
Mayflies, Breeders, and Busy Bees in Ethereum:
Smart Contracts Over Time

Monika di Angelo
Technische Universität Wien, Austria

Eurecom, France
monika.di.angelo@tuwien.ac.at

Gernot Salzer
Technische Universität Wien, Austria

Eurecom, France
gernot.salzer@tuwien.ac.at

ABSTRACT
Smart contracts on a blockchain are programs running in a dis-
tributed, transparent, and trustless environment, being one of the
major assets of this new technology. They give rise to innovative
applications and business models, with their potential and lasting
impact still open. In this situation, it is interesting to understand
what smart contracts are actually doing. While public announce-
ments, by their nature, make promises of what smart contracts
might achieve, the openly available data of blockchains provides a
more balanced view on what is actually going on.

In this paper, we analyze the activities of smart contracts on the
Ethereum blockchain, the most prominent platform for smart con-
tracts with all blockchain data visible. However, contracts operate
behind the scenes. Their activities are only accessible by looking
beyond the mere blockchain data that records external transactions.
We also use all internal messages caused by contracts interacting
with other addresses. In particular, we investigate the activities of
smart contracts in their quantitative and temporal aspects. Based
on lifespan and activity patterns, we identify particular groups like
mayflies, loners, breeders, busy bees, sleepers, self-destructed and
bonkers contracts and visualize their temporal characteristics. To
gain insights into the purpose of these smart contracts we perform
a basic analysis of code and message content including deployment
code. We consider data up to Ethereum block 6 900 000 (end of 2018).

CCS CONCEPTS
• Computing methodologies → Distributed computing method-
ologies; • Information systems→ Computing platforms; • Com-
puter systems organization→ Peer-to-peer architectures;

KEYWORDS
contract activity, Ethereum, smart contracts, temporal aspects

ACM Reference Format:
Monika di Angelo and Gernot Salzer. 2019. Mayflies, Breeders, and Busy
Bees in Ethereum: Smart Contracts Over Time. In Third ACM Workshop on
Blockchains, Cryptocurrencies and Contracts (BCC ’19), July 8, 2019, Auckland,
New Zealand. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3327959.3329537

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BCC ’19, July 8, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6785-1/19/07. . . $15.00
https://doi.org/10.1145/3327959.3329537

1 INTRODUCTION
Smart contracts are still being hyped with promises on their poten-
tial benefits. Theymay handle valuable assets like crypto-currencies
or tokens in a transparent, decentralized manner. As the core of
decentralized applications (dApps), they may encapsulate essential
parts of the business logic.

Suitable information on how smart contracts are actually used
and which goals they do achieve, is scarce, though. Colorful web
pages advertize business ideas without revealing technical details,
whereas technical blogs are anecdotal and selective. A comprehen-
sive, but not readily accessible source is the blockchain data itself,
growing continuously. Ethereum as the most prominent platform
for smart contracts has recorded so far billions of transactions,
among them millions of contract creations. Over the past two years,
scientific publications have started to analyze this wealth of data
from different angles. On the one end of the spectrum, we find
surveys that evaluate the data statistically, on the other end new
methods are developed for reverse engineering particular smart
contracts. Given the complexity of the problem, it is not surprising
that many questions, especially regarding smart contracts, have
remained open.

The aim of this paper is to obtain a deeper understanding of
the types of contracts on the Ethereum blockchain and of their
activities. Our analysis intends to contribute to the bigger picture
of how Ethereum smart contracts are actually used. We define
groups of contracts with common properties and observe their
temporal evolution. We quantify the messages they are involved
in throughout their lifespan, from creation to selfdestruction. For
a qualitative assessment, we look at the bytecode of contracts,
which is available as deployed code (content of a contract) and
as deployment code (code executed during contract deployment).

Compared to related work, the novel aspects of our approach are
threefold: In addition to the external transactions, we include the
internal messages caused by contracts, which only exist within the
execution environment of the EVM. Moreover, instead of overall
average numbers, we investigate how the numbers of numbers
of contracts and messages evolve over time. Finally, we coarsely
analyze the semantics of contract code in order to distill usage
patterns.

Roadmap. The next section defines basic terms and notions that
are essential for understanding the paper. Section 3 lays out the
data, methods, and tools for our analysis. Section 4 looks at the data
set and its structure as a whole. Section 5 continues with a temporal
view on specific groups of contracts, while section 6 concentrates
on the interactions between active contracts. Section 7 concludes
with a discussion of related work and a summary of our results.

https://doi.org/10.1145/3327959.3329537
https://doi.org/10.1145/3327959.3329537
https://doi.org/10.1145/3327959.3329537

2 TERMS AND DEFINITONS
We assume familiarity with blockchain technology. A great intro-
ductory book on cryptocurrencies is [11]. Regarding Ethereum, we
refer to the Ethereum basics [5, 15] and Buterin’s blockchain and
smart contract mechanism design challenges [14].

2.1 Accounts, Transactions, and Messages
Ethereum[4] distinguishes between externally owned accounts,
often called users, and contract accounts or simply contracts. Ac-
counts are uniquely identified by addresses of 20 bytes. Users can
issue transactions (signed data packages) that transfer value to users
and contracts, or that call or create contracts. These transactions
are recorded on the blockchain. Contracts need to be triggered to
become active, either by a transaction from a user or by a call (a
message) from another contract. Messages are not recorded on the
blockchain, since they are deterministic consequences of the initial
transaction. They only exist in the execution environment of the
Ethereum Virtual Machine (EVM) and are reflected in the execution
trace and potential state changes.

For the sake of uniformity, we use the term message as a col-
lective term for any (external) transaction or (internal) message,
including selfdestructs that transfer value between addresses.

