDEPARTURE indicates that we first consider the
waiting requests inW , and we add to the set S as many of
them as possible, considering solely the core components. In
other words, requests inW have higher priority than those
in L. Finally, the call of REBALANCE assigns the remaining
resources to the elastic components of high priority requests.

4 NUMERICAL EVALUATION

4.1 Methodology
We evaluate our algorithm using an event-based, trace-
driven discrete simulator developed to study the scheduler
Omega [9], which we extended5 in order to make it work
with applications, instead of low-level jobs and to use the
concept of component classes. Our scheduler implementa-
tion supports a variety of policies, from the basic FIFO (First

5. https://github.com/DistributedSystemsGroup/
cluster-scheduler-simulator

IEEE TRANSACTIONS, UNDER SUBMISSION 6

In, First Out), to the size-based disciplines in the family
of SMART policies [40]. In case of size-based policies, we
assume application size information to be provided by an
external component (such as a job size estimator), which
is not part of the design of our solution: recent studies
have highlighted that a size based scheduler may tolerate
estimation errors with minimal impact on the scheduling
performance [41].

Our implementation first obtains a “virtual assignment”
with Algorithm 1, then fulfills it by allocating resources
accordingly, which happens instantaneously. Additionally,
we have implemented a baseline, consisting of a rigid sched-
uler that does not distinguish component classes, which is
representative of current cluster management systems. In
our simulations, we consider two-dimensional resources,
including definitions of CPU and RAM requirements. We
would like to stress that the “virtual assignment” can take
into consideration other constraints as well (e.g., GPU).

Our scheduler currently accepts application workloads
of two kinds. The first is batch applications, that take
from a few seconds to a few days to complete: these are
delay-tolerant applications, with a very simple life-cycle.
Core components must first start to produce useful work,
by executing user-defined jobs that are “passed” to the
application; elastic components may contribute to the ap-
plication progress. Once the user programs are concluded,
the application finishes, releasing resources occupied by
its frameworks and components. The second is interactive
applications, which involve a “human in the loop”: these
are latency-sensitive applications, with a life-cycle triggered
by human activity. In this case, core components must
start as soon as possible, to allow user interaction with the
application (e.g., a Notebook).

For our performance evaluation, we use publicly avail-
able traces [24], [25], [42], [43], and generate a workload
by sampling the empirical distributions we compute from
such traces. First, we focus on batch applications alone,
and simulate both rigid (e.g. TensorFlow) and elastic (e.g.
Spark) variants: the label B-R represents rigid applications
with only core components; the label B-E stands for elastic
applications, with both core and elastic components. Then,
we evaluate the benefit of preemption by adding a set of
(simulated) interactive applications.

Figure 2 shows the characteristics of the workload, and
in particular the CDFs of the main metrics. The application
inter-arrival times exhibit a bi-modal distribution with fast-
paced bursts, as well as longer intervals between applica-
tion submissions. The application runtime ranges from a
few dozen seconds to several weeks (of simulated time).
Looking more in details within jobs, it is possible to see that
resource requirements range from few CPU millicores to 6
CPU cores (Fig. 2 central left) and range from few MB to
a few dozens GB of memory (Fig. 2 central right). Finally,
application components can be divided into core components
and elastic components: batch applications consist of few to
tens of components, up to thousands of components, while
interactive applications are smaller, and use up to hundreds
of elastic components. The division into core and elastic
components is done by following Google traces [24], [25],
[42], [43]: in particular the core components are extracted
with respect of the analytics frameworks widely used at

10-3 10-2 10-1 100 101 102 103 104 105

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Inter-Arrival Time

10-1 100 101 102 103 104 105 106

Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

Estimated Runtime

0 2 4 6 8 10
CPU

0.0

0.2

0.4

0.6

0.8

1.0

Components CPU

101 102 103 104 105 106 107 108

Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

Components memory

100 101 102 103

Num Services

0.0

0.2

0.4

0.6

0.8

1.0

Core components

100 101 102 103 104 105

Num Services

0.0

0.2

0.4

0.6

0.8

1.0

Elastic components

Fig. 2. Workload definition distributions: CDFs of the main metrics. B-E
stands for batch elastic, B-R stands for batch rigid applications, and Int
stands for interactive applications.

the time of writing (e.g.; Spark [36], Hadoop MapReduce,
Tensorflow [7]) while the elastics follow the distribution of
tasks launched per application.

The workload used in our simulations consists of 80,000
applications, with 80% batch and 20% interactive applica-
tions. Batch applications include 80% elastic and 20% rigid
components. We simulate a cluster with 100 machines, each
with 32 cores and 128GB of memory. All results shown here
include 10 simulation runs, for a total of roughly 3 months
of simulation time for each run.

Finally, the metrics we use to analyze the results include:
application turnaround and queuing time, the latter being
an important factor contributing to the turnaround time.
Additionally, we measure the queue sizes and the number
of running applications, along with the resource allocation,
measured as the percentage of CPU and memory the sched-
uler allocates to each application.

4.2 Comparison with the baseline
We now perform a comparative analysis between our flexi-
ble scheduler and the baseline. In this series of experiments
we omit interactive applications, and thus disable preemp-
tion. In order to show the benefits of our scheduler, we
present results for a size-agnostic policy – FIFO – and for
a size-aware policy – Shortest Job First (SJF).

