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Abstract—Ethereum is still the most prominent platform
for smart contracts. For the deployment of contracts on
its blockchain, the so-called deployment code is executed by
Ethereum’s virtual machine. As it turns out, deployment code
can do a lot more than merely deploying a contract.

This paper identifies less-anticipated uses of contract deploy-
ment in Ethereum by analyzing the available blockchain data.
In particular, we analyze the specifics of deployment code used
beyond actually deploying a contract in a quantitative and
qualitative manner. To this end, we identify code patterns in
deployment code by distilling recurring code skeletons from
all external transactions and internal messages that contain
deployment code. Tracking the use of these patterns reveals a
set of vulnerabilities in contracts targeted by skillfully crafted
deployment code. We summarize the encountered exploitative
cases of collateral use of deployment code and report respective
quantities. Example scenarios illustrate the recent usage.

Collateral use of deployment code starts to appear in the
middle of 2018 and becomes dominant among contract creations
in autumn of 2018. We intend to raise awareness about the less
obvious uses of deployment code and its potential security issues.

Index Terms—analysis, deployment code, exploit, Ethereum,
smart contract

I. INTRODUCTION

Smart contracts on a blockchain can be described as com-
puter programs that run on a peer-to-peer network with the
purpose of automating the exchange of digital assets without
the need for an external trusted authority. Such assets may be
linked to non-digital objects or values.

Fraud. Taking the radical stance that code is law in the
trustless environment of blockchain-based cryptocurrencies,
any feature usage must be deemed rightful. The question arises
as to what extent it is acceptable to do whatever can be done,
and to utilize available features in any way possible.

Intention or fair use are notions the affected community
might care about. The rules of the game can be changed
if the community decides that specific user actions misuse
some (possibly unintentionally) available features. The means
to overrule user actions ex post include a hard fork to revert
unintended actions, and protocol changes to stop further abuse.

Setting. The most prominent platform for smart contracts
still is Ethereum. It has its own mechanism for deploying
contracts via so-called deployment code that is executed once

to initialize a contract. The mechanics of such a deployment
are usually expected to just accomplish that: initialize the new
contract and write its bytecode to its address.
Focus. We focus on ‘unintended use’ of deployment code
of smart contracts in Ethereum. Our goal is to determine the
actual usage of deployment code, and to clarify what it can
do in general.
Audience and Added Value. This paper may be interesting for
contract developers to avoid the presented issues, for contract
users to understand how secure the contracts are that they use,
and for the community to be informed about what to watch
out for or where to take precaution.

To this end, we elaborate on deployment mechanics, on
vulnerabilities of contracts that are attackable by deployment
code, and on found exploit patterns that are summarized in
exemplary scenarios. This may contribute to a refined design
of new VMs for smart contracts.
Methods. As data set, we extracted all deployment codes
that exist on the Ethereum blockchain. We analyze these
deployment codes in a quantitative and qualitative manner.
Bytecode was analyzed automatically for all available deploy-
ment codes, as well as manually for representative patterns we
encountered (see section III for details on our code analysis).
For the analysis of interaction patterns in deployment code,
we first quantify the interaction of deployment codes with
other addresses. Then, we distill usage scenarios that make
‘unintended use’ of deployment code.
Analyzed Data. The activities on the Ethereum chain are
usually described in terms of transactions clustered into blocks.
This view is too coarse for our purpose since transactions
may be composed of several internal messages. These internal
messages are caused by contract activity: they are calls, creates
or selfdestructs initiated by contracts. Internal messages are es-
sential to understand the activities on the Ethereum blockchain.

The messages were extracted from the traces provided by
the Ethereum client parity in archive mode in version 2.1.4-
beta, with a patch applied to fix a bug regarding CALLCODE
traces. Our analysis is based on data up to Ethereum block
7 280 000 (Feb 28, 2019).
Roadmap. Section II explicates the mechanics of contract de-
ployment, emphasizing unusual deployment code. We explain



our methods of bytecode analysis in section III. Section IV
lists vulnerabilities that we found exploited by deployment
code, while exploit scenarios are discussed in section V. We
present related work in section VI and our conclusions in
section VII.