2.2 Lifecycle of a Contract
For a contract to exist, it needs to be created by an account via
deployment code (see below). As part of this deployment, the so-
called deployed code is written to the Ethereum state at the contract’s
address. The contract exists upon the successful completion of the
create operation. Henceforth, the contract can be called (become
active). A contract call may include call data and/or value, but it can
also have empty data and zero value. When called, the contract’s
code is executed by the EVM. Contracts can be organized so that
with a call only specific parts of their code are executed, like in the
case of a function call.

A contract may call or create other contracts, or may destruct
itself by executing a selfdestruct operation. This results in a state
change because the code at the contract’s address is cleared. It is
worth noting that this change happens only upon completion of
the transaction; until then the contract may still be called.

2.3 Deployment Code
A create message passes bytecode to the EVM, the so-called de-
ployment code. Its primary purpose is to initialize the storage and
to provide the code of the new contract (the deployed code). How-
ever, deployment code may also call other contracts and may even
contain create instructions itself, leading to a cascade of contract
creations. All calls and creates in the deployment code will seem
to originate from the address of the new contract, even though the
account contains no code yet. Moreover, the deployment code need
not provide reasonable code for the new contract in the end. In
particular, it may destruct itself or just stop execution.

2.4 Interaction and Activity
The EVM provides the following operations that are relevant for
our analysis: create (0xF0) and selfdestruct (0xFF) to deploy
and destruct a contract, as well as call (0xF1), callcode (0xF2),

delegatecall (0xF4), and staticcall (0xFA) for interactions be-
tween contracts. Unless stated otherwise, we consider only success-
ful operations.
Interaction means to send or receive one of the four types of call
messages.
Contract activity. The creation of a contract is considered as an
activity of the code containing the create instruction, not of the
contract being created. Activities of the deployment code, on the
other hand, are attributed to the new contract, as they are executed,
according to EVM semantics, already in the context of the contract
being created. Finally, we count as contract activity whatever results
from the create and call instructions of the deployed code.

The differences between the various types of calls are quite tech-
nical and largely irrelevant for our purpose. As we are interested
in the activities of the code, not of the context in which the code is
executed, we attribute calls to the address containing the code.
Gas. Users are charged for all consumed resources. This is achieved
by assigning a certain number of gas units to every instruction and
each occupied storage cell, which are supposed to reflect the costs
to the network of miners. Each transaction specifies the maximum
amount of gas to be used as well as the amount of Ether the user is
willing to pay per gas unit. The amount of gas limits the runtime
of contracts, whereas the gas price influences the likelihood of a
transaction to be processed by miners.

3 DATA, METHODS, AND TOOLS
Throughout the paper we abbreviate large numbers by denoting
multiplicative factors of 1 000 and 1 000 000 with the letters k and
M, respectively.

3.1 The Data
The activities on the Ethereum chain are usually described in terms
of transactions clustered into blocks. This view is too coarse for our
purpose since transactions may be composed of several internal
messages that create, call, or destruct contracts. We therefore use
messages as our central data structure, which are characterized by
the following fields.
Message type: relevant types for this paper are create, the four call
types call, callcode, delegatecall, and staticcall as well as
selfdestruct.
Sender (from): address of the external account or of the code con-
taining the instruction causing the message. For messages issued
by deployment code during a create, from is the future address of
the contract being deployed.
Receiver (to): address of external account or contract receiving
the message. For contracts, this is the location of the code being
called or where a newly created contract is being deployed. For
selfdestruct messages, to is the receiver of the balance of the
destructed account.
Context: address of account whose balance is reduced by a transfer
of Ether and who is destructed by selfdestruct. It is identical to
from except for messages resulting from code invoked by callcode
and delegatecall, since these instructions execute foreign code
without context change.
Block id (bid): number of the block where the message occurs.

Transaction id (tid): index of transactionwithin the block that causes
the message.
Message id (mid): index of message within the transaction.
The triple (bid, tid,mid) identifies a message uniquely and serves
as an abstract timestamp that can be related to real time via the
Unix timestamp of the block. The lexicographic ordering of the
triples corresponds to the temporal ordering of messages.
Parent id (pid): identifies the parent message, or is null for the
first message of a transaction. Message p = (bid, tid, pid) is the
parent of messagem = (bid, tid,mid) if p calls code that contains
the instruction responsible for messagem.
Input data: input data for the called contract, or the deployment
code for create messages.
Output data: return value of the called contract, or the deployed
code for create messages.
Status: status code indicating whether the message succeeded or
why it failed. Apart from success and EVM-related errors that revert
the transaction, the effect of a message can be deliberately reverted
by the instruction revert. Moreover, a message may complete
successfully but may be reverted later due to a failure elsewhere
in the transaction. A failed message consumes computational re-
sources even when its effects are reverted, and thus is relevant for
a comprehensive analysis.
Further fields and message types not relevant for this paper record
the amounts of Ether, gas, fees, endowments, etc.

Source of the data. The message data described above was extracted
from the traces provided by the Ethereum client parity, version
2.1.4-beta in archive mode, with a patch to fix a bug regarding
callcode traces. On recent hardware the archive node takes 10
days to synchronize with the main chain and occupies 2 TB. Loaded
into an SQL database the messages occupy 180GB (not counting
the storage for indexes).

3.2 Code Analysis
We perform elementary bytecode analysis to identify code that is
not useful, semantically equivalent, or token compliant.

3.2.1 Bonkers Code. The code of some contracts (deployed code
or deployment code) is not useful. We define code to be ‘not useful’
(bonkers) if its execution unconditionally leads to a fail, a revert, or
returns a fixed value (or nothing) without causing a state-change. To
detect bonkers code we execute the code symbolically up to the first
jump, call, or halting instruction, but perform unconditional jumps
if the jump destination is pushed on the stack immediately before
the jump. Moreover, we keep track of state changing operations
like sstore and log. This way we catch the following situations.

