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Abstract

Buffer allocation for frame reassembly and queueing in
the destination node of an ATM subnetwork supporting
multiple frame relay connections is examined. The finite
peak rate of a frame relay connection is explicitly modeled
and shown to be an important factor in buffer sizing.
Specifically, the average number of buffers required is
shown to be large when many low-peak-rate frame relay
connections are multiplexed for delivery to a single high-
speed frame relay interface port, but the tail of the
distribution is determined only by aggregate traffic
statistics.

1: Introduction

In the network under consideration, frames are
generated at multiple sources, with each source having a
frame relay interface to a cell-based Asynchronous Transfer
Mode (ATM) subnetwork. As they enter the ATM
subnetwork, frames for a frame relay connection are
segmented into cells for transmission at high speed
through the subnetwork via an ATM virtual channel. Ata
destination edge, the cells from the various frame relay
connections are reassembled into frames, then queued at
the output port of the frame relay interface, and eventually
transmitted to the destination. In keeping with the frame
relay service definition, any error recovery is between the
end users, and is outside the subnetwork.

This paper is concerned with sizing the buffer pool at
the destination port frame relay interface. Because the
speed of the output port can be much larger (say 1.5 Mb/s)
than the peak rates of the individual frame relay
connections (say 9.6 or 56 kb/s), the number of buffers
needed for frame reassembly and queueing can be large.

Previous work on buffer allocation for frame
reassembly and queueing appears to be scarce. In [1], the
authors analyze buffer sizing at a host in an ATM
network, using an M/G/1 processor sharing model for the
link that feeds cells to the host and a queueing model with
finite buffers for the broadband terminal adaptor that
collects ATM cells for reassembly. The result in [1] does
not apply here, as it does not capture the finiteness of the
peak rates of the frame relay connections, nor the fact that

the frames are transmitted sequentially from the output
queue. Reference [2] gives an elaborate analysis of the
output queue with finite buffers, but does not consider
reassembly.

In Section 2, we develop and analyze a queueing
model that characterizes the reassembly and transmission
queues. In Section 3, we evaluate the number of buffers
that are required to avoid overflow (or the activation of
congestion control) with high probability, for the case
where each output port has its own buffer pool.

2: Models for Frame Reassembly and
Transmission Queues
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Channels Transmit
Frame

Queue

Frame
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Figure 1: Frame Reassembly
and Queueing

2.1: System Description

We characterize the traffic in each virtual channel i to
be generated by an ON-OFF source. The idle time of
source i is denoted by the random variable I;, while the
frame length is denoted by the random variable Gj
(measured in cells), with probability mass function gj(*).
Throughout the paper we assume that all cells are filled.
This is an excellent approximation if the cells are much
shorter than the frames. The peak rate of source i is Cj
cells/s. The source of virtual channel i is thus busy with
probability

E(Gj)
Y =BT Ci + BGp M
where E(*) denotes expected value.
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At the destination edge (Figure 1), buffers are drawn
from a buffer pool shared by the reassembly and transmit
queues, and allocated in the reassembly area on a per cell

arrival basis!. When an entire frame is buffered, the frame
is placed in the transmit queue. The buffers are returned to
the buffer pool at once when the frame is eventually
transmitted from the transmit queue. This is a common
policy.

The following variables are defined for the frame
buffer pool sizing:

N: Total number of frame relay connections at the
destination port that originating at different
source edge ports.

Xji: Number of buffers used for reassembly for virtual
channel i.

N

Y: 2 Xj; Total number of buffers used for frame
i=1
reassembly.

M: Number of buffers used by the transmit frame
queue.

W: Y + M; Total buffers drawn from the buffer pool.