Figure 3 (left) illustrates the most important percentiles
(in a box-plot) of the distribution of turnaround times. The
benefits of our approach are noticeable, irrespectively of

IEEE TRANSACTIONS, UNDER SUBMISSION 7

F
if
o-

B
-R

S
J
F
-B

-R

F
if
o-

B
-E

S
J
F
-B

-E

104

105

106

107

T
im

e
(s

)

Application Turnaround

F
if
o-

B
-R

S
J
F
-B

-R

F
if
o-

B
-E

S
J
F
-B

-E

0
100

101

102

103

104

105

106

107

T
im

e
(s

)

Application Queue

F
if
o-

B
-E

S
J
F
-B

-E

1.2

1.3

1.4

1.5

1.6

1.7

R
at

io

Application Slowdown

Fig. 3. Comparison of turnaround and queue time distributions, and application slowdown distributions for FIFO and SJF policies. White boxes (right
box of every pair) corresponds to our flexible scheduler, gray boxes correspond to the baseline. B-E stands for batch elastic and B-R stands for
batch rigid applications.

Fifo SJF
101

102

103

104

A
p
p
li
ca

ti
on

s
in

 q
u
eu

e

Pending Queue

Fifo SJF
20

40

60

80

100

120

140

160

180

A
p
p
li
ca

ti
on

s
ru

n
n
in

g

Running Applications

Fig. 4. Comparison of queues size for FIFO and SJF between our flexible
scheduler and the baseline. The white boxes (right box of every group)
correspond to our flexible algorithm, gray boxes to the baseline.

Fifo SJF
0.0

0.2

0.4

0.6

0.8

1.0

%
 C

P
U

Cluster CPU allocation

Fifo SJF
0.0

0.2

0.4

0.6

0.8

1.0

%
 m

em
or

y

Cluster Memory allocation

Fig. 5. Comparison of resource allocation distributions for FIFO and SJF
policies, between our flexible scheduler and the baseline. White boxes
(right box of every pair) correspond to our approach, dashed boxes to
the baseline.

the scheduling discipline: the median turnaround is halved
when compared to the baseline, indicating superior system
responsiveness. Additionally, we observe the benefits of a
size-based policy in further decreasing turnaround times.
We note that our approach is beneficial for both rigid and
elastic batch applications: Figure 3 (center) shows a box-
plot of application queuing times, which contribute to their
turnaround. With our approach, both kinds of applications
spend less time waiting in a queue to be served. By differ-
entiating classes of components, applications can execute as
soon as enough resources to produce work are available.
Finally, Figure 3 (right) focuses on application runtime:
we report the slowdown computed as the ratio between
the nominal application runtime (i.e., the time required for
an application to complete in an empty system, with all
application components allocated their requested resources)

and the effective application runtime obtained with the
simulation. Values above one indicate that applications run
slower in a system absorbing a given workload when com-
pared to applications running in an empty system. Overall,
these results show that our scheduling approach does not
impose a high toll on application runtime, while globally
contributing to improved turnaround times.

Next, we support the general results discussed above
with additional details. Figure 4 shows the box-plots of the
distribution of queue sizes, for both the pending and the
running queues. Our approach induces a smaller number of
applications waiting to be served, as well as a larger number
of applications running in the system, compared to the
baseline and across different policies. Indeed, our flexible
scheduler achieves a better packing of applications, which
means they can start sooner. Additionally, the benefits of a
size-based discipline are clear: the number of applications
waiting is almost one order of magnitude smaller compared
to a FIFO policy, while the number of running applications
is similar.

Figure 5 shows metrics from the cluster perspective: our
approach (for both disciplines) induces a far better resource
allocation compared to the baseline, achieving more than
20% gains in both CPU and RAM allocation.6

4.3 Comparison with a malleable scheduler

The illustrative example depicted in Figure 1 shows that a
rigid scheduler may not be able to exploit all the resources,
therefore the results presented in the previous section are
simple to understand and explain. One may wonder if a
completely malleable scheduler may be able to actually use
most of the resources, without requiring a more complicated
scheduler. It is worth mentioning that currently no solution
supports a malleable scheduler as we presented it in Sec-
tion 2.2. In other words, we have implemented a malleable
scheduler in order to compare its performance with our
flexible scheduler. The malleable scheduler uses a first-fit
approach, adding as much elastic components as possible. If
the remaining resources are not sufficient to schedule at least

6. Allocation is different from utilization: the simulator does not
account for real executions, so we cannot report utilization figures.

IEEE TRANSACTIONS, UNDER SUBMISSION 8

TABLE 1
Comparison of average turnaround, CPU and Memory allocation for

FIFO and SJF policies, between our flexible and a malleable scheduler.

Policy Scheduler Turnaround CPU Memory

FIFO Malleable 3.72x105s 75% 74%
FIFO Flexible 3.36x105s 77% 76%

SJF Malleable 6.14x104s 74% 72%
SFJ Flexible 5.13x104s 80% 78%

the rigid components of the next application, the scheduler
waits for free resources before scheduling that application.

As we noted with the illustrative example (Figure 1),
the average turnaround time with a malleable approach is
similar to the one obtained by our flexible approach: the key
advantage of our approach is in exploiting more efficiently
the resources. This is confirmed by the experiments with our
simulator.

In Table 1 we compare average turnaround and the av-
erage cluster allocation when using the malleable scheduler
and our flexible scheduler, in case of FIFO and SJF. Our
flexible scheduler is able to improve the turnaround time by
10% and 16% for FIFO and SJF respectively since it is using
more efficiently the available resources. This is confirmed by
the CPU and memory allocation: our scheduler consistently
uses more CPU and memory than the malleable scheduler.

4.4 Comparison between different definitions of size
When dealing with monolithic applications, the definition of
job size is simple: it may be computed as the time necessary
to complete the job when it runs in isolation, i.e., without
any interference caused by other jobs. This is actually the
definition we have adopted in the previous section when
using a size-based scheduler.

The above definition, nevertheless, may not capture the
complexity of a distributed application. For instance, let
us consider two applications with the same runtime, but
different number of parallel tasks to perform: do they have
the same size? Intuitively, the application with fewer tasks
should be smaller than the application with a larger number
of tasks.

