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Presented by

Nikolaos LIAKOPOULOS

Machine Learning Techniques for Online Resource
Allocation in Wireless Networks

Defense scheduled on July 8th 2019

before a committee composed of:

Dr. E. Veronica Belmega Associate Professor Examiner
Dr. Georgios Paschos Principal Researcher Industrial Supervisor
Dr. Leandros Tassiulas Professor Reviewer
Dr. Marceau Coupechoux Professor Examiner
Dr. Navid Nikaein Professor Thesis Supervisor
Dr. Thrasyvoulos Spyropoulos Associate Professor Academic co-Supervisor
Dr. Urtzi Ayesta Director of Research Reviewer





Abstract

Traditionally, network optimization is used to provide good configurations in
real network system problems based on mathematical models and statistical
assumptions. Recently, this paradigm is evolving, fueled by an explosion of
availability of data. The modern trend in networking problems is to tap into
the power of data to extract models and deal with uncertainty. This thesis is
targeting on augmenting the arsenal of algorithms against specific network
problems, by proposing algorithmic frameworks for wireless networks, based
both on classical or data-driven optimization and machine learning.

In wireless networks, application of optimization is gaining momentum
both in practice and research, following the wireless communication prolifera-
tion and the need for greatly enhanced resource utilization efficiency. Demand
for wireless data is increasing exponentially, networks are becoming extremely
dense in devices and cells, services come with extreme and diverse QoS re-
quirements. Current network architecture which is based on one-type-fits-all
services and spectrum re-use is already becoming unprofitable.

As a consequence, resource provisioning in wireless networks is evolving in
a very challenging problem. This can be briefly accounted to the following: i)
high spatiotemporal variation of demand, ii) high dimension of optimization
and iii) coupling of decisions. The challenge is to come up with optimization
methods that are fast, scalable and quickly adapting to input changes; while
being robust against fluctuations to guarantee the service requirements. We
target two use cases, user association and cloud resource reservation.

The baseline approach for user association, connecting wireless devices
to the base station that provides the strongest signal, leads to very inefficient
configurations in current and future wireless networks. We focus on tailor-
ing user association based on resource efficiency and service requirement
satisfaction (QoS guarantees), depending on the underlying network demand.

First, we study the user association problem for two network services
(chapter 2); one requiring QoS guarantees to VIP flows, and one best effort
service. The goal is to take advantage of statistical multiplexing in order to
optimize the use of resources, while ensuring that the VIP flows enjoy active
performance guarantees. We formulate this as an optimization problem, show
that the problem is convex, and finally demonstrate that the optimum point
can in fact be realized by distributed user association rules.

i



Abstract

In chapter 3 we tackle user association focusing on developing a central
scalable algorithm. We steer wireless traffic to Cloud-Radio Access Networks
(C-RANs) by designing device association rules, in order to load balance the
network. To address the challenge of massive connectivity and the resulting
computational bottleneck, we propose an approach based on the theory
of optimal transport, which studies the economical transfer of probability
between two distributions.

Further, we propose a data-driven framework for user association lever-
aging the theory of robust optimization, see in chapter 4. The main idea is to
predict future traffic fluctuations, and use the predictions to design associa-
tion maps before the actual arrival of traffic. Although the actual playout of
the map is random due to prediction error, the maps are robustly designed
to handle uncertainty, preventing constraint violations, and maximizing the
expectation of a convex utility function, which is used to accurately balance
base station loads. The optimal maps have the intriguing property that they
jointly optimize the predicted load and the variance of the prediction error.
We validate our robust maps in Milano-area traces with dense coverage.

Moving to the topic of cloud resource reservation, we develop a novel
framework to handle resource reservation in worst-case scenaria, where the
demand is engineered by an adversary aiming to harm our performance. We
provide policies that have “no regret” and guarantee asymptotic feasibility
in budget constraints, under such workloads, complementing the results of
recent literature in cloud computing and more importantly in Online Convex
Optimization (OCO).

In chapter 5 we propose a policy for cloud resource reservations that
eventually learns the minimum cost reservation, while satisfying a time-
average constraint for violations. This uses a combination of the Lyapunov
optimization theory and a linear prediction of the future based on the recent
past. We validate our policy on real cloud system traces.

Next, in chapter 6 we generalize the results of chapter 5, creating a
framework for online convex optimization problems with long-term bud-
get constraints. Problems like this arise naturally in networks as reliability
guarantees or total consumption constraints. Our proposition is cautious
online Lagrangian descent (COLD) for which we derive explicit bounds, in
terms of both the incurred regret and the residual budget violations.

Finally, chapter 7 contains the conclusions of our work and our future goals
and some preliminary results on the comparison of the proposed methods.
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méthodes restent robustes. . . . . . . . . . . . . . . . . . . . . 150

8.5 Colonne de gauche: Configuration de la station de base Micro,
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Chapter 1

Introduction

1.1 Optimization in Wireless Networks

Network optimization is the combined theory of mathematical modeling,
statistical analysis and mathematical optimization used on networks to select
the best possible configuration, based on a criterion, over a set of available
configurations. Application of optimization in networks is often prototypical
and many common problems of operation research appear, see in [3]. Most of
the network problems encountered in a real system can be reduced to these
general problems, allowing the use of advanced methods and algorithms that
have been developed through many years of research.

On the other hand, recently we witnessed an explosion in the availability
of data. Massive amounts of data are now routinely collected in all businesses,
including wireless network operators, cloud computing platforms or retailers.
This has triggered a modern trend in networking problems; to tap into the
power of available data to extract models and deal with uncertainty. This
thesis is targeting on augmenting the arsenal of algorithms against targeted
network problems, by proposing algorithmic frameworks for wireless networks,
based both on classical or data-driven optimization and machine learning.

In wireless networks, application of optimization is gaining momentum
both in practice and research, as it is envisioned to greatly enhance resource
utilization efficiency. A straighforward application of optimization techniques
on the existing network resources can minimize the cost of operation, for ex-
ample by reducing power, increasing performance (e.g. maximize throughput,
balance load or minimize delay) and can robustify service providing perfor-
mance guarantees (Quality of Service). Alternatively, different optimization
tools can be used for future network planning, expansion, sharing of resources
between operators and pro-active resource installation or reservation.

The requirement for optimization is driven from the proliferation of wire-
less communications. Demand for wireless data is increasing exponentially [4],
networks are becoming extremely dense in devices and cells [5–7], services
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come with extreme and diverse QoS requirements [8–10]. Current network
architecture which is based on one-type-fits-all services and spectrum re-use
(cell densification) is already becoming unprofitable [10–12].

The integration of optimization in future systems is enabled by recent
technological advancements, which can be used to renew network architec-
ture. The main enablers we identify is, i) Softwarization of network services –
formally mentioned as Network Function Virtualization (NFV) and Software
Defined Networking (SDN) and centralization of computing resources for
networks – the Cloud-Radio Access Network (C-RAN) architecture. The
combination of the two allows centralized management of resources (orches-
tration) and provide collective knowledge and computation power to solve
central optimization problems. ii) Massive collection of data and advance-
ment of data mining techniques. The data collected by the network centrally
can give intuition about the system and user behavior and can be utilized
by machine learning techniques to improve network efficiency.

Despite the recent evolution of network design and orchestration, resource
provisioning in wireless network remains a very challenging problem. This
can be briefly accounted to the following factors: i) high spatiotemporal
variation of demand – wireless environment is rapidly evolving following
human activity [13–16], ii) high dimension of optimization – the problems
encountered are large-scale with millions of variables [10,17] and (iii) coupling
of decisions – the network needs to be reconfigured following the evolution
of demand, to retain efficiency [10, 16, 18]. The challenge is to come up with
optimization methods that are fast, scalable and quickly adapting to input
changes; while being robust against fluctuations to guarantee the service
requirements.

The contributions of this thesis are separated into two main parts. The
first part corresponds to chapters 2 and 3, where we focus on optimizing
resource utilization of networks in real time; while in chapters 5 and 6 we
consider proactive resource reservations. Meanwhile, chapter 4, serves as
a bridge between the two parts, as it tackles an online problem with an
offline data-driven solution. In the thesis, we present two main use cases:
user association and cloud resource reservation, but the solutions presented
can be applied to a plethora of problems, sometimes out of the scope of
networking (prominent examples are chapters 4 and 6).

1.1.1 Use Cases

User Association

An important problem in Ultra Dense Networks (UDNs) is assigning
wireless devices to serving base stations, this problem is referred to in the
literature as user association problem [9,16–24]. In existing systems a user
will choose to associate with the base station that provides the maximum
received signal to interference ratio (MaxSINR) [9]. This baseline user
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association rule does not account for traffic hot spots, and leads to load
imbalances and performance deterioration. We consider techniques that
focus on two major metrics – instantaneous achievable rate at the physical
layer and base station (cell) load and our goal is to derive algorithms that
achieve QoS guarantees over the volatile wireless environment.

Similar Problems:(Generalized) Assignment, Flow Routing, Matching.

Cloud Resource Reservation

A fundamental challenge in cloud computing is to reserve just enough
resources (e.g. memory, CPU, and bandwidth) to meet application runtime
requirements [25]. We desire reservations that accurately meet the require-
ments: resource over provisioning causes excessive operation costs, while
under provisioning may severely degrade service quality, causing interrup-
tions and real-time deployment of extra resources, which costs heavily [26].
The problem resembles the well-known newsvendor model [27], where we
seek an inventory level that maximizes the vendor revenue versus a fore-
cast demand. In cloud computing, however, the common assumption of
demand predictability does not always hold. The profile of cloud resources
exhibits highly non-stationary behavior, and prediction is very difficult, if
not impossible. Furthermore, in the increasingly relevant scenario of edge
computing, the workload is expected to vary quickly with geography, mobility,
and user application trends, and therefore its fluctuations will be even more
unpredictable. We consider a model-free online reservation framework for
cloud computing using ideas from machine learning.

Similar Problems:Portfolio Optimization, Advertisement Placement, Volatile
Resource Market, Inventory Optimization.

1.2 Contributions and Outline of the Thesis

1.2.1 Contributions and Outline

The chapters of the thesis, and the main contributions in each of them, are
organized as following:

Chapter 2 - Distributed User Association with Quality of Service
Guarantees

We begin by studying the problem of distributed user association in
Ultra Dense Networks (UDNs) for two network services; one requiring QoS
guarantees to VIP flows, and one best effort service. The goal is to take
advantage of statistical multiplexing in order to optimize the use of resources,
while ensuring that the VIP flows enjoy active performance guarantees.

Distributed approaches are very common in the literature and they offer
great scalability and low computation and communication overhead [18–23].
We base our model on the framework of [19], enriched by introducing a
requirement-based class of flows (VIP). We prove that by constraining the
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amount of load of VIP flows on a base station, while giving strict priority to
the privileged flows, the average number of VIP users in the selected base
stations’ queue will be bounded; this readily translates to a threshold on the
average response time per flow.

We formulate the formerly described user association as an optimization
problem, show that it is convex and use partial lagrangian relaxation to
derive the new distributed association rules per class. From the partial
relaxation a new metric appears, the lagrangian multiplier, which reflects
the price of joining the base station due to excess VIP flow load. Using the
derived association rules on a running average estimation of the actual base
station load (both VIP and BE) and the lagrangian multiplier (VIP ”price”)
the associations converge iteratively to the optimal assignment. In this way,
this framework uses the fundamental problem of user association to achieve
isolation and statistical multiplexing in the context of UDNs, when different
services or slices must share BS resources, as envisioned in 5G networks.

In the numerical section we demonstrate no violations of the VIP flow
constraint on real data traces for mobile network traffic, while a baseline
best effort distributed policy applied to this setup inflicts up to 46.5%
violations. Hence, we conclude that in a slowly changing environment,
where the empirical load and the prices converge to the optimal, the derived
distributed algorithm can provide QoS while efficiently utilizing the network
resources. On the other hand, when traffic is fluctuating rapidly, it can lead
to constantly changing association decisions and suboptimal configurations.
In the following chapter, we will counter these drawbacks by designing a
centralized scalable algorithm for association decisions.

The work on this chapter has been published in the following paper:

• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “User Association
for Wireless Network Slicing with Performance Guarantees”, IEEE
GLOBECOM, Abu Dhabi, UAE, December 2018

Chapter 3 - Centralized Scalable User Association based on Com-
putational Optimal Transport

In this chapter, we study the problem of connecting mobile traffic to
Cloud-Radio Access Network (C-RAN) stations. The centralized approach of
this chapter is motivated by the upcoming 5G wireless network architecture.
The architecture of C-RAN economizes computation and signal processing
by migrating the computing part of base stations to a central cloud location.
Having the intelligence moved to the C-RAN controller enables, differently
than the previous chapter, a stable and well informed association decision
for the wireless devices.

However, the massive scale of future wireless networks causes a com-
putational bottleneck in performance optimization. In practice, a general
purpose linear programming solver will fail to solve an optimization problem
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of this scale, which will have millions of variables [10, 17]. To address the
challenge of massive connectivity, we propose an approach based on the
theory of optimal transport [28–30], which studies the economical transfer
of probability between two distributions. The proposed methodology could
further inspire scalable algorithms for large-scale optimization problems in
wireless networks.

Although user association is not an optimal transport problem, we observe
that by choosing the marginal distributions based on a target load solution,
we can very quickly derive the association rules using reguralized OT. With
this observation in mind, we propose an iterative algorithm that adjusts the
target load and efficiently steers traffic away from overloaded base stations
reducing the overall delay. In the numerical section we show the time
efficiency of computational optimal transport against a standard linear solver
in experiments with different scales and the delay reduction achieved in
simulation scenaria by our iterative algorithm.

We note that, this chapter’s method relies on a good estimate of the
current traffic and into the ability of the network to compute and update
the network configuration in real time. If this decision update process is
slower than the change of status in the system (in the meantime new users
appear, traffic volume changes, etc), the new configurations will be stale
and suboptimal and will fail the QoS guarantees. In the following, we will
present a pro-active optimization method, that will not require knowledge
of the demand and real time configurations, but will extract the demand
pattern and compute robust associations based on collected data.

The work on this chapter has been published in the following paper:

• G. Paschos, N. Liakopoulos, Mérouane Debbah, Tong Wen, “Computa-
tional Optimal Transport for 5G Massive C-RAN Device Association”,
IEEE GLOBECOM, Abu Dhabi, UAE, December 2018

Chapter 4 - Data-Driven User Association based on Robust Opti-
mization

In chapter 4, we study the user association problem with QoS guarantees,
in the context of UDNs, where traffic demand rapidly evolves in space and
time following human activity. Here, we propose the association decisions to
be computed at the central intelligence of the wireless network, the C-RAN,
based on historical data about telecommunication activity that have been
collected and processed by the network. The framework introduced here,
instead of monitoring and trying to follow the rapidly-changing status of the
network, as in chapter 3, it takes decisions based on the predicted traffic
demand based on the data.

Including the distributed method presented in chapter 2, a number of
recent works formalize the QoS user association problem and attempt to find
an optimal solution, [9,18–24]. Nevertheless, these frameworks are ineffective
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for this setup for two main reasons:
• Spatio-temporal variability : Due to smaller user/site ratios [5,7], the

traffic demand will vary significantly more over time and space, giving
rise to unpredictable traffic spikes [9].
• Increased QoS requirements: With the rise of vertical applications,

5G networks are expected to support slices that provide guaranteed
Quality of Service (QoS) [9]. Unexpected traffic spikes combined with
dynamic association decisions reacting to them, might lead the system
to oscillations, instability, and violation of QoS requirements.

Instead, we propose a novel data-driven technique leveraging the theory
of robust optimization [31]. The main idea is to predict future traffic
fluctuations, and use the predictions to design association maps before the
actual arrival of traffic. Although the actual playout of the map is random
due to prediction error, the maps are robustly designed to handle uncertainty,
preventing constraint violations, and minimizing the expectation of a convex
cost function, which is used to accurately balance base station loads.

We propose a generalized iterative algorithm, referred to as Generalized
Robust Map Algorithm (GRMA), which is shown to converge to the optimal
robust map. The optimal maps have the intriguing property that they jointly
optimize the predicted load and the variance of the prediction error. The
algorithm admits the average load threshold cap as in chapter 2; while allow-
ing a trade-off between being conservative and optimal (assuming expected
traffic load), by having a configurable parameter tuning the probability of
failing the constraint per base station. In addition the framework works
with any convex separable cost function, which includes the commonly used
α-optimal functions, seen in chapter 2 or [19,32].

Depending on the choice of the objective function, the derivative compu-
tation can be extremely complex, hence we propose methods to approximate
the optimal map. In the numerical section, we validate our robust maps in
Milano-area traces [33], with dense coverage and find that we can reduce
violations from 25% (inflicted by a baseline adaptive algorithm) down to
almost zero. Furthermore, we demonstrate the effect of α-objectives [19, 32].

Finally, we discuss advanced time series forecasting methods, like Seasonal
AutoRegression-Integration-Moving Average models (SARIMA [34]) and
Long Short-Term Memory (LSTM [35]) neural networks. Using these methods
on the data [33], we validate the gaussian estimator error model and improve
the quality of the map produced by GRMA; decreasing the cost gap compared
to an optimal map down to 5%.

The robust framework serves as an introduction to our resource reservation
body of work later, as it could be used to economically reserve resources, while
guaranteeing QoS. For example a routing map, computed by GRMA, could
associate flows to a cloud, optimizing the expectation and variance of the
cost of traffic load on the server. The map would give the routing decisions
and indirectly the amount of resources (computation, memory, etc) required
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to be reserved. This framework though, depends on the predictability of
future demand, which as described in the following chapters (5 and 6) is
not always true for cloud workloads. For such applications, we will need
a new framework that will adapt the reservations based on the changing
distributions of the demand.

The work on this chapter has been published in the following articles:

• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “Robust User Asso-
ciation for Ultra Dense Networks”, IEEE INFOCOM, Honolulu, HI,
April 2018
• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “Robust Optimization

Framework for Proactive User Association in UDNs: A Data-Driven
Approach”, IEEE/ACM Transactions on Networking, August 2019

Chapter 5 - Online Cloud Resource Reservation with Budget Con-
straints

Here, the resource reservation problem is introduced. Specifically, we
study learning an economical yet robust resource reservation for cloud com-
puting, i.e. reserve just enough resources meet application runtime require-
ments [25]. The goal is to have reservations that accurately meet the require-
ments: resource over-provisioning causes excessive operation costs, while
under-provisioning may severely degrade service quality, causing interruptions
and real-time deployment of extra resources, which costs heavily [26].

Assuming that demand is predictable the robust framework presented
in chapter 4 could be applied, but often in cloud computing this common
assumption does not hold. Our experimentation [36] in a Google cluster
dataset, as well as other recent works [1], show that the profile of cloud
resources exhibits highly non-stationary behavior, and prediction is very
difficult, if not impossible. Instead, we propose a novel model-free approach
that has its root in online learning. We allow the workload profile to
be engineered by an adversary who aims to harm our decisions, and we
investigate a class of policies that aim to minimize regret (minimize losses
with respect to a static policy that knows the workload sample path).

Specifically, we formulate the problem of reserving resources for cloud
computing as a constrained Online Convex Optimization (OCO) problem.
At each slot, i) an online reservation policy decides a reservation vector, then
ii) the adversary decides a demand vector, and last iii) a cost is paid for the
reserved resources and a violation is noted if the demand was not covered by
the reservation.

Regret minimization in the presence of adversarial constraints is a very
difficult problem; in fact, a well-cited result in the literature is that of [37],
which shows by a counter example that in certain cases it is impossible. Here,
we slightly relax the benchmark of [37], and propose Time Horizon Online
Reservations (THOR) a policy we prove to achieve asymptotic feasibility
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and “no regret”. The performance guarantees of THOR are obtained by
a novel combination of the Lyapunov K-slot drift technique [38] with the
linearization idea of Zinkevich [39]. THOR inherits the simplicity of online
gradient, and therefore is straightforward to implement in practical systems.

In the numerical section we validate THOR resource reservations using
a public dataset provided by Google [2]. THOR vastly outperforms our
implementation of the textbook Follow The Leader (FTL) policy in guar-
anteeing the violations constraint, while it achieves similar or sometimes
better performance than the static oracle T -slot policy, in the challenging,
non-stationary CPU workload.

In the next chapter, we will generalize THOR to a new framework for
online learning and resource reservation with budget constraints. In this
framework we strengthen the adversary to pick both the cost and constraint
functions, we introduce the K-benchmark, a set of K-slot best cost K-slot
feasible static policies, we generalize some of the base assumptions of prior
work and we prove that our new policy, Cautious Online Lagrangian Descent
(COLD), has “no regret” against K-benchmarks when K = o(T ).

The work on this chapter has been published in the following paper:

• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “No Regret in Cloud
Resources Reservation with Violation Guarantees”, IEEE INFOCOM,
Paris, FR, May 2019

Chapter 6 - General Online Resource Reservation with Budget
Constraints: A New Framework

In the final chapter of the main body of work, we study a class of online
convex optimization problems with long-term budget constraints that arise
naturally as reliability guarantees or total consumption constraints. This is
a general setting, that subsumes the work presented in chapter 5.

In this general setting prior work by [37] has shown that achieving “no
regret” is impossible if the functions defining the agent’s budget are chosen
by an adversary. To overcome this obstacle, we refine the agent’s regret
metric by introducing the notion of a “K-benchmark”, i.e., a comparator
which meets the problem’s allotted budget over any window of length K.

The impossibility analysis of [37] is recovered when K = T ; however, for
K = o(T ), we show that it is possible to minimize regret while still meeting
the problem’s long-term budget constraints. We achieve this via an online
learning algorithm based on Cautious Online Lagrangian Descent (COLD)
for which we derive explicit bounds, in terms of both the incurred regret and
the residual budget violations.

On the other end, when K = 1, recent work done in [40], has proven
that a combination of OGD with a virtual queue can indeed provide “no
regret”, compared to a static action that is strictly feasible for all constraint
functions gt, i.e., a policy x? must satisfy gt(x

?) < 0 for all t = {1, ..., T}.
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They present improved bounds for this special case, however, especially in
an adversarial setting, their strict feasibility assumption might not be easy
to achieve. Even a small degree of residual constraint violation injected by
the adversary could disqualify any comparator action. More importantly,
since x? is artificially constrained in this way, the obtained regret guarantee
can be fairly loose.

Our theoretical findings are also validated by a series of numerical exper-
iments which suggest that increasing K – that is, enlarging the window over
which the budget must be balanced – makes the K-benchmark guarantee
tighter. Hence, proving “no regret over K-benchmark” for large K results in
tighter performance guarantees – an observation which is not a priori obvious
in a bona fide adversarial setting.

The work on this chapter has been published in the following paper:

• N. Liakopoulos, A. Destounis, G. Paschos, Thr. Spyropoulos, Panay-
otis Mertikopoulos, “Cautious Regret Minimization: Online Optimiza-
tion with Long-Term Budget Constraints”, to appear at ICML, Long
Beach, CA, June 2019

Chapter 7 - Conclusions and Future Research
We close the thesis with the conclusion and future research chapter. Here,

we present in brief the main conclusions derived by the body of this work.
We discuss the envisioned general optimization framework for networks and
present some preliminary results derived in our study applying different
optimization methods in network problems [41].

9



CHAPTER 1. INTRODUCTION

10



Chapter 2

Distributed User Association
with Quality of Service
Guarantees

2.1 Introduction

In order to cope with the rapid growth of data traffic demand, wireless
operators move to ultra dense, heterogeneous deployments, also referred to
as Ultra Dense Networks (UDNs) [5–7,10]. These consist of many low-power
small cells, to maximize spatial reuse of the available bandwidth, overlaid
with macro-cells which ensure coverage. With ultra dense deployment, the
problem of user association becomes increasingly important, but also highly
complex. Naive SINR-based schemes [9, 42], like the ones commonly used
in current wireless networks, can be highly suboptimal, failing to properly
balance the load across the different base stations which is necessary to
translate the denser Base Station (BS) deployment into actual Quality of
Service (QoS) improvement.

Furthermore, new applications and service types are emerging that need
to be carried over cellular networks with diverse QoS requirements. These,
intensify the need for efficient resource utilization to cope with the conflicting
demands of reduced latency or increased throughput [8]. These prerequisites
can be effectively treated by breaking the one-type-fits-all-services scheme
and considering application specific (flow) traffic steering and prioritizing, as
envisioned in 5G New Radio (NR) [8]. However, it is far from clear how to
optimally allocate the common resources between different services.

Consider for example a scenario with a “VIP” and a “Best Effort” (BE)
service. The former requires low delay for its applications, while the latter
could correspond to standard data and voice. Naively pre-allocating specific
resources, e.g., part of the bandwidth or Resource Blocks (in LTE) to each
service is suboptimal [43], as part of the resources might stay under-utilized,
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while others might become congested. On the other hand, while joint
resource allocation leads to better statistical multiplexing gains, a surge of
BE traffic may endanger the performance of the VIP service. To address
the challenge of isolation vs statistical multiplexing, this chapter considers
the basic scenario with one VIP service and one Best Effort (BE). We
propose a few modifications on a simple and well-established model for BS
schedulers [44], and develop an analytical optimization framework with the
following goals:

1. Provide service isolation, i.e., Best Effort load should not have an impact
on VIP performance.

2. Provide performance guarantees to the VIP flows, in terms of bounding
the mean number of active VIP flows at specific base stations (this readily
translates to per flow delay guarantees as well).

3. Provide statistical multiplexing gains to both services, by optimally allo-
cating the resources between VIP and BE flows, subject to respecting the
strict priority of the VIP.

4. Ensure that when all the above goals are satisfied, loads across BSs are
configured to provide optimal network-wide performance (in terms of
different tunable metrics).

As a final note, the proposed framework achieves the set goals, while being
minimally invasive to existing schedulers. It introduces a second queue, but
still applies the existing scheduling policy on each queue. For example, the
framework can be extended to explicitly support delay-sensitive 5G service
classes (e.g. URLLC [45]), as well as for resource allocation among multiple
slices [11, 12, 43], corresponding to different operators or services. To extend
our framework to multiple classes, a combination of priority queuing and
discriminatory processor sharing [46] could be used. We defer this to future
work.