2.2: Reassembly Queue

Assume that the sources are independent and ergodic,
and that delay through the ATM network fluctuates little
compared to the intercell time 1/C;j (thus the network does
not "bunch'cells). Then a frame of length k>0 will be in
progress on virtual channel i at a random time with
probability

kgik) . keik)
E(I)C; + E(Gj) ' EGj)

Pik) = for k>0. ©))

The probability that no frame is in progress is P;(0),
where

co

Pi(0)=1- ¥ Pi(k)=1-b;.
k=1

If no frame is in progress, Xj = 0, while if a frame of
length k is in progress, Xj will be uniformly distributed
between 1 and k. The z-transform of the probability mass
function of Xj is thus given by

Xi(2) = Py(0) 20 + kZ Pi(k) Uk(z)
=1

IThe theory actually holds if buffers contain multiple cells, as
long as the unused space at the end of the last buffer is
negligible.

where Ug(z) denotes the z-transform for a uniformly
distributed random integer between 1 and k. It follows
that

z k
o = (1o 50 4 e gi(k) :
Xi(z) = (1-bj) +b12 E(Gi)z 2
k=1 =1
) . Gi(z) - 1
= (1-bj) + bj Z{ (z-1) EG)) } 3
By taking derivatives, one finds that
.| EGi® + EG)) }
E(Xi) = bl{ 7EG) )
2 =, ] 2E(Gi3) + 3 BGi?) + E(Gy) }
E (Xj©) bx{ 6 E(G)) 5)

Because the reassembly queues are independent (this is
a reasonable assumption if the internal network speed is
large compared to C;), the z-transform of the probability
mass function of Y is given by
N
Y@ =1 Xi(2) ©

i=1
2.3: Transmission Queue

Following reassembly, frames are queued waiting for
transmission, and buffers are freed when a frame has been
completely transmitted. Modeling that queue is very
difficult, as it is fed from a finite number of sources that
have an ON/OFF behavior with general distributions. In
addition, the transmission queue is negatively correlated
with the frame reassembly queue. To make progress, we
model the arrivals of frames in the transmission queue by
a Poisson process, independent of the reassembly queue.
We expect that model to be conservative, specially when

iItI__lCi < C, i.e., when the sum of the virtual circuit

peak rates cannot keep the output line busy. However the
approximation should become quite accurate when the
number of sources is large, or when the sources have a
very large aggregate peak rate.
The total frame arrival rate is given by
N

_ bi Cj
X—ZC E(Gj)”’ @
i=1

where C is the capacity of the output link in cells/s and A

is given in frames per cell transmission time. We denote
the frame length of the output traffic by the unsubscripted
G and its probability mass function by

bj Cj
= ——gik). 8
k) E % C E(G)) gi(k) ®

i=1
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The load on the output link is given by

N
p=)\.E(G)=2b—lCCI <1 ©
o1

Denote by M the number of cells in the transmit
queue at a random time, by k the number of cells in the
frame whose transmission is in progress (if any), and by x
the time elapsed in the current frame transmission. x is
distributed uniformly between 0 and k (in the normalized
time). M is related to the waiting time in an M/G/1
queue, but it is not a standard quantity, so a short
derivation is in order. We use many standard results from
queueing theory. They can be found, for example, in [3].
We have

M(z) = E(zM)

k
=(I-p)+ 3 jp k200 kLo px(G(2)-1)) H(z) dx
k=1 BEG — k
x=0
(10
where

H(z) = W(AM1-G(2)))-

The first term in (10) is the probability that the
output line is idle. The second term comprises the
following factors: the probability that the output line is
busy, the distribution of the number of celis in the frame
in progress, the z-transform of the number of cells in that
frame, the density of the time x since the frame started, the
z-transform of the number of cell arrivals since the frame
started, and the z-transform of the number of cell arrivals
while the frame was waiting. W(s) denotes the Laplace
transform of the density of the waiting time of a frame in
the transmit queue, which is an M/G/1 system. It is
known [3, p200] that

we=——1P an
s-A+AG(exp(-s))
as the density of the service time of a frame has Laplace
transform G(exp(-s)).
We can perform the average over x, then over k,
obtaining
M@ =(1-p)+

o0

k g(k) g LexpAk(G(@) -D)-1
Zp EG) ° k  a@Gm.n @

k=1

=(1-p) + 1 G(z exp(MG(z) - 1)))-G(z)
P*PEG A (G(2) -1)

H(z)

Using the expression given in (11), with s = A(1-G(2)),
substituting it for H(z), and then simplifying the resulting
expression, we obtain

M) = (1- p){ G(z exp(MG(2)-1)))-G(exp(MG(z)-1))) }
G(2)-Glexp(MG(2)-1)))
(12)
This transform has a pole at the largest real solution of
z=exp(MG(2)-1)) (13)

and this pole will determine the tail of the complementary
distribution function.