This example suggests that it is possible to define the
size of an application in different ways. In general, we may
consider the total amount of work that the application needs
to do. Therefore, similarly to [44], a possible definition of
size may be the product of the runtime and the number of
components. Another option, if we consider all resources
required by an application, is to compute the size as the
product of the runtime, the number of CPUs and the mem-
ory of all the components. Table 2 summarizes the different
definitions of job size for the SJF policy. Although in this
section we focus on the SJF policy, we found that the same
definitions can be applied to other policies as well.7. The
definitions of job size that we take into consideration incre-
mentally add information. We start by the classic definition
that considers only the runtime of the application. Next,
since that definition is one dimensional, we try to move

7. More information and experiments can be found in [45]

TABLE 2
Definition of size used in the evaluation

Name Definition
SJF runT ime

SJF-2D runT ime ∗#components

SJF-3D runT ime ∗
∑components

i=1 CPUi ∗RAMi

to a two-dimensional definition by adding also the number
of components that the application is using. Finally, since
every component might request different resources, we add
this information as well, and turn the definition from a two
to a three dimension.

Note that no definition is better than the other: it de-
pends on the metric used to evaluate the system perfor-
mance. If the focus is to minimize the turnaround time,
then the basic definition of size (as runtime) may be suf-
ficient. The following example shows why. Consider two
applications, A1 and A2, whose requests arrive at the same
moment. The core components of the two applications need
C1 = 10 units andC2 = 6 units respectively, while they both
have no elastic components. The run times are T1 = 2 and
T2 = 3 seconds respectively. The system has 10 available
resource units, therefore the two applications can not be
scheduled in parallel. If we use the runtime as job size,
we schedule application A1 first then A2, with an average
turnaround time equal to 3.5 seconds. If we use as size
the product of the runtime and the number of components,
then we schedule the application A2 and then A1, with an
average turnaround time equal to 4 seconds.

In the following, we compare the results obtained with
different definition of size. We are not interested in the
absolute values of the performance metrics: instead, given a
definition of size, we compare the baseline scheduler with
our flexible scheduler, in order to show the improvements
we are able to obtain. The experimental settings are the same
used in Section 4.2.

Figure 6 shows the application turnaround, queu-
ing time and slowdown. Focusing on the application
turnaround, we notice that our flexible scheduler consis-
tently improves over the baseline scheduler in case of batch
elastic applications. For the batch rigid applications instead,
while the “-3D” variant shows an improvement over the
baseline scheduler, the two schedulers obtain similar results
with the “-2D” variant. This is reflected on the application
queue, which is similar for the two schedulers with the “-
2D” variant. Nevertheless, the overall mix of the applica-
tions is able to exploit the resources more efficiently. In fact,
as shown in Figure 7, right hand side, there are more appli-
cation running, and, as shown in Figure 8, these applications
use almost fully the CPU and the memory. In addition,
by comparing the results from Fig. 6 to Fig. 3, we notice
that, when considering our flexible approach, different and
more fine grained definitions of application size lead to an
improvement in the average turnaround time; the average
turnaround time of SJF-3D is smaller than SJF-2D, which
is smaller than SJF. Instead, for the baseline approach this
is not always true; the SJF-3D performs worst compared to
SFJ-2D.

In conclusion, with these experiments we show that

IEEE TRANSACTIONS, UNDER SUBMISSION 9

S
J
F
2D

-B
-R

S
J
F
3D

-B
-R

S
J
F
2D

-B
-E

S
J
F
3D

-B
-E

104

105

106
T

im
e

(s
)

Application Turnaround

S
J
F
2D

-B
-R

S
J
F
3D

-B
-R

S
J
F
2D

-B
-E

S
J
F
3D

-B
-E

0
100

101

102

103

104

105

106

T
im

e
(s

)

Application Queue

S
J
F
2D

-B
-E

S
J
F
3D

-B
-E

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

R
at

io

Application Slowdown

Fig. 6. Comparison of turnaround and queue time distributions, and application slowdown distributions for the SJF policy with different definitions of
size. White boxes (right box of every pair) corresponds to our flexible scheduler, gray boxes correspond to the baseline. B-E stands for batch elastic
and B-R stands for batch rigid applications.

S
J
F
2D

S
J
F
3D

0

50

100

150

200

250

A
p
p
li
ca

ti
on

s
in

 q
u
eu

e

Pending Queue

S
J
F
2D

S
J
F
3D

0

50

100

150

200

A
p
p
li
ca

ti
on

s
ru

n
n
in

g

Running Applications

Fig. 7. Comparison of queues size for the SJF policy with different
definitions of size. White boxes (right box of every pair) corresponds
to our flexible scheduler, gray boxes correspond to the baseline.

S
J
F
2D

S
J
F
3D

0.0

0.2

0.4

0.6

0.8

1.0

%
 C

P
U

Cluster CPU allocation

S
J
F
2D

S
J
F
3D

0.0

0.2

0.4

0.6

0.8

1.0

%
 m

em
or

y

Cluster Memory allocation

Fig. 8. Comparison of resource allocation distributions for the SJF policy
with different definitions of size. White boxes (right box of every pair)
corresponds to our flexible scheduler, gray boxes correspond to the
baseline.

more information embedded in the definition of applica-
tion size might translate in tangible benefits in terms of
turnaround times, provided that the scheduling algorithm,
like ours, can use such information. This is not always
true when considering a baseline approach, because the
constraints imposed by it, like scheduling all components or
nothing, void the benefits of a fine grained size definition.

