
SoK: Development of Secure Smart Contracts –
Lessons from a Graduate Course

Monika di Angelo1,2, Christian Sack1, and Gernot Salzer1,2

1 Technische Universität Wien, Austria
2 Eurecom, France

{monika.diangelo,christian.sack,gernot.salzer}@tuwien.ac.at

Abstract. Smart contracts are programs on top of blockchains and
cryptocurrencies. This new technology allows parties to exchange valu-
able assets without mutual trust, with smart contracts controlling the
interaction between the parties. Developing smart contracts, or more
generally decentralized applications, is challenging. First, they run in a
concurrent environment that admits race conditions; adversaries may at-
tack smart contracts by influencing the order of transactions. Second, the
required functionality is often based on roles and states. This proves to
be difficult to implement in current smart contract languages. Third, as
a distinctive feature, smart contracts are immutable, hence bugs cannot
be corrected easily. At the same time, bugs may cause (and have already
caused) tremendous losses; they are to be avoided by all means.
This paper discusses our approach of teaching the development of secure
smart contracts on the Ethereum platform at university level. This is a
challenging task in many respects. The underlying technologies evolve
rapidly and documentation lags behind. Available tools are in different
stages of development, and even the most mature ones are still difficult
to use. The development of secure smart contracts is not yet a well-
established discipline. Our aim is to share our ideas, didactic concept,
materials, insights, and lessons learned.

Keywords: smart contract · secure development · university course ·
Ethereum · Solidity.

1 Introduction

Smart contracts were envisioned by Nick Szabo about 20 years ago [27,28] as
computer programs automating the exchange of digital assets, which may be
linked to non-digital objects or values. Smart contracts became effectively alive
with the advent of cryptocurrencies. While playing only a limited role in Bitcoin,
they are an essential ingredient of platforms like Ethereum [12].

Cryptocurrency-based smart contracts run on peer-to-peer networks that
consist of mutually distrusting nodes (so-called miners) ideally operating in a
decentralized manner. There is no need for an external trusted authority, miners
execute smart contracts in an autonomous fashion.



2 M. di Angelo et al.

1.1 Characteristics of Smart Contracts

The main characteristics of smart contracts are: immutability (as long as the
community does not decide otherwise), transparency (when the ledger is open),
provisioning of a digital service (or the digital mapping of a service), an interface
to the outside world to enable interaction with it, no central control/supervision
of transactions and contract execution, and for the contracting parties no neces-
sity to reveal their identities to anyone.

Because of these properties smart contracts promise to be of use for ap-
plications requiring trustless computation, observability, tamper evidence, and
decentralization. Trustless computation means autonomous execution of the pro-
gram as well as no need for a trusted (third) party. Instead, trust is put in the
ledger that keeps track of the exchange of assets. Smart contracts draw from the
transparency technology of the underlying cryptocurrency, providing observabil-
ity and tamper evidence as a trust base. Decentralization means that the system
as a whole should not suffer from a single point of failure, and again should not
rely on anything that needs to be trusted.

Application areas where such requirements may be desirable and useful are
for example notary services, open government, insurance services, supply chain
management, copyright management, and FinTech. Applications based on smart
contracts are still in their infancy, with the most successful ones being initial coin
offerings (ICOs) and collectibles like CryptoKitties [6].

1.2 Reasons for a University Course

Distributed applications (Ðapps) use smart contract as backend to implement
part of the business logic and to store critical data. Developing such Ðapps is
not just about learning another script language for smart contracts, but brings
in considerable complexities that result e.g. from the concurrency, transparency,
and immutability of transactions. Failing to acknowledge these complexities led
to a situation where smart contracts are more famous for bugs and money losses
than for success stories.

At the same time start-ups and traditional companies (like financial insti-
tutions and energy providers) jump on the bandwagon and urgently search for
programmers able to develop Ðapps that handle valuable assets reliably. This
need is complemented by a massive interest of computer science students in
this apparently hot topic. From a didactic point of view, smart contracts and
blockchains are a worthwhile subject as they relate to many topics in com-
puter science, like security, concurrency, cryptographic protocols, randomness,
advanced algorithms, data structures, and formal verification.

1.3 Interesting Courses Online and at Other Universities

Among the available university based courses on Bitcoin, blockchains, and cryp-
tocurrencies, the most prominent one is [19], a highly recommended book with
a great accompanying online course.