2.1.1 Related Work and our Contribution

A number of more advanced schemes, beyond simple SINR-based, have been
proposed to take advantage of the dense deployment of base stations and
utilize all available resources [19, 22, 23]. These schemes aim to optimally
balance different, often conflicting goals such as: giving each user a high
enough rate, minimizing the average network-wide delay, and ensuring that no
base station is congested. A seminal work in this direction is the framework
of [19] that utilizes the α-optimal function to balance these goals, and derives
optimal and distributed user association rules, assuming best effort flows.
This work has since been extended to jointly optimize uplink and downlink
traffic [20], consider backhaul constraints [21], energy efficiency [47], and
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Figure 2.1: Simplified example for different association policies

a number of other directions. In the context of slicing, the authors in [48]
propose dynamic sharing of radio access network resources between (virtual)
operators; while the aforementioned approach achieves capacity savings for
the tenants, it cannot give performance guarantees for a class of applications
(VIP).

Consider Fig.2.1 as a motivating example. A baseline association ap-
proach that does not considers flow differentiation (no priorities and no VIP
constraints) will lead to high load for VIP flows in Fig.2.1a for BS 1 and low
quality wireless service. Enhancing the network with a scheme that explicitly
differentiates between VIP and BE flows and uses a scheduler that prioritizes
VIP flows (as in Fig.2.1b), temporarily fixes the performance guarantee for
VIP flows with no impact on total load. When, as shown in Fig.2.1c a 3rd
VIP flow is added to BS 1 though, the QoS for BS 1 cannot be met due
to the high concentration of VIP load. In this configuration, our proposed
algorithm will switch one VIP flow to BS 2, achieving the VIP QoS for both
base stations, with a trade-off cost of reduced SINR or instantaneous rate
for the switched flow.

In our work we extend the user association framework of [19] and make
the following contributions: (i) Different from [19], to ensure isolation we
assume a priority-based MAC scheduler at each BS, where VIP flows are
always served before BE flows. We show that such a BS scheduler can
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be modeled as a Processor Sharing (PS) queue with 2 priorities. (ii) We
introduce a constraint on the VIP load at each base station, that is used
to provide appropriate VIP performance guarantees. (iii) We derive novel
distributed user association rules for both the VIP and BE services, that
provably converge to optimize an α-optimal function of the total base station
load, thus maximizing the statistical multiplexing gains within the feasible
region. (iv) We show that our association policy outperforms both the
original best effort policy of [19], and an improved version of the latter,
adapted for the 2-class setup, using the original association rule but also
giving priority to VIP flows, using telecom traces from the area of Milano [33].

2.2 Architecture

2.2.1 System Model

Spatial traffic. We consider a region L ∈ R2 with coverage from B (het-
erogeneous) base stations. At each point x ∈ L, users generate flow requests
according to an inhomogeneous Poisson point process with spatial intensity
λ(x) and have independently distributed file sizes with mean 1

µ(x) .
Service Rate. If users at point x ∈ L are associated to base station

i ∈ B, then their flows are served with rate Ci(x). In our model, Ci(x) will
be a location-dependent metric that depicts the wireless signal degradation
due to distance. One might be tempted to include in Ci(x) channel fading
and dynamic interference, which depends on user association decisions and
power control, however not considering these phenomena is common in
user association literature [19,20,22,49], next we give a short justification.
Fast fading is averaged out due to the time scale of association being large
compared to the time of channel coherence. Furthermore, since we are
considering a low mobility environment the result of slow fading or shadowing
can be captured from SINR. Finally, if SINR is measured based on reference
pilot signals emitted by all base stations simultaneously the measurement
produces approximately equivalent results with the assumption that nearby
base stations are saturated. This assumption is common in most related
work [19–22,44].

Here we give a specific model for Ci(x), with the understanding that
other models that are location-dependent are admissible in our work:1

Ci(x) = W log(1 + (SINRi(x))), (2.1)

where W is the available frequency band, and SINRi(x) is given by:

SINRi(x) =
PiGi(x)∑

j 6=i PjGj(x) +N0
.

1We clarify that despite the particular modeling of Ci(x), the association decisions
remain coupled through the base station loads that affect the performance received at each
point.
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Above, Pi denotes the transmission power of base station i, N0 denotes noise
power and Gi(x) is the path loss between the antenna and the UE. In our
analysis, powers are static.

Flow Differentiation. Depending on service requirements the flows
are classified into VIP (V) and Best Effort (B). The overarching goal is to
provide VIP flows with better service quality, which we will achieve via a
two step scheme: (i) the service of VIP flows is strictly prioritized over Best
Effort (thus they only compete for service with other VIP flows), and (ii)
the load of VIP flows is regulated at each base station.

Association Rules. Let πVi (x) = {0, 1} and πBi (x) = {0, 1} be the
association rules, indicating if point x flow of type V,B is associated with
base station i. At each time instance we enforce the constraint that points
are uniquely associated to one base station, hence

∑
i∈B π

T
i (x) = 1, where

T = V,B. The association variables πBi (x), πVi (x), ∀x ∈ L will be the means
to control the performance of the system.

Base Station Load. The fraction of time required to deliver the traffic
load destined to location x ∈ L by base station i is defined as the load density
for i in x:

%Ti (x) =
λT (x)

µT (x)Ci(x)
, T = V,B.

The fraction of time a base station i is busy, called the load ρi, due to a
specific type of traffic V or B is given by:

ρTi =

∫
L
%Ti (x)πTi (x)dx, T = V,B. (2.2)

The total load of base station i is then

ρi = ρVi + ρBi .

The base station load vector ρ = (ρi) is an important performance metric
of the system. In subsection Sect.2.2.3 we will explain how we can choose
association rules πBi (x), πVi (x), ∀x ∈ L to control ρ and ultimately provide
differentiated levels of service to different user flow types.

2.2.2 Queue Delay Model

Even though the exact dynamics of the LTE schedulers are not standardized,
it is generally accepted that in practice a proportional-fair scheduling policy
(α ≈ 1) is used [22, 42, 50]. In this case and most general case of temporal
fair schedulers, the dynamics of the base station queues are captured by a
multi-class M/G/1 processor sharing system [44]. A well known result for
Processor Sharing [51] is that the stationary distribution of the number of
customers is insensitive to the distribution of service times, hence assuming
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ρi < 1 we have the following: The stationary distribution for the total
number of flows in base station i is:

qi(n) = ρni (1− ρi).

By the above equation we can show that the mean number of active flows in
BS i is:

E[Ni] =
ρi

1− ρi
.

By Little’s Law the Expected Delay (Response time) in Queue i is:

E[Di] =
1

λi
E[Ni] =

1

λi

ρi
1− ρi

.

where the incoming arrivals at the queue are

λi =

∫
L

(λV (x)πVi (x) + λB(x)πBi (x))dx.

Proposition 1 (Isolation and Performance Guarantee). By considering that
the base stations also follow a preemptive priority scheduling policy in favor
of the VIP flows, all of the above equations can be rewritten for ρVi . By
limiting the VIP load ρVi ≤ ci we get the upper bounds:

E[NV
i ] ≤ 1

1− ci
− 1,

E[DV
i ] ≤ 1

λi
(

1

1− ci
− 1).

Therefore, in order to guarantee a certain average delay performance, below
we optimize ρ subject to ensuring the constraint ρVi ≤ ci at each base station.

2.2.3 Dual Service Problem Formulation

First, we relax the integrality requirement of the association decisions. In
practice, a fractional association could be interpreted as a time sharing
of different integral associations, hence different jobs may be handled by
different base stations. With this relaxation, a feasible association vector
π = {πV ,πB} assigns each layer of flows at location in x ∈ L with a
probability πi(x) ∈ [0, 1] at base station i ∈ B such that all the flow requests
are served and ensures that all the base stations are stable (ρi < 1, ∀i ∈ B).
Since we are also targeting performance guarantees for the service of VIP
flows, we impose a threshold on the load of VIP flows per base station ρVi ≤ ci
(Proposition 1).
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Definition 1. F is the convex set of flow differentiated feasible load vectors
ρB,ρV :

F = {ρ | ρi =

∫
L

(
%Vi (x)πVi (x) + %Bi (x)πBi (x)

)
dx

0 ≤ ρi ≤ 1− ε, ∀i ∈ B
0 ≤ ρVi ≤ ci, ∀i ∈ B∑
i∈B

πTi (x) = 1, ∀x ∈ L, T = V,B

0 ≤ πTi (x) ≤ 1, ∀i ∈ B, ∀x ∈ L, T = V,B},

where ci is the VIP load threshold for base station i.

Lemma 1. The feasible set F is convex.

Proof. Consider vectors ρ1,ρ2 ∈ F and ρ1 6= ρ2. Let ρ = θρ1 + (1 − θ)ρ2

with θ = [0, 1]. We will show that ρ ∈ F . The elements of vector ρ are
ρi = θρ1

i + (1− θ)ρ2
i and thus

ρi = θ

∫
x∈L

(%Vi (x)π1V
i (x) + %Bi (x)π1N

i (x))dx

+ (1− θ)
∫
x∈L

(%Vi (x)π2V
i (x) + %Bi (x)π2N

i (x))dx

ρi =

∫
x∈L

%Vi (x)(θπ1V
i (x) + (1− θ)π2V

i (x))dx

+

∫
x∈L

%Bi (x)(θπ1N
i (x) + (1− θ)π2N

i (x))dx.

Considering πVi (x) = θπ1V
i (x) + (1− θ)π2V

i (x) and πBi (x) = θπ1B
i (x) + (1−

θ)π2B
i (x), we may check that vector ρ satisfies all the equations in F , thus

ρ is feasible and F is convex.

In the optimization scope of the user association problem, the objective
is to select from the feasible vectors F the vector that optimizes a selected
network performance. As we have defined in section 2.2.2, we would like to
optimize for some metric defined by ρ, the load vector of the base station
queues. For this purpose we select the α-optimal objective functions.

Definition 2. The α-optimal functions, for α ∈ [0,∞) are:

φα(ρ) =

{∑
i

(1−ρi)1−α
α−1 α 6= 1∑

i log( 1
1−ρi ) α = 1

The optimization of φα(ρ) shares some analogies with the commonly used
in resource allocation optimization family of α-fair functions. It is shown
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in [19] that selecting: (i) α = 0 maximizes the throughput of the system, (ii)
α = 1 maximizes the geometric mean of base station’s idle time (1-ρi), (iii)
α = 2 minimizes the average number of flows in the base station queues, and
(iv) α →∞ leads to max-min load fairness described in [32]. We can now
formulate our primal problem.

Problem 1 (P1: The Service Differentiation User Association Problem).

minimize
ρ∈F

φα(ρ) =
∑
i∈B

(1− ρi)1−α

α− 1
. (2.3)

Since φα(ρ) is a convex function and F is a convex set, P1 is a convex
optimization problem. Below we exploit the convexity of P1 to design an
algorithm that finds the optimal solution ρ? in a distributed manner. We
will show that our algorithm yields integral association rules that converge
to the optimal solution of P1, hence it also solves the integral counterpart of
P1.

2.3 Distributed Constrained User Association

In this section we will solve P1 in a distributed fashion by using the theory of
Lagrangian relaxation for constrained convex optimization. Initially, we relax
the box VIP load constraint allowing its violation at a price γi. This will
allow us to derive the optimal association rules for given user class, x ∈ L,
γ prices and ρ vector of loads. The derived rules can be used to iteratively
solve the user association problem for fixed γ. We will then show how to
update price vector γ in order to converge to the optimal solution of P1.
The full algorithm in steps is presented in subsection 2.3.4.

2.3.1 Partial Lagrangian Relaxation

After relaxing the load constraint the feasible load vectors are ρ ∈ F ′, where
F ′ allows ρV ∈ [0, 1) and the objective function is the partially relaxed
Lagrangian:

Φα(ρ,γ) =
∑
i∈B

(1− ρi)1−α

α− 1
+
∑
i∈B

γi(ρ
V
i − ci). (2.4)

Problem 2 (P2: Relaxed User Association Problem).

maximize
γ≥0

{
minimize
ρ∈F ′

{Φα(ρ,γ)}
}
. (2.5)

We will prove that the solutions of the relaxed problem (P2) will be
primal optimal and primal feasible.
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2.3.2 Optimal User Association Rules

Lemma 2. If P2 is feasible, the optimal association decision for each user
is given by the following rule, depending on user type:

π?Vi (x) = 1

{
iV (x) = argmax

j∈B

{
Cj(x)(1− ρ?j )α

1 + γ?j (1− ρ?j )α

}}
, (2.6)

π?Bi (x) = 1

{
iB(x) = argmax

j∈B

{
Cj(x)(1− ρ?j )α

}}
, (2.7)

where ρ?j and γ?j are an optimal load and price vector of the problem above.

Proof. (Optimality of π?V ,π?B given ρ?,γ?). We have by using Eq.(2.2)
and Eq.(2.4):

〈∇ρΦα(ρ?) ·∆ρ?〉 =
∑
i∈B

(
∂Φα

∂ρVi
∆ρ?Vi +

∂Φα

∂ρBi
∆ρ?Bi

)
=
∑
i∈B

(
1

(1− ρ?i )α
+ γ?i

)
(ρVi − ρ?Vi )

+
∑
i∈B

(
1

(1− ρ?i )α

)
(ρBi − ρ?Bi )

=

∫
L
%V (x)

∑
i∈B

1 + γ?i (1− ρ?i )α

Ci(x)(1− ρ?i )α
(
πVi (x)− π?Vi (x)

)
dx

+

∫
L
%B(x)

∑
i∈B

1

Ci(x)(1− ρ?i )α
(
πBi (x)− π?Bi (x)

)
dx,

since π?Ti (x) satisfy Eq.(2.6) and Eq.(2.7):∑
i∈B

1 + γ?i (1− ρ?i )α

Ci(x)(1− ρ?i )α
πVi (x) ≥

∑
i∈B

1 + γ?i (1− ρ?i )α

Ci(x)(1− ρ?i )α
π?Vi (x),

∑
i∈B

πBi (x)

Ci(x)(1− ρ?i )α
≥
∑
i∈B

π?Bi (x)

Ci(x)(1− ρ?i )α
.

Hence, the first order convex optimality criterion is met [52]:

〈∇ρΦα(ρ?) ·∆ρ?〉 ≥ 0,

and π?V ,π?B are optimal association vectors.

The association rules produce two association maps2, one for each service,
where a user at location x ∈ L is associated to base station i ∈ B if this

2An optimal map at a time instance assigns the total traffic of a location of the grid L
to the optimal serving base station i. Since, we differentiate how we assign locations based
on flow class, we have two Association Maps, one for BE traffic and one for VIP. The maps
are direct represenations of their respective association vectors πB?(x),πV ?(x) .
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is prescribed by the corresponding map. The aggregate of all the assigned
load densities to the serving Base Station is equivalent to the optimal ρ?i .
Moreover, the optimal association rules Eq.(2.6) and (2.7) are deterministic,
which proves that the optimal values for πi(x) are integral and that there is
no loss of accuracy due to the continuous relaxation. More intuition about
the proof is given in [19].

Starting from an initial load vector ρ(0) we can iteratively find the ρ
that minimizes Φ for fixed γ, by using the association rules we derived. The
process is described in steps in 2.3.4. In the following subsection we will
show how to update the prices γ to reach the primal optimal ρ?.

2.3.3 Maximization Method

The maximization step of P2 depends on the selection of the α-objective. By
selecting α > 0 the partially relaxed Lagrangian is differentiable and we can
solve the master problem by gradient method. When α = 0, then we use a
subgradient method for the maximization.

2.3.3.1 Gradient Ascent for α > 0

The Hessian matrix of our α-optimal cost function Eq.(4.26) for α > 0 is
positive definite, thus is strictly convex. By Proposition 6.1.1 and Appendix
B of Nonlinear Programming [53], since the load constraint function is linear,
the set F is convex and compact (closed, bounded and subset of Rn) and φ
is strictly convex, the minimized partial Lagrangian function is differentiable
and

∇γΦα(ρ?,γ) = ρ?V − c.

The gradient ascent algorithm will update the prices γ of the outer problem
iteratively:

γ(k+1) = γ(k) + s(k)∇γΦα(ρ(k),γ),

with a constant step size s(k) = c.

2.3.3.2 Subgradient Method for α = 0

The α-optimal cost function Eq.(4.26) is affine (non-strictly convex):

φ0(ρ) =
∑
i∈B

ρi.

The minimized partial Lagrangian over ρ ∈ F ′ is non-differentiable. The
subgradient iteration is similar to the gradient but since the gradient may
not exist, a subgradient g(k) is used instead. One of the subgradients of the
minimized over ρ Lagrangian function is the load constraint function at a
minimizer of the Lagrangian ρ?. By selecting a sufficiently small step size it
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is shown that the subgradient method minimizes the distance to the optimal
solution and converges to the optimal. The subgradient method will update
the prices γ of the outer problem according to the iteration:

γ(k+1) = γ(k) + s(k)g(k)

with a subgradient step s(k) = 1√
k
.

2.3.4 Distributed Constrained User Association Algorithm

Below, we present the Distributed Constrained User Association Algorithm
(DCUAA) that solves P2 by combining the optimal user association rules
described in Sect.2.3.2 and the maximization methods described in Sect.2.3.3.
The algorithm is trigger based and will iterate until convergence is reached.
The output will be an optimal association map for both flow types connecting
location x ∈ L to serving base station i ∈ B.

Distributed Constrained User Association Algorithm (DCUAA)

Iterate over t until convergence

Base Stations calculate γ
(t+1)
i ←

[
γ

(t)
i + s(t)∇gΦα

]+

Broadcast γ
(t+1)
i

Iterate over k until convergence
User at location x ∈ L calculates πi(x):

πVi (x) = 1

{
iV (x) = argmax

j∈B

{
Cj(x)(1−ρ(k)j )α

1+γ
(t+1)
j (1−ρ(k)j )α

}}

πBi (x) = 1

{
iB(x) = argmax

j∈B

{
Cj(x)(1− ρ(k)

j )α
}}

Base Station i ∈ B measures utilization:
U

(k)
i = min

[∫
L(%Vi (x)πVi (x) + %Bi (x)πBi (x))dx, 1− ε

]
ρ

(k+1)
i = βρ

(k)
i + (1− β)U

(k)
i

Broadcast ρ
(k+1)
i

Lemma 3. For α > 0, the algorithm presented above will converge on the
optimal association maps for P1 (πV ?,πN?).

Proof. For α > 0, the objective in P2 is strictly convex over π, the hessian
matrix is positive definite (∇2

πΦ > 0). Hence, there exist a unique solution
(association maps) to the dual problem, which is primal feasible and cost
equivalent to the primal [52]. This completes the proof.
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(a) (b)

Figure 2.2: Milano Data Set. (a) Overview of Milano City Grid and (b)
Color map of arrival intensity per square of the grid on a busy time instance

2.4 Numerical Evaluation

For the numerical evaluation of our algorithm we consider a simulation
scenario that verifies the performance guarantees for the VIP flows achieved
by the DCUAA for delay and also the VIP isolation from BE traffic. We
use telecommunication traces from the Milano dataset [33], to confirm the
results on real traffic input.

2.4.1 Simulation Setup

We assume that the user receives data at Shannon Capacity Eq.(2.1) and we
model the propagation loss Gi(x) with a path loss exponent 3:

Gi(x) =

(
1

dist(BSi to x)

)3

.

The LTE parameters for the transmission power of each base station tier
and the transmission rate approximation are taken according to table 2.1,
found also in [20].

Table 2.1: Simulation Parameters

Parameter Variable Value

Transmission Power Macro BS PM 43 dbm

Transmission Power Micro BS Pm 29 dbm

System Bandwidth W 10 MHz

Noise Density No -174dbm/Hz
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(a) MaxSINR (b) DCUAA VIP (c) Kim et al VIP

Figure 2.3: Constraint violation comparison between the algorithms, red
means violation, yellow is tight, blue means below threshold. (b) and (c) are
calculated for α = 1.

2.4.2 Validation of the results on the Milano dataset

To evaluate on algorithm on real telecommunication traffic traces, we will
use the publicly available Milano dataset [33]. The Milano dataset provides
spatially aggregated data about the telecommunication activity. The data are
grouped on a regular grid overlaying the territory of Milano with 100× 100
squares. Consequently, the grid designates the area L and every square is a
location x ∈ L to be associated with base stations. For every square of this
grid the data set contains the aggregate per ten minutes telecommunication
events in the period of 01/11/13-01/01/14.

In the experiments we consider a weekday (Tuesday 3/12/2013) during
peak traffic hour at midday. An overview of the Milano Grid and the midday
arrival intensity per square of the grid can be see in Fig.2.2(a) and Fig.2.2(b),
respectively. Since there is no priority differentiation for traffic in the dataset,
we arbitrarily select 2, out of the 6, 10 min samples in an hour as VIP traffic.
This is based on the fact that we expect VIP flow requests to manifest in
(smaller) proportion to the expected total flow requests in an area.

We consider a two-tier Heterogeneous deployment of 40 Base Stations
with fixed positions. The wireless network in the Milano area is simulated
by 8 eNBs and 32 microcells, which are deployed with increased density
in the area corresponding to the city center. We specifically design this
subset of base stations, to accurately simulate a simplified environment of a
dense deployment in a city, bringing in the front all the aspects of the user
association problem.

We will show that our algorithm guarantees the performance of VIP flows
and we will use as baseline, our implementation of the algorithm described
in [19]. The association objective is set to maximize throughput (α = 1) and
the utilization cap for VIP flows is set to ci∈B = 30%. Each of the plots in
Fig.2.3 demonstrate location L, the Base Stations are the white dots, squares
are eNBs, circles are microcells, the black lines are the borders for the area

23



CHAPTER 2. DISTRIBUTED USER ASSOCIATION WITH QUALITY
OF SERVICE GUARANTEES

Base Station
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

D
el

ay
 (

s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Delay Comparison for VIP users

DCUAA

Kim et al.

Kim et al. no priority scheduling

(a) VIP Delay per Base Station

Base Station
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

V
IP

 L
oa

d

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
VIP User Load Comparison per Base Station

DCUAA
Kim et al.

(b) VIP Load per Base Station

Figure 2.4: Average Delay and Load metric comparison per base station

of service of each corresponding base station and colors indicate whether
an area satisfies the performance constraint. Blue means below threshold,
yellow means utilization is at the threshold, red means that utilization is
above the requirement. In Fig.2.3(a), Fig.2.3(c) and Fig.2.3(b) we notice the
areas of L that achieve the ρVi < ci constraint, depending on the algorithm
and user association policy selected.

A short summary of the most important results of this simulation can be
found in table 2.2. In table 2.2 we can see that DCUAA achieves the set VIP
performance guarantee, while not greatly degrading the overall performance
in average delay of the total traffic. In contrast Kim et al. [19] best effort
only algorithm does not achieve the VIP constraints for up to 46.5% of the
incoming arrivals.

Finally, in Fig.2.4, we can see per base station, the average delay and
load performance of the two algorithms in comparison. We can see that
our algorithm effectively moves flows from the crowded base stations to less
congested ones, with a trade off of reduced average delay on the congested
base stations but slightly increased load in average.

2.4.3 Service Isolation

In order to demonstrate that our algorithm provides service isolation, which
is an important aspect of future wireless network slicing architecture, we

Table 2.2: Simulation Results on the Milano dataset

Algorithm Constr. Violation % Av. Delay Tot (s)

DCUAA α = 1 0 0.2575

Kim et al. α = 1 46.5 0.2471

DCUAA α = 2 0 0.2814

Kim et al. α = 2 38.9 0.2874

DCUAA α = 5 0 0.4404

Kim et al. α = 5 9.5 0.4368
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Figure 2.5: Service Isolation. Increasing BE arrival intensity, while not
changing VIP arrival intensity, has no effect on VIP guaranteed performance
inside the Feasibility Region.

successively scale up the arrival intensity of Best Effort users, from 0 up
to the point that the average total incoming traffic exceeds the wireless
network’s capacity.

For each successive scaling of the BE input traffic we solve the optimal
network maps (user association maps for VIP and BE flows) with the DCUAA.
In Fig.2.5 we plot the best effort arrival intensity scaling factor and over all
the base stations according to the optimal maps created by the DCUAA: (i)
the average VIP load, (ii) the maximum VIP load (which has to be bellow
the 0.3 load guarantee threshold), (iii) the total load of the system and (iv)
the average BE effort load. From the Fig.2.5 it is clear that, the algorithm
converges to configurations that guarantee the performance of the VIP flows,
as long as the average total traffic is admissible.

2.5 Conclusion

In this chapter we have proposed a framework for user association based
on distributed constrained optimization for 5G New Radio (NR) in the
context of future Ultra Dense Networks (UDNs). We have derived distributed
association rules, that provably converge to the optimum point of operation in
a stationary environment. The resulting association guarantees performance
to the VIP flows whilst balancing the load between both service types. The
method is based on non-invasive extensions to current wireless networks,
while it can be generalized in future work for multiple class priorities and
applications in wireless network slicing. Our simulation results demonstrate
the capabilities of the framework in bounding the mean number of VIP flows
at the base stations and also the improved performance over BE only policies.

Hence, we conclude that in a slowly changing environment, where the
empirical load and the base station admission prices (lagrangian multipliers)
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converge to the optimal, the derived distributed algorithm can provide QoS
while efficiently utilizing the network resources. On the other hand, if traffic
is evolving in a faster time scale than the distributed algorithm convergence,
this can lead to instability and oscillations; constantly re-associating users
and getting stuck to suboptimal configurations. In the following chapters,
we will counter these drawbacks by designing a centralized algorithms for
association decisions. In chapter 3 we will present a fast scalable centralized
algorithm; while in chapter 4 we will show how to use data to create centrally
Robust User Association Maps (RUAM). The RUAM presented in chapter
4 can be extended to multiple maps, one for each priority class of services,
following the methodology of this chapter.
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Chapter 3

Centralized Scalable User
Association based on
Computational Optimal
Transport

3.1 Introduction

We revisit the problem of device association in the setting of massive connec-
tivity and ultra dense network deployment, from the scope of online centralized
decisions. In this problem, we seek to find a rule to associate mobile traffic to
serving stations such that the incurred load is balanced across the available
stations. Although a plurality of centralized association methodologies are
available in the literature, here we focus on the underexplored aspect of
scalability; we seek load-balancing associations for thousands of devices to
hundreds of stations, a setting where even linear program solvers become
cumbersome. To address the computational challenge, we propose to use
Optimal Transport (OT) theory, which studies the transfer of masses over
a metric space. Recently, an entropic regularization of OT was shown to
provide super-fast algorithms for very large OT instances [54], making the
framework applicable to a wide range of challenging applications, including
image processing and machine learning.