• Endless loop (resulting in an out-of-gas error).
• Stack under- and overflows, illegal instructions, bad jump
destinations.

• revert instruction that returns a fixed value.
• return instruction that returns a fixed value, without prior
state change.

• stop instruction without prior state change.
These tests are reliable in the sense that code declared as bonkers
is indeed not useful in the above sense. The tests may miss some

useless code, though. A comprehensive test has to include gas con-
sumption – without it we are dealing with an undecidable problem –
as well as code deployed elsewhere on the chain.

3.2.2 Code Skeletons. To detect functional similarities between
bytecodeswe consider their skeletons. A code skeleton is obtained by
replacing 20-byte-addresses occurring literally as the argument of
a push operation by placeholders, and by removing swarm hashes
(metadata not affecting the functionality) and constructor argu-
ments. This transformation captures some of the variability intro-
duced by the Solidity compiler, as well as contracts that interact
with differing hard-coded addresses but are equal otherwise.

3.2.3 Contract interfaces. Most contracts, in particular those ob-
tained from Solidity code, follow the convention that the first four
bytes of the input data specify the called function. This so-called
function signature is computed as the first four bytes of the hashed
function header consisting of function name and argument types.
By identifying function signatures at appropriate locations in the
bytecode, it is possible to reconstruct partially the interface.

Obviously, it is not possible to regain the header from the func-
tion signature, which is a hash fragment. We use a directory of
about 275 k signature-header pairs that we extracted from available
Solidity sources. This way, one often obtains translations of func-
tion signatures to possible headers that help in understanding the
meaning of messages and contracts.

3.2.4 Manual code inspection and transaction analysis. We use the
tool Vandal [2, 12] to disassemble EVM bytecode and to display
the control flow graph. For decoding and visualizing the messages
within a transaction and to automatize some tasks, we use home-
grown Python scripts.

3.3 Visualization
We use matplotlib1 and numpy2 to visualize the temporal evolu-
tion of activities and the distribution of contracts.

Temporal views (like the one in Fig. 1) show the number of
contracts over consecutive periods of 10 k blocks (roughly 1.7 days),
from genesis to block 6.9M. The lower horizontal axis of diagrams
indicates the time in blocks, the upper one in years and months. As
further frame of reference, pink overlays indicate periods of attack.
These were, from left to right, the DAO and the DoS attack in 2016,
and a spam attack as well as the parity theft and the parity freeze in
2017. Occasionally, we clip the vertical axis when less relevant data
(most notably the DoS attack of 2016) exceeds the more important
parts of the plot.

Apart from stackplots, we use a grey line to plot the 690 values.
In spite of 10 k aggregation, successive values may still differ sig-
nificantly. To make trends more visible, we add a black line that
shows the moving average over 25 values.

Where reasonable, we plot the proportion of particular contracts
(or messages) to all contracts (or messages) in a second figure below
the main plot.

In cases where numbers differ by orders of magnitudes, we use
a logarithmic scale.

1https://matplotlib.org
2https://www.numpy.org

https://matplotlib.org
https://www.numpy.org

4 GENERAL STATISTICS
In this section, we analyze the data set as a whole, while the follow-
ing two sections focus on particular groups of contracts.

4.1 Messages
We analyze data of the Ethereum main chain up to (but not includ-
ing) block number 6 900 000, which was mined on Dec 16, 2018. The
6.9M blocks contain 360M transactions, which gave rise to 900M
messages.

Figure 1 shows the distribution of messages over time. The blue
areas, light and dark, represent external messages initiated by users,
while the grey and black areas correspond to internal messages
emanating from contracts. The activities on the blockchain steadily
rose during 2017 and have remained on a high level since the begin-
ning of 2018, but with more and more activities happening behind
the scenes as the share of internal messages increases.

Figure 1: Distribution ofmessages over time. The upper part
shows a stackplot of user-sent externalmessages in blue and
contract-sent internalmessages in grey and black. The lower
part indicates the percentage of internal messages with re-
gard to all messages, per 10k blockrange.

Of the 713M contract-related messages (messages to, from, or
between contracts) 72 % were successful and 28% failed. Of the
latter, 80% failed due to an error at EVM-level (like out of gas or
stack overflow), 5 % were deliberately reverted by the contracts,
and 15% were initially successful but later reverted because of a
failure elsewhere.

4.2 Contracts
Of the 72M addresses appearing as sender or receiver of a message,
about 50M are currently stored by the network nodes. The other
addresses either never came into existence because the transaction
was reverted, or they were cleared at some point from the state
space. A bit more than 11M addresses belong to contracts. Figure 2
depicts the creation of contracts over time. We see that also this
particular activity is dominated by contracts: external accounts
(users) created about 2.1M contracts, while the remaining 9M
contracts were created by just 17 100 contracts. Of the latter, almost
all were created by contracts already deployed; only 38 k contracts

were created by deployment code during the creation of some other
contract.

Figure 2: Distribution of contract creations. The upper part
shows a stackplot of user-created contracts in blue and
contract-created contracts in black. The lower part indicates
the percentage of contract-created contracts with regard to
all contract creations, per 10 k block range.

4.3 Contract code
The 11 134 232 successfully created contracts originate from 472 495
different deployment codes, which deployed 177 759 distinct byte-
codes. The variability shrinks even more when we look at the
skeletons (cf. section 3.2) of contract code. We arrive at just 94 311
distinct code skeletons for 11.1M deployed contracts, a reduction
by a factor of 100.

Table 1 shows the numbers of codes and skeletons as used by
external accounts (users) and contracts, respectively. With 4263
skeletons for 9M contracts the variability is particularly low for
contracts created by contracts. This can be explained by the facts
that only 17 k contracts are creators, that the code of the new con-
tracts is part of their code, and that some contracts are particularly
prolific with up to 1.5M deployments per contract.