Development of Secure Smart Contracts 3

For smart contracts in particular, information on held or available courses
is scarce. The authors of [7] were the first to document the teaching of smart
contracts as a university course. They report “several typical classes of mistakes
[undergraduate] students made, suggest ways to fix/avoid them, and advocate
best practices for programming smart contracts.” The main problems were fail-
ure to encode the state machine properly, failure to use cryptography, misaligned
incentives, and Ethereum specifics. This can be regarded as a reference course.
For their lab they used Serpent, a high level programming language in the Ethe-
reum world. Their pedagogical approach of “build, break, and amend your own
program” seemed to be beneficial to teach adversarial thinking. As a conclu-
sion about smart contracts, they arrived at “designing and implementing them
correctly was a highly non-trivial task”.

Outside academia and free to use on the internet, there are two projects which
we consider well done and worthwhile. Ethernaut [20] is a war game, where vul-
nerabilities of smart contracts need to be exploited to advance. The instructive
challenges have different levels of difficulty that are indicated accordingly. To
succeed one has to understand known vulnerabilities and to apply the gained
insights when using the provided tools. The online tutorial CryptoZombies [15]
provides a nice gamification of how to develop smart contracts. It introduces the
programming language Solidity in several steps, while jumping right into mat-
ters. By forming an army of zombies, one learns to program a suite of contracts
similar to the popular CryptoKitties [6]. Finally, one is instructed on how to
build a Ðapp around the zombie contracts.

1.4 Added Value of This Paper

Teaching a subject like smart contracts that is new and in flux poses several
challenges. There are no reference courses that may serve as a blue-print; the
essence of secure smart contract programming has to be distilled from many
sources. Moreover, the tools and techniques for the development of Ðapps are
still evolving and need to be evaluated regarding their suitability for teaching.
When preparing the course, we came across a single report about a similar
endeavor [7], which was helpful but at the same time already partly outdated.

The purpose of this report is to pass on our findings and experience in order to
inspire and aid teachers designing similar courses as well as to identify difficulties
encountered during the development of smart contracts. To this end, we present
an analysis of the students’ development efforts, a discussion of useful resources
and tools, and a critical reflection of our experiences.

Furthermore, we contribute to defining the need for specific and qualifying
university courses on blockchain and smart contracts programming. Based on
the students’ answers and feedback, we present insights into problems faced by
researchers and developers when dealing with smart contracts. We elaborate on
the issues encountered and provide several suggestions.



4 M. di Angelo et al.

1.5 Roadmap

In the next section we present our course design in detail and the course setup.
The lessons learned including an analysis of the students’ development efforts
is provided in section 3. In section 4 we discuss our approach, and in section 5
we draw our conclusions about smart contract development and note further
challenges.

2 Course Design

For the course design, we first define basic details like learning outcomes and
content. Subsequently, we summarize the considered body of knowledge on which
we base the learning activities. Then we present the assignments in detail.

2.1 Characteristics

Learning Outcomes. The aim of the course is that students gain knowledge
and skills in the following areas.

Technological foundations: Understand the technological basis of smart con-
tracts, like the blockchain, the Ethereum virtual machine (EVM), and the exe-
cution of smart contracts by miners.

Programming languages and tools: Use the languages, tools, and technologies for
developing smart contracts and for interacting with them, like Solidity, Remix,
Truffle, Geth, and Web3.js.

Security and privacy issues: Recognize and avoid security and privacy issues
resulting either from the technology or from poor programming practices.

Smart contracts and Ðapps: Develop secure smart contracts and Ðapps involving
tokens and cryptocurrencies.

Course Contents. In the lectures we recap the cryptographic basics as needed
to understand cryptocurrencies and blockchain mechanics, explain the basic con-
cepts of smart contracts, describe Ethereum in detail, highlight the peculiarities
of scripting in Solidity, present the basics of the EVM as well as its relation
to Solidity, and discuss current approaches to verification of smart contracts.
The workshops cover tools and introductory exercises. The challenges address
known vulnerabilities. Tokens and their usage as well as specific programming
techniques are essential parts of the two projects.

Target Audience. Smart contracts and Ðapps constitute advanced topics in
computer science that presuppose knowledge in areas like algorithms, program-
ming, web computing, and security. Therefore we devised Smart Contracts as an
elective course in the master programmes of computer science and business in-
formatics. Students without a background in Bitcoin and blockchain technology
are referred to [19] and the accompanying video lectures.