The mean number of cells can be obtained from the
first derivative of M(z), evaluated at z=1.

_p2-p) {Engz }
EM) = 2(1-p) | E@©Q) a9

with p given in (9).

When all frames have v cells, G(z) = z¥ and the
previous formula simplifies to

(@Y-1) exp(p(zY-1)) }

(15)
z¥-exp(p(z¥-1))

M() = (1-p) {

which is the value at zY of the z transform of the
probability mass function of the number of customers in
an M/D/1 system [3, p. 194], as expected.

3: Buffer Pool Sizing

The total amount of buffers used is givenby W =Y +
M. It is interesting to first compare the average numbers
of buffers Y needed for reassembly and M for transmit
queueing. Later we will consider the distributions.

3.1: Average Buffer Requirements

On the average, the total number of buffers used for frame
reassembly is
N

N E(G;i2) + E(G})
E(Y)= ¥ E(Xj) = E A WA L 16

i=1
while the average number of buffers used by the transmit
frame queue is E(M) as given in (14).

Suppose that all sources are identical (i.e., the
subscripts in (16) may be dropped, and Cg will later
denote the common peak rate of each source). Both E(Y)
and E(M) are proportional to the ratio of the second
moment to the first moment of the frame length. It is
striking that E(Y) depends strongly on the probabilities
that the virtual channels are active, and thus on the peak
rates (see (1)). E(M) on the other hand depends only on
the load. To pursue the comparison, let us assume that

E(G) is small compared to E(Gz).

We then have
_ EG?) L EG?)
E(Y)—Nb{ 2E(G)+ 2}~Nb2E(G) a7
_, 2P _EG?)
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where p, derived from (9), is simplified as follows.

N
bj Cj C
p=7»E(G)=2 e '=NbFO. (19)
i=1

One sees that the average number of buffers needed for
reassembly exceeds the average amount required for

2-
queueing when Nb exceeds p( a2 } As indicated by

1-p
. . C
(19), Nb is also given by p C—O . Hence, the above
2.
condition is equivalent to £ > _p.
Co " 19
many situations of interest. Even for a high load (p =

This occurs in

0.8), it only takes Nb ~ 5 or C%) = 6 for the reassembly

area to require as much storage as the transmit queue, on
C -
average. On the other hand, Nb < C‘() for stability, thus

E(Y) is upperbounded as follows,

C [E(G2) + E(G)
E(Y) < o { 2E@G) } (20
independent of the number of virtual circuits.

On the average, the total number of buffers required is
upper-bounded as follows.

(G2) - ( 2)
E(W)Sg{ E(G2 + L } + pz—B EG
Col 2E(G) 2 1-p 2 E(G)
C,,2%p | BGH
{C0+plp}2EKD o

It is interesting to note that if the frames were
buffered at the source nodes, and if the network had a speed
much greater than Cp, then the need for reassembly buffers
at the destination would be greatly reduced. Essentially Cg
would be increased to the network speed, and b would be
decreased in inverse proportion. The delay suffered by a
frame would be little affected by this modified strategy.
The traffic internal to the network would become more
bursty, increasing the buffering requirement at the
intermediate nodes. More buffers would also be required at
the source, but they can be dimensioned precisely, as only
a single frame would be buffered there.

Now that we have compared the means, let us
consider how fluctuations in the frame reassembly process
are affected by the source characteristics, without assuming
that all sources are identical. We have obtained previously
E(Xj) and E(Xiz) (see (4) and (5) respectively). Thus,
Var(X;) has the form

Var(X;j) = bj o - b;2 B. (22)
(When all sources are identical, the subscripts in (22) may
be dropped.) When b; is small, the variance increases
linearly with b, starting from 0. It reaches a maximum at

E(G)) (2 E(Gi®) + 3 E(G{?) + E(Gj)
3 (B(Gi?) + E(G))?
(if this quantity is less than 1) and it then decreases
somewhat as bj approaches 1.
If the lower moments of Gj can be neglected compared
to the higher ones, one finds that the variance is largest,

bj = (23)