Our centralized approach is motivated by the upcoming 5G wireless
networks. According to recent reports, telecom operators are increasingly
interested in deploying Cloud-Radio Access Network (Cloud-RAN, or C-
RAN) systems, cf. [55]. The architecture of C-RAN economizes computation
and signal processing by migrating the computing part of base stations to
a central cloud location, and using simple Remote Radio Heads (RRH) to
broadcast signals [56]. Since all the intelligence is now moved to the C-RAN
controller, provisioning connectivity in a large geographical area is centrally
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Figure 3.1: Devices associate to RRHs causing various load levels.

decided, motivating the centralized association of devices to RRHs.

A contemporary C-RAN controller manages a big number of RRHs and
mobile devices, thus the centralized device association is inherently a large
scale problem. Furthermore, the number of RRHs and of devices are both
expected to increase in the near future. On one hand, the deployment
of RRHs will become very dense to improve the effective capacity of the
network [6, 7, 9, 10], while on the other hand, we expect a huge number
of heterogenous smart IoT devices to connect to 5G mobile networks by
2020–estimated 20.4 billions in [57]. Since 5G applications can have radically
diverse requirements, the traffic footprint of each connected device (IoT or
regular) can vary significantly. This motivates us to study the large-scale
centralized device association with potentially different traffic requirements
per device.

3.2 The Device Association Problem

3.2.1 Downlink Model

We consider the downlink1 transmissions of a large C-RAN cell, containing
I devices and J RRHs. We call πij ∈ [0, 1] the association variable, which is
the fraction of time device i ∈ I connects to RRH j ∈ J . Our objective is to
decide the association rules π ≡ (πij) in order to optimize a network perfor-
mance metric, such as the sum of RRH load or the average job completion
time (delay).

In order to evaluate the impact of an association rule we consider the
download rate obtained when device i is connected to station j while receiving
exclusive service; this is denoted by Rij . This rate should be calculated at
the granularity of association changes. Typically, we may assume the use
of a temporally-fair scheduler which distributes the station resources to the
different users and averages out fast fading effects. In this case, a reasonable
model for the download rate is:

Rij = W log(1 + SINRji),

1Our approach applies also to the uplink as long as the modeled upload rate Rij can
be considered independent of the association rule.
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where, W is the bandwidth, SINRji ,
PjGji∑

k 6=j PkGki+N0
, and the index ji is

reversed on purpose to denote directivity, Pj denotes the transmit power,
Gji the path loss, N0 the strength of thermal noise. This model has been
extensively used in the literature, cf. [19, 21]. Here we use it only as an
example; our framework only requires that Rij are independent of the
association variables. At this point, it might seem reasonable to connect each
device to the RRH that provides the largest Rij–known as the MaxSINR
rule–however, this results in poor performance as we explain next.

3.2.2 RRH Load

We suppose that a device i requires to download traffic λi, which is known2

and device-dependent. Also, it downloads jobs with average size 1/µ; exten-
sion to device- or RRH-specific job sizes is trivial. Given a decision π we
may determine the load of RRH j as:

ρj(π) =
∑
i

λi
µRij

πij .

Connecting devices to RRHs with high Rij has the beneficial effect that
the load contribution of each device λi/µRij is minimized (since the term
Rij is maximized). However, when devices are not uniformly distributed in
the area and/or total traffic demand is imbalanced, some RRHs attract more
connections and become overloaded. This will result into poor performance,
because wireless service also depends on the competition between users at
the associated RRH, and rapidly degrades as ρj(π) ↑ 1. For example, we

may estimate the average job completion time by
E[Nj ]+1
µRij

, where E[Nj ] is

the average number of jobs running at RRH j. Assuming the jobs are served
according to the processor sharing discipline, for ρj(π) < 1, E[Nj ] is given
by [51]

E[Nj ] =
ρj(π)

1− ρj(π)
.

As ρj(π) ↑ 1, the average completion time of a job of the connected devices
will become very high.

Summing up the associations of device i, we may quantify its average
completion time by

∑
j

πij
µRij(1−ρj(π)) . Ultimately, we average over all the

devices to obtain the device association problem:

min
πij≥0

∑
ij

πij
µRij(1− ρj(π))

(3.1)

s.t.
∑
j

πij = 1 ∀i ∈ {1, 2, . . . , n},

ρj(π) < 1 ∀j ∈ {1, 2, . . . ,m}.
2This information can either be provided by the device, or forecasted by the system.
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This is a non-convex continuous optimization problem, and we are interested
to solve it for large dimensions.

3.2.3 Related Work

The baseline MaxSINR association rule reads “connect each device to the
station with the strongest signal”. This simple association rule works well
when the mobile traffic load is low, or symmetrically scattered around stations,
but otherwise it can lead to significant load imbalances. An improved rule
that captures interference (but not traffic fluctuations) is the MaxSINR rule
“connect each device to the station with the highest SINR”, [58].

To improve the performance over the above rules, the problem of device
association has been studied in its integral form, where each device can
be associated to a single station, i.e. the association variable πij ∈ {0, 1},
cf. [22, 24, 59, 60]. However, the combinatorial nature of such formulations
makes them inefficient for large-scale instances. Instead, [19] allowed πj(x) ∈
[0, 1] for all points x in the plane and proved that the optimal solution is
integral almost everywhere (except boundary points). In this chapter, we
directly define the association variables to take values πij ∈ [0, 1] with the
understanding that fractional solutions correspond to multi-station coverage
like CoMP [61]. We observe that our optimal solutions are also “sparse”,
meaning that although variables are allowed to take values in [0, 1], at
optimality most of them will be integral (0 or 1).

In the context of continuous device association, past work has considered
the optimization of α-optimal functions [18–21] or general convex functions
[16]. None of the past approaches can be used to solve (3.1), which is non-
convex. In fact, to the best of our knowledge, solving a large non-convex
problem like (3.1) is generally intractable. Our goal in this chapter is to
propose a useful methodological tool, which can be applied to very large
device association problems.

From the perspective of scalability, most past approaches do not meet
the requirements we consider here. An exception is perhaps the distributed
algorithm of [19] and the works expanding that framework like chapter 2.
A limitation of this prior work, however, is that the decisions depend on
the convergence of the empirical load and the lagrange multipliers to the
optimal; leading to oscillations and rapid association changes, when optimal
point is changing faster than the algorithm’s convergence.

3.3 Optimal Transport

3.3.1 Introduction to Optimal Transport

The concepts of OT date back to the French mathematician Gaspard Monge
who studied in 1781 the transportation of sand masses [30], what seems to

30



CHAPTER 3. CENTRALIZED SCALABLE USER ASSOCIATION
BASED ON COMPUTATIONAL OPTIMAL TRANSPORT

be one of the first linear programming problems studied.

Although the theory of OT has been generalized to optimization with
infinite variables, here we restrict our discussion to the illustrative case
of “discrete OT”3, where probability mass must be transported between
two discrete distributions p ≡ (p1, . . . , pm) and q ≡ (q1, . . . , qn), and the
transportation cost from point i to point j is Cij–quite often taken to be
the Euclidean distance between the two points. Due to Kantorovich [29],
we can describe the transportation with a coupling πij , essentially a joint
probability distribution π with marginals p and q. The discrete OT problem
can be written as:

min
πij≥0

∑
ij

Cijπij (3.2)

s.t.
∑
j

πij = pi, i = 1, . . . ,m, (3.3)

∑
i

πij = qj , j = 1 . . . , n. (3.4)

This is a linear program, solvable in polynomial time w.r.t. its size mn.
Further, consider a bipartite graph connecting the points with links of weight
Cij , and connect each point i of p to a virtual source with link capacity pi,
and each point j of q to a virtual destination with link capacity qj . The
discrete OT corresponds to finding a minimum cost s-t flow of one unit.
Using network simplex [62], we can obtain the solution in O(E2 log V ),4

which for V = m+ n, E = mn, and n = m, becomes O(n4 log n), essentially
quadratic to the input size mn. Although such solution is polynomial to the
input size, our problem is of enormous dimensions, and hence the degree of
the polynomial is important as well. Below we describe the regularized OT,
a method to approximate OT in O(n2 log n).

3.3.2 Regularized OT

In 2013, Cuturi [54] proposed to approximate OT with a regularized version.
In particular, he proposed to modify the objective of OT by subtracting
the entropy H(π) = −

∑
ij πij(log πij − 1), weighted with the regularization

3The notion of discreteness refers to discrete probability measures, hence we have a
finite number of continuous transportation variables.

4Pseudo-polynomial algorithms are faster, but their runtime guarantee depends on the
values of Cij [63, 64].
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Figure 3.2: OT studies the mass transportation cost that satisfies initial (red) and

final (blue) conditions.

strength coefficient ε > 0. The regularized OT becomes:

min
πij

∑
ij

Cijπij + ε
∑
ij

πij(log πij − 1) (3.5)

s.t.
∑
j

πij = pi, i = 1, . . . ,m,

∑
i

πij = qj , j = 1 . . . , n.

Adding −εH(π) has a number of beneficial effects:

• The objective of the regularized OT is 1–strongly convex, hence (3.5)
has a unique optimal solution.
• By Proposition 4.1 of [28], the sequence of unique optimal solutions of

(3.5) for ε(k) converges to an optimal solution to (3.2) as ε(k) → 0.
• H(π) forces πij to be non-negative, hence we can drop the constraint
πij ≥ 0.

More importantly, the new objective admits an intuitive reformulation,
which leads to a faster algorithm. Consider the affine constraint sets Cp =
{π | (3.3)}, and Cq = {π | (3.4)}, and let ξij = exp(−Cij/ε); we can rewrite
the regularized OT as:

min
π∈Cp∪Cq

KL(π, ξ),

where KL(π, ξ) ,
∑

ij πij(log
πij
ξij
− 1) is the Kullback-Leibler (KL) diver-

gence. Hence, the regularized OT is a KL projection of ξ onto the intersection
of Cp and Cq, an interpretation pointed out in [65]. Since the KL divergence
is the special case of the Bregman divergence for the entropy function, our
KL projections benefit from the convergence property of iterative Bregman
projections on intersections of affine constraint sets [66, 67]. To obtain an
iterative projection algorithm it is convinient to operate on the dual domain.
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Consider the Lagrangian function

L(π,α,β) = KL(π, ξ) +
∑
i

αi

∑
j

πij − pi


+
∑
j

βj

(∑
i

πij − qj

)
.

The KKT stationarity condition requires that for each (i, j) it must hold:

∂L

∂πij
= 0 ⇔ πij = ξije

−αie−βj .

To obtain the projection with respect to Cp we follow the steps: (i) fix (βj),
(ii) apply the complementary slackness condition

∑
j πij = pi, (iii) solve for

αi. Similarly for Cq.
Setting ai ≡ e−αi and bj ≡ e−βj , we obtain the Sinkhorn algorithm [68]:

Sinkhorn Algorithm

Input : C, p, q, ε
Output :π

1 initialize b(0) = 1, ξij = e−Cij/ε;
2 while accuracy do
3 k ← k + 1 ;

4 a
(k)
i ←

pi∑
j b

(k−1)
j ξij

, ∀i ;

5 b
(k)
j ←

qj∑
i a

(k)
i ξij

, ∀j ;

6 end

7 πij ← ξija
(k)
i b

(k)
j , ∀(i, j)

Theorem 1 (From [69]). Assume m = n, fix τ > 0, and choose γ =
4 logn
τ , Sinkhorn algorithm computes a τ–approximate solution of (3.2) in

O(n2 log nτ−3) operations.

Since the problem size is n2, Sinkhorn algorithm converges almost lin-
early for any fixed τ (less the logarithmic term). This is to be contrasted
with the almost quadratic convergence of network simplex O(n4 log n). Fur-
ther, Sinkhorn requires only matrix-vector multiplications, hence it admits
highly efficient GPU implementations. More information on computational
transport can be found in [28].
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(a) LP, 100× 25 (b) Reg OT, 100× 25 (c) Reg OT, 1k × 25

Figure 3.3: Device association to RRHs.

Devices RRHs LP-glpk
Sinkhorn

τ = 1%
Sinkhorn

τ = 0.1%

10 25 6 2.27 5.02

50 25 88 4.09 8.95

100 25 315 8.09 9.7

500 25 8130 10.1 31.6

1000 25 out of memory 27 37.9

5000 25 out of memory 135 204

10000 25 out of memory 434 568

Table 3.1: Runtime (msec) comparison Sinkhorn vs LP-glpk.

3.3.3 Sinkhorn vs LP

We implemented Sinkhorn in python and compared its performance to the
embedded glpk solver [70], known to be one of the fastest LP solvers. Table
3.1 provides some indicative numerical results to highlight the advantageous
performance of Sinkhorn over a standard LP solver, namely: (i) it is faster,
(ii) scales better, and (iii) doesn’t run out of memory.

In the experiments, we stopped Sinkhorn when the total absolute residual
becomes less than 1% or 0.1%. The runtimes provided are averages over
7 runs, computed with the timeit package. Notably, we can compute a
1.001-optimal transport 25× 10k in half a second.

Fig. 3.3(a)-3.3(b) showcase associations obtained by Sinkhorn and LP-
glpk, where we can verify the fidelity of Sinkhorn to the optimal LP solution.
Fig. 3.3(c) showcases a very large instance that the LP solver cannot address.
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3.4 OT as a Heuristic Load Balancer

In this section we explain how one can use OT algorithms to obtain a feasible
device association rule. An instance of the OT problem is defined by the
triplet (C,p, q), i.e., the costs and the left-right marginals. In order to
produce a load balancer based on OT, we must provide appropriate values
for these parameters. We propose the following choices:

• For C: we propose to use (i) the Euclidean distance between the
location xi of device i and the location xj of RRH j, i.e., Cij = ‖xi−xj‖,
or (ii) the incurred load per unit traffic Cij = 1/µRij .

• For p: the input traffic, pi = λi.
• For q: we propose to use (i) equal RRH traffic qj =

∑
i λi/n, (where n

is the number of RRHs) or (ii) RRH traffic from the maxSINR rule,
Λj =

∑
i π

SINR
ij λi.

We provide some explanations about the choices. First, the left marginal
p ensures that the entire traffic of each devices is split among RRHs. To
choose q wisely, we should know the RRH traffic at optimality, however
this information is often not accessible. Instead, it is easy to obtain the
maxSINR rule. Last, Euclidean cost favors nearby RRHs, while normalized
load connects devices to the RRHs with minimum incurred load, taking into
account interference and path loss. We have the following interesting result:

Lemma 1. Consider the maxSINR rule denoted with πSINRij , and the in-

curred traffic Λj =
∑

i π
SINR
ij λi, and suppose it is feasible, i.e., ρj(π

SINR) <
1, ∀j. Also, consider a (C,p, q) instance of the OT problem, such that (i)
Cij = 1/µRij, (ii) pi = λi, (iii) qj = Λj, with solution x∗.

Then, the association πij
.
= x∗ij/λi minimizes the total load

∑
j ρj(π).

Proof. First, note that whenever the maxSINR rule πSINRij is feasible, it
minimizes the total load. This is easy to check by observing that the total
load contribution of each device λi

∑
j π

SINR
ij /µRij is minimized under the

maxSINR rule. Then the total load minimization follows by summing up
over devices.

The OT solution of the lemma is defined as follows:

x∗ ∈ arg min
xij≥0

∑
ij

xij
µRij

(3.6)

s.t.
∑
j

xij = λi, i = 1, . . . ,m,

∑
i

xij = Λj , j = 1 . . . , n.

Note that λiπ
SINR
ij satisfies all the constraints of (3.6), and thus it is a

feasible solution of (3.6). Further, since πSINRij minimizes the total load, it
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Figure 3.4: Relative completion time (uniform traffic)

must be an optimal solution of (3.6). Therefore:

∑
ij

π∗ij
λi
µRij

=
∑
ij

πSINRij

λi
µRij

= min
π

∑
j

ρj(π),

and the lemma follows.

The lemma states that given the RRH traffic under the maxSINR rule
Λj , we may use OT to retrieve the association variables that minimize the
total load, a very useful property. More broadly, OT can be used to find the
associations that produce certain RRH traffic patterns.

Choosing the marginals like in Lemma 1 (or with a more elaborate scheme
as we show below) will work better in practice, however, the choices given
at the start of the section can also be useful: they are simpler to compute
and can be sufficient when the spatial traffic is uniform. To showcase this
property, we experiment with a scenario with random but uniform traffic.
In a C-RAN cell with 25 RRHs we scale the number of devices from 100
to 5000. We compare the average completion time under 4 policies, (a)
maxSINR, (b) OT with Euclidean costs and equal RRH traffic, (c) OT with
load costs and equal RRH traffic, and (d) OT with load costs and RRH
traffic equal to Λj (same as Lemma 1). The values shown in Fig. 3.4 are the
ratios of average completion time between the algorithm and the maxSINR.
We observe that algorithm (d) performs the same with maxSINR (a) as
predicted by the Lemma. The other two algorithms perform similarly. In
particular, for a small number of devices, we see that selecting qj =

∑
i λi/n

results in performance deterioration (up to 4 times worse), due to the random
locations of the devices. However, as the number of devices increases, the
traffic becomes more uniform and the choice qj =

∑
i λi/n becomes as good

as the maxSINR solution.
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3.5 Learning RRH Load

In this section we consider non-uniform traffic, as for example in figures
3.5(a)-3.5(b). When the traffic is non-uniform, both the maxSINR rule and
our OT heuristics based on equalizing traffic at RRH will perform badly.
Instead, we must discover the correct traffic balancing at RRHs which will
provide the average completion time optimization.

We propose an iterative algorithm, where at iteration k Sinkhorn algo-
rithm is used with q(k) to obtain an association which results in a specific
RRH loading ρj(π

(k)). According to this loading, a new marginal q(k+1) is
computed, and the process repeats until an accuracy criterion is satisfied.
More specifically, our iterative algorithm picks the RRH with the highest load
(step 5) and then decreases its aggregate traffic by a fixed term δ, dispersing
the traffic to all other RRHs (step 6). We mention that increasing the traffic
in a remote RRH will result in a large number of association changes in
the Sinkhorn algorithm which will ensure that the steered traffic maintains
minimum transportation cost. We provide the algorithm flow here.

Adaptive Sinkhorn Algorithm

Input : Cij = 1/µRij , p = λ, ε
Output :π

1 initialize qj =
∑

i λi/n;
2 while accuracy do
3 k + + ;

4 π(k+1) ← Sinkhorn(C,p, q(k), ε) ;

5 j∗ ∈ arg max{ρj(π(k+1))} ;

6 q
(k+1)
j =

{
q

(k)
j − δ j = j∗

q
(k)
j + δ/(n− 1) j 6= j∗

;

7 end

8 π ← π(k+1)

Figures 3.5(a)-3.5(c) show the results. First, comparing the two associ-
ation rules we see that although the maxSINR rule associates the devices
according to interference and not traffic, our adaptive Sinkhorn algorithm
considers both, and converges to an association where some cell edge devices
are steered to the neighboring RRHs. This is done to alleviate the load of
the bottom-left RRH. Indeed, figure 3.5(c) shows the resulting loads of the 4
RRH. Our approach successfully equalizes the loads of the different RRH,
while the maxSINR rule fails to do so. Ultimately, our scheme achieves an
average completion time 6.3msec while the maxSINR rule 24msec, which
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(a) maxSINR (b) Adaptive OT

(c) Load (non-uniform traffic)

Figure 3.5: Comparison of maxSINR and Optimal Transport.
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corresponds to almost 4 times improvement.

3.6 Conclusion

In this chapter, we studied the device association in C-RAN, using the
Sinkhorn algorithm inspired by the theory of Optimal Transport. This
algorithm has been previously used in large-scale problems in imaging and
machine learning, and here it is applied to provide a heuristic load balancer
in C-RAN systems. First, it is shown that a very simple version of this
algorithm is capable of providing low delay associations when the traffic is
uniformly spread in the covered geographical area. In case of non-uniform
traffic, we extend the algorithm to an iterative version which progressively
improves the load balancing. We show that our scheme scales to very large
problem instances, and has the potential to provide great improvements over
the simple baseline approach.

We note that, this chapter’s method relies on a good estimate of the
current traffic and into the ability of the network to compute and update
the network configuration in real time. If this decision update process is
slower than the change of status in the system (in the meantime new users
appear, traffic volume changes, etc), the new configurations will be stale
and suboptimal and will fail the QoS guarantees. In the following, we will
present a pro-active optimization method, that will not require knowledge
of the demand and real time configurations, but will extract the demand
pattern and compute robust associations based on collected data.
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Chapter 4

Data-Driven User
Association based on Robust
Optimization

4.1 Introduction

The explosion of wireless traffic is driving network operators to deploy
heterogeneous sites and constantly increase base station density, in an effort
to improve the spectrum reuse [6, 10]. This trend is expected to culminate
with the emerging Ultra Dense Networks (UDNs) in the 5G and beyond era,
where a user located in an urban area will be surrounded by hundreds of sites,
while the available cells may be more than the number of active users [5–7].
Nevertheless, providing a copious amount of resources is only the first step.
A second equally important step is to develop efficient resource management
mechanisms in order to balance base station loads, under the high spatio-
temporal traffic variability resulting from the small number of users per
base station [9]. In the demanding environment of dense 5G networks, user
association (choosing a base station for each user among a large number of
candidates) and traffic steering (serving a traffic flow from the right base
station, carrier, etc.) must be surgically engineered for proper exploitation
of the increased density [9].

Including the distributed method presented in chapter 2, a number of
recent works formalize the QoS user association problem and attempt to find
an optimal solution, [9,17–24]. Nevertheless, these frameworks are ineffective
for our setup for two main reasons:

• Spatio-temporal variability : Due to smaller user/site ratios, the traffic
demand will vary significantly more over time and space, giving rise to
unpredictable traffic spikes.
• Increased QoS requirements: With the rise of vertical applications, 5G

networks are expected to support slices that provide guaranteed Quality of
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Service (QoS). Unexpected traffic spikes combined with dynamic association
decisions reacting to them, might lead the system to oscillations, instability,
and violation of QoS requirements.

Towards addressing these issues, this chapter proposes a radically different
approach based on two main components:

1. Data-driven user association maps pre-calculated for each day and time
period (e.g. per hour), based on estimates of average traffic demand for that
time, day, and location; these maps proactively associate users/flows from
certain locations to certain base stations, rather than constantly oscillating
association decisions due to traffic spikes.

2. A robust optimization framework for user association that takes into
account the prediction error and protects system QoS from traffic spikes.

To our best knowledge, this is the first work to propose such robust pre-
calculated user association maps for dense heterogeneous networks. Moreover,
our work is the first to explore an interesting new user association tradeoff
between improving network performance vs. facilitating traffic prediction.
These two goals are not always aligned, as it will become clear in our analysis.

4.1.1 Related Work and our Contribution

Selecting the association rule vector π, that assigns each new user to a
base station, can be formulated as an optimization problem that targets to
maximize a utility function of the resulting base station loads [17–24,48].

Such optimization problems are usually difficult to solve, due to the
coupling of the user association decisions; adding a user alters the base
station load and affects the performance for all the users connected to it. In
the context of UDNs, the size of the problem grows (100s of base stations in
small areas with many locations or users to be associated) and mounts an
extra difficulty. Complex optimization approaches fall short, since practical
systems require fast and lightweight solutions.

The integral user association problem is a combinatorial problem [24], but
in [19] the authors show that the optimal solution of their convex relaxation
problem is in fact integral, enabling in this way optimization of a general
class of objective functions. Later, [21] introduced backhaul constraints
in the model, while in chapter 2 and [18] we introduced quality of service
guarantees for premium users. A dynamic biasing scheme is proposed in [22]
to load balance heterogeneous wireless cells. In chapter 3 and [17], we
developed a scalable approximate algorithm by using optimal transport
theory to achieve lower user latency. Most of the prior work, including the
algorithms mentioned, cannot handle the fast evolving traffic that follows
human activity in a densely populated area. The goal of the presented
solution is to fill this gap in the literature. The framework introduced here,
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instead of monitoring and trying to follow the rapidly-changing status of the
network, takes decisions based on the predicted traffic demand based on the
data.

A modern trend in networking problems is to tap into the power of
available data to deal with uncertainty [71]. For wireless traffic, many
prior works identify structure, like the diurnal pattern during the day or
the similarity of traffic during the weekdays and weekends/holidays [13,14].
However, up to now it is far from clear how to best utilize the data and the
observed patterns for improving the performance of user association. Our
contributions in this chapter are the following:

• We propose the idea of precomputing maps, that can be used later to
determine user association in real-time.
• To study the map performance we propose an analytical data-driven frame-

work for user association in the context of dense wireless networks with
unpredictable traffic spikes. This leads us to the formulation of the Robust
User Association Map (RUAM) problem.
• We then propose the Generalized Robust Map Algorithm (GRMA) that

provably produces optimal robust maps, for a large class of objective
functions. Moreover, we provide methods for creating approximate robust
maps to enable and accelerate the gradient computation when the objective
function is challenging (e.g. α-optimal, or α-fair with α > 2).
• Further, we demonstrate the efficiency of our framework on real telecom

traces [33], compared to a popular user association algorithm [19]. Our
simulations show that we achieve more stability (up to 25% improvement)
and decreased average latency, especially in periods of high traffic activity.
Our framework adapts to design choices, balancing trade-offs in stability
and cost, by tuning the Service Layer Agreement (SLA) guarantees.
• Finally, we discuss advanced time series forecasting methods. Using these

methods on the data [33], we validate the gaussian estimator error model
and improve the quality of the map produced by GRMA; decreasing the
cost gap compared to an optimal map down to 5%.

4.2 Architecture

4.2.1 System Model

We consider a region L ⊆ R2 with ultra dense cellular coverage from a set
of B (possibly heterogeneous) base stations. This region we envision it as
a 2D representation of a dense urban environment with fixed base station
positions. We note that, in the following analysis we focus on downlink traffic
and association, assuming that downlink and uplink can be independently
optimized (5G, [21]), we can use our framework on uplink data to calculate
the uplink robust association maps.