Development of Secure Smart Contracts 5

2.2 Body of Knowledge
Smart Contracts. We start with Nick Szabo’s ground breaking ideas on smart
contracts [27,28] and Princeton’s great introductory book and online course on
cryptocurrencies [19]. The research perspectives and challenges for cryptocurren-
cies in [4] are worth considering, too. Regarding the Ethereum world, we refer to
the Ethereum basics [12,31] and Buterin’s blockchain and smart contract mecha-
nism design challenges [29], as well as the overview of scripting languages in [24].
Furthermore, the article [26] with a legal perspective and the presentation [14]
with a programming point of view offer additional perspectives on the topic.
For platforms and use cases, [2] provides an interesting empirical analysis of
smart contracts regarding platforms, applications, and design patterns, whereas
[23] discusses decentralized applications. The challenges and new directions for
blockchain-oriented software engineering in [22] provided useful insights, as did
[17] with their elaboration on validation and verification of smart contracts.
Security Issues. [1] presents a useful survey of attacks on Ethereum smart
contracts, whereas [16] not only investigates the security of smart contracts
deployed on the Ethereum main chain, but also proposes to use symbolic ex-
ecution (as implemented in the tool Oyente) to make contracts less vulnerable.
[3] presents a declarative domain-specific language (Findel) to add security to
financial agreements handled by smart contracts. The blog post [13] provides a
guide to auditing smart contracts and reviews relevant attacks.
Last Minute Contributions. As smart contracts are a lively field, interesting
work kept appearing throughout the course. This includes the collection of coding
patterns [30] with proposals how to mitigate typical attacks. The authors of [8]
encourage best practices to mitigate detrimental software behavior and argue
for specific “Blockchain Software Engineering” since existing approaches seem
insufficient for the particular needs of smart contract development.

2.3 Learning Activities
The course activities comprised lectures, workshops, and assignments, accompa-
nied by a moderated discussion forum and email support.
Lectures. The main intention of the lectures was to cover new material deemed
necessary to achieve the learning outcomes. While the usual course format is lec-
tures with accompanying assignments, we deliberately added a workshop com-
ponent.
Workshops. The intent of the workshops was to alleviate the frustration asso-
ciated with using a range of new tools, and to close gaps in the understanding of
the presented material. The students brought their own laptops to gain hands-
on experience. We first demonstrated the handling of selected tools and assisted
with initial problems arising from the partly unstable tool chain and the in-
complete documentation. Then, we focused on small ad-hoc tasks to make sure
everyone was familiar with the operations and concepts required for the upcom-
ing assignments. The workshops also served the purpose of discussing sample
solutions after the submission deadlines.



6 M. di Angelo et al.

Assignments. The assignments were intended to provide students with prac-
tical experience regarding the implementation of smart contract, to let the stu-
dents apply the newly gained skills and knowledge, and for us to get feedback on
the progress of students regarding their understanding of the essential concepts.

The assignments started with the online tutorial CryptoZombies [15] (see
section 1.3) in order to provide an entertaining introduction into programming
in Solidity. Subsequently, eight security challenges had to be solved, with the
intention to get the students to understand known vulnerabilities and to motivate
the need for secure smart contract development.

Finally, there were two constructive tasks. For the guided project “beer bar”
we provided a clear specification and an abstract Solidity contract including
comments for the parts to be implemented by the students. The final project
had a free topic and just a few constraints.

Ether was only available in limited quantities to raise awareness that it is a
costly resource. Next to a regular supply of Ether which was sufficient to solve
the assignments, it was also handed out as a reward for participation in the
workshop tasks, and upon request.

2.4 Assignments in Detail

Challenges. The eight security challenges (inspired by Ethernaut [20]) are
packed into a story in which the main character is a software developer. For
each challenge the task is to deplete the provided contract by finding and suc-
cessfully exploiting one or more security issues. The challenges address known
vulnerabilities concerning the fallback function, a misnamed constructor, math
issues like overflow, forced transfer of Ether, reentrancy, hidden variables, dele-
gatecall, insecure contract interaction, failing transactions, and randomness.

Beer Bar. This assignment consists of four constructive sub-tasks.
Task 1. The students implement a bar token that is not divisible, but mintable

and burnable. Furthermore, they make sure that tokens cannot get lost by send-
ing them accidentally to contracts that are not set up for accepting them. The
concept of tokens as well as standard token contracts [21] were introduced in the
workshop. To solve this task the students customize an ERC223 token.

Task 2. The students implement a beer bar that uses the bar token from
Task 1. We provide the interface as well as a skeleton contract with in-line
comments that describe the functionality to be implemented, like opening and
closing the bar, setting the beer price and the bar token to be accepted, and the
processing of beer orders. For modeling the roles of bar owners and bar keepers,
the students use the RBAC contract [21].

Task 3. The students extend the bar to a song voting bar where customers
can vote for the songs to be added to the playlist, with an additional role DJ.

Task 4. We provide a simple web interface in Javascript that uses web3.js
to communicate with the contract of the beer bar. The students extend the
interface to interact with their song voting bar.



Development of Secure Smart Contracts 7

Final Project. For the final project, the students are encouraged to choose a
topic of their own. If lacking inspiration, they may extend the beer bar. The
final project is graded with respect to the following criteria.