4.5 Preemption

We turn now our attention to the full workload we defined
in Section 4.1, including interactive applications. Preemption
is used when a high-priority, interactive application requires
resources: this applies both to manually set priorities (e.g.,

B-R B-E Int
0

100

101

102

103

104

105

T
im

e
(s

)

Application Queue

B-R B-E Int
0.9

1.0

1.1

1.2

1.3

1.4

1.5

W
it

h
ou

t/
W

it
h
 p

re
em

p
ti

on

Turnaround Ratio

Fig. 9. On the left, comparison of queuing time distributions between
scheduling with and without preemption. White boxes (left box of every
pair) correspond to a non-preemptive system, gray boxes to our pre-
emptive algorithm. On the right, turnaround ratio distributions between
scheduling with and without preemption. B-E stands for batch elastic
applications, B-R stands for batch rigid applications and Int is for inter-
active applications.

in a FIFO policy) and to size-based priorities. In this section
we focus on sized-based policies: in particular, we report
results for the SRPT policy, which is a preemptive policy,
and we use the runtime as definition of size.

Figure 9 shows the most relevant percentiles of the distri-
bution of application queuing times, grouped by application
type (both cases of batch and interactive applications), with
and without our preemption mechanism. Globally, preemp-
tion does not subvert the perceived system responsive-
ness. However, interactive applications under preemptive
scheduling enjoy roughly two orders of magnitude less
queuing times. Users do not wait for few dozens minutes
but only few seconds, for their interactive application to
start. As a consequence, elastic batch applications pay with
more variability (but stable for the median case) in queuing
times.

Since our simulator does not account for real work done
by applications, the preemption mechanism does not have
any effect on the work that has been done by preempted
components. In practice, our current preemption mecha-
nism would instead suppress work done by elastic services,
if preempted. Studying new preemption primitives, e.g.
by suspending Linux containers, is part of our research
agenda: this is the main reason why our current prototype
implementation lacks support for preemption.

IEEE TRANSACTIONS, UNDER SUBMISSION 10

4.6 Additional considerations
In the previous sections we have shown the results for a
size-agnostic policy, namely FIFO, and a size-aware policy,
SFJ. Additionally, when presenting the results in case of
preemption, we have considered the SPRT policy. SJF and
SRPT are two examples of SMART policies [40], which
are a set of policies whose aim is to minimize the aver-
age turnaround time. Another example of a smart policy
is Higher-Response-Ration Next (HRRN): HRRN aims at
avoiding the starvation of long running applications – star-
vation that may appear when using SJF or SRPT – by using
the concept of virtual size.

We have tested our scheduler with all the policies
mentioned above (SJF, SRPT, HRRN), in all the different
scenarios: comparison with the rigid, as well as malleable
schedule, when no interactive applications are present; com-
parison with the different definitions of size; comparison
when preemption is enabled, comparison with different
workloads. We do not report here all the set of results since
they yield the same information of the results presented
in the previous sections – the interested reader can find
them in our Technical Report [45]. In summary, our flexible
scheduler is able to reduce the turnaround time, while
improving resources allocation, in all the different policies.

5 IMPLEMENTATION: THE ZOE SYSTEM

Next, we describe Zoe8, the system we have built to materi-
alize the concepts developed earlier.

Zoe allows defining analytics applications and schedule
them in a cluster of machines. It is designed to run on
top of an existing low-level cluster management system,
which is used as a back-end to provision resources to
applications. Raising the level of abstraction to manipulate
analytics application is beneficial for users and ultimately
to the system design itself: application scheduling decisions
can be taken with a small amount of state information, and
do not happen at the same (extremely fast) pace as low-
level task scheduling. Next we overview Zoe’s design, and
provide relevant details for the subject of this work.
Zoe applications. In Zoe, the concepts introduced in Sec-
tion 2 take the form of simple JSON description files that
follow a high-level configuration language (CL) to specify
applications, frameworks and components with their classes
(core or elastic), resource reservations and constraints. The
CL is simple and extensible: it aims at conciseness and, with
framework templates, can be used by “casual” and “power”
users [10].

The key aspect that determines the application type
(batch, interactive, or any new type) is the way ap-
plication life-cycle is managed. This is determined by
a flexible attribute, reminiscent of a “command line”,
which allows passing runtime configuration options, user-
defined arguments and environment variables, as well
as setup and cleanup procedures. For application design,
the “command line” attribute requires minimal knowl-
edge of the frameworks that constitute an application.

8. Zoe, https://zoe-analytics.eu/, was conceived in August 2015,
named after the biggest container boat in the world, which touched
sea [46] in the same time period. In this work, we omit some imple-
mentation details that stem from our continuous effort to extend Zoe.

As an example of the simplicity and effectiveness of
the Zoe CL, building a batch application for the dis-
tributed version of TensorFlow [29] only requires tens of
lines of CL. In this case, the most important attribute is
the “command line”, which is required to run a Tensor-
Flow program, i.e., python $TF_PROGRAM $PS_HOSTS
$WK_HOSTS program-args. Environment variables are
appropriately handled by Zoe, including information un-
known at scheduling time (e.g., host names).

A note on application failures is required. Any failure
of an elastic component is practically harmless, whereas
core component failures imply application failure. An area
of future work is to exploit failure tolerance mechanisms
available from some back-ends (e.g., Kubernetes) to steer
application-level failure tolerance modes.
Zoe back-ends. The main design idea of our system is to
hide the complexities of low-level resource provisioning
from application scheduling and exploit an existing cluster
management system, for which many alternatives exists.
Currently, Zoe builds on top of Docker Swarm [23], and
uses it to achieve a series of objectives we list below:

• Orchestration: Zoe interacts with all the machines in
a cluster using the Docker orchestration API (known
as Swarm [23]), which governs the behavior of the
Docker engine [47] deployed in each machine. Thus,
Zoe manages to distribute the necessary binaries for
the components of an application that is scheduled
for execution, their configuration, life-cycle, and pro-
visioning.