Spatial traffic. Users at location x ∈ L, generate flow requests according
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to an inhomogeneous Poisson point process with spatial intensity λ(x) and
have independently and generically distributed file sizes with mean 1

µ .

Service Rate. The flows generated at a point x ∈ L that are associated
to a base station i ∈ B are served with rate Ci(x). In our model, Ci(x) is a
location-dependent metric that depicts the wireless signal degradation due
to distance of x from the base station i ∈ B.

Ci(x) = W log(1 + SINRi(x)),

where W is the available frequency bandwidth, and SINRi(x) is given by:

SINRi(x) =
PiGi(x)∑

j 6=i PjGj(x) +N0
.

Pi denotes the transmission power of base station i, N0 denotes noise power
and Gi(x) is the path loss between the antenna and the UE. This model has
been shown to accurately capture the average behavior of wireless systems
including shadowing, interference, and path-loss [17–19,21,22,49].

Association Rules. Let πi(x) ∈ [0, 1] be the association rules, indicating
the fraction of traffic of location x associated to base station i. To associate
the total traffic of location x we enforce the constraint

∑
i∈B πi(x) = 1.

The association variables πi(x), ∀x ∈ L will be the means to control the
performance of the system.

Base Station Load. The load ρi is the fraction of time base station
i is busy. The load contribution from a specific location depends on the
association rules, and it is equal to λ(x)

µCi(x)πi(x). Therefore, considering the
area L:

ρi =

∫
L

λ(x)

µCi(x)
πi(x)dx. (4.1)

The vector of base station loads ρ = (ρi) is an important performance
metric of the system. For example, [44] suggests that assuming a temporal
fair scheduler (e.g. round robin, proportional fair) the dynamics of the base
station queues can be accurately described by an M/G/1 processor sharing
system, where the expected number of active users at base station i is given
by E[Ni] = ρi

1−ρi . This is tightly related with average response time for

a flow in base station i, which from Little’s law is E[Ti] = 1
λi

ρi
1−ρi , where

λi =
∫
L λ(x)πi(x)dx, and with the average delay experienced at a location

x ∈ L: E[T |X = x] =
∑

i∈B
1

µCi(x)(1−ρi)πi(x), which is derived from the flow

throughput equation in [44].

In the following sections we will focus on how to choose association rules
πi(x),∀x ∈ L to achieve specific vectors ρ that correspond to important
network-wide objectives, e.g. total throughput, average queuing delay, or
balancing base station loads.
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Figure 4.1: Representation of an association map.

Table 4.1: Notation Description Table

Notation Description

Ci(x) Service rate of base station i to location x

λ̂(x) Actual traffic value λ̂(x) = λ̄(x) +Nn(x)

ρ̂i(πi) Actual base station i load, ρ̂i = ρi + Yi
Yi Load prediction error Yi ∼ N(0, S2

i )

πi(x) Association probability of location x to base station i

S2
i (πi) Actual load error variance

ci Actual load threshold for base station i

εi Allowed probability of overloading for base station i

φ(π) Convex seperable objective function

Φ(π) Partially relaxed Lagrangian function

γi Lagrangian multiplier for base station i

4.2.2 User Association Maps

In this chapter we are interested in precalculated association rules π, which
we call user association maps. When a request is generated at a given
location, the map probabilistically determines the base station that will serve
the user. A feasible map π for given traffic λ(x) must (a) associate the entire
traffic of every location x and (b) ensure through Eq.(4.1) that the base
station loads are limited to < 1 (since ρi > 1 means that base station i is
unstable).

Definition 1 (Feasible user association map).

F =

{
π ∈ [0, 1]L×B

∣∣∣∣ ρi ≤ 1− ε, ∀i ∈ B,∑
i∈B πi(x) = 1, ∀x ∈ L.

}
As given in Def.1, F includes only the most generic and necessary con-

straints. Our model can be extended to include application-specific con-
straints. For example, in the context of UDNs user experience can be
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improved in crowded locations by further restricting the load of certain base
stations, e.g., ensuring ρi < ci < 1 for some i, as in [18]; this constraint is
handled in this chapter. In the context of network slicing, it is useful to
define multiple classes of users and design a different map per class such
that a user can enjoy a slice-specific QoS level, similar to [18]. For clarity of
exposition, this extension is left for future work.

Definition 2 (Objective Function). φ(π) is a generic differentiable and
seperable convex function.

Problem 1 (P1: Generic User Association Problem).

minimize
π∈F

φ(π).

We give here some example objective functions, choosing: (i) φ(π) =∑
i ρi maximizes the total system throughput, (ii) φ(π) =

∑
i ρ

2
i balances

proportionally the base station loads [72], (iii) φ(π) =
∑

i ρ
α
i , α→∞ makes

the base station loads as equal as possible. In fact, it can be shown that φ(π)
as given in Definition 2 can be chosen to yield as optimal solution any vector
π in the feasible set F , and therefore we do not need more generic functions.

Definition 3 (Optimal User Association Map). A solution of P1 π? is called
the optimal user association map.

Observe that the optimal solution of P1 strongly depends on knowing the
demand λ(x) (through Eq.(4.1)) at a fine spatial granularity x. A number
of related works take these as known assuming that they can be estimated
from data, cf. [19] and followups. With accurate knowledge of demand, the
average number of competing for resources at base station i can be expressed
as E[Ni] = ρi

1−ρi , thus setting a threshold ci such that rhoi ≤ ci < 1 also
ensures a bound on the average active flows. Additionally, as explained
in [18], this can be used to tune a bound on average delay experienced at
that station.

In practice, due to the natural demand fluctuations (especially related to
non-stationary phenomena) there will always be discrepancies between actual
and estimated demand, even with the best estimators. In the context of UDNs,
this poses a great threat to user association, as the discrepancies are expected
to be larger. To this end, we introduce next our proposed estimators, and
then describe how to rigorously treat these unpredicted discrepancies and
avoid violating SLAs.

4.2.3 Statistical Methods for Mobile Traffic Prediction

Mobile traffic exhibits strong diurnal patterns, which make it predictable;
the interested reader is referred to [14], [13] and [15] for extensive analyses.
We use a publicly available dataset collected in the Milano area, analyzed
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Figure 4.2: Traffic Prediction based on Eq.(4.3) for 3 different areas of Milano
from Monday 2/12/2013 to Friday 6/12/2013 and comparison with the actual
traffic (a) Duomo Area (b) Navigli District (c) Bocconi University.

in [13], wherein it has been observed that the daily pattern is stronger when
considering each day of the week and each location on the Milano grid
separately. Motivated by this and simplicity for exposition, we introduce the
following traffic predictor.

Definition 4 (Traffic Predictor). Let Xt,d
i (x) denote the measured intensity

(#of arrivals/h) at location x, hour t, and day d of the week, i weeks before
the current. The predicted spatial intensity is based on the data of the last n
weeks:

λ̄t,d(x) =
1

n

n∑
i=1

Xt,d
i (x). (4.2)

Hereinafter, we focus on a single hour/day slot of the week and drop the
notation t, d. The actual value of traffic intensity is modeled to be equal to
the predicted one λ̄(x), plus a zero-mean Gaussian prediction error:

λ̂(x) = λ̄(x) +Nn(x), (4.3)
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where Nn(x) ∼ N(0, σ2
n(x)), and σ2

n(x) is the sample variance, which is given
by

σ2
n(x) =

1

n

n∑
i=1

(Xi(x)− λ̄(x))2.

In Eq.(4.3) we have implicitly assumed that the observed data of a specific
hour of a week are drawn from the same distribution across different weeks,
in which case Eq.(4.3) follows from Eq.(4.2) and the central limit theorem.

In Fig.4.2 we evaluate our simple predictor on the Milano dataset [33].
We have trained the predictor for the whole November and used it to predict
the first week of December (2-6/12/2013). We see that our model predicts
accurately the traffic in most situations for three areas with heterogeneous
behavior: 1) the Duomo, with tourist activity 2) the Navigli District, with
nightlife activity and 3) the Bocconi University, with scholar activity. Ad-
vanced techniques like the ARIMA model [34] and LSTM networks [35] are
explored in Sect.4.6.

Although the described traffic prediction is fairly accurate, there are
spikes in the traffic which are non-stationary and cannot be predicted based
on past data, for example see in Fig.4.2 at the peak hour on Friday at Duomo
(109 hour). If we design the association map disregarding the prediction
error, these unpredictable spikes can lead to constraint violations. The next
lemma characterizes the behavior of the base station load as a function of
the prediction error.

Lemma 1. Fix (t, d), and let the hourly spatial intensity of traffic λ̂(x) be
related to the predicted one as explained in Eq.(4.3). Fix the user association
vector π. The actual load ρ̂i of base station i is related to the estimated one
ρi as follows:

ρ̂i = ρi(πi) + Yi(πi), (4.4)

where Yi – the base station load prediction error – is zero mean Gaussian
random variable with variance:

S2
i (πi) =

∫
L

π2
i (x)

µ2C2
i (x)

σ2
n(x)dx. (4.5)

Proof. Analytically, starting from the estimate of λ(x):

λ̂n(x) = λ(x) +Nn(x)

λ̂n(x)

µCi(x)
=

λ(x)

µCi(x)
+
Nn(x)

µCi(x)∫
x∈L

λ̂n(x)

µCi(x)
πi(x)dx = ρi +

∫
x∈L

Nn(x)

µCi(x)
πi(x)dx

ρ̂i = ρi + Yi.
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The aggregate noise that is generated from all the locations x ∈ L as-
sociated with a base station i is described by the random variable: Yi =∫
x∈L

Nn(x)
µCi(x)πi(x)dx and Yi ∼ N(0,

∫
L

π2
i (x)

µ2C2
i (x)

σ2
n(x)dx), sinceNn(x) ∼ N(0, σ2

n(x)).

We emphasize that the variance of the error of the actual load S2
i (πi)

depends on the association rule π, Eq.(4.5). Intuitively, the less actual traffic
we associate to a base station, the less confident we are that the actual load
will match the predicted load, and thus the more conservative we need to be
to avoid the violation of its load constraint. This leads us to an interesting
observation: to optimize user association maps under uncertainty we must
select the rules π considering jointly their impact on the base station load
objective and the prediction error. Next, we introduce the concept of RUAM
which accurately captures this tradeoff.

4.2.4 Robust User Association Maps

In order to optimize user association maps under uncertainty, we will re-
formulate P1 using the theory of robust optimization [73], [31]. In terms
of objective function, we seek to optimize EY [φ (ρ̂(π))], where φ is the
objective function of Def.2, and the expectation is taken with respect to the
Gaussian prediction error. In terms of constraints, we require that the actual
BS load does not exceed a tunable parameter ci with a selected probability
εi:

P(ρ̂i ≥ ci) ≤ εi. (4.6)

Therefore, the robust feasibility set Fr contains association maps π, such
that the predicted base station load ρ(π) and the prediction error variance
S(π) satisfy certain conditions as explained below. For the remainder
of the text we simplify notation from EY [φ (ρ̂(π))] to E [φ(π)], with the
understanding that the expected cost is taken with respect to the distribution
of the prediction error Y , which is controlled by π.

Problem 2 (P2: Robust User Association Problem).

minimize
π∈Fr

E [φ(π)] , (4.7)

where Fr:

Fr =

{
π ∈ [0, 1]L×B

∣∣∣∣ P(ρ̂i(πi)) > ci) ≤ εi, ∀i ∈ B,∑
i∈B πi(x) = 1, ∀x ∈ L.

}
(4.8)

Definition 5 (Robust User Association Map). The solution of P2 π? is
called the robust user association map.
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The robust user association map is our novel proposition in this chapter.
Using past data, we precompute robust maps that will be used at runtime on
traffic to determine the association. The maps are easy to use, while at the
same time they provide minimum expected cost, and allow us to control the
probability of constraint violation. Hence, it is a disciplined and practical
approach to optimize the system using data.

Solving P2 is challenging. There is a great number of optimization
variables, increasing with the quantization accuracy for area L. Also, in its
current form, Eq.(4.7) is a stochastic program. In the next section we will
present an optimal generalized algorithm that overcomes these challenges.

4.3 Generalized Robust Map Algorithm

We present GRMA: a generalized algorithm for solving the Robust User
Association Problem P2 when φ(π) is a differentiable and separable convex
objective function. First, we transform the problem into a convex program
by replacing the stochastic constraint Eq.(4.6) with an equivalent convex
constraint. In the following, we relax the new constraint; the feasibility set
of the relaxed problem is a simplex and we can solve it with an efficient
projected gradient algorithm. Finally we present the GRMA algorithm,
which is based on a dual subgradient method with averaging on the primal
sequence π(k) and show that it converges to the optimal robust map.

4.3.1 Convex Formulation

To make P2 a convex program, we will replace the stochastic constraint
P(ρ̂i ≥ ci) ≤ εi in Fr with an equivalent convex constraint.

Lemma 2. The inequality P(ρ̂i ≥ ci) ≤ εi is equivalent to ρi + αiSi ≤ ci,
when ρ̂i = ρi + Yi is taken according to Eq.(4.4), where Yi is normally
distributed with zero mean and variance S2

i (πi) and αi = Q−1(εi), where Q(·)
is the tail probability of the standard normal distribution.

Proof. Starting by the probabilistic constraint we have:

P(ρ̂i ≥ ci) ≤ εi ⇔ P(Yi ≥ ci − ρi) ≤ εi,

Yi is normally distributed with Yi ∼ N(0, S2
i ). If Q is the Q-function (tail

probability of the standard normal distribution), we can rewrite the above
equation as:

Q(
ci − ρi
Si

) ≤ εi.

The inequality is satisfied for all ci−ρi
Si

that:

ci − ρi
Si

≥ Q−1(εi)⇔ ρi +Q−1(εi)Si ≤ ci.
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From Q−1(εi) it is evident that εi is a design parameter that affects the
feasibility region Fr. Small values of εi protect from violations, but can lead
to inefficient association vectors. Now, we can define the new set Fc and
prove it is convex.

Definition 6 (Convex Feasibility Set Fc).

Fc =

{
π ∈ [0, 1]L×B

∣∣∣∣ ρi + αiSi ≤ ci, ∀i ∈ B,∑
i∈B πi(x) = 1, ∀x ∈ L.

}
(4.9)

Lemma 3. The constraint ρi + αSi ≤ ci is convex.

Proof. Consider two vectors π1,π2 ∈ Fc. We first show that Si(θπ1 + (1−
θ)π2) ≤ θSi(π1) + (1 − θ)Si(π2), where θ ∈ [0, 1]. Denote w(x) = σn(x)

µCi(x) .
We begin by:

S2
i (θπ1 + (1− θ)π2) =

∫
w2(x)(θπ1(x) + (1− θ)π2(x))2dx

= S2
i (θπ1) + S2

i ((1− θ)π2) + 2θ(1− θ)
∫
w2(x)π1(x)π2(x)dx

while

(Si(θπ1) + Si((1− θ)π2))2 =S2
i (θπ1) + S2

i ((1− θ)π2)

+ 2Si(θπ1)Si((1− θ)π2).

From the Cauchy-Swartz1 inequality we have that:

2θ(1− θ)
∫
w2(x)π1(x)π2(x)dx ≤ 2Si(θπ1)Si((1− θ)π2),

hence:

S2
i (θπ1 + (1− θ)π2) ≤ (Si(θπ1) + Si((1− θ)π2))2 ⇔
Si(θπ1 + (1− θ)π2) ≤ Si(θπ1) + Si((1− θ)π2)⇔
Si(θπ1 + (1− θ)π2) ≤ θSi(π1) + (1− θ)Si(π2).

We have proven that Si is convex, by inspection ρi is also convex, and since
the sum of positive weighted convex terms is also convex, it follows that the
constraint is convex.

The set Fc is convex because all the constraints in Eq.(4.9) are convex.
Based on Lemmas 2 and 3, and the fact that the expectation of a convex
function of a random variable is also convex, we can now recast P2 as a
convex program:

1Define f(x) = w(x)π1(x) and g(x) = w(x)π2(x), then we have that |
∫
f(x)g(x)dx|2 ≤∫

|f(x)|2dx
∫
|g(x)|2dx
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Problem 3 (P3: Convex Robust User Association Problem).

minimize
π∈Fc

E [φ(π)] . (4.10)

Hence, in the next subsections we focus on resolving the issue of high
dimension optimization with the coupled constraints.

4.3.2 Partial Lagrangian Relaxation

The feasiblity set Fc is convex, but the constraints couple locations and base
stations for every association vector and make the implementation of an
efficient algorithm challenging. To efficiently solve this, we propose to relax
the load constraint. The remaining feasibility set after the relaxation is the
simplex F ′ = {π ∈ [0, 1]L×B|

∑
i∈B πi(x) = 1}, and there is rich literature on

how to apply projected gradient algorithms in simplices, cf. [74], [75]. Our
idea here is to keep as many constraints as possible as long as we know how to
project infeasible solutions on them, while we relax the rest. Notice that if we
would relax all the constraints, we would get an easy unconstrained convex
problem, but the coordination of a large number of Lagrangian multipliers
would prohibitively delay the solution. Let us consider the following partial
dual maximization, which will be instrumental in solving our problem:

Problem 4 (P4: Partial Dual Robust Problem).

maximize
γ≥0

{
min
π∈F ′

{Φ(π,γ}
}
, (4.11)

where the partially relaxed Lagrangian is:

Φ(π,γ) = E[φ(π)] +
∑
i∈B

γi(ρi + αiSi − ci). (4.12)

In Eq.(4.12) the vector γ contains the Lagrangian multipliers. The
multipliers penalize association maps which violate the load constraint with
extra cost (γi ≥ 0), which increases linearly the more overloaded a base
station gets. Henceforth we assume that the Slater’s Condition holds, which
we expect to be the case for all practical purposes in our problem; therefore,
the optimal solution of P4 has equal cost with the optimal primal for the P3
(Strong duality [52]).

4.3.3 Projected Gradient Descent

In this subsection we design an algorithm to efficiently solve the inner
minimization subproblem in Eq.(4.11). For a given γ?, we have to find the
map that minimizes the cost:

minimize
π∈F ′

{Φ(π,γ?)} .

52



CHAPTER 4. DATA-DRIVEN USER ASSOCIATION BASED ON
ROBUST OPTIMIZATION

We design the Projected Gradient Descent (PGD) algorithm to solve this
problem motivated by the fact that gradient algorithms have been shown
in the literature to have independent convergence rate from the dimension
(number of variables) of the problem [76, Ch. 3]. Also, the projection onto
F ′ (simplex) can be solved exactly and efficiently. The algorithm is:

Projected Gradient Descent (PGD) on F ′

Initialize: π(0) (can be infeasible), γ?.
Iterate: over n, until convergence

y(n+1) = π(n) − η(n)∇πΦ(π(n),γ?) (4.13)
π(n+1) = Πsplx[y(n+1)] (4.14)

Where Πsplx is the Euclidean projection on F ′:
Sort y(n+1) in descending order (y1 ≥ y2 ≥ . . . ≥ y|B|)
Select m = argmax

j∈B
{j | yj + 1

j (1−
∑j

i=1 yi) > 0}

π
(n+1)
i =

[
yi + 1

m(1−
∑m

i=1 yi)
]+
, i = 1, . . . , |B|

Eq.(4.13) implements the gradient update of the user association π(n) one
step along the direction of the gradient with fixed step size η(n). Eq.(4.14) is
the Euclidean projection of y(n+1) onto the set F ′. Πsplx, as described here,
is shown in [75] to give an exact solution to the projection in O(|B| log |B|).

Proposition 1 (Convergence Rate of PGD). Let π(n) be the projected output
of PGD algorithm at iteration n, and π? be an optimal solution of (4.3.3),
it is shown in [76, Ch. 3.2]:

||π(n) − π?|| = O(1/n).

4.3.4 Dual Subgradient Method

We return to the task of solving P4. The objective of this problem D(γ) =
min
π∈F ′

{Φ(π,γ)} is not differentiable everywhere, hence we will resort to a

subgradient method [53], [77] for updating the value of the multipliers.

Proposition 2 (Subgradient Vector). The vector:

g(k) = ρ(π(k)) +α ◦ S(π(k))− c,

where ◦ is the hadamard (entrywise) product, and

π(k) ∈ argmin
π∈F ′

{
E[φ(π)] +

∑
i∈B

γ
(k)
i (ρi + αiSi − ci)

}
, (4.15)

satisfies ||D(γ(k+1)) − D(γ(k))|| ≤ g(k)||γ(k+1) − γ(k)|| as shown in [53,
Ch. 6.1], hence is a subgradient of D(γ) at γ(k).
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We now show that the norm of the subgradients is bounded; a necessary
property for the convergence of the method.

Lemma 4 (Bounds on the Subgradient). The subgradient sequence {g(k)}
is bounded:

||g(k)|| < L,

where

L =

√√√√∑
i∈B

(∫
L

λ(x)

µCi(x)
dx+ αi

(∫
L

σ2
n(x)

µ2Ci(x)2
dx

) 1
2

)2

. (4.16)

Proof. The set F ′ is a simplex (compact). The functions gi, i ∈ B are convex
over Rn, hence they are continuous over Rn. The norm of the subgradients
is upper bounded by max

π∈F ′
||g(π)||. This is smaller than assigning all the

locations x ∈ L to all base stations, hence the norm of the subgradients is
bounded by the easy to calculate Eq.(4.16).

The subgradient method updates the multipliers γ(k) by making a step
along the direction of the subgradient vector:

γ(k+1) = [γ(k) + s(k)g(k)]+. (4.17)

For dual problems with a unique solution, the above algorithm converges
to the unique optimal dual vector γ?, and with this we can calculate the
optimal robust map π? by a single run of PGD algorithm. However, P4
is not strictly convex, and therefore its dual may have multiple solutions.
The subgradient method may converge to a solution (π,γ) which does not
satisfy complementary slackness and hence π is not feasible in P3 (it will
violate the load constraint). To alleviate this issue we will use the technique
of averaging: the idea is to output as a solution the average of the primal
iterates π(k) (feasible or not). We will show that the sequence of averages
π̄(k) converges to the optimal solution of P3.

Generalized Robust Map Algorithm (GRMA)

Initialize: π(0) (e.g. MaxSINR, can be infeasible), γ(0).
Iterate: over k, until convergence:

γ(k+1) = [γ(k) + s(k)g(k)]+

π(k+1) ← PGD(γ(k+1))
Keep the running average of the π(k) (Eq.(4.15)):
π̄(k) = 1

k

∑k−1
i=0 π

(i)
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Theorem 1 (Convergence to Primal Optimal). The average of the primal
iterates π̄(k) = 1

k

∑k−1
i=0 π

(i), where

π(i) ∈ argmin
π∈F ′

E[φ(π)] +
∑
j∈B

γ
(i)
j (ρj + αjSj − cj)

 , (4.18)

asymptotically converges to (or approximates) the optimal robust association
map π?, i.e.:

lim
k→∞

||g(π̄(k))+|| → 0 and lim
k→∞

E[φ(π̄(k))] = E[φ(π?)].

Proof. We use a constant step size, hence s(k) = s. We also denote γ? as the
optimal multipliers and

d? = max
γ≥0

{
min
π∈F ′

{Φ(π,γ}
}

is the optimal value of the dual problem. First we prove that the load
constraint violation for the vector π̄(k) is upper bounded as follows:

||g(π̄(k))+|| ≤ ||γ
(k)||
ks

. (4.19)

By updating the dual as described in Eq.(4.17), we have:

sg(π(k)) ≤ γ(k+1) − γ(k), ∀k ≥ 0.

Summing telescopically for i = 0, 1, . . . , k − 1 we get:

k−1∑
i=0

sg(π(i)) ≤ γ(k) − γ(0) ≤ γ(k), ∀k ≥ 1. (4.20)

Also, since g(π̄(k)) is convex, we have that:

g(π̄(k)) = g(
1

k

k−1∑
i=0

πi) ≤ 1

k

k−1∑
i=0

g(π(i))

=
1

ks

k−1∑
i=0

sg(π(i))
Eq.(4.20)

≤ γ(k)

ks
.

Taking norms for the active constraints (g(π̄(k)) ≥ 0) gives Eq.(4.19). Since
the Lagrangian multipliers are bounded [77, Lem.3], the first result follows.
Next, we will prove that the objective function for the vector π̄(k) is upper
bounded by:

E[φ(π̄(k))] ≤ d? +
||γ(0)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2. (4.21)
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From Eq.(4.17):

||γ(i+1)||2 ≤ ||γ(i)||2 + s2||g(π(i))||2 + 2sγ(i)>g(π(i))⇔

− γ(i)>g(π(i)) ≤ ||γ
(i)||2 − ||γ(i+1)||2 + s2||g(π(i))||2

2s
.

By taking the telescoping sum we have:

−1

k

k−1∑
i=0

γ(i)>g(π(i)) ≤ ||γ
(0)||2 − ||γ(k)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2

≤ ||γ
(0)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2.

(4.22)

As before, since φ(π) is convex:

E[φ(π̄(k))] = E

[
φ(

1

k

k−1∑
i=0

π(i))

]
≤ 1

k

k−1∑
i=0

E[φ(π(i))]

=
1

k

k−1∑
i=0

{
E[φ(π(i))] + γ(i)>g(π(i))− γ(i)>g(π(i))

}
Eq.(4.18)

=
1

k

k−1∑
i=0

D(γ(i))− 1

k

k−1∑
i=0

γ(i)>g(π(i))

≤ d? − 1

k

k−1∑
i=0

γ(i)>g(π(i))

Eq.(4.22)

≤ d? +
||γ(0)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2.

The second line is true because π(i) is a minimizer of the partial Lagrangian
according to Eq.(4.18), hence Φ(π(i),γ(i)) = D(γ(i)). By letting k →∞ on
Eq.(4.19) shows that π̄(k) is feasible and on Eq.(4.21) shows thatE[φ(π̄(k))] ≤
d?. Since d? ≤ E[φ(π)], ∀π ∈ Fc, the result follows.

4.3.5 Example Applications of GRMA

First, we consider the maximum expected rate objective, where the optimal
map will associate every location x to the base stations that provide the
highest physical rate Ci(x). This, according to Eq.(4.1) is identical to
minimizing the sum of loads. Hence, taking expectation of the cost of the
actual load ρ̂:

EY

[∑
i∈B

ρ̂i

]
=
∑
i∈B

EY [ρi + Yi] =
∑
i∈B

ρi.
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Figure 4.3: Convergence on cost and violation of GRMA for different objec-
tives (a) max rate (b) proportional fairness.