– Use of mappings, RBAC-roles, modifiers, Ether, tokens, correct math.
– Some (minimalistic) web interface for interacting with the contract.
– The contracts should not make any Ether or tokens inaccessible.
– The contracts should not exhibit any of the vulnerabilities discussed in the

security challenges before.
– Quality of the documentation specifying the contract and the web interface.

The following aspects give an additional bonus: original choice of topic, com-
mitment schemes for guarding secrets (like bids or game moves), deposits to
prevent aborts or reverts of games, timeouts to ensure the termination of moves
or games, and good randomness.

2.5 Technical Setup

The technical setup of the course consists of a Linux server providing an Ethe-
reum blockchain and a block explorer, as well as a separate client for the lecturers
and the students (Linux, MacOS, and Windows). As implementation languages
we use Bash, Javascript, Solidity, and Html.

Ethereum Blockchain. Geth [11] runs a private chain with proof of authority
(POA). The geth client (miner) has to be configured such that it can handle
sufficiently many concurrent connections to give all students access in parallel.
Moreover, it turned out that we need a high block gas limit for publishing the
challenges (see below).

Block Explorer. We developed our own block explorer consisting of a single
Html page and some programs in Javascript. When the user opens the block
explorer in a browser it connects to the local geth instance to load the chain data.
As a result, the user sees the local synchronized state of the blockchain, reducing
the network load on our server. A filter allows the students to restrict their view
to the transactions they are actually involved in. This helps in situations where
several students are active at the same time (like during workshops).

Administration of Students and Assignments via the Blockchain. We
deployed several contracts on our blockchain to manage the submission of as-
signments and the interaction with and between students.

The address book provides a unique mapping between student ids and Ethe-
reum addresses (one public address per student); moreover, it maintains a list
of several private Ethereum addresses per student. The public address is used
e.g. for interactions between students and for transferring Ether. The addresses
of personalized copies of challenges and of contracts submitted by a student are
stored as private addresses, only known to a single student and to the lecturers.

The Ether tap regularly transfers small amounts of Ether to all public ad-
dresses. Moreover, in case of mishaps (like transferring accidentally all Ether



8 M. di Angelo et al.

to the zero address) students may request limited amounts of Ether from this
contract.

The alias directory allows the students to specify a string to be used in place
of their name. This alias is later used for displaying live progress visualizations
and feedback (e.g. who has already solved a task) and rankings (like the time
needed to solve a challenge).

A base contract is inherited by each personalized copy of a challenge. It adds
private variables that ensure that the students can only interact with their own
copy, and that the challenge can be turned off after the deadline.
Client for Lecturers. The client for lecturers is a geth client with console
scripts attached to it. It automatically prints each transaction as it occurs, im-
proving readability by translating the involved addresses to names. The scripts
provide functions for easy maintenance and observation during the course. As
an example, the function balances identifies students who have spent most of
their Ether. Other scripts deploy a challenge for a single student or groups of
addresses, whereby certain values in each instance can be varied randomly to
personalize the challenge for each student.
Client for Students. The client for the students is a geth client connecting
automatically to the private course chain. It includes the abstract binary inter-
face (ABI) and the deployment address of the address book such that students
can access their private and public addresses in a symbolic way.

3 Lessons Learned from the Students’ Submissions

3.1 Beer Bar

It turned out to be difficult for some students (25%) to accept only their own
tokens (and not arbitrary ones). After the submission deadline, we addressed this
issue in the workshop. We reopened the submission for the beer bar to admit
corrections, because we felt this token aspect was too important to miss.

3.2 Final Project

After teaching known vulnerabilities by means of security challenges to moti-
vate secure smart contracts, and after showing best practice examples, we were
interested to see which topics the students would choose for their final project
and how they would implement them.

The final project was handed in by 44 students. Most students addressed the
homo ludens by implementing some sort of game (14), gambling (13), betting (5),
or lottery (3). Three students opted for a shop. The remaining six students came
up with extra-ordinary topics, namely cash register functionality that conforms
to local law, untraceable and unlinkable voting (using a ring signature), smart
marketplace, data saver, trusted recommender, and betterSpotify.

The effort put into the final project varied. 14 students pragmatically ex-
tended their implementation of the beer bar or transformed it into a shop of



Development of Secure Smart Contracts 9

similar structure. Several students skipped the web interface (10) or documented
their project poorly (6). At the other end, about half of the students went at
great lengths to provide a rounded-off project, paying also attention to details.