• Dependency management: Zoe applications material-
ize as a series of Docker images, which contain all
dependencies and external libraries required for an
application to run. Zoe applications can be built
from community-provided or custom Docker images
of existing frameworks.

• Resource isolation: framework components specified
in an application run in Linux containers, which are
managed by a Docker engine. We also use the Docker
engine to achieve memory allocation, whereas CPU
partitioning is left to the machine OS. This means,
we have a one dimensional packing problem.

• Resource matching: application descriptions include
resource constraints. When an application is sched-
uled for execution, Zoe instructs the back-end to
adhere to component constraints when provisioning
the relevant Docker images with framework binaries,
as determined by the virtual assignment obtained by
Algorithm 1.

• Naming and networking: the services for application
components to cooperate in producing useful work,
and to interact with the outside world are an impor-
tant aspect to consider when choosing an appropriate
back-end for Zoe. We use Docker networking, but
we also have developed our own service discovery
mechanism to allow a more flexible application con-
figuration and deployment.

Zoe architecture. Although Zoe is separated in several
modules, it does not require any cluster-wide installation,
because it uses its back-end to interact with the cluster.

IEEE TRANSACTIONS, UNDER SUBMISSION 11

The Zoe master polls a high-fidelity view of the cluster
state through its back-end, whenever the scheduler is trig-
gered, and stores it into a state store, backed by a PostgreSQL
database. The state store also holds applications state, which
is modeled as a simple state-machine. Because Zoe handles
high-level objects (applications), the strain on the system is
minimal: the rate of scheduling decisions scales well even
with heavy workloads. The virtual assignment procedure
avoids application interference by construction because it con-
siders requests in sequence, according to their priority. The
virtual assignment is ported on the back-end, using its API.

The Zoe client API handles REST calls that mutate the
system state, or that can be used to monitor the system
behavior. Command-line and web interfaces allow users
and administrators to interact with the system.

The Zoe scheduler implements the algorithm described in
Section 3. When an application is submitted, the Zoe master
creates an entry in the application state store, and adds it to
a pending queue. Our system allows plugging several schedul-
ing policies to manage the pending queue, ranging from
simple to sophisticated size-based policies. Such policies
determine which application is granted “access” to cluster
resources: to this end, the scheduler uses the cluster state
store to simulate possible deployments before accepting an
application. Framework components underlying an appli-
cation are scheduled according to their type. The scheduler
strives at making sure the application selected for execution
can make progress as soon as resources are allocated to it.
The Zoe monitoring module uses the Docker event stream to
update the state of each application component running in
the system.

Currently, the Zoe system supports a naive preemption
mechanism: entire applications can be killed upon a com-
mand. The finer strategy described in Section 3 and Section 4
is currently under development.

Finally, although Zoe supports many data sources and
sinks, we report experiments using a HDFS cluster to store
input data to applications, and CEPH volumes to store
application-specific logs.

6 EXPERIMENTS WITH ZOE

Our goal now is to perform a comparative analysis of two
generations of Zoe: the first, implementing a rigid scheduler,
as for the baseline, the second with the flexible scheduler we
present here. In our experiments, we replay the exact same
workload trace for both generations. Each trace takes about
3 hours from the first submission to the last. During our
experiments, no other user was allowed to submit jobs.
Workload. We use two representative batch application tem-
plates, including: 1) an elastic application using the Spark
framework; 2) a rigid application using the TensorFlow
framework. Following the statistical distribution of our his-
torical traces, we set our workload to include 80% of elastic
and 20% of rigid applications, for a total of 100 applications.
Application inter-arrival times follow a Gaussian distribu-
tion with parameters µ = 60 sec, and σ = 40 sec, which is
compatible with our historical data. More specifically, using
the elastic application templates, we run two use cases.
First, an application to induce a random-forest regression
model to predict flight delays, using publicly available data

B-E B-R
0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(s

)

Application Turnaround

Base ZOE
50

60

70

80

90

100

P
er

ce
n
ta

ge
 (

%
)

Memory Allocated

Fig. 10. Comparison of turnaround time distributions using the FIFO
discipline. White boxes (right box of every pair) correspond to the second
generation of Zoe that implements our algorithm. B-E stands for batch
elastic and B-R stands for batch rigid applications.

from the US DoT.9 Second, a music recommender system
based on alternating least squares algorithm, using publicly
available data from Last.fm10. Both applications have two
different requirements (flavors) in term of memory for each
elastic component. The random-forest regression model has
3 core components and 32 elastic components of 16GB or
8GB RAM each (depending on the flavor); every elastic
component uses 1 CPU. The music recommender system has
3 core components and then 24 elastic components of 16GB
RAM or 8GB each (depending on the flavor); every elastic
component uses 6 CPU. Instead, using the rigid application
template, we train a deep Gaussian Process model [48],
and use both a single-node and a distributed TensorFlow
program, requiring 1 and 10 workers (and 5 parameter
servers) each with 16GB of RAM.
Experimental setup. We run our experiment on a platform
with ten servers, each with two 16-core Intel E5-2630 CPU
running at 2.40GHz (total of 32 cores with hyper-threading
enabled), 128GB of memory, 1Gbps Ethernet network fab-
ric and ten 1TB hard drives. No GPU-enabled machines
are available in our platform, at the moment. The servers
use Ubuntu 14.04, Docker 1.11 and the standalone Swarm
manager. Docker images for the applications are preloaded
on each machine to prevent container startup delays and
network congestion.
Summary of results. Using the FIFO scheduling policy,
we compare the two generations of Zoe according to the
distributions of application turnaround times, as shown in
Figure 10 (left). The behavior of the two systems indicate a
clear advantage for our approach: the median turnaround
times are 37% and 22% lower, for elastic and rigid applica-
tions respectively. Note also that the tails of the distributions
are in favor of our approach.