II. DEPLOYMENT OF CONTRACTS IN THE EVM

A. Contract-related Terms

EVM. In Ethereum [1], smart contracts are executed by its
virtual machine, the EVM.
Accounts. Ethereum distinguishes between externally owned
accounts often called users, and contract accounts or simply
contracts. For any account, its data is stored at its address.
Contracts additionally have bytecode stored at their respective
addresses. Its code is executed only when receiving a call.
Transactions are signed data packages sent from users to other
users or contracts. They are recorded on the blockchain.
Messages are data packages sent from contracts to other con-
tracts or users. They only exist in the execution environment of
the EVM and are reflected in the execution trace and potential
permanent data changes.

B. Mechanics of a Deployment

For a contract to exist, it needs to be created by another
address via the so-called deployment code, which is executed
once by the EVM. As part of this deployment, the so-called
deployed code is written to the code section of the contract’s
address. The contract exists upon the successful completion of
the create operation.

1) User Deploys a Contract: “There are two types of
transactions: those which result in message calls and those
which result in the creation of new accounts with associated
code (known informally as ‘contract creation’). . . . fields of
a transaction . . . Additionally, a contract creation transaction
contains: init: An unlimited size byte array specifying the
EVM-code for the account initialisation procedure. . . . init is
executed only once at account creation and gets discarded
immediately thereafter.” [1]

2) Contract Deploys Another Contract: Similarly, contracts
can create other contracts by sending a create message. “Fi-
nally, the account is initialised through the execution of the
initialising EVM code i[nit] according to the execution model.
Code execution can effect several events that are not internal
to the execution state: the account’s storage can be altered,
further accounts can be created and further message calls can
be made.” [1]

3) Deployment Code: is the EVM bytecode called init in
Ethereum’s yellow paper [1]. It is used mainly to deploy a
contract (by writing bytecode to the new contract’s address).

C. Collateral Aspects of Deployment Code

Interestingly, deployment code need not write any code
to the new contract’s address. It may even contain arbitrary
EVM bytecode including calls, creates, and a selfdestruct.
All executed code will seem to originate from the address

of the new contract, although the affected account does not
contain any code yet. “During initialization code execution,
EXTCODESIZE on the address should return zero, which is
the length of the code of the account.” [1] The contract code
is available at its address only upon successful completion of
the create operation.

Note, that the contract and its code do exist between the
successful execution of the create operation and the ‘delayed’
destruction at the completion of the initiating transaction.
Between creation and self-destruction, the contract may even
receive successful calls that are executed as intended, if the
message that created and selfdestructed the new contract is
part of the same transaction that contains the messages/calls
to the new contract.

In case of an actually executed selfdestruct in the de-
ployment code, no contract will be created because it halts
the execution of the deployment without returning the values
necessary for a successful deployment.

Recent scenarios for these collateral aspects as used by some
addresses (users as well as contracts) are shown in section V.

D. Messages Caused by Deployment Codes

Since deployment code can contain any EVM operation
including create, selfdestruct, and diverse types of calls (which
result in respective internal messages), we were interested in
a quantification of the usage of this feature so far.

Fig. 1. Deployments and their messages. The upper plot depicts the number
of messages caused by deployment codes, differentiated between selfdestructs
and calls. The lower plot depicts the number of deployments in grey and a
moving average over 25 values in black.

Fig. 1 effectively depicts the occurrence of collateral use
of deployment code. More precisely, it depicts the number of
messages caused by deployment codes in the upper plot, and
the number of deployments in the lower plot. The horizontal
axis shows the time line, in years and months on top and in
million blocks at the bottom of the upper plot. In both plots,
each value is aggregated over consecutive 10 000 blocks.

Looking at the messages that are caused by deployment
codes, we find an unusual increase in the number of such
messages in the second half of 2018. Fig. 1 illustrates this



recent phenomenon, which starts around block 6 000 000.
This increase in messages is not paralleled by the number
of deployments. In 2017, when the number of deployments
increased, no such phenomenon occurred. The high number of
messages caused by deployment codes thus indicates a recent
usage pattern, which we analyze in the following sections.