The students encountered several difficulties in their implementation efforts.
Our insights are broken down with respect to the requirements for the project.
Roles, Modifiers, Require Statements. These elements posed no problems.
They are mentioned first in the initial tutorial on Solidity, CrytoZombies, and
then are repeatedly used throughout the challenges and in the guided project.
Data Structures. Many students wanted to iterate over arrays. We explained
during the course that loops over potentially growing ranges should be avoided as
the execution may eventually exceed the gas limit and fail (apart from becoming
more and more expensive). Not being able to iterate over mappings required
time to get used to. Deciding which part of the data and the program logic
should be put on-chain and which one off-chain remained an issue.
Correct Math. It was easy for the students to understand the problems of
overflows and wrap-arounds and to take precautions.
Token Usage. Even though we put an emphasis on tokens and their correct
usage, some students had troubles. This was particularly true for ERC223 tokens
and the idea of the token fallback function. These concepts presumably need
more time, explanations, and exercises.
Commitments. The correct usage of commitments needs basic security knowl-
edge that we did not teach, just briefly summarized. Most students did not re-
quire commitments for their final project. Several students (13) employed them
correctly, a few tried but failed.
Stages/Phases. The usage of stages or phases in order to ensure the correct
ordering of transactions did not pose any problems.
Randomness. Good randomness within smart contracts is generally tricky. We
only covered it superficially. Most projects did not require (good) randomness.
Some students made serious attempts, most of them (9) succeeded.
Private Variables. Even though we covered private variables in the workshops
and the challenges, quite a few students had problems with them. The keyword
private and the missing getter function seemed to make them blind to the fact
that the variables could still be inspected from the outside. Apparently, private
variables represent new and unexpected material that needs more exercises. It
might also be worthwhile to modify the syntax of Solidity by replacing the
misleading keyword by another one, maybe local or internal.
Deposits/Timeouts. The usage of deposits or timeouts to handle unfair game
aborts or stalling did not pose any problems.
Web User Interface. Students with little prior knowledge of web scripting
had a difficult time implementing a basic web interface for their contracts, even
though we provided an exemplary one for the bar contract. If this is to be an
integral part of the course, it definitely needs more coverage or prior knowledge.



10 M. di Angelo et al.

3.3 Tools

All students initially used Remix, and most of them stayed with this browser
IDE. Some additionally tried Remixd to access the local file system; this add-on,
however, did not prove stable and lead to the destruction of files in two cases.

Some students switched to the Truffle framework because of its promise of
more structured testing and better handling of multi-contract projects. Testing
is generally an issue with little or unstable support by the tools. A problem with
Truffle was that a new version became available during the course that was not
fully compatible with the old one.

4 Discussion

The choice of Ethereum as a platform for smart contracts was determined by the
wealth of available materials that is unparalleled compared to any alternative
platform.

4.1 Distinctive Aspects

Our approach differs from [7] in the following aspects.

Focus. We teach how to develop secure smart contracts. In their final assign-
ment the students were asked to implement a project of their choice, after expe-
riencing lectures, workshops, security challenges, and a guided project.

Technological environment. There is more practical knowledge on smart
contracts now. Security issues related to the programming language shifted. The
tool chain is improving, but still leaves much to be desired.

Didactic design. We worked with graduate students, security challenges based
on known vulnerabilities, workshops with ad hoc tasks and live feedback, a
guided project using tokens, and a final project with an open topic.

4.2 Course Feedback

The university provides a non-obligatory course questionnaire for the students
to fill in at the end of each term. In this questionnaire, students are asked to
answer a bit over 20 questions, rating their satisfaction from 1 (very content)
to 5 (not at all content). Questions concern the preparation, implementation,
interaction, and knowledge gain of a course.

16 out of the initially 53 students took the opportunity to give a feedback on
our course. This is a high percentage (30%) compared to the usual less than 10%.
Our course yielded an average graduation between 1.0 and 1.56 on the questions
with a median value of 1. In comparison, the typical median for courses of the
faculty is 2. These numbers indicate a high satisfaction with the course.



Development of Secure Smart Contracts 11

Verbal feedback included statements like: “One of the best courses I’ve at-
tended so far.” “Previously, I had about 0 interest and prior knowledge of block-
chain and cryptocurrencies and just attended the course to learn more. It defi-
nitely caught my interest.” “Knowledge growth is still understated. It has opened
a gateway to a new world!” “Really good and above all entertaining course.”

Students especially liked: “The workshops and the course chain. That ev-
erything happens on the chain is pretty cool :) The exercises were always fun
and well prepared.” “The whole course was really great. Please do a continua-
tion course.” “Workshops, panel discussion” “Security challenges, course chain
setup, general format with course + workshop” “Challenges were nicely designed.
Also given creative freedom, because you can make the final project completely
yourself.” “The workshops were absolutely great. Originally I did not want to
attend because of time constraints, but they were just too good to omit (100%
attendance). The challenges were a lot of fun and were just at the right level of
difficulty. 1-2 a bit too heavy for me on my own, but with tiny hints from others
they were no problem.” “The format with 1 hour lecture + 2 hours workshops +
the plenary discussion in the last lecture. The course environment with its own
chain is great.”