Overall, the new generation of Zoe that implements the
flexible scheduler is more efficient, with a 20% improve-
ment, in allocating and packing applications, as illustrated
in Figure 10 (right), where we show the ratio of the distri-
bution of allocated over available resources.

Finally, we present results concerning a low-level metric
that measures the application ramp-up time, i.e., the time
it takes for applications scheduled for running, to receive
their allocations and start producing work. Zoe achieves a
container startup time, including placement decisions, of

9. http://stat-computing.org/dataexpo/2009/the-data.html
10. http://www-etud.iro.umontreal.ca/∼bergstrj/audioscrobbler

data.html

IEEE TRANSACTIONS, UNDER SUBMISSION 12

0.90s ± 0.25ms. Full-fledged applications, made by sev-
eral containers, only take few seconds to start, which is a
compelling property, especially when compared to existing
solutions such as Amazon EMR.

7 RELATED WORK

While we cannot do justice to the richness of the scheduling
literature, in this section we organize related work in three
groups. The “competitors” are existing, mature systems
that could be considered sufficient to address our problem
statement, at a first sight. The second group includes recent
works in the systems research literature, while the third
covers works on scheduling at the task level.

Many “competitor” systems have been designed to cope
with the problem of sharing cluster resources across a
heterogeneous set of applications, some of which can be
tweaked to achieve the goals we set in this work. For
example, Yarn [21] and Mesos [8] have been among the
first to enable multiple frameworks to coexist in the same
cluster: usage of these “two-level” schedulers yield a big
improvement as compared with monolithic approaches to
resource scheduling. Originally designed for analytic frame-
works, such systems deal with the scheduling of low-level
processing tasks. Recently, more general approaches address
the problem of cluster-wide resource management: Omega
[9], then Borg [10] (and Kubernetes [22]) reason at the “con-
tainer” level, and are optimized to achieve efficient place-
ment and allocation of cluster resources, when absorbing a
very heterogeneous workload. This latter includes a major-
ity of long-running services, which power Web-scale, latency-
sensitive applications. Additionally, container orchestration
frameworks, such as Docker Swarm [23], also provide ef-
ficient and scalable solutions to the problem of scheduling
(that is, placing and provisioning) containers in a cluster.
Our work relies on many of the above systems, and can
use them as a back-end to support scheduling of high-level
applications rather than provisioning low-level containers.
Existing auxiliary deployment tools such as Aurora [49] and
Docker Compose [50], do not address scheduling problems.

In the systems research literature, we find several inspir-
ing system designs, with ideas that can be “borrowed” to
further extend our system prototype and research scope. For
example, Koala-f [14] tackles dynamic resource allocation
problems, which manifest in our case with “idle” interactive
applications. Similarly to HCloud [13], we believe impor-
tant to break the reservation paradigm, and allow users
to express performance requirements rather than machine-
level resource counts. This can be easily included in an
application description, but requires developing additional
components to infer statistical models of application prop-
erties based on systems observations, as done for example
in Tarcil [19], Paragon [15] and Quasar [16]. Overall, by
focusing on a higher-level of abstraction, the focus of our
work is to address a rather abstract scheduling problem:
our implementation indicates that our ideas work in practice
and also bring tangible benefits. The work in [51] proposes
a scheduler for Map-Reduce clusters. While the problem
is similar, in a scenario with high demand, where many
requests for MR-clusters arrives, the physical cluster may
end up with many MR-clusters, each of them with their

minimum share, unable to grow or shrink, i.e., there will
be many MR-clusters that runs in parallel, increasing the
average turnaround time. Instead, in our approach we try
to minimize the number of jobs that runs in parallel. In [52],
the authors propose a solution that needs a complete knowl-
edge of the resource requirements (including the processing
time), while our scheduler has a central view and decides
from which job take the resources and to which one give
them.

Finally, many works address the problem of low-level
task scheduling. Such schedulers are designed to support
a specific “data-flow” programming model, but many of
their design choices can also be used at a higher level. For
example, Tyrex [20] and HFSP [53], [54] are a sample of
size-based schedulers, which is a family of policies known
to drastically improve turnaround times, as we also have
verified with our experiments. Similarly, Quincy [17] and
DRF [55] study max-min fair, task-level resource alloca-
tion, specifically working on multi-dimensional resources.
Although our system currently consider a one-dimensional
packing problem, due to the characteristics of the back-end
we use, which does not yet support CPU-level partitioning,
ideas presented in [55] can be extended to our work, consid-
ering alternative back-ends supporting multi-resource par-
titioning. Recently, schedulers supporting complex directed
acyclic graphs representing low-level, parallel computations
have also appeared: Graphene [56], for example, addresses
the problem of complex dependencies and heterogeneous
demands among the various stages of the computational
graph. The work in [57] indicate substantial improvements
in terms of resource utilization (and not only allocation)
thanks to worker queues, that independently schedule tasks.
Bistro [11] employs a novel hierarchical model of data and
computational resources, which enable efficient scheduling
of data-parallel workloads. Firmament [58] is a centralized
scheduler that has been shown to scale to over ten thousand
machines at sub-second task placement latency, using a
min-cost max-flow optimization approach. Issues related
to scheduling scalability, due to the sheer number of low-
level tasks that are typically required by analytic jobs, have
been addressed through a distributed design, such as in
Sparrow [18] and in Condor [12]. Although working at the
application-level as we do in our work imposes a low toll
on the scheduler, distributed designs are interesting also
from the failure tolerance point of view, which is why they
represent a valid option for our future work.