Deployment codes caused a total of slightly over 10 M
messages, of which virtually all occurred after block 6 M. The
remaining 131 k messages were distributed more or less evenly
throughout the first 6 M blocks.

When comparing our findings with data from Etherscan1,
we notice that Etherscan does not show all internal messages,
especially when they do not transfer any Ether. This is usually
the case with messages caused by deployment codes.

III. CODE ANALYSIS

Here, we present our methods to analyze deployment code.
Skeletons. To detect functional similarities between distinct
bytecodes we consider their skeletons. The skeleton of a de-
ployment code is obtained by replacing all 20-byte-addresses
occurring literally as the argument of a PUSH operation
by place-holders, and by removing trailing swarm hashes
(metadata not affecting the functionality) as well as constructor
arguments.
Contract interfaces. Most contracts, in particular those ob-
tained from Solidity code, follow the convention that the first
four bytes of the input data specify the called function. These
four bytes are so-called function signatures, computed as the
first four bytes of the hashed function headers (consisting of
function name and argument types). They mark entry points
in contracts.

By identifying function signatures at appropriate locations
in the bytecode, it is possible to partially reconstruct the
interface. Obviously, it is not possible to regain the header
from the function signature, which is a hash fragment. We
use a directory of about 275 000 signature-header pairs that
we extracted from available Solidity source codes. This way,
one often obtains translations of function signatures to possible
headers that help in understanding the meaning of messages
and contracts.

For all deployed contracts, we extracted their interfaces
together with possible translations of the contained function
signatures.
Call message analysis. We collected all calls (internal mes-
sages) that deployment code made to other contracts. Then
we analyzed these messages using our partially translated
contract interfaces in order to derive statistics about interaction
patterns of deployment code: which deployment code calls
which function of which contract.
Message viewer. For an easier tracing of subsequent messages
in a transaction, we developed a simple message viewer
to display all internal messages that belong to an external
transaction. It includes message type, value, return value, and
decoded data per message.

1https://etherscan.io/

Manual code inspection. Using the tool Vandal [2] [3], we
disassemble EVM bytecode and display the control flow graph.

Scenario extraction. First, we grouped the deployment codes
according to the skeletons they employed. Additionally, the
functionality of frequently used skeletons was determined by
manual inspection, by tracing its usage in the message viewer,
and by looking at its call statistics. Then, highly similar usage
patterns were grouped into a scenario.

IV. VULNERABILITIES EXPLOITED BY DEPLOYMENT
CODE

Even though the vulnerabilities below have been known for
some time, code containg them is still being deployed. We see
a marked increase in actually exploiting them starting around
block 6 M which was mined in July 2018. Apparently, contract
developers are still not aware or do not care.

A. Existing Exploits

isHuman: To check that the message sender is not a contract,
a function asserts that extcodesize(msg.sender) ==
0. This once was a recommendation by OpenZeppelin [4], but
has been removed for the reasons explained in section II.

RNG: Reliable random number generation (RNG) in a de-
terministic system like consensus-based blockchains proves
difficult. An excellent review of approaches to RNG is given in
[5] including its vulnerabilities and incentive misalignments.

Using current block data for RNG is one of the attackable,
but still used practices. Adequately crafted deployment code
is one (but not the only) possibility to exploit it. The crafting
includes that the relevant messages are in the same block to
render the random number predictable.

Blacklist: Free tokens should only be received once by each
user. With black- or whitelists one can restrict certain functions
of a smart contract by excluding or including addresses
respectively.

Again, adequately crafted deployment code is one (but not
the only) possibility to exploit it, as multiple addresses (new
contracts) can be created with little effort.

B. Structures of Vulnerabilities

Regarding the structures of the encountered vulnerabilities,
we can conclude that affected contracts falsely assume that
Users

• do not have code (on or off-chain)
• do not know how to collaterally use deployment code

or Contracts
• cannot access relevant block data
• cannot ‘change’ address
• have a code size greater than zero when making a call.