Potential for improvement was seen in: “The pace was a bit high.” “The effort
was too high, even if it’s fun . . . ” “The web part needs more introduction and
support.” “More time for the final project.” “A recording of the lectures would
be helpful.” “I would have liked a model solution of the guided project.”

5 Conclusions

Smart contracts are an interesting topic to teach in computer science, since
they combine areas like distributed systems, security, data structures, software
engineering, algorithms, and formal verification. There are connections to finance
(values at stake) and law (legal aspects of the usage of smart contracts).

Secure smart contracts are still avant-garde. Even though there are coding
patterns and best practice collections for most known (security) bugs (like [21]),
the development of secure smart contracts is not yet a well-established discipline.

5.1 Differences to Conventional Development

Summarizing our experience from the course on smart contracts, we identified
the following issues in developing secure smart contracts. We started to address
them and raised awareness in these regards. For smart contracts to become a
reliable technology, these issues should be addressed further.
Security is an Issue. Developing secure smart contracts needs ‘adversarial
thinking’. A key feature of smart contracts is their immutability once deployed
on the blockchain, because this feature is part of the trust base. So, smart con-
tracts have to be designed and implemented correctly right from the start with
little chances for updates. Even though an update strategy is possible, it dete-
riorates the trust base. Moreover, smart contracts usually have values at stake.



12 M. di Angelo et al.

As they are intended to work autonomously once they are released, there is a
non-negligible incentive for adversaries to exploit potential vulnerabilities.

Underspecification is an Issue. In general, it is difficult for developers to
consider all possible program states and transitions and to fully specify the
behavior of the program, especially if there is little or no tool support for it. A
full specification (with the aid of a suitable tool) seems still a long way to go,
but would be a prerequisite for the verification of smart contracts. There are
currently only few approaches [5,13,16,18] that help developers find overlooked
states. This goes hand in hand with security issues as underspecification readily
leads to a vulnerability. Again, there is an economic incentive to exploit potential
gaps, and the immutability requires to close the gaps beforehand. Maybe a game
theoretic approach would help to explicitly balance the incentives that smart
contracts (implicitly) create.

Concurrency is an Issue. Smart contracts are decentralized pieces of trust-
less computer code. Although they essentially run on the hardware of a miner,
and some advocate considering the miner network as a large linear ‘world com-
puter’, there are some concurrent aspects in smart contracts. Some program
sequences require more than one transaction. Even though a single transaction
is an atomic operation, multiple transactions cannot be bundled to a single
atomic operation. Once a transaction is on the blockchain, it cannot be reversed
by a following transaction. There can be race conditions, transaction ordering
makes a difference. It can be influenced (by transaction fees), but not relied upon
within a smart contract (without special handling like stages). Understanding
the concurrency aspects of smart contracts is still a research topic [9,25].

Novelty is an Issue. Blockchains and cryptocurrencies are still evolving, and
so are the programming languages for smart contracts (such as Solidity). Tools in
this domain are developed for a moving target, and thus barely develop beyond
beta status before becoming obsolete. Best practice and coding patterns are
gradually emerging (e.g. OpenZeppelin [21]). Working with new technologies is
quite a challenge, even more when they keep changing.

Separation is an Issue. Some of the involved data and logic have to stay on
the chain (via transactions) in order to maintain their security and integrity,
while others do not need the costly features of a blockchain. All parts with no
need to be handled on-chain should be handled off-chain, in order to reduce
(transaction) costs and execution time as well as capacity issues. It may be
necessary to provide validation (in terms of integrity and security) for some of
the off-chain processes and data (e.g. authenticity proofs). E.g. [10] discusses
such off-chain patterns. Also, a static (or perhaps even dynamic) analysis is
required to decide which pieces of data and logic are best handled on-chain.

5.2 Further Challenges

For the development of secure smart contracts there are several areas with po-
tential for improvement.



Development of Secure Smart Contracts 13

Platforms. Besides Ethereum, there are current and planned platforms, which
intend to solve several issues (e.g. consensus, performance). It will remain inter-
esting to observe, evaluate, and contribute to ongoing developments that provide
a suitable basis for secure smart contracts.

Scalability. The number of transactions per second is still an open issue, as
well as the growing size of the chain. Moreover, the execution speed of smart
contracts may constitute a bottleneck.

Development Frameworks. Currently there are a few tools with basic develop-
ment support. Even though they are rapidly evolving, there is still insufficient
support for secure implementations. Especially, support for correct and complete
specifications would be of great help.