Variability is higher for contracts created by external accounts,
but still low. This, together with the fact that some of the accounts
deploy up to 400 k contracts, suggests that many of these contracts
are not deployed by hand but by programs outside of the chain.

Table 1: Numbers on Contract Creation. Of the accounts cre-
ating contracts, 17 % are contracts, who create 81% of the new
contracts. The variability in the deployed contracts is low:
on average, external accounts (users) reuse skeletons for 12
new contracts, while contracts reuse them 2109 times.

external accounts contracts

of creators among 85 828 17 100
of contracts created by 2 145 615 8 988 617
of unique deployment codes used by 347 571 125 115
of unique deployed codes used by 171 881 6 095
of unique deployed skeletons used by 90 436 4 263
max # of contracts by single creator among 391 518 1 539 319

Etherscan.io collects Solidity source code for the contracts on
the chain and verifies that it actually compiles to the deployment
code used for contract creation. At the end of 2018, source code for
53 290 contract addresses was available, corresponding to 52 684
unique deployment codes. Of these, only 1 469 contracts (1 377
unique codes) were created by contracts. Compared to the entirety
of 472 495 distinct deployment codes, this means that the source
code for about 89% of the deployed contracts is not directly acces-
sible. However, one should bear in mind that the source code of
contract-created contracts is usually literally included in the source
code of the master contract deployed by the external account and
thus might be recovered by tracing it back to an ancestor with
known source code.

5 TEMPORAL PERSPECTIVES
In this section, we explore the lifespan and activities of interesting
contract types based on numbers, plots visualizing the numbers,
and interpretations. First, we look at the reportedly large group of
never called contracts. Next, destructed contracts are differentiated
according to the number of selfdestructs (single vs. multiple). As
a third group, we look at peculiarities of mayfly contracts. For
sleepers, we examine sleep durations and wake-up times. Bonkers
contracts are viewed with regard to their occurrence and code. As
a last group, we analyze breeders and their creations.

5.1 Loners
It has been observed in the past that the number of contracts never
called is large. E.g., for data up to January 2018, [9] quantifies the
share with 60 % and states that ‘the large fraction of them that have
remained dormant is nevertheless surprising’. A first count seems
to confirm this observation. Up to the end of 2018, 63 % of the
addresses that where the target of a successful create operation
have never received a call.

A closer look at contract deployment shows a more differentiated
picture. The aim of contract creation, by users or contracts, may
not be the deployment of a new contract but rather the execution
of the deployment code itself. The latter is inaccessible from the
outside; in particular, it cannot receive calls. When deployment
finishes, the purpose of the create command is fulfilled and no code
is deployed. This pattern has recently become quite popular andwill
be investigated in section 5.3. If we disregard such non-deployments,
the share of never-called contracts drops to 46%. This number is
still high but becomes less surprising when further examining the
purpose of the contracts.

We define a loner to be a contract where code gets deployed
that is never called. More precisely, we check the condition that
the code (deployment or deployed) neither selfdestructs in the
transaction creating it nor receives a call later on. There were
5 156 658 such loners within the study period, which account for
46 % of all creations. The other 6.0M contracts are either short-lived
(section 5.3) or active (section 6).

Fig. 3 depicts the temporal distribution of loner creations. In the
second half of 2017, we see several peaks, with the highest one
beyond 100 k loner creations per 10 k block range. They can be
attributed to the GasToken contract, which until the end of 2018
has deployed more than a million of identical copies of a code

Figure 3: Occurrence of loners. The upper plot shows the
number of loners created within a block range, the lower
plot their percentage with regard to all creations.

with just 22 bytes. Each of the tiny contracts corresponds to a gas
token which can be purchased as gas reserve, and thus render gas
tradable. These contracts essentially store gas that they release by
self-destruction as soon as they are called. So far only 0.2 % have
been called, leaving the rest as loners.

Next in the list of most frequent loners, we find wallet contracts
that sum up to 2.2M. It should be noted, though, that there are
roughly 1M contracts with the same bytecode that are already in
use. It might well be that wallets are deployed on stock and only
gradually come into use. Moreover, a wallet address need not be
called to receive or hold tokens, so some loners might be effectively
in use in a wider sense.

Altogether we expect that a considerable number of these con-
tracts will receive a call in the future, effectively leaving even less
than 46 % loners.

5.2 Destructed Contracts
We call a contract destructed if it executed a selfdestruct operation
at some point in time. We count 2 540 995 of such contracts within
the study period. Figure 4 shows the temporal distribution of selfde-
structions. A contract can selfdestruct successfully multiple times
as long as this happens within a single transaction. A few contracts
utilized this possibility (e.g. for an attack) and performed hundreds
of selfdestructs.

There were 24 438 879 successfully executed selfdestructs within
the analyzed messages, about 10 times more than destructed con-
tracts. Only 48 506 contracts selfdestructed multiple times (some
of them up to 10 920 times). Almost all of them were part of the
DoS attack in October 2016 with a total of almost 22M successful
selfdestructs.

The rising number of selfdestructs starting around block 6M can
be largely attributed to mayflies (see the next section).

5.3 Mayflies
We call contracts with an extremely short lifespan mayflies. More
precisely, a mayfly is a contract that selfdestructs in the same trans-
action as it has been created. During the study period we count

Figure 4: Contract destruction. The upper plot shows the
number of contracts that selfdestructed within a block
range. The lower plot depicts the accumulated selfdestructs
of contracts that selfdestructed multiple times. The vertical
axis of the lower plot was clipped, since numbers greater
than 1000 only appeared during the DoS period of 2016.

1 856 655 mayflies that were created by just 8 992 distinct addresses.
Most addresses are contracts; the 405 users among them account
for 7 460 mayflies only. 975 mayflies created 17 681 other mayflies.