V. USAGE PATTERNS

In this section, we take a closer look at unconventional
usage patterns of deployment code. The intended purpose of
deployment code is to initialize a new contract and write its
bytecode to the storage at its address. We therefore expect that



interactions with the environment (like calls) are rare during
deployment. This is indeed the prevailing pattern until the
summer of 2018. After block 6 000 000, however, we see a
marked increase in deployments that apparently serve a dif-
ferent purpose. Of 6.2 M deployments, 2.5 M (41 %) destruct
themselves upon completion of the creating transaction, thus
not giving rise to a new contract. Instead, the deployment
code itself becomes active. Compared to regular deployment
code, it is twice as fertile (0.7 % vs. 0.35 % creates per
deployment) and 130 times more talkative (2.97 vs. 0.023 calls
per deployment). This phenomenon is not entirely new, but the
blocks since 6 M account for 98 % of such cases.

The 2.5 M self-destructing deployments were issued from
just 8 697 distinct accounts, which were mostly contracts
(99 %). This explains the uniformity of the deployment code:
we count just 7 126 different skeletons, with the most frequent
one occurring more than 800 000 times.

To understand the purpose of these short-lived contracts
we applied the methods described in section III. By iterating
from the most frequent skeletons down to the rarer ones we
succeeded in classifying 99.99 % of the 2.5 M deployments
(96 % of the 7 126 skeletons). We ended with 325 deployments
(256 skeletons) remaining unclassified, as we discovered no
more new patterns. The last codes we analyzed were more
likely to be one-of-a-kind and often seemed like experimental
versions of code we had seen before.

Our analysis resulted in an unexpectedly clear picture. The
vast majority of deployments (97.5 %) involving two thirds
of the skeletons (67 %) aimed at token harvesting. Almost
the entire remainder (2.4 % of the deployments, 30 % of the
skeletons) targeted the Ponzi lottery Fomo3D or one of its
many clones. The few other deployments and skeletons we
came across took advantage of weaknesses in other games.

A. Scenario Token Harvesting

In this scenario, typically several dozens of contracts are
created in a row that claim free tokens, transfer them to a fixed
address, and destruct themselves while still in the deployment
phase. These multi-creations can be implemented just with
deployment code or via a deployed contract that can be called
multiple times (both usually with an immediate selfdestruct).

To understand the popularity of this coding pattern, we
take a look at token contracts and airdrops. For funding a
business idea in the blockchain era, you could deploy a token
contract with the promise that token holders will profit once
your enterprise sky-rockets. To create a community for your
idea and advertise it, you distribute parts of your tokens for
free. A common implementation of this so-called airdrop is to
provide a function that transfers, for a certain period of time,
free tokens to any address that calls it. To counter-act hoarding
of tokens, addresses are blacklisted once they got their share.

This is where deployment code comes in. Token harvesters
aim at collecting large quantities of free tokens. To circumvent
blacklisting, each request for free tokens has to be issued from
a new address. As deployment code is executed as being from
the new contract, the token contract will see a new address.

Figure 2 shows the start of such a harvesting sequence in
block 6 409 724. The external user 43132826 calls an existing
contract at address 45884811, which creates new contracts in a
loop. The first one is deployed at address 68649799. From this
new address, the deployment code calls the fallback function
of the token contract at address 42687408 (NewIntelTechMe-
dia) and receives free tokens. The amount often diminishes
with each airdrop, so the code queries the precise amount
with balanceOf. Finally, 1285.6 tokens are transferred to
the account of the external user, and the deployment code self-
destructs. (Note that for reasons of efficiency and readability,
20-byte-addresses were mapped to 4-byte-integers.)

Fig. 2. Token Harvester. In total, 40 selfdestructing contracts are created
during this transaction, targeting the same token.

This practice has even become a business model. Replicators
of token harvesters have been deployed that can be called by
anyone. The replicator will generate as many harvesters as the
gas supplied with the call permits. All but the last harvester
collect tokens for the caller, while the last one transfers the
tokens to the owner of the replicator.