.3 2 3 .
about { @ } ,at b =2E(G‘#, and that
3 E(Gi2) 3 (E(Gi2))
i o EGY [ EG?) 1|2 b h
it decreases to 3EG) | 2 E(Gy) as bj approaches

1.
The precise values depend strongly on the distribution
of Gj. If Gj is constant, the slope of the variance at b; =0

E(G))2 E(G: 2
is ((%, the maximum is ((% at bj = 2/3, and the
E(G))2
variance decreases lo( (121)) when b = 1. If Gj is

geometric, recall that E(G;2) ~ 2 (E(G;))2 and E(G;3) ~
6(E(Gi))3, so that that the slope of the variance at bj = 0
is 2(E(Gi))2, and that the variance increases with bj to a
maximum (E(Gi))2 atbj=1.

In summary, in the common situation where bj is not
close to 1, the variance of Xj is almost linear in bj, and it
saturates as bj increases. In either case the ratio of the
variance to the square of the mean decreases as bj
increases.

3.2: Distribution of the Buffer Utilization.

By numerical techniques we have inverted the
distribution of the buffer usage, first for the reassembly
queue and the transmit queue separately, and then for the
two together, plotting the complementary distribution
functions in Figures 2 and 3.

The results can be used to bound the number of
buffers necessary to avoid overflows with high
probability, or to evaluate the probability that a
congestion control mechanism will need to be invoked, if
the network provides one.

For the reassembly of cells from source 1, the critical
moment is when a frame from the source is complete, and
not at a random time. Thus, we have actually inverted the
transform

N
Gi® [1Xj@ M@
j=1j=
rather than Y(z) M(z), i.e., we have replaced Xj(z) by G;(z)
to take into account that an entire frame from source i is
present in the reassembly area.

In all cases considered, there are 30 identical but
statistically independent sources, with a frame distribution
that can be either deterministic or geometric. The average
number of cells per frame is 10. As the results are plotted

4c.2.4
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in terms of average frame size, this number is of marginal
importance. The ratio of the speeds C/Cq is 24. In all

figures, we change the load p from 0.1 to 0.9 in steps of
0.1 by adjusting the probability bj that a source is busy.
Turning to Figure 2 and the results for the
deterministic frame size, we see that the space needed for
reassembly increases with the load, but that its density is
only significant in a narrow range. Indeed, at most 30
frames can be in reassembly at any time. To the contrary,
the amount of buffers needed for queueing is characterized
by an exponential tail (defined in (13))2, that becomes

more and more significant as the load increases>, although
the mean number required for the transmit queue is well

below that required for reassembly ( 5% at p =0.1,25 %

atp = 0.8, 50% at p = 0.9). The distribution of the total
number of buffers has the tail of the transmit queue
distribution, but with an offset due to the reassembly

queue. For p > 0.6, the offset appears to be about equal to
12, independent of the load. We note that

2
12 E(G) ~ g{Ei—L—(JGZ E‘Z(g‘)G } , 4)

i.e. the value of E(Y) when p = 1. The fact that the offset
appears to be insensitive to the load can be explained by
the saturation of Var(Y) discussed earlier.

The situation is quite different for the geometric frame
lengths, as shown in Figure 3. Now the reassembly queue
distribution also has a tail, but it is given by the tail of
the frame length distribution, and it does not depend on the
load. Similarly at light loads the tail of the transmit queue
is almost independent of the load. Again the total number
of buffers in use has the tail of the number in the transmit
queue, but shifted. At high load, the shift is about 22,
which again is closely related to

C { E(G2) + E(G) }
Co 2 E(G)
( for geometric distribution, E(G2) = 2 (E(G))? - E(G)).

Results for 100 sources were also obtained, but not
displayed here. They are not significantly different from
those for 30 sources. However, the model introduced here
is probably more accurate in that case.

4: Conclusion

This paper provides a buffer pool model and its sizing
analysis. It appears that the frame reassembly function can
require a large number of buffers on average. It shifts the
distribution of the total number of buffers in use, but the
tail of that distribution is determined by the transmit
queueing process.

2 1tis likely that the tail is overly pessimistic for the number
of sources used in this example.

3 The staircase nature of the curve is due to the deterministic
frame length.
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