(a) (b) (c)

Figure 4.4: Examples of User Association maps, colors and borders indicate
areas covered by each base station. (a) MaxSINR Cells (b) robust maximum
rate map (ε = 0.05) (c) robust proportional fair map (ε = 0.05).

Robust Map 1 (RM1: Maximum Expected Rate Map). The optimal
maximum expected rate map π? is the solution of:

minimize
π∈Fc

{
∑
i∈B

ρi}.

Next we consider the penalty proportional fairness associated to the

objective φ(π) =
∑

i
ρ2i
2 [72, 78]. This objective function leads to a load

balancing trade-off, where base stations in high traffic areas are allowed to be
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more loaded in the benefit of higher total throughput. Taking expectation:

EY

[∑
i∈B

(ρi + Yi)
2

2

]
=
∑
i∈B

E[ρ2
i + S2

i + 2ρiSi]

2

=
∑
i∈B

ρ2
i + S2

i

2
.

Robust Map 2 (RM2: Proportional Fair Map). The optimal proportional
fair map π? is given by:

minimize
π∈Fc

{∑
i∈B

ρ2
i + S2

i

2

}
.

Figure 4.3 shows the progress in iterations towards convergence and
feasibility of GRMA and Figure 4.4 shows an illustration of the optimal
robust map produced when applied on a network setup of heterogeneous base
stations in an area with highly variable and dense traffic. In Fig.4.3(a) and
4.3(b), we can see that for both objectives GRMA produces feasible solutions
with almost optimal cost after 200 iterations. In the maximum rate map
Fig.4.4(b), we can see the similarities with the MaxSINR cells Fig.4.4(a), at
locations where the expected traffic is low, while at heavy traffic locations
we have curved boundaries, enforced by the load protection constraint. In
proportional fair map Fig.4.4(c), the cells are very different from the other
cases.

Note that for higher order α-fair functions (α > 2), as well as other
objective functions, the calculation of the gradient of the expectation is
highly complicated. We propose using the Approximate Robust Maps in the
following section.

4.4 Approximate Robust Maps

In this section we expand the framework to problem formulations in which
calculating the gradient of the expectation is prohibitively complicated. The
expectation for a convex, separable and differentiable φ =

∑
i∈B ϕ(ρi(πi) +

Yi(πi)) is:

EYi [ϕ(ρi + Yi)] =

∫ ∞
−∞

P(Yi = yi,πi)ϕ(ρi + yi)dyi, (4.23)

where Yi ∼ N(0, S2
i (πi)) and

P(Yi = yi,πi) =
e
− y2i

2S2
i
(πi)√

2πS2
i (πi)

.
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In Eq.(4.23), we can see that to calculate the gradient we need to consider
both the rate of change of the objective function ϕ and also the effect of
changing the distribution of Yi due to selecting πi.

We can counter the tough derivative calculations by approximating the
objective function, we will discuss three techniques. First, we can use the
Taylor series expansion of the expectation, second we can use convexity and
Jensen’s Inequality to have a lower bound approximation (MCEL) and third,
we can minimize the worst case expected cost (MWCC) (excluding the ε prob-
ability tail, as in the robust constraint). The technique of MWCC produces
solutions which guarantee that the cost in operation will be less than the cost
of the optimal solution of MWCC (fReal(π?MWCC) ≤ fMWCC(π?MWCC))
inside the confidence interval. Hence, MWCC is risk averse towards high
cost due to low probability events at the tail of the distribution.

4.4.1 Taylor Approximation on RUA

The first approach we consider is the Taylor series expansion of the objective
function around the average load EY [ρ̂] = ρ. Since the support of the
distribution of Yi is infinite, the series can be shown not to be convergent and
thus approximating by keeping the first terms of the series has no guarantee.
However, we argue that we will rarely deviate ’a lot’ from the average
(predicted) load, while deviating ’a lot’ usually means that the problem is
infeasible. Expanding at ρi we get:

EYi [ϕ(ρi + Yi)] = EYi

[ ∞∑
n=0

ϕ(n)(ρi)

n!
(Yi)

n

]

=

∞∑
n=0

ϕ(n)(ρi)

n!
E[Y n

i ]. (4.24)

Keeping the 2 first non zero terms we get:

EYi [ϕ(ρi + Yi)] ≈ ϕ(ρi) +
ϕ(2)(ρi)

2
S2
i . (4.25)

We can calculate the derivatives now and solve the problem with this objective
function to a local minima2, with the GRMA. We show in the numerical
section that this is in practice the best approach3.

4.4.2 Minimize the Cost of the Expected Load (MCEL)

The calculation of the gradients can be simplified by minimizing the cost of the
expected load of the objective function, instead of minimizing the expected

2The function in Eq.(4.25) is of the type f(x)g(x), which is most of the times non-convex
even if f(x) and g(x) are convex.

3A heuristic that works well in practice is to start from an optimal point which is
calculated by one of the other approximate convex methods.
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cost. This is a known lower bound for a convex function φ(EY [ρ+ Y ]) ≤
EY [φ(ρ+ Y )], called Jensen’s Inequality. Since Yi ∼ N(0, S2

i ), we have:

minimize
π∈Fc

{φ(ρ(π))},

this problem is equivalent to the zero order Taylor Approximation Eq.(4.24).

4.4.3 Minimize the Worst Case Cost (MWCC)

The objective is to minimize the cost that corresponds to the worst case
uncertainty for the resulting robust user association map. In section 4.3.1 we
have shown that we can bound the uncertainty set to U = (−∞, Q−1(εi)Si]

B

with probability εi and that for a given the vector πi the variance of ρ̂i is

S2
i =

∫
L

π2
i (x)

µ2C2
i (x)

σ2
n(x)dx. The formulation of the optimization problem is:

minimize
π∈Fc

{
sup
y∈U
{φ(ρ+ y)}

}
.

Assuming φ =
∑

i ϕ(ρi + yi) and ϕ is a non-decreasing positive function for
∀π ∈ Fc, we have that:

sup
y∈U
{φ(ρ+ y)} = φ(ρ+ sup

y∈U
{y}).

We define R vector with Ri = ρi + sup
y∈U
{yi} = ρi + Q−1(εi)Si. Hence the

optimization boils down to:

minimize
π∈Fc

{φ(R(π))}.

Lemma 5. The function φ(R(π)) is convex.

Proof. Convexity of φ(R(π)) can be verified by composition rules. R(π)
is convex, since it is a sum of convex functions, φ(R) is convex and non-
decreasing, hence the composition φ(R(π)) is convex.

4.4.4 Evaluation of Approximate Robust Maps

Here, we will evaluate the approximate robust maps with the family of
α-optimal functions. The α-optimal cost functions, defined below, have the
nice property of producing vectors of solutions that optimize a desirable
performance metric at the base stations [19]. For α ∈ [0,∞), we define the
family of convex functions called α-optimal functions parametrized by α:

φα(ρ) =

{∑
i

(1−ρi)1−α
α−1 α 6= 1.∑

i log( 1
1−ρi ) α = 1.

(4.26)
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Figure 4.5: Cost plot of approximate methods, robust maps are generated
for each of the approximate methods for the delay minimization objective
(α = 2), 10000 samples are generated based on the prediction of traffic for a
peak hour in the dataset, samples are ordered by taylor approximation cost.

Table 4.2: Expected Performance for different α objective functions

Load Mean Maximum Mean Maximum
α Variance Load Load Delay (s) Delay (s)

0 0.0970 0.44 0.94 2.52 12.98

1 0.0873 0.45 0.93 2.24 7.77

2 0.0663 0.49 0.85 1.97 4.45

5 0.0103 0.66 0.82 3.57 8.58

For example, as shown in [19], by selecting: (i) α = 0, we maximize the
expected rate of the users (Robust Map 1 - Section 4.3.5), (ii) α = 1 we
maximize the effective throughput of the base stations (iii) for α = 2 we
minimize the number of users in the base stations and hence the overall
delay, and (iv) for α =∞ we achieve max-min load fairness, described in [32].
Notice that to calculate the gradients for EY [φα(π)] we use the techniques
described in Sect.4.4-A-C.

For Fig.4.5, we generate 104 samples of traffic (λi), based on the predicted
traffic and its distribution for a peak hour (Wednesday at 13h) in the L
Milano area. For each realization of traffic, we calculate the cost incurred by
the policies derived from each approximation method. In the figure, we can
see that MWCC incurs extra cost for most of the realizations, but for the
extreme 0.2% it provides an efficient cost, while the other policies explode.
Taylor approximation, initialized from an optimal point of MWCC policy, has
the best average performance. We note that the feasibility set is common for
all the methods Fc and all the points in Fig.4.5 are feasible. In table 4.2, we
summarize important metrics for the expected performance of approximate
robust maps calculated with different parameter α, for the same peak hour.
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4.5 Numerical Evaluation

4.5.1 Simulation Setup

We will experiment on the Milano dataset [33], which provides spatially
aggregated data about the telecommunication activity. The data are grouped
on a regular grid overlaying the territory of Milano with 100× 100 squares.
Consequently, the grid designates the area L and every square is a location
x ∈ L to be associated with base stations. For every square of this grid the
data set contains the aggregate per ten minutes telecommunication events in
the period of 01/11/13-01/01/14.

In this work we consider weekdays (Monday to Friday) which are non-
holidays, since then the volume of traffic is increased. Our method targets
very small cells, where traffic (spatio-)temporal variability will be significantly
higher than today’s macro-cells; hence we focused on instances where the
variability is large enough to resemble what one would see on a regular basis
in denser, smaller cells. On the other hand, our framework can also be used
for holidays, and other rare but predictable occasions, like a football match
or a concert, for which network operators can reserve a special map, tuned
to an exceptional increase/decrease in predicted traffic.

We choose an architected setup of 40 base stations with fixed positions,
spread over the area, with higher density on the area that is the city center.
We specifically design this subset of base stations, to accurately simulate a
simplified environment of a UDN, bringing in the front all the aspects of the
user association problem. In the simulations scenarios we will consider two
alternative base station setups. One, in which all the traffic is served by the
small cells, as envisioned for future 5G UDNs, cf. [6], and one is with the two
tier structure, which is dominant in current networks. The LTE parameters
used in the simulation are given in table 4.3, also found in [20].

Table 4.3: Simulation Parameters

Parameter Variable Value

Transmission Power Macro BS PM 43 dbm

Transmission Power Micro BS Pm 33 dbm

System Bandwidth W 10 MHz

Noise Density No -174dbm/Hz

Path Loss Exponent Plo 3

4.5.2 Robust Map 1 vs MaxSINR

Here, we will compare the maximum expected rate maps (RM1) to the
policy that is implemented currently in practice, which is to associate users
to the strongest signal (MaxSINR). The accrued cost is the value of the
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Table 4.4: Robust Map 1 vs MaxSINR

ε = 0.001 Average Cost Violations (%)

MaxSINR 12.38 72.1

RM1 12.75 0.3

objective function, based on the actual input at that time slot and on the
user association policies currently active. Finally, we count violations as
the percentage of time in which the system has an or some overloaded base
stations; this happens when either an SLA with a load threshold ci is violated
or when some of the base stations are overcumbered by traffic (ρi > 1).

In the considered model MaxSINR is a static map assigning every location
to the base station that provides the maximum rate, disregarding load or
traffic changes. Meanwhile, Robust Map 1 (RM1) will make sure that the
base stations are protected by overload with εi, hence will produce different
maps for every hour based on the predicted traffic and its variance. From
table 4.4, we can see that RM1, vastly outperforms MaxSINR, increasing
slightly the average cost (3%), while protecting the SLA.

4.5.3 Robust Map 2 vs Adaptive Algorithm

In this subsection, we compare the proportional fair maps (RM2) to an adap-
tive version of a popular user association algorithm from the literature [19],
on the proportional fairness objective (RM2). At every network update (10
minutes), the adaptive algorithm calculates the average load experienced on
the previous slot and settles to a new association vector, while on the other
hand we apply our precalculated map for every hour. We add average delay
to our metrics, which is the average response time for a flow in the network.

In the first experiment we focus on the choice of ε (we choose εi =
ε, ∀i ∈ B) and the effect it has to the performance of a robust map. In
theory the choice of smaller ε shrinks the feasibility space, allowing only
maps that provide an ε probability protection guarantee (Eq.(4.6)). This
should correlate with the violation metric in the results, where we also expect
slightly increased cost due to eliminating cheaper but riskier configurations.
This behavior is well observed in the results.

Table 4.5: Aggregate Results 1st week of December Micro Setup

ε Average Cost Average Delay (s) Violations (%)

Adaptive 6.001 1.700 13.1

10% 6.462 1.353 2.3

5% 6.485 1.319 1.6

0.1% 6.596 1.267 0
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Table 4.6: Peak Traffic 1st week of December Micro Setup

ε Average Cost Average Delay (s) Violations (%)

Adaptive 9.671 2.858 24.6

10% 10.911 2.251 7.7

5% 11.000 2.140 3.1

0.1% 11.415 2.030 0

In tables 4.5, 4.6, we present performance results for different values of ε
during rush hours and in general. We observe that the robust maps typically
incur a small increase of cost (< 10% in average, and < 18% during peak
hours) with respect to the adaptive algorithm. On the other hand, the robust
approach provides extraordinary guarantees against traffic fluctuations. In
particular, we observe a significantly better average delay (≈ 30% better)
and much less violations (0 instead of 25% of the adaptive algorithm). We
also observe that selecting a more relaxed ε = 5%, 10%, reduces the cost, but
deteriorates the performance with respect to average delay and violations of
the max load in the duration of the simulation.

Moreover, in the left column of Fig.4.6 we depict the time evolution of
the system under the two considered approaches (the robust map and the
adaptive algorithm). Comparing the two approaches in this scenario, we see
that the robust maps yield 0% violations vs 13% of the adaptive algorithm,
this improvement leads to a much better delay performance. Notice that
the points with 0 average delay in Fig.4.6c correspond to load constraint
violations in Fig.4.6a and thus to infeasible points (ρ > 1 at some base
stations). Additionally, the improvements in the performance guarantees
come at a very small cost increase Fig.4.6e. Remarkably our scheme incurs
no extra cost when the traffic is low, a benefit that arises from using different
maps per hour and exploiting the past data for prediction. Last, the right
column of Fig.4.6 presents a scenario in which we enforce SLAs, in the form
of a cap on the base station loads (ρi ≤ 0.9). In practice, SLA violations
are extremely important and must be avoided at all costs. The results of
Fig.4.6 show how our robust maps (ε = 5%) protect the SLA from violations,
resulting in only 4% violations instead of 15% of the adaptive algorithm; this
would be further improved by a more conservative ε.

In both time evolution figures we can see that the adaptive algorithms
have a natural way of adapting to fluctuations, however this takes a lot of
time and in the meantime the system tends to exhibit unstable behavior.
Finally, the robust maps pay an increased optimization cost (we have already
argued that is of lesser significance than SLA failures) for being conservative
against these failures. This is more evident during peak traffic hours, where
the more conservative handling of the robust maps infers greater cost, but
also improved delay performance and protection against the fluctuating
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traffic, for example see Fig.4.6(c) and Fig.4.6(a) arround hour 36.
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Figure 4.6: Left Column: Micro Base Station Setup, strong SLA protection
ε = 0.001, 2-6 of December (a) Violation (c) Average System Delay (e) Cost.
Right Column: 2-Tier Base Station Setup, light SLA protection ε = 0.05,
2-6 of December (b) Violation (d) Average System Delay (f) Cost.
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4.6 Advanced Prediction Methods

In this section we use state of the art methods for time series forecast to get
our estimators (Eq.(4.3)), which translates to more accurate estimation of the
mean (Eq.(4.4)) and variance (Eq.(4.5)) of the aggregate load. Specifically we
use: (i) the analytical Seasonal AutoRegressive Integrated Moving Average
methods (SARIMA) [34] and (ii) the Long Short-Term Memory (LSTM)
Neural Networks [35]. We present simulation results on the Milano data [33]
to validate the gaussian error model (Eq.(4.3)) and to quantify the gains
from using improved predictions as input to GRMA.
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Figure 4.7: Decomposition of the Bocconi area time series.

4.6.1 Gaussian Estimator Error Model Validation

In this subsection we forecast the traffic in locations of Milano by using a
Seasonal ARIMA model, then we proceed to show that the residuals (the
difference between the observed and the forecasted traffic) approximately
follow a Gaussian distribution and that they are uncorrelated in time. Similar
to Sect.4.5, we train for the month of November (20 days) and we forecast
the traffic for the first week of December.

A Seasonal ARIMA model is described by the parameters (p, d, q) ×
(P,D,Q)S, with p non-seasonal AR order, d non-seasonal differencing, q non-
seasonal MA order, P seasonal AR order, D seasonal differencing, Q seasonal
MA order, and S time span of repeating seasonal pattern. By inspecting the
signal decomposition for the time series for the area in Milano of Bocconi
University, i.e. Fig.4.7, one can distinguish the dominant components of
the mobile traffic evolution in time of a location in Milano city. Primarily,
the strong seasonal component of the 24 hour period (S) and secondly the
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Figure 4.8: Distribution of the residuals for SARIMA(2,0,0)x(2,1,0)24
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Figure 4.9: ACF plot of residuals.

trend, where traffic fluctuates during the duration of the week (decreasing
significantly every Friday). We successfully capture these patterns by using
the parameters (2, 0, 0)× (2, 1, 0)24.

To validate the effectiveness of the selected model, we present Fig.4.8 and
Fig.4.9. In Fig.4.8, we see the statistics and the distribution of the residuals,
which approximates a gaussian. Finally, to create Fig.4.9, we inspect the
time series of the residuals and make the AutoCorrelation Function (ACF)
plot. Clearly there is no strong correlation between future samples of the
residuals, hence the model captures the patterns in time evolution of the
traffic. The predictor error is closely approximated by zero-mean gaussian
noise with its variance given by the SARIMA model fit.
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Table 4.7: Comparison between traffic prediction methods.

Prediction MSE (106) Avg Cost 11h-13h Violations

Sample Mean 1,290 6,60 11,42 <0,1%

SARIMA 0,280 6,22 10,43 <0,1%

LSTM NN 0,266 6,18 10,28 <0,1%

Oracle - 5,90 9,86 0%

4.6.2 Numerical Comparison

Our numerical results are summarized in Table 4.7. We use the same setup
as in Fig.4.6, Tables 4.5 and 4.6; the parameters can be found on the caption
of Fig.4.6. The different robust maps are calculated using as input the
traffic λ and variance σ vectors, estimated by the method named on the first
column. In the second column of Table 4.7 we give the achieved Mean Square
Error (MSE) of the forecasts for each prediction method with respect to the
observed (actual) value. Finally, we compare the average play out cost of
the configuration prescribed by each of the robust maps and we compare to
the optimal cost achieved by optimizing based on the oracle predictions. We
note that refining the prediction method increases the network performance
reducing the gap to the optimal up to 5%, in comparison to greater than 12%
obtained by the simplest predictor. In accordance to our model, all of the
prediction methods achieve the robustness guarantee set by the ε parameter
at 0.1%. Selecting the appropriate prediction method is a design choice, as
performance can be sacrificed for decreased computational complexity, or
vice versa.

4.7 Conclusion

The problem of user association in dense networks becomes challenging due
to frequent unexpected traffic fluctuations. We showed that past traffic data
can be exploited towards precalculating association maps, which are designed
to be robust and can be tuned to protect the base stations from overload.
Accordingly, we proposed a theoretical framework for efficiently computing
the optimal robust map, parametrized to a large class of utility functions
that allow the system designer to tune the base station load. Finally, we
evaluated our approach in Milano dataset, and found that our methodology
is very effective at protecting UDNs from unexpected spikes, allowing the
offering of premium wireless service.

The robust framework serves as an introduction to our resource reservation
body of work later, as it could be used to economically reserve resources, while
guaranteeing QoS. For example a routing map, computed by GRMA, could
associate flows to a cloud, optimizing the expectation and variance of the
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cost of traffic load on the server. The map would give the routing decisions
and indirectly the amount of resources (computation, memory, etc) required
to be reserved. This framework though, depends on the predictability of
future demand, which as described in the following chapters (5 and 6) is
not always true for cloud workloads. For such applications, we will need
a new framework that will adapt the reservations based on the changing
distributions of the demand.
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Chapter 5

Online Cloud Resource
Reservation with Budget
Constraints

5.1 Introduction

A fundamental challenge in cloud computing is to reserve just enough re-
sources (e.g. memory, CPU, and bandwidth) to meet application runtime
requirements [25]. We desire reservations that accurately meet the require-
ments: resource over provisioning causes excessive operation costs, while
under provisioning may severely degrade service quality, causing interrup-
tions and real-time deployment of extra resources, which costs heavily [26].
The problem resembles the well-known newsvendor model [27], where we
seek an inventory level that maximizes the vendor revenue versus a fore-
cast demand. Similarly, the robust framework presented in chapter 4 could
be applied to capture constraints and guarantee QoS. In cloud computing,
however, the common assumption of demand predictability does not hold.
Recent experimentation in a Google cluster [1] shows that the profile of cloud
resources exhibits highly non-stationary behaviour, and prediction is very
difficult, if not impossible. Furthermore, in the increasingly relevant scenario
of edge computing, the workload is expected to vary quickly with geography,
mobility, and user application trends, and therefore its fluctuations will be
even more unpredictable. All these motivate the approach in this chapter; to
design a model-free online reservation policy for cloud computing using ideas
from machine learning.

A concern with machine learning approaches is that their exploration
phase combined with occasional unpredictability, may lead to an unforeseen
violation of an important constraint. In our case, reserving fewer resources
than needed for long time periods may potentially mount a serious threat
on the operation of the cloud system. Therefore, apart from the demand
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Figure 5.1: Aggregate resource utilization of the Google Cluster. The
resources are normalized with respect to the server with the highest memory
and CPU. Every point corresponds to 5mins, up to 29 days measured. The
fluctuations are characterized as unpredictable in [1].

unpredictability, we are faced with the extra challenge of guaranteeing
that the average resource violations will not exceed a pre-defined threshold.
To address both aforementioned challenges at once, we cast the problem of
resource reservation in the setting of constrained-Online Convex Optimization
(OCO), seeking to find a no regret policy with violation guarantee. This is
an extension of the standard machine learning framework OCO, where the
online policy competes versus adversarial resource demands. The performance
metric is the regret, i.e. the cost difference between our policy and the best
static reservation with knowledge of the entire demand sample path. We
seek to find an online policy that achieves zero average regret under its
worst adversary (a condition known as “no regret”), while we require from
our policy to satisfy a time-average constraint that concerns the number of
violations occurring in the studied time period. To the best of our knowledge,
no previous work has addressed the problem of reserving cloud resources
in this setting. The main contribution of this chapter is to design the
Time Horizon Online Reservation (THOR): a feasible “no regret” resource
reservation policy.

5.1.1 Prior Work

The framework of OCO is used to minimize the sum of convex functions∑
t ft(xt) where ft is revealed to the optimizer after the action xt is taken.

It was inspired by the seminal paper of Zinkevich [39], who proposed to
predict ft as a linearization of ft−1 and take a gradient step in the direction
of ∇ft−1(xt−1). OCO allows us to design model-free algorithms that are
data-driven and robust to environment changes cf. [79, 80], since the “no
regret” property is extremely powerful; it implies that our online algorithm
learns to allow the same average losses as a static policy that knows the
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future. We study a slightly perturbed setting of OCO, where the function f
is static and known, but the constraint function

∑
t gt(xt) ≤ 0 is chosen by

the adversary.

A number of past works have focused on constrained-OCO problems. The
simplest case is when the constraint is not adversarial, and limits the policy
actions in the same manner at each time slot. This is addressed in the online
gradient of Zinkevich via a projection, but to extend to cases with complicated
sets [81,82] proposed an alternative approach based on Lagrangian relaxation.
If we have a time-average constraint coupling the decisions over time, [83]
uses self-concordant barrier functions to relax it, while [81,82] provides a dual
algorithm. While these methods ensure asymptotic feasibility–the constraint
residual

∑
t g(xt) scales as o(T )–they do not apply to our problem, where

the constraint set is shaped by adversary-selected (time changing) convex
functions.

The well-known result of [37] states that in general it is impossible to
simultaneously achieve o(T ) regret and asymptotic feasibility in constrained-
OCOs where both objective and constraint set are tinkered by an adversary.
However, [40] showed that it is possible when there exists a static solution
which strictly satisfies all constraint functions at every slot (a Slater vector).
With the approach of [40], however, the “no regret” property is provided
with respect to the Slater vector, meaning that applying [40] to our problem
will yield a feasible resevation policy, but with a poor cost guarantee due to
the restrictive assumption of ensuring the constraint at every slot. Consider
a benchmark static reservation that only satisfies the average constraint
every K slots. Then as K increases, the constraint is looser and we obtain
a stronger guarantee, but establishing the guarantee may become harder.
While [40] proves the case K = 1, in this chapter we prove the case where
K = O(T 1−ε), and propose the online policy THOR, which is asymptotically
feasible and provides o(T ) regret.

5.1.2 Our Contribution

We formulate the problem of reserving resources for cloud computing as a
constrained-OCO. At each slot, (i) an online reservation policy decides a
reservation vector, then (ii) the adversary decides a demand vector, and last
(iii) a cost is paid for the reserved resources and a violation is noted if the
demand was not covered by the reservation. A reservation policy is feasible
if at the end of the T -slot horizon the number of violations of resource i
are no more than a configurable εiT . We seek to find a feasible policy that
achieves no regret with respect to the best static reservation in hindsight
while satisfying the violation constraint at all K-slot windows within T . Our
contributions are summarized as follows:

• We introduce a natural machine learning approach for reserving re-
sources for cloud computing. Our constrained-OCO framework is an
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ideal setup for investigating more complicated scenarios with reserva-
tions, e.g., reserving resource slices in wireless networks.
• We propose THOR, a policy we prove to achieve asymptotic feasibility

and “no regret” with respect to a benchmark constrained to K =
O(T 1−ε) slots, the first of its kind. The performance guarantees of
THOR are obtained by a novel combination of the Lyapunov K-slot
drift technique with the linearization idea of Zinkevich. THOR inherits
the simplicity of online gradient, and therefore is straightforward to
implement in practical systems.
• We have validated THOR resource reservations using a public dataset

provided by Google [2]. THOR vastly outperforms our implementation
of the textbook Follow The Leader (FTL) policy in guaranteeing the
violations constraint, while it achieves similar or sometimes better
performance than the static oracle T -slot policy, in the challenging,
non-stationary CPU workload.