Programming Languages. The currently prevalent language Solidity is still evolv-
ing with incomplete documentation lagging behind. Other languages exist or are
being developed. Again, support for correct and complete specifications would
be of great help. Programming languages for smart contracts are an interesting
field of ongoing research.

Verification. Because of the high value at stake paired with the immutability of
deployed code, (formal) verification of smart contracts is desirable. This is also
an interesting area of ongoing research.

Acknowledgments

We are very grateful to our students who made the course a worthwhile expe-
rience with their enthusiastic participation and high quality assignments. We
would like to extend our sincere thanks to our student assistants for their com-
mitment and dedication in the preparation phase as well as during the course. A
special thanks goes to our two guests lecturers from the Vienna based security
research company SBA.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) 6th Int. Conf. on Principles of Secu-
rity and Trust (POST’17). LNCS, vol. 10204, pp. 164–186. Springer (2017). doi:
10.1007/978-3-662-54455-6_8

2. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: Platforms,
applications, and design patterns. In: Michael Brenner et al. (ed.) Financial Cryp-
tography and Data Security (FC’17), Int. Workshops. LNCS, vol. 10323, pp. 494–
509. Springer (2017). doi: 10.1007/978-3-319-70278-0_31

3. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: Secure derivative contracts
for Ethereum. In: Michael Brenner et al. (ed.) Financial Cryptography and Data
Security (FC’17), Int. Workshops. LNCS, vol. 10323, pp. 453–467. Springer (2017).
doi: 10.1007/978-3-319-70278-0_28

http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-319-70278-0_31
http://dx.doi.org/10.1007/978-3-319-70278-0_28


14 M. di Angelo et al.

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (SP’15). pp. 104–121. IEEE Computer Society
(2015). doi: 10.1109/SP.2015.14

5. Bragagnolo, S., Rocha, H., Denker, M., Ducasse, S.: SmartInspect: Smart Contract
Inspection Technical Report. Ph.D. thesis, Inria Lille (2017), https://hal.inria.fr/
hal-01671196/document

6. Dapper Labs Inc: CryptoKitties, https://www.cryptokitties.co, accessed 2018-08-
07

7. Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab. In:
Jeremy Clark et al. (ed.) Financial Cryptography and Data Security (FC’16), Int.
Workshops, Revised Selected Papers. LNCS, vol. 9604, pp. 79–94. Springer (2016).
doi: 10.1007/978-3-662-53357-4_6

8. Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., Hierons, R.M.:
Smart contracts vulnerabilities: a call for blockchain software engineering? In: 2018
Int. Workshop on Blockchain Oriented Software Engineering. pp. 19–25. IEEE
Computer Society (2018). doi: 10.1109/IWBOSE.2018.8327567

9. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to
smart contracts. In: ACM Symposium on Principles of Distributed Comput-
ing (PODC’17). pp. 303–312. ACM, New York, NY, USA (2017). doi: 10.1145/
3087801.3087835

10. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computa-
tion and data. In: Flavio De Paoli et al. (ed.) 6th Europ. Conf. on Service-Oriented
and Cloud Computing (ESOCC’17). LNCS, vol. 10465, pp. 3–15. Springer (2017).
doi: 10.1007/978-3-319-67262-5_1

11. Ethereum Foundation: Go Ethereum – the Ethereum protocol implemented in Go,
https://geth.ethereum.org, accessed 2018-09-11

12. Ethereum Wiki: A next-generation smart contract and decentralized application
platform, https://github.com/ethereum/wiki/wiki/White-Paper, accessed 2018-
07-29

13. Grincalaitis, M.: The ultimate guide to audit a smart contract + most dan-
gerous attacks in Solidity (2017), https://medium.com/@merunasgrincalaitis/
how-to-audit-a-smart-contract-most-dangerous-attacks-in-solidity-ae402a7e7868,
accessed 2018-08-09

14. Henglein, F.: Smart contracts are neither smart nor contracts (slides) (2017),
http://hjemmesider.diku.dk/~henglein/smart-contracts-are-neither.pdf, accessed
2018-08-09

15. Loom Network: CryptoZombies, https://cryptozombies.io, accessed 2018-08-07
16. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: Edgar R. Weippl et al. (ed.) 2016 ACM SIGSAC Conf. on Computer
and Communications Security. pp. 254–269. ACM (2016). doi: 10.1145/2976749.
2978309

17. Magazzeni, D., McBurney, P., Nash, W.: Validation and verification of smart con-
tracts: A research agenda. IEEE Computer 50(9), 50–57 (2017). doi: 10.1109/MC.
2017.3571045