8 CONCLUSIONS

Efficient resource management of computer clusters has
been a long-lasting area of research, with peaks of attention
happening in conjunction to improvements in computing
machinery, e.g. lately with cloud computing and big data.
A new breed of cluster management systems, aiming at be-
coming “data-center operating systems”, are currently been
confronted with problems of efficiency and performance at
scale.

Despite recent advances, there exists a gap between the
goal of low-level resource management, and that of ma-
nipulating high-level, heterogeneous, distributed (analytic)
applications running in such cluster environments. In this

IEEE TRANSACTIONS, UNDER SUBMISSION 13

paper we presented a first possible step to fill this gap, in
the form of a new application scheduler that interacts with
a cluster management back-end, to schedule and allocate
resources to applications defined with a simple language
and semantics. In addition to careful engineering, required
to design and implement our system we call Zoe, our
research identified a more fundamental problem, that calls
for a novel scheduling heuristic capable of manipulating
composite applications, while contributing to system re-
sponsiveness.

We validated our algorithm to address our scheduling
problem along two lines. We used a numerical approach
to simulate large-scale deployments and workloads. We
showed our scheduling algorithm to be highly effective
in reducing turnaround times, in particular by reducing
applications queuing times. Consequently, cluster resources
were better allocated. In addition, we reported an overview
of the evaluation of Zoe, that indicates superior performance
and efficiency related to our flexible scheduling heuristic.

Our road-map includes the development of a method to
redeem untapped resources from idle but running applica-
tions, which calls for a substantial rethinking of the resource
reservation paradigm; the design and implementation of
application fault tolerance mechanisms; and a long list
of pending “tickets” stemming from our open-source Zoe
project.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the EU commission in call H2020-644182, project
“IOStack”.

REFERENCES

[1] J. Dean et al., “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] M. Isard et al., “Dryad: distributed data-parallel programs from
sequential building blocks,” in ACM SIGOPS Operating Systems
Review, vol. 41, no. 3, 2007, pp. 59–72.

[3] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. of the
USENIX NSDI 2012, 2012.

[4] “Flink,” https://flink.apache.org/.
[5] D. G. Murray et al., “Naiad: a timely dataflow system,” in Proc. of

the ACM SOSP 2013, 2013, pp. 439–455.
[6] X. Meng et al., “Mllib: Machine learning in apache spark,” JMLR,

vol. 17, no. 34, pp. 1–7, 2016.
[7] M. Abadi et al., “Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems,” arXiv preprint arXiv:1603.04467,
2016.

[8] B. Hindman et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. of the USENIX NSDI 2011,
2011, pp. 295–308.

[9] M. Schwarzkopf et al., “Omega: Flexible, scalable schedulers for
large compute clusters,” in Proc. of the ACM EuroSys 2013, 2013,
pp. 351–364.

[10] A. Verma et al., “Large-scale cluster management at Google with
Borg,” in Proc. of the EuroSys 2015, 2015.

[11] A. Goder et al., “Bistro: Scheduling data-parallel jobs against live
production systems,” in Proc. of the USENIX ATC 2015, 2015, pp.
459–471.

[12] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a
distributed job scheduler,” in Beowulf cluster computing with Linux.
MIT press, 2001, pp. 307–350.

[13] C. Delimitrou et al., “Hcloud: Resource-efficient provisioning in
shared cloud systems,” in Proc. of the ACM ASPLOS 2016, 2016,
pp. 473–488.

[14] A. Kuzmanovska et al., “Koala-f: A resource manager for schedul-
ing frameworks in clusters,” in Proc. of the CCGrid 2016, 2016, pp.
80–89.

[15] C. Delimitrou et al., “Paragon: Qos-aware scheduling for hetero-
geneous datacenters,” in Proc. of the ACM ASPLOS 2013, 2013, pp.
77–88.

[16] ——, “Quasar: Resource-efficient and qos-aware cluster manage-
ment,” in Proc. of the ACM ASPLOS 2014, 2014, pp. 127–144.

[17] M. Isard et al., “Quincy: fair scheduling for distributed computing
clusters,” in Proc. of the ACM SOSP 2009, 2009, pp. 261–276.

[18] K. Ousterhout et al., “Sparrow: distributed, low latency schedul-
ing,” in Proc. of the ACM SOSP 2013, 2013, pp. 69–84.

[19] C. Delimitrou et al., “Tarcil: Reconciling Scheduling Speed and
Quality in Large Shared Clusters,” in Proc. of the ACM SOCC 2015,
2015.

[20] B. Ghit and D. Epema, “Tyrex: Size-based resource allocation in
mapreduce frameworks,” in Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Symposium on. IEEE,
2016, pp. 11–20.

[21] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proc. of the ACM SoCC 2013, 2013.

[22] “Kubernetes,” http://kubernetes.io/.
[23] “Docker Swarm,” https://docs.docker.com/swarm/.
[24] C. Reiss et al., “Heterogeneity and dynamicity of clouds at scale:

Google trace analysis,” in Proc. of the SoCC 2012, 2012.
[25] “Google Public Traces,” https://github.com/google/cluster-data.
[26] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating sys-

tems: Three easy pieces. Arpaci-Dusseau Books Wisconsin, 2014,
vol. 151.

[27] F. Pace, D. Venzano, D. Carra, and P. Michiardi, “Flexible schedul-
ing of distributed analytic applications,” in Proceedings of the
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE Press, 2017, pp. 100–109.

[28] “Spark,” http://spark.apache.org/.
[29] “TensorFlow,” https://www.tensorflow.org/.
[30] “Open MPI,” https://www.open-mpi.org/.
[31] M. Ragan-Kelley et al., “The jupyter/ipython architecture: a uni-

fied view of computational research, from interactive exploration
to communication and publication.” in AGU Fall Meeting Abstracts
2014, vol. 1, 2014, p. 07.