5.2 System Model

Requests. Our system operates in slots t = 1, . . . , T , with T being the
horizon. In slot t the cloud users request λti units of resource i (for example
i = 1 refers to CPU and i = 2 to memory). We consider I types of
resources. To model the fact that the vectors λt are drawn from a general
distribution D(λ1, . . . ,λT ) (hence model-free), we allow them to be selected
by an adversary who aims to harm our system.

Reservations. A reservation policy π decides at each slot to reserve
xt,πi units of resource i. Formally, at time t an online reservation policy is a
mapping from past requests to a vector of nonnegative values:

π : (λ1, . . . ,λt−1,x1, . . . ,xt−1)→ R
I
+.

The above is depictive of the action order within a slot, i.e., first a reservation
xt,π is made, and then the adversary reveals the values λt. There is a cost ci
attached to each resource, and therefore at the end of slot t, policy π incurs
a cost

C(xt,π) =

I∑
i=1

cix
t,π
i .

Violation guarantees. Let vti denote the event of resource i violation
in slot t, which occurs when the request for a resource exceeds the reservation,

i.e., vti , 1

{
λti > xt,πi

}
. A policy π is called feasible if the time-average

violations of resource i do not exceed a pre-determined threshold εi:

1

T

T∑
t=1

E
[
vti
]
≤ εi, for all i = 1, . . . , I.
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Hence, the feasibility constraint of resource i can also be written in the form:

T∑
t=1

P
(
λti > xti

)
≤ εiT. (5.1)

Observe that the above constraint couples the decisions across the entire
horizon. Our initial objective is to find a feasible policy that minimizes the
total cost

∑T
t=1C(xt,π), however, since in slot t the arrivals λt are unknown,

such an objective is out of reach. Next, we provide an alternative approach
through the framework of Online Convex Optimization (OCO).

Regret. We introduce the performance metric of regret, which is com-
monly used in the literature of machine learning to measure the robustness
of online algorithms [79,80]. The regret RπT is the cumulative difference of
losses between policy π and a benchmark policy which is aware of the entire
sample path λ1, . . . ,λT but forced to take a static action throughout the
horizon–often called best static policy in hindsight. Specifically, let x∗ denote
our benchmark, which is calculated as the solution to the following problem:

x∗ ∈ arg min
x∈RI+

T C(x) s.t.
T∑
t=1

P
(
λti > x∗i

)
≤ εiT.

Then the regret is defined as follows:

RπT = inf
D
E

[
T∑
t=1

C(xt,π)− T C(x∗)

]
,

where the infimum is taken w.r.t. the supported distributions of the adversary,
and the expectation w.r.t. the (possibly) randomized xt,π,λt. If RπT = o(T ),
then we say that policy π has “no regret”, since RπT /T → 0 as T →∞, i.e.,
the average losses from the benchmark are amortized. Our goal is to obtain
a feasible online reservation policy with “no regret”.

5.2.1 Modified Adversary

In this subsection we introduce two innovations with respect to the classical
OCO framework, one related to the decisions of the adversary, and one to
the benchmark we compare against.

Probabilistic adversary support. It is customary to limit the actions
of the adversary to be no more than a finite value Λi,max for resource i. In
our problem, this hard constraint is problematic: (i) small Λi,max (e.g. set
equal to the maximum observed value) will cause our algorithms to “think”
that an action xti = Λi,max ensures a violation-free slot, which will incur
instability should a flow of larger values occurs in the future, while (ii) large
Λi,max will force our algorithms to consistently overbook in order to ensure
no violation, leading to very poor performance.
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To address this issue, we propose the idea of bounding the adversary with
a stationary process with known distribution; the distribution is configured
based on the data. Specifically, in this chapter we set Λt

i to be an i.i.d.
Gaussian process, and then restrict the adversary to λti∈ [0,Λti]. The benefit
of this approach lies in the elasticity offered by the stationary process. Due
to the concavity of its cumulative distribution, our algorithms will be able to
learn tradeoffs between the probability of violations and the investment cost.
We mention that despite Λt being stationary, the actual arrivals λt remain
model-free and possibly non-stationary.

K-slot feasibility. When showing that policy π has no regret, we are
effectively showing that π achieves the same average performance with the
benchmark. It is useful then to introduce a class of benchmark policies that
ensure the violation constraint for all windows of K slots within the horizon
T :

x∗(K) ∈ arg min
x∈RI+

T C(x) (5.2)

s.t.
K−1∑
k=0

P

(
λt+ki > x∗i

)
≤ εiK, ∀t = 1, . . . , T −K.

Observe that for K = T we obtain the original benchmark. However, as K
decreases, we will have an interesting trade off: on one hand, the benchmark
should ensure the average violations in shorter periods, hence it will incur
higher investment costs (as the optimization above will have a stricly smaller
constraint set), on the other hand it might be easier to prove the “no regret”
property. Indeed, prior work [40] produced a “no regret” policy versus a
benchmark which satisfies the violation constraint at every slot (K = 1).
Note, however, that such a guarantee is compromised in our problem. For
example, in Fig. 5.2 we plot the performance of K benchmarks, where we
observe greatly increased cost for K = 1. We also observe that, initially
increasing K enhances greatly the achieved performance, but the returns are
diminishing. In this chapter, we will obtain a “no regret” guarantee for the
case when K = O(T 1−ε).

5.3 Queue Assisted Online Learning Algorithm

In this section we present our algorithm, and provide intuition into its
functionality. An online reservation policy is called in slot t to update the
decisions from xt−1 to xt. In order to explain how THOR performs this
update, we will discuss some intermediate steps, namely (i) the constraint
convexification (ii) the predictor queue, and (iii) the drift plus penalty plus
smoothness. Finally, we will present THOR and show how it naturally arises
from these three steps. Formal performance guarantees are presented in the
following section.
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Figure 5.2: Average cost comparison in a repeated randomly generated
instance. Adversary uniformly selects λti∈ [0,Λti] in the course of the experi-
ment, while Λti is maintained between the multiple runs of the experiment.
The plotted points represent the cost of K(=[1,40])-slot benchmark policy,
the black line is the T-slot benchmark policy and the red line is our policy.

5.3.1 Constraint Convexification

In this subsection, we propose a convex approximation for the feasibility
constraint Eq.(5.1). This constraint will be tighter as it will become obvious
below. We presented in the system model P

(
λti > xti

)
to be the quantile

function of the adversary for every slot t and resource i. This function is
a non-increasing function, but can be non-convex. For the approximation
we will use Λ which we assume to be an i.i.d. Gaussian process that caps
the distribution of the adversary λti ≤ Λti. For ease of exposition, we define
Fλti(x

t
i) , P

(
λti > xti

)
. By our assumption, it is true that:

Fλti(x
t
i) ≤ FΛti

(xti).

Furthermore, since the quantile function of the Gaussian distribution is
quasiconvex we can design a convex envelope function for FΛ:

FEti (x
t
i) =

{
Gti x

t
i + βi, x

t < µi

FΛti
(xti), otherwise,

where Gti = F ′
Λti

(µi) and FΛti
(xti) ≤ FEti (x

t
i). Hence, for reservations less than

µi the CCDF is enveloped by a linear function that decreases by Gti. We
note that this is defined for the theoretical proofs to follow through, but also
it is relevant to practice, in the unlikely case of loose guarantees (big εi) or
extremely optimistic error predictions. This envelope will produce strong
derivatives to increase the reservations (while the gaussian CCDF will have
a smaller -but still negative- slope). Hereinafter, we simplify the notation to
Ft(x

t
i), to describe FEti (x

t
i). We further note that, 0 ≤ FEti (x

t
i) ≤ F , where

F is a constant and that there exists a constant G ≥ Gti.
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5.3.2 Predictor Queue

Intuitively, we could use Ft(x
t
i) to take a good step in slot t towards ensuring

the time-average constraint, but this information is not available in our
model: the function Ft relates to the choice of the adversary that takes place
after we commit our decision xt. What is available is the previous value
Ft−1(xt−1

i ). Inspired by the work of Zinkevich [39], we introduce a linear
prediction of the violation probability Ft(x

t
i):

bi(x
t
i) , Ft−1(xt−1

i ) + F ′t−1(xt−1
i )(xti − xt−1

i ), (5.3)

where F ′t−1(xt−1
i ) denotes the derivative, hence bi(x

t
i) is the first order Taylor

expansion of Ft−1 around xt−1
i evaluated at xti. Note that only xti in Eq.(5.3)

is to be determined at time t.

Definition 1 (Predictor Queue Vector). We define as Q the Predictor
Queue Vector. Every element of the vector is a virtual queue for each
resource, containing the sum of the predicted probabilities of violation in the
past iterations.

Qi(t+ 1) = [Qi(t)− εi + bi(x
t
i)]

+. (5.4)

Virtual queue Qi(t) is a counter that increases with our controllable
predictions bi(x

t
i) and decreases at a steady rate εi. If we limit the growth of

Qi(t) to o(T ), then the average (predicted) violations would only overshoot
εi by an amortizable amount, which can be manipulated into providing
asymptotic feasibility. In fact, we will rigorously prove this intuition in
section 5.4.2.

5.3.3 Drift Plus Penalty Plus Smoothness for Online Learn-
ing

Having obtained a handle on the time-average constraint (and hence also
asymptotic feasibility) via the predictor queue, it remains to explain how xt is
updated in THOR. To combine the consideration of the cost and the predictor
queue we will use the technique of Drift Plus Penalty (DPP), a framework
used to solve constrained stochastic network optimization problems [38]. In
DPP, the tradeoff between the constraints (queue lengths) and the cost is
controlled via the penalty parameter V. Specifically, first we consider the
quadratic Lyapunov drift (defined as ∆(t) = 1

2

∑
iQi(t+ 1)2 − 1

2

∑
iQi(t)

2),
which measures the impact of our policy on the norm of the predictor queue
vector. The drift can be bounded as in Lemma 4.2 in [84],

∆(t) ≤ B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi],
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where B = 1
2I(max{GD,F})2 is a constant. Then, adding to both parts of

the drift inequality the penalty term, defined as the cost function multiplied
by a weight V , we arrive at the drift plus penalty inequality:

∆(t) + V C(x) ≤ B +
I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(x). (5.5)

A large x tends to minimize the drift term ∆(t) but incurs a high cost V C(x),
while small x has the opposite effect. Clearly, minimizing DPP achieves
a balance between the two conflicting objectives. Remarkably, prior work
in DPP shows that finding the minimizer of the upperbound in Eq.(5.5) at
every slot, eventually produces an online policy that simultaneously achieves
a cost within O( 1

V ) of the optimal and bounds the queue with O(V ).
Here, we will further add a quadratic (Tikhonov) regularizer [85] centered

at the previous iterate xt−1, this will encourage the new reservation xt to
not drastically change its value compared to the last iteration xt−1.

Definition 2 (Drift Plus Penalty Plus Smoothness). By adding the penalty
term α||xt − xt−1||2 on both sides of the inequality Eq.(5.5) we get the upper
bound on Drift Plus Penalty Plus Smoothness (DPPPS).

∆(t) + V C(xt) + α||xt − xt−1||2 ≤ (5.6)

B +
I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(xt) + α||xt − xt−1||2.

also we define the upper bound as a function of x:

g(x) , B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(x) + α||x− xt−1||2.

to be used in the theoretical analysis later.

Asymptotically the effect of the regularizer fades, so the optimality results
are unaffected. While, however, the original DPP yields online policies that
constantly operate at two extremes (called bang-bang policies), with this
regularizer THOR update is transformed to a smooth gradient step, as we
show next.

5.3.4 Online Reservation Policy

Proposition 1 (THOR minimizes DPPPS bound). The updates

xti =

[
xt−1
i − 1

2α
(V ci +Qi(t)F

′
t−1(xt−1

i ))

]+

. (5.7)

minimize at each slot t the upper bound on the predicted DPPPS Eq.(5.6).
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Proof. The function g(x), found in Def. 2, is decomposable to the I resources
and the minimizer of each component is:

xti = argmin
xi≥0

{g(x)}

= argmin
xi≥0

{Qi(t)F ′t−1(xt−1
i )xi + V cixi + α(xi − xt−1

i )2}.

From this expression, it becomes apparent that, by removing the regularizer
(α = 0), since F is a quantile function and F ′ is negative, we get the following:

xti =

{
0, if V ci ≥ |Qi(t)F ′t−1(xt−1

i )|
+∞, otherwise.

This generates a bang-bang reservation policy for every time slot t. Bang-
bang policies are ideal for scheduling or routing, but are not practical for a
cloud resource reservation environment. Here, we must maintain as stable
reservations as possible, allowing slow installation or removal of servers and
resources. Meanwhile, with the added regularizer, the reservation update
is a gradient minimization step with step size 1

2α . This comes naturally by
finding the stationary point:

Qi(t)F
′
t−1(xt−1

i ) + V ci + 2αxi − 2αxt−1
i = 0

xi =

[
xt−1
i − 1

2α
(V ci +Qi(t)F

′
t−1(xt−1

i ))

]+

.

In conclusion the evolution of THOR policy can be described as follows:

Time Horizon Online Reservations (THOR)

Initializition: Predictor queue initial length Q(1) = 0, initial reservation
vector x0 ∈ RI

+.
Parameters: penalty constant V , step size α, cost of resource unit ci,
constraint requirement per resource εi ≤ 0.5.
Updates at every time slot t ∈ {1, . . . , T}:

xti =
[
xt−1
i − 1

2α(V ci +Qi(t)F
′
t−1(xt−1

i )
]+
, (5.8)

Qi(t+ 1) = [Qi(t) + bi(x
t
i)− εi]+. (5.9)

Where bi(x
t
i) is given in Eq.(5.3) and F ′t (x

t
i) is the derivative of the convexified

CCDF FEti .

In the following section we will use the above-explained intuition to
establish rigorous proofs that our THOR algorithm is asymptotically feasible
and has ”no regret” against the K benchmark. These results are harder to
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achieve than those from the standard DPP framework, because we have no
knowledge of the current status of the queue (Ft(x

t
i)) and also the average

violations (arrivals to the virtual queue) are arbitrarily distributed (selected
by a constrained adversary), hence there are no Markovian statistics to be
learned.

5.4 Performance Analysis

In this section we prove that THOR is a feasible policy with no regret
against K-slot policies. First we will show a general upper bound on THOR
DPPPS by using the strong convexity property of g(x). Then we will use
this general bound to achieve a sublinear in time bound on the predictor
queues of THOR, which will be used to prove feasibility, i.e. no time average
constraint violation in a time horizon T . Finally, we compare THOR with a
K benchmark, using the K benchmark properties, to prove the THOR’s no
regret. The results are summarized in a corollary at the end of the section.

We note that since xt by Eq.(5.7) is the minimizer of the upper bound
on DPPPS (Eq.(5.6)) for every time slot t; any static reservation y ∈ RI

+

bounds THOR’s DPPPS by above. This is an important aspect for the
analysis to follow.

B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(xt) + α||xt − xt−1||2 ≤

B +
I∑
i=1

Qi(t)[bi(yi)− εi] + V C(y) + α||y − xt−1||2.

A stronger condition is required in our analysis, a more refined upper bound
which is achieved due to the imposed strong convexity of the Tikhonov
regularizer. The following lemma is a key lemma for our results.

Lemma 1. [Strong Convexity Bound] Let y ∈ RI
+ be a static reservation,

then the DPPPS of THOR xt is bounded by:

∆(t) + V C(xt) + α||xt − xt−1||2 ≤ B + V C(y)+

I∑
i=1

Qi(t)[Ft(yi)− εi] + α||y − xt−1||2 − α||y − xt||2.

Proof. Due to g(x) being 2α-strongly convex, we have g(xmin) = g(y) −
2α
2 ||y − xmin||

2, for all y ∈ RI
+ static policies. This refines THOR’s upper
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bound:

∆(t) + V C(xt) + α||xt − xt−1||2 ≤

B +
I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(xt) + α||x− xt−1||2 ≤

B +
I∑
i=1

Qi(t)[bi(yi)− εi] + V C(y)+

α||y − xt−1||2 − α||y − xt||2
(1)

≤

B +

I∑
i=1

Qi(t)[Ft(yi)− εi] + V C(y)+

α||y − xt−1||2 − α||y − xt||2.

For (1) we use the convexity of the envelope CCDF function FEti , Ft(yi) ≥
bi(yi).

5.4.1 Predictor Queue Upper Bound

The first important step is to prove that under our policy Eq.(5.8)-(5.9) the
predictor virtual queues increase sublinearly with time. This will later give us
a bound for the constraint violation which ensures THOR policy’s feasibility.

Lemma 2 (Upper Bound on Predictor Queues). Let D be a finite upper
bound on the maximum reservation, such that xi ≤ xmax = D. The queue
predictor vector Q at time slot T satisfies the following inequalities:

||Q(T + 1)||2 ≤

√√√√2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2,

||Q(T + 1)||1 ≤
√
I||Q(T + 1)||2,

where ri(εi) , µi + σiQ−1(εi).

Proof. We will use Lemma 1, to prove that a static reservation ȳ achieves
sublinear growth in T of the Q vector. Then, since our policy xti is the
minimizer of the DPPPS, our policy achieves (at least) the same upper
bound. Select ȳ to be a static reservation that always satisfies the constraint
FΛti

(ȳi) ≤ εi, ∀i, t. It is easy to show that ȳi ≥ µi + σiQ−1(εi), where
Q is the quantile function of the standard normal distribution. We take
ȳi = µi + σiQ−1(εi), which gives the cost:

C(ȳ) =

I∑
i=1

ci(µi + σiQ−1(εi)) =

I∑
i=1

ciri(εi).
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According to Lem.1:

∆(t) + V C(xt) + α||xt − xt−1||2︸ ︷︷ ︸
(a)

≤ B + V C(ȳ)+

I∑
i=1

Qi(t)[FEti (ȳi)− εi]︸ ︷︷ ︸
(b)

+α||ȳ − xt−1||2 − α||ȳ − xt||2.

Here, terms (a) and (b) can be discarded. (a) is positive, while (b) is negative,
due to FEti (ȳi) ≤ εi, ∀i, t. This leaves us with:

∆(t) ≤ B + V C(ȳ) + α||ȳ − xt−1||2 − α||ȳ − xt||2.

We take the telescopic sum over the time slots {1, ..., T}:

T∑
t=1

∆(t) ≤ BT + V C(ȳ)T+

α

T∑
t=1

||ȳ − xt−1||2 − α
T∑
t=1

||ȳ − xt||2.

By taking the telescopic sum the intermediate terms of (i) the quadratic
Lyapunov drift ∆(t) and (ii) the norms cancel each other. Furthermore,
Q(1) = 0 and the (negative) norm term −α||ȳ − xT ||2 can be dropped. We
replace V C(ȳ) with its cost and we arrive at:

1

2

I∑
i=1

Qi(T + 1)2 ≤ V T
I∑
i=1

ciri(εi) +BT + α||ȳ − x0||2.

Since xi ≤ xmax = D, then ||x− y|| ≤
√
ID, ∀y,x ∈ RI

+.

I∑
i=1

Qi(T + 1)2 ≤ 2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2

||Q(T + 1)||2 ≤

√√√√2BT + 2V T
I∑
i=1

ciri(εi) + 2αID2.

The result for the bound on the 1-norm follows by using the norm inequality
||x||1 ≤

√
I||x||2, for I vector elements.

5.4.2 Constraint Residual

Having established a bound on Q, our next objective is to use it to bound
the constraint violations at time slot T and obtain asymptotic feasibility.
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For simplicity, hereon we denote

QB(T + 1) ,

√√√√2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2.

Theorem 1 (Upper Bound on Constraint Violation). The constraint viola-
tion for each resource is bounded by the size of the predictor queue at time
T + 1, Qi(T + 1), which is upper bounded by QB(T + 1):

T−1∑
t=0

Ft(x
t
i)− εiT ≤ QB(T + 1) +

G2
√

2BT (T + 1)

4α
,

where G ≥ |Gti| is the upper bound of the absolute value of the derivative of
the quantile function F defined in Sect.5.3.1.

Proof. We take the predictor queue update equation Eq.(5.4):

Qi(t+ 1) = [Qi(t) + bi(x
t
i)− εi]+ ≥ Qi(t) + bi(x

t
i)− εi

≥ Qi(t) + Ft−1(xt−1
i )−G(xti − xt−1

i )− εi,

We have by projection properties and by the queue update policy Eq.(5.7)

that ||xti − x
t−1
i ||1 ≤

||V ci−Qi(t)G||1
2α ≤ GQi(t)

2α :

Ft−1(xt−1
i )− εi ≤ Qi(t+ 1)−Qi(t) +

G2Qi(t)

2α
.

We sum for the time slots t = {1, ..., T}:

T∑
t=1

Ft−1(xt−1
i )− εiT ≤ Qi(T + 1) +

G2
∑T

t=1Qi(t)

2α
.

We have Qi(t + 1) ≤ Qi(t) + ||bi(xti) − εi||1 ≤ Qi(t) +
√

2B, hence Q(t) ≤
t
√

2B, ∀t and Qi(T + 1) ≤ QB(T + 1). Using those on the above equation
we get:

T−1∑
t=0

Ft(x
t
i)− εiT ≤ QB(T + 1) +

G2
∑T

t=1 t
√

2B

2α
.

The result follows.

By properly selecting the constants V, α and for growing T the residual
of the constraint on average goes to zero. In the next subsection, we will
show that our policy guarantees similar cost against the K-Slot best static
policy.
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5.4.3 No Regret Against the K Benchmark Policy

Here, we will prove that our policy achieves no regret against K-slot bench-
mark policy, these are defined in Sect. 5.2 by Eq.(5.2). We start by the upper
bound on DPPPS by Lem.(1), we prove a small technical lemma to be able
to use the properties of the K slot benchmark; enabling us to upper bound
THOR’s performance in comparison to the benchmark.

Theorem 2 (Upper Bound Against K Benchmark). Regret, against the
optimal static policy in R

I
+ that achieves feasibility in K slots, is upper

bounded by:

T∑
t=1

C(xt)−
T∑
t=1

C(x?) ≤

BKT

V
+
αID2

V
+
IB(K + 1)(2K + 1)

6V
+ IDci(K − 1).

Proof. We begin by Lem.(1), by setting y = x∗(K) and summing the
inequality for K slots, t = {1, 2, . . . ,K}:

K−1∑
τ=0

[
∆(t+ τ) + V C(xt+τ ) + α||xt+τ − xt+τ−1||2︸ ︷︷ ︸

(a)

]
≤

BK + V

K−1∑
τ=0

C(y) +

K−1∑
τ=0

I∑
i=1

Qi(t+ τ)[Ft+τ (yi)− εi]︸ ︷︷ ︸
(b)

+

α
K−1∑
τ=0

||y − xt+τ−1||2 − α
K−1∑
τ=0

||y − xt+τ ||2. (5.10)

Lemma 3. For policy y = x∗(K), for any t ∈ {1, . . . , T}:

K−1∑
τ=0

I∑
i=1

Qi(t+ τ)[Ft(yi)− εi] ≤ IBK(K − 1).

Proof. We give a lower bound for Q(t+K) for any K ≥ 1:

Qi(t+K) ≥ Qi(t) +

K−1∑
τ=0

[Ft+τ (yi)− εi], (5.11)

and an upper bound:

Qi(t+K) ≤ Qi(t) +
K−1∑
τ=0

||Ft+τ (yi)− εi||1. (5.12)
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Next, we use these bounds of the queue derived above, so that Qi(t) appears
as a common term in the sum. We will prove for a single Queue qi(t). We
denote max{0, f(·)} , [f(·)]+ and min{0, f(·)} , [f(·)]−:

K−1∑
τ=0

Qi(t+ τ)[Ft+τ (yi)− εi] =

K−1∑
τ=0

Qi(t+ τ)
{

[Ft+τ (yi)− εi]+ + [Ft+τ (yi)− εi]−
} (a)

≤

K−1∑
τ=0

Qi(t) +

τ−1∑
j=0

||Ft+j(yi)− εi||1

 [Ft+τ (yi)− εi]++

K−1∑
τ=0

Qi(t) +

τ−1∑
j=0

[Ft+j(yi)− εi]

 [Ft+τ (yi)− εi]−
(b)

≤

Qi(t)

K−1∑
τ=0

{[Ft+τ (yi)− εi]+ + [Ft+τ (yi)− εi]−}+

K−1∑
τ=0


τ−1∑
j=0

||Ft+j(yi)− εi||1

 [Ft+τ (yi)− εi)]++

K−1∑
τ=0


τ−1∑
j=0

[Ft+j(yi)− εi]

 [Ft+τ (yi)− εi]−
(c)

≤

Qi(t)
K−1∑
τ=0

[Ft+τ (yi)− εi]+

K−1∑
τ=0


τ−1∑
j=0

||Fj+τ (yi)− εi||1

 ||Ft+τ (yi)− εi||1
(d)

≤

Qi(t)
K−1∑
τ=0

[Ft+τ (yi)− εi] + 2B
K−1∑
τ=0

τ−1∑
j=0

1 ≤

Qi(t)

K−1∑
τ=0

[Ft+τ (yi)− εi] +BK(K − 1) ≤ BK(K − 1).

For (a) we take the upper bound for queue on the positive terms (Eq.(5.12))
and the lower bound on the queue for the negative terms (Eq.(5.11)), this
gives an upper bound on the total. In (b) we rewrite the equation by bringing
in the front the common Q(t) terms. Next, at (c) we upper bound the non-
Q(t) terms with their norm and we pass the norm to every element. Finally,
(d) follows by taking the upper bound ||Ft(yi)||1 ≤

√
2B. Summing for I

queues proves the lemma.
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We take Eq.5.10, where we drop (a) and replace (b) by Lem.(3). We sum
the inequality for t = {1, 2, . . . , T −K}:

K−1∑
τ=0

T−K∑
t=1

∆(t+ τ)︸ ︷︷ ︸
(c)

+V

K−1∑
τ=0

T−K∑
t=1

[
C(xt+τ ))− C(y)

]
︸ ︷︷ ︸

(d)

≤

BK2T + α
K−1∑
τ=0

T−K∑
t=1

||y − xt−1||2 − α
K−1∑
τ=0

T−K∑
t=1

||y − xt||2︸ ︷︷ ︸
(e)

.