Figure 5 depicts the distribution of mayflies over time. It shows
a small number of mayflies during the DoS attack in 2016, while
mayflies in large quantities start to appear in the middle of 2018
and even dominate contract creation in late 2018.

Figure 5: Occurrence of mayflies. The upper plot depicts the
number of mayflies created within a block range, the lower
plot shows their percentage with regard to all creations.

5.3.1 Construction of a Mayfly. To understand the construction of
a mayfly, the EVM deployment mechanism is crucial. Deployment
code is executed as if originating from the new contract (here the
mayfly). Any deployed code will exist at the new contract’s address
only upon successful completion of the deployment code.

In the majority of cases, a mayfly was just the deployment code
that ends with a selfdestruct (equally executed as if it came from
the mayfly, thereby destructing it). For this, the mayfly does not
even need a deployed code.

In rarer cases, mayflies do have a deployed code, which is even
called. This requires subsequent messages within the same transac-
tion: first the create and then one or more calls to the mayfly, espe-
cially to a function containing the selfdestruct. Note that a contract
is only destructed upon successful completion of the transaction
containing the selfdestruct (thereby allowing multiple selfdestructs
of the same contract).

5.3.2 Usage Scenario: Token Harvesting. This scenario exemplifies
the predominant pattern we found for mayflies. Typically, several
dozens of contracts are created in a row that claim free tokens,
transfer them to a fixed address, and destruct themselves while still
in the deployment phase. These multi-creations are either them-
selves implemented as deployment code or are part of a deployed
contract that can be called multiple times.

To see why this has become a popular coding pattern we take a
look at token contracts and airdrops. For funding a business idea
in the blockchain era, you could deploy a token contract with the
promise that token holders will profit once your enterprise sky-
rockets. To create an initial community for your idea and advertise
it, you distribute parts of your tokens for free. A common imple-
mentation of this so-called airdrop is to provide a function that for
a certain period of time transfers free tokens to any address that
calls it. To counter-act hoarding of tokens, the function blacklists
addresses once they have received their share.

Figure 6: Trace of a mayfly harvesting tokens. During de-
ployment, the mayfly calls the fallback function, call(’’),
of token contract 42687408 to request free tokens, queries
the precise amount, transfers 1285.6 tokens to the user, and
selfdestructs. The trace continues with 39 further mayflies.

This is where token harvesting mayflies come into play. Figure 6
shows the start of such a harvesting sequence in block 6 409 724.
The external user 43132826 calls an existing contract at address
45884811, which creates new contracts in a loop. The first one
is deployed at address 68649799. From this new address, the de-
ployment code calls the fallback function of the token contract at

address 42687408 (NewIntelTechMedia) and receives free tokens. The
amount often diminishes with each airdrop, so the code queries the
precise amount with balanceOf. Finally, 1285.6 tokens are trans-
ferred to the account of the external user, and the deployment
code selfdestructs. (Note that we abbreviate addresses and data by
4-byte-integers.)

Using deployment code is essential for token harvesting. First,
each mayfly operates under a new address and thus is eligible for
free tokens from the point of view of the token contract. Second,
mayflies pass the ‘is human’ test that some contracts employ. By
checking the absence of code at the caller’s address, they try to
ensure that they interact with an external address. Since there is no
deployed code yet while the deployment code is executed, mayflies
are taken to be users.

This practice has even become a business model. Mayfly breeders
have been deployed than can be called by anyone. The breeder will
generate as many mayflies as the gas supplied with the call permits.
Each mayfly harvests tokens for the initial caller, except for the
last one, which transfers the tokens to an address of the breeder
provider.

Depending on the token contract, functions like getTokens,
Mine, or register need to be called in place of the fallback func-
tion, or the airdrop functionality is integrated into balanceOf or
transfer. The harvesters also differ regarding where the selfde-
struct occurs. Until the end of 2018, 1.7M harvesters collected 136
different types of token for 6 674 beneficiaries.

5.3.3 Purpose of Mayflies. So far, mayflies were primarily used
for token harvesting, followed by advantage gains in gambling
and games (like correctly ‘guessing’ pseudo-random numbers). In
each case, the reason for using deployment code is to bypass the
interaction pattern intended by the target contracts. This could be
called exploitation.

5.4 Sleepers
We refer to the number of blocks between the creation of a contract
and it receiving the first call as its sleep time. We define a sleeper to
be a contract with a long sleep time, where a reasonable value for
’long’ will be determined below by analyzing the data.

Fig. 7 depicts the sleep time for all contracts that ever received
a call, i.e., that are not loners. Each value represents the number
of contracts that slept for this many blocks before their first call,
aggregated over 10 k blocks. We use a logarithmic scale since most
contracts sleep for a short time only, being used briefly after cre-
ation. The timeline is capped at 3 500 k blocks since longer sleep
times are rare. The maximum sleep time is 5.8M blocks.

As we use a logarithmic scale, a sharp change of slope in the
upper regions indicates a noteworthy point. The first two occur at
48 k blocks (8 days) and 130 k blocks (25 days), respectively, and are
marked by green lines. Accordingly, we distinguish short-, medium-
, and long-term sleepers depending on whether they sleep up to 8,
8 to 25, or more than 25 days after creation.

Another way of looking at sleep times is to consider the wake-
up times. Fig. 8 shows all wake-up times color-coded according to
sleep duration. Short sleep, depicted in grey, is the norm for most
contracts. Medium and long sleep, depicted in red and black, is rare.
The first noticeable increase in contracts that woke up concurrently

Figure 7: Sleep time of contracts. The horizontal axis indi-
cates the sleep time in 10k blocks. The green vertical lines
mark the first two significant changes in slope, which occur
at 8 and 25 days of sleep, respectively.

is during the DoS attack in 2016 (pink overlay). The attack area
shows an increased number of long-term sleepers at the onset and
at the end, as well as an increased number of short-term sleepers
in the first half.