Depending on the variation of the token contract, functions
like getTokens, Mine, or register need to be called in
place of the fallback function, or the airdrop functionality is
integrated into balanceOf or transfer. The harvesters
also differ regarding where the selfdestruct occurs. Until
March 2019, 2.5 M harvesters collected 178 different token
types for 8 434 beneficiaries.

B. Scenario Fomo3D and its Clones

The game suite of Fomo3D combines a Ponzi scheme with
a lottery. Many players use bots in their attempt to win. The
first round was won by someone outsmarting the bots with
contracts coordinated by hand. For a realistic chance to win
one has to be a skilled (and playful) developer.

Fomo3D uses information of the current block (like block
number and timestamp) and the sender’s address to determine
whether the sender wins an airdrop. If the sender is a contract
it has access to the same information and will only play if it is
sure to win. Therefore, Fomo3D checks whether the address
isHuman (see section IV).



Again, this can be circumvented by deployment code, which
has access to the block information and knows its own address.
The addresses of new contracts are computed as the hash of the
creator’s address and a nonce that initially equals one. Thus,
the deployment code can check whether a winning address is
in reach. If so, it deploys several self-destructing contracts to
increment the nonce. Then a final contract is deployed that
now resides under a winning address. It calls Fomo3D from
its deployment code, so that it passes isHuman.

Against this background, it is of little surprise that we find
17 775 deployments of the smallest selfdestructing contract
with bytecode 0x33ff. In total, we count 62 000 selfdestruct-
ing contracts that interact with Fomo3D or one of its 50 clones.

C. Scenario Poker

Figure 3 shows one of the few scenarios unrelated to tokens
or Fomo3D. An external account creates a contract with an
initial endowment of 0.2 Ether at address 62660975, whose
deployment code plays two rounds of a betting game called
Poker at address 62357440. In each round, the code queries
the minimal and maximal value for a bet, calls play while
going all-in, and miraculously doubles the bet each time. The
deployment code then selfdestructs and returns almost 0.8
Ether to the user.

Fig. 3. Selfdestructing contract betting two rounds.

The explanation for this lucky streak sounds familiar. The
Poker contract relies on block number, player address and
similar values to determine a winning player. It protects itself
by requiring isHuman. Again, the deployment code has access
to all relevant numbers and circumvents isHuman.

VI. RELATED WORK

The examinations of Ponzi schemes deployed on Ethereum
in [6] and [7] are related to some extent. Many academic
analyses of smart contracts work at bytecode level, more
precisely they analyze the deployed code, but disregard de-
ployment code. Forums like reddit.com, medium.com, or
hackernoon.com report and discuss security issues, including
a few involving deployment code. However, the massive use

of deployment code is a recent phenomenon that to our
knowledge has not been investigated before.

Ethernaut [8] challenges are built around known vulner-
abilities and their exploits. The challenge ‘Coin Flip’ in-
volves a vulnerable random number generator relying on
block data, while ‘Gatekeeper Two’ addresses the usage of
EXTCODESIZE during contract creation.

Regarding reverse engineering and code analysis we found
[9], [10] particularly inspiring.

VII. DISCUSSION AND CONCLUSIONS

We discussed selfdestructing deployment code that started
to appear in large numbers after block 6 000 000, and by the
end of 2018 it accounted for half of the contract creations.
We gave a quantitative and qualitative assessment of this new
phenomenon. Its prime application area is token harvesting,
followed by advantage gains in gambling and games. Its
purpose is to bypass the intended interaction patterns of certain
contracts. This is made possible by the unsuspecting design
of these contracts on the one hand, and the barely limited
expressiveness of contract deployment on the other hand.

The design of the EVM admits arbitrary bytecode during
contract deployment. This guarantees maximum flexibility,
while it introduces further complexity that developers may
miss to consider. Contract development and deployment is less
error prone when it is routine, unsurprising, and transparent.

So far, the extra flexibility was mainly used for exploits,
for these less obvious features of deployment code are not yet
widely known. One remedy is to spread the news.

Future work may be the integration of the presented analysis
into existing tools, and generating a warning when deployment
code contains a selfdestruct or create operation since most of
its usage so far was malicious.
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