18. Mavridou, A., Laszka, A.: Tool demonstration: Fsolidm for designing secure ethe-
reum smart contracts. In: Int. Conf. on Principles of Security and Trust. pp. 270–
277. Springer (2018)

http://dx.doi.org/10.1109/SP.2015.14
https://hal.inria.fr/hal-01671196/document
https://hal.inria.fr/hal-01671196/document
https://www.cryptokitties.co
http://dx.doi.org/10.1007/978-3-662-53357-4_6
http://dx.doi.org/10.1109/IWBOSE.2018.8327567
http://dx.doi.org/10.1145/3087801.3087835
http://dx.doi.org/10.1145/3087801.3087835
http://dx.doi.org/10.1007/978-3-319-67262-5_1
https://geth.ethereum.org
https://github.com/ethereum/wiki/wiki/White-Paper
https://medium.com/@merunasgrincalaitis/how-to-audit-a-smart-contract-most-dangerous-attacks-in-solidity-ae402a7e7868
https://medium.com/@merunasgrincalaitis/how-to-audit-a-smart-contract-most-dangerous-attacks-in-solidity-ae402a7e7868
http://hjemmesider.diku.dk/~henglein/smart-contracts-are-neither.pdf
https://cryptozombies.io
http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1109/MC.2017.3571045
http://dx.doi.org/10.1109/MC.2017.3571045


Development of Secure Smart Contracts 15

19. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies: A Comprehensive Introduction. Princeton Univer-
sity Press (2016)

20. OpenZeppelin: Ethernaut – Solidity security challenges, https://github.com/
OpenZeppelin/ethernaut, accessed 2018-08-07

21. OpenZeppelin: Solidity contract library, https://github.com/OpenZeppelin/
openzeppelin-solidity, accessed 2018-08-07

22. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software engi-
neering: challenges and new directions. In: Sebastián Uchitel et al. (ed.) 39th Int.
Conf. on Software Engineering (ICSE’17). pp. 169–171. IEEE Computer Society
(2017). doi: 10.1109/ICSE-C.2017.142

23. Raval, S.: Decentralized Applications: Harnessing Bitcoin’s Blockchain Technology.
O’Reilly Media (2016)

24. Seijas, P.L., Thompson, S.J., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. IACR Cryptology ePrint Archive 2016, 1156 (2016),
http://eprint.iacr.org/2016/1156

25. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Michael
Brenner et al. (ed.) Financial Cryptography and Data Security (FC’17), Int.
Workshops. LNCS, vol. 10323, pp. 478–493. Springer (2017). doi: 10.1007/
978-3-319-70278-0_30

26. Sreehari, P., Nandakishore, M., Krishna, G., Jacob, J., Shibu, V.S.: Smart will con-
verting the legal testament into a smart contract. In: 2017 Int. Conf. on Networks
Advances in Computational Technologies (NetACT). pp. 203–207 (July 2017). doi:
10.1109/NETACT.2017.8076767

27. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9), 28 (1997). doi: 10.5210/fm.v2i9.548

28. Szabo, N.: Secure Property Titles with Owner Authority (1998), http://
nakamotoinstitute.org/secure-property-titles/, accessed 2018-08-09

29. Vitalik, B.: Blockchain and smart contract mechanism design challenges (slides)
(2017), http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf, accessed 2018-08-09

30. Wöhrer, M., Zdun, U.: Smart contracts: security patterns in the Ethereum ecosys-
tem and Solidity. In: 2018 Int. Workshop on Blockchain Oriented Software En-
gineering. pp. 2–8. IEEE Computer Society (2018). doi: 10.1109/IWBOSE.2018.
8327565

31. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Tech. rep., Ethereum Project Yellow Paper (2014), https://ethereum.github.io/
yellowpaper/paper.pdf, accessed 2018-08-09

https://github.com/OpenZeppelin/ethernaut
https://github.com/OpenZeppelin/ethernaut
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/OpenZeppelin/openzeppelin-solidity
http://dx.doi.org/10.1109/ICSE-C.2017.142
http://eprint.iacr.org/2016/1156
http://dx.doi.org/10.1007/978-3-319-70278-0_30
http://dx.doi.org/10.1007/978-3-319-70278-0_30
http://dx.doi.org/10.1109/NETACT.2017.8076767
http://dx.doi.org/10.5210/fm.v2i9.548
http://nakamotoinstitute.org/secure-property-titles/
http://nakamotoinstitute.org/secure-property-titles/
http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf
http://dx.doi.org/10.1109/IWBOSE.2018.8327565
http://dx.doi.org/10.1109/IWBOSE.2018.8327565
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	SoK: Development of Secure Smart Contracts – Lessons from a Graduate Course