Generally, the number of sleepers is equal to the number of
active contracts by definition (both need to have at least one call
after creation). The number of sleepers increases towards the later
blocks since contract deployment markedly increased after block
3.5M (cf. fig. 2). Accordingly, the increase in the grey area after
block 3.5M reflects the general increase in contract deployment
and usage.

Figure 8:Wake-up times of sleeping contracts. The grey area
represents short-term sleepers, i.e. contracts that slept for
less than 8 day (48 k blocks). The red area is stacked on top
and represents contracts with a sleep time between 8 and 25
days (130k blocks). The black line is again stacked on top
and represents long-term sleepers (first call after 25 days).

5.5 Bonkers Contracts
We define a contract as bonkers when it has no useful deployed
code (see section 3.2.1 for the definition of ‘useful’). Some of these
codes can be executed successfully, while others always fail or
revert. Without the empty non-contracts deployed by mayflies
(see above), we count 44 883 bonkers contracts. Figure 9 shows
their creation over time. Right after the DAO attack in 2016 (first
pink vertical line, before block 2M), we see the largest number of
bonkers contracts: 10 673 empty contracts were created by unusual
deployment code, possibly in preparation of the DoS attack to follow.
By their nature, bonkers contracts are not expected to receive many
calls, and indeed, more than two thirds were loners. Surprisingly,

Figure 9: Occurrence of bonkers contracts. The black line
depicts the number of empty bonkers contracts created
within a block range, the cyan line thenumber of non-empty
bonkers contracts.

14 k bonkers contracts (including the empty contracts from above)
did receive at least one call. This phenomenon can be traced to the
DoS attack and counterattack that involved calls to various empty
contracts. It can be observed in Fig. 8, which shows the wakening
of long-term sleepers (black) at the onset of the DoS attack.
The bytecode of bonkers. The majority of bonkers contracts are
the remnants of deployments that went awry. In these cases, the
deployed code is either empty (53 %) or stops, throws, reverts, or
fails within a few instructions (45 %). Most of the latter contracts
show the signature of the Solidity compiler, i.e., they start with
0x60606040 or 0x60806040.

The remaining 764 contracts are part of the DoS attack and
subsequent cleanup in 2016. We find 635 contracts with excessive
amounts of instructions that were underpriced or inefficiently im-
plemented at that time, like EXTCODESIZE, EXP, SLOAD, or BALANCE.
The remaining 129 pseudo-contracts do not contain executable code
but are collections of 512 or 1024 addresses that were loaded and
called as part of the counterattack.

5.6 Breeders
Table 1 showed that 17 100 contracts created a total of 9.0M con-
tracts. But the group of contracts responsible for the majority of
these creations is in fact much smaller. We define a breeder to be
a contract that creates at least 1 000 contracts. There are just 276
breeders, which account for 8.76M creations. This leaves slightly
over 230 k contract creations to non-breeders contracts and around
2.1M to users.

Breeders are responsible for 1.7M mayflies (94% of the mayflies).
Other breeders created a total of 2.7M wallets. Among the top
breeders we also find GasToken23 with 1M contracts and ENS-
Registrar3 with 0.4M contracts.

Apart from nearly 9M contract creations, breeders made 27M
calls, so in total they sent about 4 % of all messages.

6 ACTIVE CONTRACTS
We call a contract active if it receives at least one call during its
lifetime. We count 4.2M active contracts within the study period,
of which 0.7M have selfdestructed at some point. The maximal
numbers of calls sent/received by a single contract were 19.4M for

3The translation of address to name is from Etherscan.

Figure 10: Creation of breeders. The vertical axis uses a loga-
rithmic scale for the number of contracts that a breeder cre-
ated so far.

incoming and 18.5M for outgoing messages. The most interactive
contract sent and received a total of 21.5M messages.

Figure 11: Interactions of active contracts. The horizontal
axis indicates the number of incoming calls, the vertical axis
the number of outgoing calls, both in a logarithmic scale.
The colored lines connect points with the same sum of in-
coming and outgoing calls.

Fig. 11 shows the number of interactions for all active contracts,
where each mark represents one of the 4.2M contracts, with the
counts of incoming and outgoing calls serving as coordinates. Con-
tracts near the diagonal have roughly the same number of incoming
and outgoing calls, whereas contracts close to an axis show an asym-
metric behaviour by either mostly calling or mostly getting called.
The extreme cases are contracts that never send – they lie on the
horizontal axis – and contracts that received a single call – they
form the first vertical stripe to the right of the vertical axis. The
stripes parallel to the diagonal are series of contracts that have a
fixed ratio of incoming to outgoing messages. Without logarithmic

scaling the stripes would form straight lines leaving the origin at
different angles. The topmost of the more clearly visible stripes
corresponds to contracts that on average send 100 calls for every
incoming one.

6.1 Busy Bees
We call a contract with more than 1 000 interactions (sent or re-
ceived messages) a busy bee. Only 27 k contracts, or 0.6 % of all
active contracts, are busy bees. They deserve their name as they
account for 505M sent and received messages, slightly over 60%
of all messages. In figure 11, busy bees are located from the first
connecting line (blue) outwards.

If we look at busy bees with at least 10 000 interactions, they
still account for 471M interactions while being only 4 945 contracts.
Even busier bees with more than 100 000 interactions account for
392M interactions, while being only 898 contracts. With at least
1M interactions we are down to 96 contracts with an interaction
volume of 255M. Finally, 7 contracts have over 10M interactions
each and about 98M interactions in total.