[32] F. Pace, D. Milios, D. Carra, D. Venzano, and P. Michiardi, “A
data-driven approach to dynamically adjust resource allocation
for compute clusters,” arXiv preprint arXiv:1807.00368, 2018.

[33] K. Pruhs et al., “Online scheduling,” Handbook of scheduling: algo-
rithms, models, and performance analysis, pp. 15–1, 2004.

[34] P.-F. Dutot et al., “Scheduling parallel tasks: Approximation algo-
rithms,” Handbook of scheduling: Algorithms, models, and performance
analysis, pp. 26–1, 2004.

[35] J. Sgall, “Online preemptive scheduling on parallel machines.”
2015.

[36] M. Zaharia et al., “Spark: cluster computing with working sets.”
HotCloud, vol. 10, pp. 10–10, 2010.

[37] V. Bharadwaj, Scheduling divisible loads in parallel and distributed
systems. John Wiley & Sons, 1996, vol. 8.

[38] F. Pace, M. Milanesio, D. Venzano, D. Carra, and P. Michiardi, “Ex-
perimental performance evaluation of cloud-based analytics-as-a-
service,” in Cloud Computing (CLOUD), 2016 IEEE 9th International
Conference on. IEEE, 2016, pp. 196–203.

[39] “Slurm workload manager,” https://slurm.schedmd.com/.
[40] A. Wierman et al., “Nearly insensitive bounds on smart schedul-

ing,” in ACM SIGMETRICS Performance Evaluation Review, vol. 33,
no. 1, 2005, pp. 205–216.

[41] M. Dell’Amico, D. Carra, and P. Michiardi, “PSBS: Practical size-
based scheduling,” IEEE Transaction on Computers, vol. 65, no. 7,
pp. 2199–2212, July 2016.

[42] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, posted at http://googleresearch.blogspot.com/2011/
11/more-google-cluster-data.html.

[43] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format + schema,” Google Inc., Mountain View, CA, USA,
Technical Report, Nov. 2011, revised 2014-11-17 for version 2.1.
Posted at https://github.com/google/cluster-data.

[44] U. Schwiegelshohn and R. Yahyapour, “Analysis of first-come-
first-serve parallel job scheduling,” in SODA, vol. 98. Citeseer,
1998, pp. 629–638.

[45] F. Pace et al., “Flexible scheduling of distributed analytic applica-
tions,” arXiv:1611.09528, 2016.

IEEE TRANSACTIONS, UNDER SUBMISSION 14

[46] “MSC Zoe,” https://www.marineinsight.com/shipping-
news/msc-zoe-worlds-largest-container-ship-to-be-christened-at-
the-hamburg-terminal/.

[47] “Docker,” http://www.docker.com/.
[48] K. Cutajar et al., “Practical learning of deep gaussian processes via

random fourier features,” arXiv:1610.04386, 2016.
[49] “Aurora,” http://aurora.apache.org/.
[50] “Docker Compose,” https://docs.docker.com/compose/.
[51] B. Ghit, N. Yigitbasi, A. Iosup, and D. Epema, “Balanced resource

allocations across multiple dynamic mapreduce clusters,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 42, no. 1. ACM,
2014, pp. 329–341.

[52] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan,
“Altruistic scheduling in multi-resource clusters.” in OSDI, 2016,
pp. 65–80.

[53] M. Pastorelli et al., “HFSP: size-based scheduling for hadoop,” in
Proc. of the IEEE BigData 2013, 2013, pp. 51–59.

[54] M. Dell’Amico et al., “Revisiting size-based scheduling with esti-
mated job sizes,” in Proc. of the IEEE MASCOTS 2014, 2014, pp.
411–420.

[55] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of
multiple resource types,” in Proc. of the USENIX NSDI 2011, 2011,
pp. 323–336.

[56] R. Grandl et al., “GRAPHENE: packing and dependency-aware
scheduling for data-parallel clusters,” in Proc. of the USENIX OSDI
2016, 2016, pp. 81–97.

[57] J. Rasley et al., “Efficient queue management for cluster schedul-
ing,” in Proc. of the ACM EuroSys 2016, 2016, pp. 36:1–36:15.

[58] I. Gog et al., “Firmament: Fast, centralized cluster scheduling at
scale,” in Proc. of the USENIX OSDI 2016, 2016, pp. 99–115.

Francesco Pace is currently a PhD student in
the Data Science department of EURECOM in
Sophia-Antipolis, France, under the supervision
of Professor Pietro Michiardi. He received both
his Master’s and Bachelor’s degree in Com-
puter Engineering from “Politecnico di Torino” in
2014 and 2012. His research interests include
scheduling and performance evaluation of dis-
tributed systems.

Daniele Venzano developed embedded indus-
trial systems for several years, before focusing
on SDN research at EPFL. Since 2013 he is at
Eurecom, where he works on virtualization and
big data topics.

Damiano Carra received his Laurea in Telecom-
munication Engineering from Politecnico di Mi-
lano, and his Ph.D. in Computer Science from
University of Trento. He is currently an Assistant
Professor in the Computer Science Department
at University of Verona. His research interests
include modeling and performance evaluation of
peer-to-peer networks and distributed systems.

Pietro Michiardi received his M.S. in Computer
Science from EURECOM and his M.S. in Electri-
cal Engineering from Politecnico di Torino. Pietro
received his Ph.D. in Computer Science from
Telecom ParisTech (former ENST, Paris). Today,
Pietro is a Professor of Computer Science at EU-
RECOM. Pietro currently leads the Distributed
System Group, which blends theory and sys-
tem research focusing on large-scale distributed
systems (including data processing and data
storage), and scalable algorithm design to mine

massive amounts of data. Additional research interests are on system,
algorithmic, and performance evaluation aspects of computer networks
and distributed systems.