To continue with the proof we need to lower bound the negative terms of
the drift expression (c):

K−1∑
τ=0

T−K∑
t=1

∆(t+ τ) =
1

2

K−1∑
τ=0

Q(T −K + τ + 1)2−

1

2

K−1∑
τ=0

Q(τ + 1)2 ≥ −1

2

K−1∑
τ=0

Q(τ + 1)2 ≥

− 1

2

K−1∑
τ=0

((τ + 1)
√

2B)2 ≥ −BK(K + 1)(2K + 1)

6
.

The term (e) is bounded by (e) ≤ αID2K, this is easy to show by the
cancellation of the terms of the telescopic sum and by dropping the negative
terms, it is omitted due to space limitation. Finally, to complete the sum of
regret K times we need to add and subtract terms in (d):

K−1∑
τ=0

T−K∑
t=1

[
C(xt+τ ))− C(y)

]
= K

T∑
t=1

[
C(xt))− C(y)

]
−

K−1∑
τ=0

τ∑
t=1

[
C(xt))− C(y)

]
−
K−1∑
τ=0

T∑
t=T−K+τ+1

[
C(xt))− C(y)

]
≥

K

T∑
t=1

[
C(xt))− C(y)

]
−DIciK(K − 1).

where D is the max reservation, hence IKciD is the cost of assigning the
maximum reservation for K iterations at all the I resources. By combining
the results for (c),(d) and (e) and dividing by V and K we finish the proof
of the lemma.

In the next subsection, we give a corollary that summarizes the perfor-
mance guarantees of THOR, utilizing the results of Th.(1) and Th.(2).
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5.4.4 THOR has No Regret and is Feasible

The following corollary, combines the theoretical results of the previous
subsections to prove the performance guarantees of THOR.

Corollary 1 (No Regret against K = o(T )). Fix ε > 0, setting α = T
3
2

V
1
2

and

taking K = T 1−ε and V = T 1− ε
2 , THOR has no regret and is feasible:

RK(T ) = O
(
T 1− ε

2

)
,

Ctr(T ) = O
(
T 1− ε

4

)
.

Proof. We substitute in the expressions of Th.(1) and Th.(2) the values of
α,K and V . Dropping the dominated terms completes the proof.

We have proven that using THOR reservations we achieve ”no regret”
against any K benchmark policy that has K = o(T ). This is an important
finding that bridges the gap between [40], which proves ”no regret” against
K = 1 benchmark and [37], which proves that ”no regret” is impossible
against T benchmark, with adversarial time varying constraints.

5.5 Numerical Evaluation

5.5.1 Google Cluster Data Analysis

In this subsection we compare the performance of our algorithm against an
implementation of Follow The Leader (FTL), decribed in [79] and against
the oracle best T slot reservation. The comparison is run on a public dataset
from Google [2, 86]. The dataset contains detailed information about (i)
measurements of actual usage of resources (ii) request for resources (iii)
constraints of placing the resources in a big cluster comprised by 12500
machines. We will use the measurement of the actual usage of resources
aggregated over the cluster. The time granularity of the measurements is 5
minutes for the period of 29 days and it is visualized in Fig. 5.1.

In Fig. 5.3 colored light gray is the time evolution of the workload demand
sample path of the aggregate CPU (in subfig. 5.3(a)) and memory resources
(in subfig. 5.3(b)). The blue line is THOR reservations, the red is the static
oracle T -slot reservation and with dotted green the FTL reservations. In
this experiment, εi is selected to be 10%. We see that for both resources,
THOR predicts the resource reservation or quickly reacts to changes. On
the other hand FTL is late to adapt, especially in the CPU case, causing
many violations. In Table 5.3, the above are expressed in numbers, THOR
achieves significantly reduced violations while also achieving the lowest cost
(∼ 10%) less than the best static T -slot policy.
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Figure 5.3: Comparison Plots of reservation updates for different policies.
Light gray on the background is the sample path of the actual resources re-
quired at the server. From the subfigures we can see that in the non-stationary
case of CPU resource requirement, FTL policy is lagging significantly in
resource reservation, incurring many more violations than the maximum
10%. For memory we can see that FTL is similar to the best static, while
our algorithm achieves better performance by tracking the fluctuations. See
Table 5.3 for the numerical comparison.
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We run the same experiment, for a range of εi from very loose to very
conservative violation guarantees. The numerical results are found in Tables
5.1 and 5.2. The result shows that THOR always achieves the violation
guarantee, but also that as the constraint gets stricter, THOR is becoming
more protective than necessary. This is most probably due to overestimation
of the Λ distribution that caps the adversary decisions in theory, which
is estimated by random sampling of max values. Furthermore, FTL again
struggles to achieve the constraint in the whole range of guarantees, with
slightly better performance in memory reservation. Even though THOR is
more protective than necessary cost wise the performance is very similar to
the best T -slot static policy, with the maximum difference to be less than
4% for very loose guarantee and actually achieving better performance on
the tough CPU reservation, especially as the guarantee gets stronger.

Table 5.1: CPU performance comparison table according to guarantee

Guarantee 25% 20% 5% 1% 0.5%

T-Slot Vio 25.00 20.00 5.00 1.00 0.05

FTL Vio 36.28 31.29 13.63 5.41 3.57

THOR Vio 21.37 15.38 0.5 0 0

T-Slot Cost 2984 3124 4312 4682 4752

FTL Cost 2816 2896 3418 3740 3799

THOR Cost 3013 3193 3786 4238 4412

Table 5.2: Memory performance comparison table according to guarantee

Guarantee 25% 20% 5% 1% 0.5%

T-Slot Vio 25.00 20.00 5.00 1.00 0.05

FTL Vio 26.38 21.43 6.94 2.61 1.64

THOR Vio 16.38 10.95 0.4 0 0

T-Slot Cost 2943 2970 3096 3189 3225

FTL Cost 2937 2962 3071 3129 3159

THOR Cost 2968 3006 3181 3258 3293

Table 5.3: Policy Comparison Table, ε = 10%

Performance T-slot Oracle FTL THOR

Average CPU Cost 3964 3203 3365

Average Violations (%) 10.00 21.41 5.64

Average MEM cost 3041 3054 3027

Average Violations (%) 10.00 11.84 3.7
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5.6 Conclusion

In this chapter we introduce THOR, an online resource reservation policy
for clouds. Cloud environments are very challenging due to volatile and
unpredictable workloads. THOR uses (i) predictor queues and (ii) drift plus
penalty plus smoothness, to fine tune reservations, such that overprovisioning
is minimized while underprovisioning is maintained below a guaranteed εi
parameter chosen by the system administrator. We prove that THOR is
feasible in a growing horizon T and that it achieves similar performance to
any sublinear to T , K-slot oracle static reservation. In simulation results
using a public dataset from Google cluster, we vastly outperform the heavy
to implement in practice follow the leader algorithm and perform similarly
to the T -slot oracle policy.

In the next chapter, we will generalize THOR to a new framework for
online learning and resource reservation with budget constraints. In this
framework we strengthen the adversary to pick both the cost and constraint
functions, we introduce the K-benchmark in the combined adversarial setting,
a set of K-slot best cost K-slot feasible static policies, we generalize some
of the base assumptions of prior work and we prove that our new policy,
Cautious Online Lagrangian Descent (COLD), has “no regret” against K-
benchmarks when K = o(T ).
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Chapter 6

General Online Resource
Reservation with Budget
Constraints: A New
Framework

6.1 Introduction

Consider the following bare-bones model of an online portfolio management
problem: At each stage t = 1, 2, . . . , an investor places an investment over
d diverse goods. This investment is modeled as a vector of unit bid prices
xt = (x1

t , . . . , x
d
t ), with each xti representing the amount of money the investor

is willing to pay for a unit of the i-th good – for instance, for an advertiser
requesting ad space from different publishers, xti would denote the cost-per-
click (CPC). Based on the performance of each individual asset (e.g., the
number of clicks), the investor pays a total cost as a function of xit and
a performance parameter pit of the i-th asset, and concurrently collects a
corresponding reward wt from their investment portfolio.

In our running example of online ad placement, the agent’s utility ut(xt; pt)
would be typically assumed concave in the agent’s investment vector (to
model diminishing returns), but otherwise stage-dependent, reflecting the
variability of the performance parameter pit of each investment. As such,
utility maximization in this setting leads to an online optimization problem
with the goal of maximizing the total reward

∑T
t=1 ut(xt) accrued over T

stages.

A considerable complication arises in this problem when the agent also
needs to balance their total investment against an allotted budget (daily,
monthly, or otherwise). In more detail, assume that the agent must meet a
long-term budget constraint of the form

∑T
t=1 ct ≤ bT , where ct = 〈pt, xt〉 de-

notes the total expenditure of the consumer at time t. Since the performance
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parameters pt are not known ahead of time (nor can they be assumed to follow
a stationary probability law), techniques based on dynamic programming
and optimal control cannot be applied in this context.

More generally, long-term budget constraints of this type can be formu-
lated as

T∑
t=1

gt(xt) ≤ 0, (6.1)

where gt is a convex function representing the impact to the budget at time
t. For instance, in our previous example, we have gt(xt) = 〈pt, xt〉 − bT /T ,
so (6.1) simply represents the target

∑T
t=1〈pt, xt〉 ≤ bT . Importantly, these

constraint functions are not only a priori unknown, but their evolution could
even be adversarial: for instance, in online ad markets, competitors may
click on ads to deplete their rivals’ advertising budget, fraudulent publishers
may attempt to manufacture revenue by increasing the click-through-rate
(CTR) without legitimate buying intent, etc. [87].

Source Constraint K-window Regret Residual(a) Assumption

[88] Fixed T O(
√
T + T

V ) O(
√
V T ) -

[89] Stochastic T O(
√
T ) O(

√
T ) St. Slater(b)

[40] Adversarial 1 O(
√
T ) O(

√
T ) Slater(c)

[90] Adversarial 1 O(
√
T ) O(T 3/4) -

[37] Adversarial T Ω(T ) o(T ) -

Us Adversarial K O(
√
T + KT

V ) O(
√
V T ) -

Table 6.1: State of the art results in OCO with long-term budget constraints.
All papers assume ft, gt are convex and Lipschitz continuous. (a) Residual
refers to the long-term budget constraint violation. (b) Stochastic Slater
assumes there exists an action x∗ ∈ X such that E [gt(x∗)] < 0 for all t. (c)
Slater assumes there exists an action x∗ ∈ X such that gt(x∗) < 0 for all t.

In this way, we obtain the following archetype of an online optimization
problem with long-term budget constraints:

minimize
∑T

t=1 ft(xt),

subject to
∑T

t=1 gt(xt) ≤ 0.
(6.2)

In the above, the problem’s loss and constraint functions (ft and gt respec-
tively) are assumed convex and Lipschitz on their definition domain, but
are otherwise arbitrary. Our aim in the rest of this chapter will thus be to
a) quantify the trade-offs between regret minimization and budget violations
in this setting; and b) propose online algorithms capable of achieving the
problem’s minimization objective while exceeding the allotted budget by a
minimal amount.
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6.1.1 Related work

When the agent’s action are constrained to lie on a fixed convex set X
– i.e., in the absence of long-term constraints – standard methods based
on online gradient/mirror descent enjoy an O(

√
T ) bound on the incurred

regret [39,79], which is well-known to be optimal in this setting [91].

Beyond this classic regret minimization framework, the first work to ex-
amine online optimization problems with long-term budget constraints is [81],
where the constraint functions are the same for all t, i.e., the constraint is of
the form

∑
t g(xt) ≤ 0. For deterministic, non-adversarial constraints of this

form, [81] achieved O(
√
T ) regret and an O(T 2/3) constraint residual (defined

here as
∑T

t=1 g(xt)). These bounds were subsequently improved by [82] to
O(Tmax[β,1−β]) and O(T 1−β/2) respectively, with β ∈ (0, 1) a free param-
eter, using varying stepsizes and regularization parameters. Finally, [88]
generalized these works by proving the same regret and O(T 1−β) constraint
residual for the tighter constraints

∑T
t=1 ([g(xt)]

+)
2
. All above works use

roughly the same algorithm: at each round the dual variable of the long-term
budget constraint is updated with g, and the algorithm takes a step along
the (online) subgradient of the instantaneous augmented Lagrangian.

Moving on to time-varying constraint functions gt, [89] examined the case
where the losses ft are adversarial but gt are stochastic (non-adversarial),
drawn from some unknown (but otherwise stationary) distribution. They
define the regret with respect to the best action that satisfies E [gt(x∗)] < 0
at each round. Assuming such an action exists, a combination of OGD with
a virtual queue playing the role of a dual relaxation variable guarantees a
bound O(

√
T ) on both regret and constraint residual.

In a concurrent line of work by [92] and [93], the performance of an online
optimization algorithm is compared to that of an instantaneous minimizer of
ft subject to gt(x) ≤ 0. As expected, regret guarantees against this dynamic
comparator require very strong assumptions – for instance, that the total
variation of the sequence of losses faced by the optimizer is bounded by the
slack of a constant action (whose existence is difficult to guarantee).1

Our aim in this chapter is to study online convex optimization problems
with time-varying (and possibly adversarial) long-term budget constraints.
In this general setting, prior work by [37] provided a simple counterexample
showing that the regret of any causal algorithm is lower bounded as Ω(T );
as such, achieving no regret is impossible if the functions defining the agent’s
budget are chosen by an adversary. More recently, [40] proved that a
combination of OGD with a virtual queue can indeed provide no regret,
compared to a static action that is strictly feasible for all functions gt,
i.e., x∗ must satisfy gt(x∗) < 0 for all t = {1, . . . , T}. Especially in an

1We should mention here that our work can also be extended in this direction using
the work of [94]. However, because we want to focus on regret minimization with minimal
assumptions, we only use static comparators throughout.
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adversarial setting, this assumption might not be easy to achieve since, even
a small degree of residual constraint violation injected by the adversary could
disqualify any comparator action. More importantly, since x∗ is artificially
constrained in this way, the obtained regret guarantee can be fairly loose.

The state of the art regarding the above works is summarized in Table
6.1.

6.1.2 Our contributions

Our overarching objective is to examine the various trade-offs between
regret minimization and long-term budget constraint violations. Our first
contribution in this direction is the introduction of a refined regret metric
which compares the agent’s incurred losses to those of a “K-benchmark”, i.e.,
a comparator which meets the problem’s allotted budget over any window of
length K. In other words, a K-benchmark comparator satisfies:

t+K−1∑
τ=t

gτ (x) ≤ 0, ∀t ∈ {1, . . . , T −K + 1} (6.3)

and the “regret over a K-benchmark” compares the loss accrued by an online
algorithm to that of the best K-benchmark in hindsight.

By varying K, this refined regret metric provides sufficient flexibility
to study the difficult question of adversarial long-term budget constraints.
Specifically, letting K = T κ for some κ ∈ [0, 1], we recover the result of [37]
for κ = 1 (i.e., every causal algorithm is regretful in the long run). At the
other end of the spectrum, for κ = 0 – i.e., K = Θ(1) – we recover the
framework of [40], where no regret is achievable. In this way, we are led to
the following fundamental questions: (i) What is the largest κ for which “no
regret over K-benchmark” can be achieved? and (ii) For a given κ ∈ (0, 1),
what is the regret guarantee for a given tolerance on the residual constraint
violation?

Building on prior work by [82], [88], [89] and [40], we attack the first
question by means of an online optimization policy which we call cautious
online Lagrangian descent (COLD). As we show in the sequel, COLD achieves
no regret over any benchmark of length K = T κ, for all κ ∈ [0, 1). Since
no regret is impossible without further assumptions for κ = 1 , our result
closes the gap with respect to achieving no regret with adversarial long-term
budget constraints. Finally, regarding the second question above, we show
that the COLD algorithm can simultaneously achieve the tradeoffs

O(KT/V +
√
T )︸ ︷︷ ︸

regret over K-benchmark

and O(
√
V T )︸ ︷︷ ︸

constraint residual

for any choice of V ∈ [K,T ). The “cautiousness parameter” V can be tuned
at will by the optimizer and, in so doing, we derive the region of COLD
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relative to the trade-off between regret minimization and long-term residual
constraint violation.

Our theoretical findings are also validated by a series of numerical exper-
iments which suggest that increasing K – that is, enlarging the window over
which the budget must be balanced – makes the K-benchmark guarantee
tighter. Hence, proving “no regret over K-benchmark” for large K results in
tighter performance guarantees – an observation which is not a priori obvious
in a bona fide adversarial setting.

6.2 OCO with long-term budget constraints

To motivate the formal setup of the problem under study, we begin by
discussing in more detail the online ad placement problem presented in
Section 6.1.

Specifically, assume that, at every round, an advertiser chooses an in-
vestment vector of bid prices xt = (x1

t , . . . , x
d
t ) over d different websites,

with xit denoting the cost-per-click (CPC) for the i-th website. It is implied
that each website offers different deals for ad display with varying position
prominence and frequency of display, and accordingly arranged prices per
click. The ultimate cost of an investment in dollars is determined when
the number of click the ad receives (denoted here by pit and measuring the
performance of the corresponding investment) is revealed, and is equal to
〈pt, xt〉. In this setting, the values of pit fluctuate in an unpredictable manner
– for instance, following website popularity, viewer interest, and/or possible
attacks by competitors who click on an ad without a legitimate intent to
buy, but only to increase the cost to the advertiser. As a result, satisfying
the monthly budget given by

∑
t〈pt, xt〉 ≤ bT is an adversarial long-term

budget constraint of the form (6.1).

The goal of the customer in this framework is to invest the available
budget wisely. Specifically, the reward from ad display at site i also fluctuates
unpredictably according to the website’s popularity and the relation of the
users to the advertized product (in some websites the value of a user click
is higher since the user is more probable to eventually become a customer).
With these considerations in mind, the collected utility is given by an
unknown concave function ut(xt) =

∑
i u

i
t(x

i
t). The concavity of ut reflects

the diminishing returns for a fixed website characteristic (e.g. making the
ad more visible will attract proportionally less extra viewers). Needless to
say, this task is very challenging because of the unpredictable fluctuations of
price and reward, but also because an early agressive choice might consume
the budget resulting in missing out on opportunities towards the end of the
horizon.

97



CHAPTER 6. GENERAL ONLINE RESOURCE RESERVATION WITH
BUDGET CONSTRAINTS: A NEW FRAMEWORK

6.2.1 Problem formulation and assumptions

To state the above in a more formal framework, we will focus on the online
optimization problem (6.2) over a play horizon of t = 1, . . . , T rounds. In
round t, the action xt ∈ X incurs ft(xt) loss and impacts the budget by the
amount gt(xt). Here, functions ft and gt are not required to be differentiable
and f ′t(xt), g

′
t(xt) denote subgradients at xt. To analyze this problem we

require the following basic assumptions.
(A1) The set X is convex and compact with diameter D.
(A2) For all t = 1, . . . , T functions ft, gt : X → R are convex and Lipschitz,

with ‖f ′t‖2 ≤ G and ‖g′t‖2 ≤ G.
(A3) For a given K ≤ T , consider the set of all actions that maintain a

balanced budget within all windows of K rounds:

XK =

{
x ∈ X :

t+K−1∑
τ=t

gτ (x) ≤ 0, 1 ≤ t ≤ T −K + 1

}
(6.4)

We assume that XK is non-empty.
Since X is compact and ft, gt Lipschitz, it follows that they are also bounded,
i.e., |ft(x)| ≤ F and |gt(x)| ≤ F , for all x ∈ X .

Assumptions A.1–A.2 are the blanket assumptions of all previous OCO
papers. A.3 is essential in order to define the regret metric that we use, and
is significantly less stringent than the nonempty interior Slater assumption
∩t{x : gt(x) < 0} of [40]. For example, if gt are nonnegative the Slater
assumption cannot hold. This case appears in problems where we want to
ensure that a rate of failures does not cross a threshold, as e.g., in [88].

6.2.2 Performance metric

We classify algorithms based on how they fare with respect to the constraint
and the aggregate loss.

6.2.2.1 Feasibility

Regarding the constraint (6.1), we take the common approach in the OCO
literature, that of a relaxed notion of feasibility.

Definition 1 (Asymptotic feasibility). An algorithm is asymptotically feasi-
ble if it satisfies:

T∑
t=1

gt(xt) = o(T ).

An asymptotically feasible algorithm has the desirable property that it
learns to produce a vanishingly small constraint residual

∑T
t=1 gt(xt) over

a large horizon T , i.e., we have
∑T

t=1 gt(xt)/T → 0 as T → ∞, and hence
produces an asymptotically feasible solution of (6.2).
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6.2.2.2 Regret over K-benchmark

The algorithmic efficiency is measured in OCO with the static regret : the
aggregate loss difference between the algorithm and that of a benchmark
action with hindsight. In our work, however, we encounter a further com-
plication that does not appear in the literature. The appropriate regret
definition must clarify how the benchmark action will behave with respect
to the long-term budget constraint. To this end, we introduce the following
family of benchmarks.

Definition 2 (K-benchmark). Fix a K ∈ {1, . . . , T}. The K-benchmark
xK∗ is an action that satisfies:

xK∗ ∈ argmin
x∈XK

T∑
t=1

ft(x), (6.5)

where XK is defined in A.3.

This allows us to extend the definition of regret in the following manner.

Definition 3 (Regret of xt over xK∗ ). Fix K ∈ {1, . . . , T}, and suppose xK∗
is a K-benchmark. The regret of xt over xK∗ is defined to be:

RK(T ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
K
∗ ).

We make the following remarks:

Remark 1: If an asymptotically feasible online algorithm has no regret
over xK∗ , it follows that the average losses RK(T )/T → 0 as T → ∞,
which implies that our policy approximates the benchmark xK∗ under any
sequence of functions, while additionally asymptotically satisfying the long-
term budget constraint.

Remark 2: The actual guarantee provided by the novel regret criterion
depends on K. As K increases, actions in XK must balance the budget in
longer periods, and therefore become more aggressive. In fact, it can be
checked that X1 ⊆ XK , hence x1

∗ ≤ xK∗ for all K. Consequently, a no regret
guarantee over xK∗ is tighter than a no regret guarantee over x1

∗; section 6.5
illustrates this with a numerical example. We are, therefore, motivated to
prove no regret for as large K as possible.

Interestingly, however, for K > 1 the K-benchmarks are not necessarily
monotonic in K as the next example shows.

Example 1 (Non-monotonicity of K-benchmark). Consider the ad display
example with only one website. The K-benchmark is the largest action
x constrained to the use of KbT /T budget within every K-round window.
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Given hindsight and prices p1, . . . , pT , and assuming non-increasing ft (i.e.
more investment means larger utility and smaller loss), we have

xK∗ =
KbT

T maxt=0,...,T−K−1
∑t+K

τ=t+1 pτ
.

Consider the instance where T = 3, p = (10, 0, 8), and bT = 30. We have
x1
∗ = 1, x2

∗ = 2, x3
∗ = 5/3, and surprisingly x2

∗ > x3
∗. The latter is the

consequence of the window of size 3 having the value at the two ends higher
than the mean.

The lack of monotonicity is indicative of a powerful adversary who can
tweak functions gt to disturb the agent’s algorithm in non-trivial ways.
In spite of this complication, we present next a general algorithm that
establishes no regret over xK∗ for any K = o(T ). Additionally, although a
strong monotonicity result can not be established, in the numerical section we
observe an improvement trend with increasing K, verifying the intuition that
a larger window allows the agent to handle its budget in a better manner.

6.3 The algorithm

The main idea behind handling the long-term budget constraints is to weigh
their importance against the loss in a Lagrangian fashion. Specifically,
consider a regularized instantaneous Lagrangian for problem (6.2) that takes
the following form in round t:

Lt(x,Q(t)) = V ft(x) +Q(t)gt(x) + α‖x− xt−1‖2, (6.6)

where a) V is a configurable cautiousness parameter ; b) Q(t) is a virtual queue
that plays the role of the Lagrangian multiplier; c) the term ‖x− xt−1‖2 is a
L2 regularizer that smoothens the differences between consecutive actions;
and d) α is the strength of the regularization.

The main difference between (6.6) and traditional Lagrangian relaxations
is that the cautiousness parameter V can be used to control the tradeoff
between regret and constraint residual (smaller V makes the algorithm more
cautious); likewise, the regularization parameter α can be tuned to enhance
the algorithm’s robustness to fluctuations.

To estimate the value of the (otherwise unknown) functions ft and gt, we
will employ their linear surrogates:

f̂t(x) , ft−1(xt−1) + 〈f ′t−1(xt−1), x− xt−1〉, (6.7)

ĝt(x) , gt−1(xt−1) + 〈g′t−1(xt−1), x− xt−1〉. (6.8)

Let L′t(x,Q) denote the subgradient of Lt(x,Q(t)) at x. Plugging the above
surrogate terms in (6.6) and using basic subgradient algebra, we get:

L′t(x,Q) = V f ′t−1(xt−1) +Q(t)g′t−1(xt−1) + 2α(x− xt−1)
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Our algorithm is designed to compute a stationary point of Lt in round t,
and then project it on X , while updating queue Q(t+ 1) with the surrogate
ĝt(xt). The latter is in fact the subgradient of Lt(x,Q) with respect to Q.

Cautious Online Lagrangian Descent (COLD)

For t = 1, . . . , T :

xt = ΠX

[
xt−1 −

V f ′t−1(xt−1) +Q(t)g′t−1(xt−1)

2α

]
(6.9)

Q(t+ 1) = [Q(t) + ĝt(xt)]
+. (6.10)

with initialization Q(1) = 0, x0 ∈ X , and where:

• ΠX [.] denotes the Euclidean projection on set X ,
• V is the configurable cautiousness parameter,
• f ′t−1, g

′
t−1 are the subgradient vectors in round t− 1,

• Q(t) is a virtual queue that is updated according to (6.10), and it is
called the predictor queue,

• α is the configurable regularization strength parameter,
• ĝt(xt) is the surrogate of gt(xt) from (6.8),
• [.]+ is max{., 0},
We remark that if we fix Q(t) = 0,∀t, COLD reduces to the OGD

of [39] with stepsize V/2α, which however would fail to address the long-term
budget constraints. In what follows, we provide the logical steps that are used
in the design of COLD, as well as to prove its performance guarantees. The
same steps can be used to derive variations of COLD for different problems.