6.2 Casual Workers
Most contracts had just a few interactions. We call contracts with
less than 1000 interactions casual workers. 3.6M contracts had at
most 10 interactions, 509 k contracts had between 11 and 100 inter-
actions, and 103 k contracts had between 101 and 1000. So, more
than 99% of the active contracts are casual workers.

Figure 12: Heatmap of contracts with at most 1000 incoming
and outgoing calls each. The colormap uses a logarithmic
scale.

Fig. 12 depicts the casual workers in a heatmap with 200 bins.
The incoming calls are represented on the horizontal axis and the
outgoing calls on the vertical axis. The number of contracts are
color-coded with a logarithmic scale. A box in the heatmap repre-
sents a range of 5 calls each. The tiny greyish area with a dark red
dot next to the origin represents the roughly 3.5M casual workers
with no more than 10 interactions. The straight lines emanating

from the origin correspond to contracts with the same ratio of out-
going to incoming calls. The most clearly visible lines, from the
diagonal upwards, represent ratios of 1:1, 2:1, and 3:1, respectively.

7 DISCUSSION
7.1 Related Work
Of the papers analyzing Ethereum smart contracts, a fair part deals
with security issues, which are beyond the scope of our paper.
Similarly, papers concerning the control flow in smart contracts [6,
7] or Solidity aspects [3, 8, 13] are only distantly related.

Papers addressing the behaviour of smart contracts are closer to
our work. In [10], the authors represent code by vectors obtained
by counting critical instruction patterns during symbolic execution,
and use these vectors to detect semantic clones of programs, like
bytecode obtained from the same source with different compiler
versions or settings. Their analysis is based on 2 117 Solidity smart
contracts from November 2017. In [16], the authors describe meth-
ods for analyzing and reverse engineering smart contracts given
as bytecode. They collect statistics of all deployed contracts until
January 2018 to show how their complexity increases, and use their
decompilation techniques to decode four popular contracts.

Some papers analyze blockchain activities by considering ad-
dresses and transactions as a network. In [1], the authors propose
graph-based quantitative indicators and use them to relate internal
activities of the Ethereum mainchain until summer 2017 to external
events like the foundation of the Ethereum Alliance. They are not
interested in detailed contract activities, though.

Most closely related to our work is the analysis in [9], where the
authors examine the creation and interaction of contracts based on
the transactions and internal messages until January 2018. Their
findings include that contracts are three times more often created
by other contracts than by users; that over 60 % of contracts have
never been interacted with; less than 10 % of user-created contracts
are unique, and less than 1% of contract-created contracts are so;
that the fraction of activity involving contracts remains constant at
about one third; and that code is often re-used and highly similar.

7.2 Summary of Our Results
Our analysis is based on the external and internal messages of the
Ethereum mainchain until the end of 2018. On a methodological
level, we employed both, a numerical analysis and an investigation
of code and interaction patterns. By alternating the utilzation of
structural and behavioral similarities, it was possible to classify
large classes of contracts.
Mayflies (contracts that selfdestruct in the same transaction as they
are created) appear in large quantities as a recent phenomenon
starting around block 6M. Their main purpose is to circumvent
intended interaction patterns and to take advantage of unaware
design of contracts. The main application area is token harvesting,
followed by exploits of games with bad random number generators.
Deployment code is used extensively beyond deploying contracts.
Its mechanics have stayed the same since genesis in 2015, but seem
to be not sufficiently known among contract developers.
Selfdestruction of contracts has become popular again. While we
saw 20M multi-selfdestructs in the DoS attack in October 2016, we

are now confronted with 1.8M selfdestructing deployment codes.
Selfdestruction per se is beneficial by freeing resources, while its
massive use has been an indication of attacks and exploits so far.
Bonkers Contracts (non-sensical contracts) occasionally occur as
the result of deployment mishaps or during attacks.
Code reuse became even more massive than already pointed out in
earlier work. When comparing the 11.1M contracts deployed until
the end of 2018 to the corresponding 94 k different code skeletons,
we observe a reduction by a factor of 100. This phenomenon is also
a consequence of the high degree of automation in deployment,
including contract creations from external addresses.
The message volume increased drastically in the middle of 2017 and
has remained high since. The share of messages involving contracts
rose to over 70 % in 2018.
Contract Creations peaked in the second half of 2017, dropped in
mid 2018 and showed again a marked increase towards the end of
2018 that can be attributed to mayflies.
The distinction between user- vs. contract-created contracts becomes
less relevant as external addresses use programs to deploy contracts
in large numbers. The two methods differ in deployment costs and
transparency, though.
A small number of breeders (contracts creating a large number of
contracts) are responsible for the vast majority of contract creations.
Loners (never called contracts) are still widespread and comprise
almost half of the deployed contracts. Their existence, however, be-
comes less surprising when looking at their purpose. Many of them
will probably be called in the future (like GasToken and wallets),
turning them into sleepers.
Sleepers (contracts with an extended delay between creation and
first call) are common, though most contracts, if called at all, receive
their first call rather sooner than later. Given the diverse application
areas of contracts, it seems difficult to state general rules.
Busy Bees (contracts sending and receiving over 1 k calls) are rare
but account for over 60% of all messages. In contrast, the over-
whelming majority of contracts (more than 99 %) only has 10 inter-
actions or less.

7.3 Final remarks
When trying to understand the use of smart contracts, the transac-
tions recorded on the blockchain are only of limited use, since smart
contracts act mostly behind the scenes. We therefore recorded all
creations, calls, and selfdestructs during execution and treated each
contract as a separate entity. This choice of granularity is debatable
since some contracts may in fact belong to the same application, so
what we observe may sometimes be internal traffic. A reasonable
clustering of contracts into applications is desirable but seems out
of reach for the moment.

The numerical analysis of messages yields first insights, but also
produces oddities (like the large number of loners) that can only
be resolved by digging deeper. The analysis of code and interaction
patterns seems indispensable for reliable conclusions.

The huge amount of contracts and messages is overwhelming
at first, but clustering of contracts with similar behavior and code
allowed us to understand classes of contracts with millions of in-
stances and messages. We can confirm the well-known fact that

tokens (and their ICOs) are still popular in the Ethereum ecosys-
tem, followed by games and gambling, exchanges, and wallets. We
also encountered numerous exploits, especially in late 2018. More-
over, we identified breeders and mayflies as use cases that currently
dominate contract creation.

Blockchains in general and Ethereum in particular are still evolv-
ing, and some design choices lead to probably unintended use cases.
Admitting arbitrary code during contract deployment provides
maximal flexibility, while it opens an attack window at a point
that should be transparent and routine. The difficulty of writing
safe contracts may contribute to the heavy reuse of code. In any
case, the proliferation of highly similar contracts that have to be
stored permanently puts an unnecessary burden on the state space.
A solution might be to deploy parametrized contracts by copying
them verbatim to the chain (instead of generating them by code),
to make the creation of new contracts costlier, and to incentivize
the creation of audited libraries via royalties paid by their users.

REFERENCES
[1] Andra Anoaica and Hugo Levard. 2018. Quantitative Description of Internal

Activity on the Ethereum Public Blockchain. In New Technologies, Mobility and
Security (NTMS), 2018 9th IFIP International Conference on. IEEE, 1–5.

[2] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. arXiv:1809.03981 (2018).

[3] T. Chen, X. Li, X. Luo, and X. Zhang. 2017. Under-optimized smart contracts
devour yourmoney. In 2017 IEEE 24th Int. Conf. on Software Analysis, Evolution and
Reengineering (SANER). 442–446. https://doi.org/10.1109/SANER.2017.7884650

[4] Ethereum Community. 2018. Ethereum Homestead. https://media.readthedocs.
org/pdf/ethereum-homestead/latest/ethereum-homestead.pdf.

[5] Ethereum Wiki. [n. d.]. A Next-Generation Smart Contract and Decentralized
Application Platform. https://github.com/ethereum/wiki/wiki/White-Paper
Accessed 2019-02-02.

[6] Michael Fröwis and Rainer Böhme. 2017. In Code We Trust? In Data Privacy
Management, Cryptocurrencies and Blockchain Technology. Springer, 357–372.

[7] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017. Online Detection of Effectively
Callback Free Objects with Applications to Smart Contracts. Proc. ACM Program.
Lang. 2, POPL, Article 48 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158136

[8] Péter Hegedus. 2018. Towards analyzing the complexity landscape of solidity
based ethereum smart contracts. In IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 35–39.

[9] Lucianna Kiffer, Dave Levin, and Alan Mislove. 2018. Analyzing Ethereum’s
Contract Topology. In Proceedings of the Internet Measurement Conference 2018
(IMC ’18). ACM, New York, NY, USA, 494–499. https://doi.org/10.1145/3278532.
3278575

[10] Han Liu, Zhiqiang Yang, Chao Liu, Yu Jiang, Wenqi Zhao, and Jiaguang Sun. 2018.
EClone: Detect Semantic Clones in Ethereum via Symbolic Transaction Sketch. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2018). ACM, New York, NY, USA, 900–903. https://doi.org/10.1145/3236024.
3264596

[11] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. 2016. Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction. Princeton University Press.

[12] Smart Contract Research at USYD. 2018. Vandal. https://github.com/
usyd-blockchain/vandal.

[13] Roberto Tonelli, Giuseppe Destefanis, Michele Marchesi, and Marco Ortu. 2018.
Smart contracts software metrics: a first study. arXiv:1802.01517 (2018).

[14] Buterin Vitalik. 2017. Blockchain and Smart Contract Mechanism Design Chal-
lenges (slides). http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf Accessed 2018-08-09.

[15] Gavin Wood. 2018. Ethereum: A secure decentralised generalised transaction
ledger. Technical Report. Ethereum Project Yellow Paper. 1–32 pages. https:
//ethereum.github.io/yellowpaper/paper.pdf.

[16] Yi Zhou, Deepak Kumar, Surya Bakshi, JoshuaMason, AndrewMiller, andMichael
Bailey. 2018. Erays: Reverse engineering ethereum’s opaque smart contracts. In
Proceedings of the 27th USENIX Security Symposium (USENIX Security’18), Vol. 1.

https://doi.org/10.1109/SANER.2017.7884650
https://media.readthedocs.org/pdf/ethereum-homestead/latest/ethereum-homestead.pdf
https://media.readthedocs.org/pdf/ethereum-homestead/latest/ethereum-homestead.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/3158136
https://doi.org/10.1145/3278532.3278575
https://doi.org/10.1145/3278532.3278575
https://doi.org/10.1145/3236024.3264596
https://doi.org/10.1145/3236024.3264596
https://github.com/usyd-blockchain/vandal
https://github.com/usyd-blockchain/vandal
http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	1 Introduction
	2 Terms and Definitons
	2.1 Accounts, Transactions, and Messages
	2.2 Lifecycle of a Contract
	2.3 Deployment Code
	2.4 Interaction and Activity

	3 Data, Methods, and Tools
	3.1 The Data
	3.2 Code Analysis
	3.3 Visualization

	4 General Statistics
	4.1 Messages
	4.2 Contracts
	4.3 Contract code

	5 Temporal Perspectives
	5.1 Loners
	5.2 Destructed Contracts
	5.3 Mayflies
	5.4 Sleepers
	5.5 Bonkers Contracts
	5.6 Breeders

	6 Active Contracts
	6.1 Busy Bees
	6.2 Casual Workers

	7 Discussion
	7.1 Related Work
	7.2 Summary of Our Results
	7.3 Final remarks

	References