6.3.1 Regularized drift plus loss framework

The framework is inspired by the unification of two theories, namely the
theory of stochastic network optimization [38] that handles time-average
constraints by stabilizing virtual queues, and the standard framework of
OCO [39,79,80].

Our mathematical analysis is based on an instantaneous metric called
Drift plus loss plus smoothness (DPLPS), which at each round measures the
quality of an action by weighing three competing factors: (i) the quadratic
Lyapunov Drift of the predictor queue (which reflects the urgency of the
constraint), (ii) the predicted instantaneous loss, and (iii) the L2 regularizer
to smoothen the changes in the sequence of actions. The values of all three
above depend on the action xt, and we will show that our algorithm arises
as the action that minimizes an upper bound of the DPLPS. The remaining
of this subsection provides further detail.

We first define the quadratic Lyapunov Drift as the change in the
quadratic predictor queue length after action xt is taken:

∆(xt) ,
1

2
[Q2(t+ 1)−Q2(t)]. (6.11)
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Since xt determines ĝt(xt), it implicitly affects ∆(xt) via Q(t+ 1), see (6.10).
By taking actions to minimize the drift ∆(xt) we may keep the queue length
small at the end of the horizon. We will then show that a bound on Q(T )
can be manipulated into proving asymptotic feasibility. In summary, the
minimization of ∆(xt) at each round pushes towards actions that satisfy the
long-term budget constraint.

From the literature of stochastic network optimization [38], the drift can
be combined with the instantaneous loss (here adapted to its surrogate from
(6.7)): ∆(xt) + V f̂t(xt). Minimizing this weighted metric pushes towards
actions that simultaneously satisfy the long-term budget constraints and
achieve low aggregate loss in the stochastic setting, see [95]. However, such
algorithms have a bang-bang behavior, oscillating between extreme actions,
which is inappropriate for many real applications. Therefore, in this work
we further add the L2 regularizer (following the methodology of [40]), which
brings us to the DPLPS metric:

DPLPS(xt) ,∆(xt)+V f̂t(xt)+α||xt − xt−1||22. (6.12)

With some work on the definition of the Lyapunov drift (see also Lemma 4.2
in [84]), we have the following inequality:

∆(xt) ≤ B +Q(t)ĝt(x),

where B , (F +GD)2/2 is a constant. Therefore, we have

DPLPS(x) ≤B + V f̂t(x) +Q(t)ĝt(x) + α||x− xt−1||22︸ ︷︷ ︸
rt(x)

.

Observe that the term rt(x) equals (6.6), plus a constant B (which does
not affect its stationary point). The following Lemma proves formally that
rt(x) is minimized by COLD at each round.

Lemma 1 (DPLPS bound minimizer). COLD minimizes rt(x) at each
round.

Proof. First, observe that by definition our policy is:

xt , ΠX

[
xt−1 +

Ht

2α

]
,

where Ht is the following constant:

Ht , V f ′t−1(xt−1) +Q(t)g′t−1(xt−1).

It suffices to show that this projection actually returns a minimizer of
rt(x). We have that, 〈Ht, xt − xt−1〉 = Q(t)〈g′t−1(xt−1), (xt − xt−1)〉 +
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V 〈f ′t−1(xt−1), (xt − xt−1)〉.

xt = argmin
x∈X

{rt(x)}

(a)
= argmin

x∈X
{〈Ht, x− xt−1〉+ α||x− xt−1||22}

(b)
= argmin

x∈X

{
〈Ht, x− xt−1〉+ α||x− xt−1||22 +

H2
t

4α

}
= argmin

x∈X

∣∣∣∣∣∣∣∣ Ht

2
√
α

+
√
α(x− xt−1)

∣∣∣∣∣∣∣∣2
2

(c)
= argmin

x∈X

∣∣∣∣∣∣∣∣x− (xt−1 −
Ht

2α

)∣∣∣∣∣∣∣∣2
2

= ΠX

[
xt−1 −

Ht

2α

]
.

In (a) we discard the terms that do not depend on x. In (b) we add a
constant term that completes the square norm but does not change the
minimizer. Finally, (c) is the definition of Euclidean projection on set X ,
hence the last equality follows and completes the proof.

This methodology constitutes a powerful framework, where for a new
problem we may define appropriate virtual queues for the constraints, de-
termine the corresponding DPLPS metric, and then extract asymptotically
feasible online algorithms by minimizing a bound on the DPLPS. In the
technical proofs, we show how this bound minimization can be used to derive
the performance guarantees of our algorithm.

6.4 Performance analysis

In this section we provide our main theoretical results, which characterize
the performance of COLD algorithm. Recall that T is the horizon, V, α are
configurable parameters, F,G are universal constants that bound functions
and subgradient norms (see section 6.2.1), D is the diameter of set X , and
B = (F +GD)2/2.

Proposition 1 (COLD performance). If the assumptions in Sec. (6.2.1)
are satisfied, and actions are taken according to the COLD algorithm, the
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constraint residual is bounded by:

Ctr(T ) ,
T∑
t=1

gt(xt) ≤
{

2BKT + 4FV T +
V 2G2T

α
+

2αD2 + 2BK2 + 2(T + 1)BK

} 1
2

+
GV T

2α
+

G2

[√
2BK +

√
4FV +

√
V 2G2

α +
√

2BK

]
T

3
2 +T√

2

2α
+

G2
[√

2αD2 +
√

2BK2 +
√

2BK

]
T

2α
(6.13)

and the regret over the K-benchmark is bounded by:

RK(T ) ,
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
K
∗ ) ≤ (6.14)

≤ BKT

V
+
G2V T

2α
+B

(K + 1)(2K + 1)

6V
+

+
D2α

V
+ 2F (K − 1).

Based on the above fundamental bounds, we optimize the parameters V, α
to get a region of achievable asymptotic laws, such that both the constraint
residual and the regret are o(T ). In general, we may choose the value of
parameter V in the range (K,T ) and different choices provide different
tradeoffs. For instance, choosing V close to K makes the algorithm cautious
and provides the best guarantees on the constraint residual, while choosing
it close to T makes the algorithm to aggressively pursue the best regret.

Theorem 1 (Achievable tradeoffs). Fix K ≥ 1 such that K = o(T ) (higher
K makes the K-benchmark tighter). Choose some V ∈ (K,T ), and α =
max{T, V

√
T}. Then, (6.13)-(6.14) simplify to:

O(KT/V +
√
T )︸ ︷︷ ︸

regret over K-benchmark

and O(
√
V T )︸ ︷︷ ︸

constraint residual

Furthermore, suppose K = T 1−ε for some small ε > 0 and choose V = T 1− ε
2 ,

and α = V
√
T . Then, (6.13)-(6.14) simplify to:

O(T 1− ε
2 )︸ ︷︷ ︸

regret over T 1−ε-benchmark

and O(T 1− ε
4 )︸ ︷︷ ︸

constraint residual

In fig. 6.1 we showcase the results of theorem 1, where the black curves
indicate the Pareto frontier for different values of K = T k; all the values
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Figure 6.1: Achievable bounds for K = T k, k = 0 : 1 : 0.2.

north-east of the frontier are achievable. As K → T , the Pareto frontier
vanishes to the north-east corner point O(T 1−ε/2),O(T 1−ε/4). The blue
dotted line shows the tradeoffs achieved by [88], which interestingly coincide
with our case of K = 1, though we mention that they address fixed (non-
adversarial) constraints. Finally, the point O(

√
T ),O(

√
T ) achieved by [40]

for K = 1 is not part of our achievable guarantees, but this is attributed to
their stricter Slater assumption.

6.4.1 Outline of the proofs

The technical proofs of Prop. (1) and Th. (1) are deferred to the appendix
(in supplemental material) due to space limitations. Here, we provide a brief
outline.

The COLD algorithm is designed to minimize the DPLPS, hence one can
directly compare it to the 1-benchmark, as for example in [40]. The novel
element in our analysis is that we compare K steps of DPLPS of COLD to
the DPLPS of the K-benchmark (Def.(2)). This comparison forms the basis
of our analysis, and it is given in Lem.(7) and Cor.(2) in the appendix.

First, based on the feasibility of the K-benchmark in windows of size
K, we establish a bound on Q(t) of COLD for any t ∈ {1, . . . , T + 1}. The
bound builds on the above-explained comparison between COLD and the K-
benchmark. Then, the bound on Q(t) is manipulated into proving the upper
bound on the constraint residual Eq. (6.13). We note that an important part
of the proof is to obtain a good upper bound of

∑T
t=1Q(t). A similar strategy

is used in comparing the losses of COLD to those of the K-benchmark and
proving the regret bound Eq. (6.14).

We mention that the bound on Q(t) can be strengthened if we make
the Slater assumption, i.e., assume the existence of a vector x∗ such that
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gt(x∗) < −η, ∀t. In particular, this is the approach taken by [40] achieving
the point (O(

√
T ),O(

√
T )) for K = 1. In our case, we would assume the

existence of actions satisfying
∑t+K−1

τ=t gτ (x) < −η, ∀t, with which we

could improve further the bounds on Q(t),
∑T

t=1Q(t) and eventually our
Proposition. In this work, we chose to present the most general bounds, and
left this direction for future research.

Finally, regarding the proofs of Th. (1), our strategy is to restrict progres-
sively the values of K,α, and V , such that both Ctr(T ) and RK(T ) are o(T ).
An optimization over parameters α, V provides the presented trade-offs.

6.5 Numerical results

In this section we test COLD and the performance guarantees given by K-
benchmarks on an instance of our example application of online ad placement.
We also showcase the effect of the cautiousness parameter V on COLD’s
utility and constraint residual.

6.5.1 Accuracy of performance guarantee

We simulate a scenario with one website, where xt ∈ [0,∞), ft(xt) = −wtxt,
and gt(xt) = ptxt − bT /T , where wt, pt are generated by exponential dis-
tributions wt ∼ Exp(11) and pt ∼ Exp(10). We run the experiment for
different horizons T = {2000, 4000, . . . , 10000}, budget bT = 300T , and pa-
rameters set to α = max{T, V

√
T} and V = T 0.99 for each of the experiments.

Fig. (6.2(a)) shows the utility (minus the loss) for the 1-benchmark [40], the
T 0.9-benchmark (an instance of this chapter) and finally the utility achieved
by the COLD algorithm.

In Fig. (6.2(a)) we observe that COLD’s utility is approximated much
more accurately by the T 0.9-benchmark than by 1-benchmark. In fact, the
approximation by the 1-benchmark becomes even worse as T increases. Since
proving no regret over K-benchmark essentially shows that the algorithm’s
losses approximate those of the K-benchmark, we conclude that the impor-
tance of the regret guarantee lies with how large K is.

In a similar experiment, Fig. (6.2(b)) presents the relative excess loss
of the K-benchmark with respect to the T -benchmark, for all values of
K = 1, . . . , T . This relative excess loss is depictive of the approximation
error of a K-benchmark with respect to the T -benchmark. We remind the
reader that the excess loss is due to constraining the benchmark action to
be feasible on a window that is K < T , and that the regret guarantees can
be established for K = o(T ) only. The points are averages over 150 sample
paths. Here we may observe a monotonous behavior of the K-benchmarks
due to averaging, but more importantly, we can see that the 1-benchmark
can have as much as 85% excess loss.
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Figure 6.2: Simulations of the example of online ad placement. (a) COLD
utility comparison versus 1-benchmark and T 0.9-benchmark. (b) Relative
excess loss of K-benchmark compared to T -benchmark. (c) Utilities of
K-benchmark for different values of K.

On Fig. (6.2(c)), we observe that a K-benchmark that scales sublinearly
with the horizon (K = o(T )) has a much better approximation compared to
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a constant K, like K = 1, which is very pessimistic even for moderate values
of T . All the above experiments support that intuition that taking K large
produces a tighter regret guarantee.

6.5.2 Impact of the Cautiousness Parameter V

In this subsection we explore the effect of the cautiousness parameter V
on the performance of COLD algorithm. On the same example as before,
we choose K = T 3/4 and V = {T 1/2, T 3/4, T 0.99, T 5/4}. In our theoretical
analysis, we have proven that V has to be greater than K to achieve no
regret. On Fig. (6.3(b)) the running average utility for V = T 1/2 indeed
fails to reach the benchmark. Furthermore, we can deduce from Fig. (6.3(a))
that, for V > T , the constraint residual is not sub-linear to the horizon T ,
which is in accordance to our bounds.

On the other hand when K < V < T , indeed the constraint residuals
are sub-linear and the average utility approximates the utility of the K-
benchmark. Increasing V up to T , one can observe in Fig. (6.3) the different
tradeoffs between the regret and the constraint residual.
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Figure 6.3: Running averages of constraint residual and utility performance
of COLD for different values of parameter V .
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6.6 Conclusion

In this chapter we studied Online Convex Optimization with long-term
budget constraints. In particular, we deal with the case where the constraints
are adversarial, which captures the relevant scenario where the long-term
budget constraint must be addressed in the presence of poor prediction quality.
We introduce the notion of K-benchmark, which allows us to refine the
regret metric used to provide performance guarantees for online algorithms.
Although for K = T prior work has established that no algorithm can provide
no regret, we prove that the COLD algorithm achieves no regret for any
K = o(T ). Our numerical results suggest that a K-benchmark with K large
can provide a more accurate performance guarantee than the previous state
of the art K = 1. Finally, we provide a new region of regret-constraint
residual tradeoffs that characterize the performance of COLD in the general
setting.
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Chapter 7

Conclusions and Future
Research

7.1 Conclusions

The exponential increase of wireless traffic, followed by the proliferation of
wireless devices, services and network resources leads to a new paradigm of
management and organization of wireless networks. We identify optimization
as a very important tool, which will greatly increase resource utilization
efficiency and greatly reduce operational cost. In the manuscript, we propose
various algorithmic frameworks for wireless networks, based both on classical
or data-driven optimization and machine learning to augment the arsenal of
algorithms against resource allocation network problems.

The contributions of this thesis are separated into two main parts. The
first part corresponds to chapters 2 and 3, where we focus on optimizing
resource utilization of networks in real time; while in chapters 5 and 6 we
consider proactive resource reservations. Meanwhile, chapter 4, serves as
a bridge between the two parts, as it tackles an online problem with an
offline data-driven solution. In the thesis, we present two main use cases:
user association and cloud resource reservation, but the solutions presented
can be applied to a plethora of problems, sometimes out of the scope of
networking (prominent examples are chapters 4 and 6).

The baseline approach for user association, connecting wireless devices
to the base station that provides the MaxSINR, can lead to very inefficient
configurations in current and future wireless networks. We focused on
tailoring user association based on resource efficiency and service requirements
satisfaction (QoS guarantees), depending on the underlying network demand.

In chapter 2 we have proposed a framework for user association based
on distributed constrained optimization for 5G New Radio (NR) in the con-
text of future Ultra Dense Networks (UDNs). We have derived distributed
association rules, that provably converge to the optimum point of operation.
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The resulting association guarantees performance to the VIP flows whilst
balancing the load between both service types. The method is based on
non-invasive extensions to current wireless networks, while it can be general-
ized in future work for multiple class priorities and applications in wireless
network slicing. Initial Simulation results demonstrate the capabilities of the
framework in bounding the mean number of VIP flows at the base stations
and also the improved performance over best effort only policies.

Meanwhile, In chapter 3, we studied centralized device association, where
the computation is done in the C-RAN, using the Sinkhorn algorithm inspired
by the theory of Optimal Transport. This algorithm has been previously
used in large-scale problems in imaging and machine learning, and here it is
applied to provide a heuristic load balancer in C-RAN systems. First, it is
shown that a very simple version of this algorithm is capable of providing
low delay associations when the traffic is uniformly spread in the covered
geographical area. In case of non-uniform traffic, we extend the algorithm
to an iterative version which progressively improves the load balancing. We
show that our scheme scales to very large problem instances, and has the
potential to provide great improvements over the simple baseline approach.

Finally, in chapter 4, we showed that past traffic data can be exploited
towards precalculating association maps, which are designed to be robust
and can be tuned to protect the base stations from overload. Accordingly,
we proposed a theoretical framework for efficiently computing the optimal
robust map, parametrized to a large class of utility functions that allow
the system designer to tune the base station load. Finally, we evaluated
our approach in Milano dataset, and found that our methodology is very
effective at protecting UDNs from unexpected spikes, allowing the offering
of premium wireless service.

Moving to the topic of cloud resource reservation, we developed a frame-
work to handle resource reservation in worst-case scenaria, where the demand
is engineered by an adversary aiming to harm our performance. We provide
policies that have “no regret” and guarantee asymptotic feasibility in bud-
get constraints, under such workloads, complementing the results of recent
literature in cloud computing and more importantly in OCO.

In chapter 5 we introduce THOR, an online resource reservation policy
for clouds. Cloud environments exhibit volatile and unpredictable workloads.
THOR uses (i) predictor queues and (ii) drift plus penalty plus smoothness,
to fine tune reservations, such that overprovisioning is minimized while
underprovisioning is maintained below a guaranteed εi parameter chosen by
the system administrator. We prove that THOR is feasible in a growing
horizon T and that it achieves similar performance to any sublinear to T ,
K-slot oracle static reservation. In simulation results using a public dataset
from Google cluster, we vastly outperform the heavy to implement in practice
follow the leader algorithm and perform similarly to the T -slot oracle policy.

We conclude our thesis contributions with chapter 6, which generalizes the
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results of chapter 5. We studied the general case of OCO with adversarial cost
and with long-term budget constraints. In particular, we deal with the case
where the constraints are adversarial, which captures the relevant scenario
where the long-term budget constraint must be addressed in the presence of
poor prediction quality. We introduce the notion of K-benchmark, which
allows us to refine the regret metric used to provide performance guarantees
for online algorithms. Although for K = T prior work has established that
no algorithm can provide no regret, we prove that the COLD algorithm
achieves no regret for any K = o(T ). Our numerical results suggest that
a K-benchmark with K large can provide a more accurate performance
guarantee than the previous state of the art K = 1. Finally, we provide
a new region of regret-constraint residual trade-offs that characterize the
performance of COLD in the general setting.

7.2 Future Work

We mainly consider three promising directions for future research on the
topics presented in the thesis. First, we could focus on generalizing the
theoretical frameworks to improve the performance guarantees and the
areas of application; next, we could consider different problems that can
be cast and solved efficiently by our proposed frameworks (more notably in
chapters 4 and 6) and lastly, it would be interesting to perform the numerical
evaluation of different optimization methods on similar use cases, giving
concrete performance comparisons.

Theory Generalization. A promising direction would be to generalize the
theory in chapter 6 and derive policies for different regularizers, which fit
the structure of the underlying problem. One prominent example, found in
convex optimization literature, is the entropic regularizer, which has great
properties when the control variables are in the probability simplex.

Different Applications. Furthermore, we have envisioned application of
the online budget constrained framework (seen in chapter 6) on wireless
optimization problems. The problems considered include medium access
control with constrained power budget (IoT, sensors) and adaptive streaming
algorithms, which control the download video quality to devices.

Method Comparison. In the manuscript we have applied a plethora of
mathematical tools for optimizing resource allocation in wireless networks,
studying varying regimes. An important future direction would be to compare
these methods, highlighting the pros and cons of each method depending
on the underlying network environment. This could give an answer to
the important challenging question of “which is the correct optimization
technique to apply?”. In the following subsection, some preliminary work
can be found, on providing direct quantitative comparison between different
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optimization techniques on the user association (traffic steering) use case,
using real data. This work has been published in [41].

7.2.1 Online Network Optimization on Traffic Steering

In this, work presented in [41], we work towards automating online network
optimization, and we examine several approaches such as data-driven opti-
mization chapter 4, online learning1, and model-based AI techniques. We
perform a direct comparison of these techniques for the challenging problem
of traffic steering and load balancing in dense, heterogeneous networks. Our
study demonstrates how the inherent variability of network traffic can be
successfully addressed by optimization methodologies. The most prominent
in the specific scenario, is based on artificial intelligence, but also makes use
of deep modeling insights of the problem.

7.2.1.1 Performance Evaluation and Comparison

The performance evaluation results are obtained by feeding our simulator
with the Milan dataset [33], also used in chapter 4 and the associated network
topology.

Table 7.1: Summarized statistics per day and for the whole period: (i)
average delay in ms over all BSs at daytime (i.e., between 7:30 and 20:30);
(ii) mean squared error (MSE) of average delay over all BSs against the
optimal delay; (iii) rejected traffic in percentage of the total traffic. To
compute average delay and MSE values, time slots with infinite delay are
omitted. We highlight the lowest value (per day and overall) in bold.

Method Mon Tue Wed Thu Fri Avg

A
v
g

d
e
la

y Robust UAM 10.95 11.90 10.01 9.50 9.41 10.35

Online learning 11.62 11.50 9.73 8.79 8.52 10.03

Problem-adapted AI 9.90 10.09 9.13 9.07 8.43 9.32

Oracle 9.57 9.81 8.86 8.54 8.35 9.02

M
S

E

Robust UAM 2.30 17.23 1.61 0.95 1.21 4.66

Online learning 8.63 21.66 9.29 0.18 0.04 7.96

Problem-adapted AI 0.49 0.95 0.25 2.63 0.02 0.87

R
e
je

c
te

d Robust UAM 0.00 0.06 0.00 0.00 0.00 0.01

Online learning 1.10 0.24 0.00 0.00 0.00 0.27

Problem-adapted AI 0.00 0.26 0.00 0.00 0.00 0.05

1without budget (QoS) constraints as in chapters 5 and 6.
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Table 7.1 presents average KPIs of applying the 3 ONO techniques on the
same data. The experimental results lead us to the following observations:

1) Robust optimization can be tuned to trade-off average cost / delay
against excessive overload and thus protect against SLA violations. In the
simulated scenario, we configured the method to limit the percentage of
rejected traffic to less than 0.1%, and this requirement is indeed satisfied
(see Table 7.1). However, due to the strong conservative parameter against
failure, the average delay is increased compared to the other methods.

2) Online learning adapts relatively quickly to a good state, though
sometimes fails to react to a rapid increase in traffic. As our algorithm makes
no assumptions on the statistics of traffic fluctuations, it is best suited for
applications where λt is highly non-stationary. When λt follows a cyclo-
stationary process (as in our case) alternative methods which make use of
acquired knowledge on the statistics of the underline process are advantageous.
However, as the presented solution does not apply any “margin” to guard
against sudden traffic fluctuations, a steep traffic increase might lead to large
volumes of rejected traffic. This is confirmed by our experiments on Monday
and Tuesday when traffic radically changes from nighttime to morning hours.
In contrast, steep traffic increases can be handled more easily when the
average cumulative traffic is lower: during the last three days, online gradient
achieves delays close to the oracle with low or no constraint violations.

3) Problem-adapted AI exhibits the lowest average delay among the
three techniques while keeping rejected traffic at very low levels. It achieves
this by directly predicting the optimal BS loads instead of predicting the
traffic and calculating the “optimal” loads while trying to guard against
traffic prediction errors. This way it both averages out a large number of
small prediction errors and learns to be only as conservative as needed in its
decisions.

7.2.1.2 Which Method to Choose?

Although the simulations results lean in favor of problem-adapted AI, the
answer is not trivial. Problem-specific AI seems to provide the best tradeoff
between robustness, performance and scalability, while robust optimization
requires significant overhead to calculate good predictions and optimal maps,
especially with finer space granularity. However, the AI performance largely
depends on the quality of training. Proper training requires good training
data and a potentially huge amount of resources (i.e., memory, CPU) de-
pending on the dimensionality of the problem, which are not always available.
This is the reason why it is important to combine AI with modeling intu-
ition in order to significantly reduce the problem state space. On the other
hand, online learning algorithms are very simple and quick, but sometimes
fail to protect the system from rapid traffic surges, this could although be
circumvented by applying the constraint budget framework of chapters 5
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and 6, allowing a parametrizable budget of violation similar to the robust
method. Deciding which method to choose is therefore largely dependent on
the application, the problem size and the available resources.
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Appendix A

Online Convex Optimization
with Long-Term Budget
Constraints

A.1 Proof of Proposition 1

In this section we prove that the COLD algorithm is a feasible policy with
no regret against any K-benchmark with K = o(T ). We first prove an
upper bound on the predictor queue Q(t) at the beginning of round t. Then
we use this to upper bound the constraint residual, which will, in turn be
used to prove feasibility; picking xt according to Eq.(6.9) will give sub-linear
long-term constraint residual in a time horizon T (see A.1.1). After having
proved feasibility, we compare our policy with the K-benchmark and prove,
in A.1.1.1, that it achieves no regret for any K = o(T ). For proving these an
intermediate technical result regarding the behavior of the sums of Q(t)ĝt(xt)
over any window of K consecutive rounds for any sequence of actions {xt} is
necessary; the statement and its proof are deferred to A.1.2 at the end of
this section.

A.1.1 Proof of the bound on the Constraint Residual

In the first part of the proof, we will prove the bound (6.13) on the constraint
residual. First, we consider the quadratic Lyapunov Drift (defined as ∆(t) ,
1
2Q(t+ 1)2− 1

2Q(t)2); this measures the impact of our policy on the predictor
queue. We bound the Lyapunov drift by the following lemma:

Lemma 1 (Drift Upper Bound). The predictor queue drift is upper bounded
by:

∆(t) ≤ B +Q(t)ĝt(xt), ∀t ∈ {0, . . . , T}, ∀x ∈ X . (A.1)
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where B , (F+GD)2

2 , is a constant. Reminder:

ĝt(xt) , gt−1(xt−1) + 〈g′t−1(xt−1), (xt − xt−1)〉.

Proof. Squaring the queue update function Eq.(6.10), since max{0, x}2 ≤ x2

we get:

Q(t+ 1)2 =
(
[Q(t) + ĝt(xt)]

+
)2

≤ (Q(t) + ĝt(xt))
2

≤ Q(t)2 + 2Q(t)ĝt(xt) + ĝt(xt)
2.

To continue we bound ĝt(xt):

|ĝt(xt)| ≤ |gt−1(xt−1) + 〈g′t−1(xt−1), (xt − xt−1)〉|
≤ |gt−1(xt−1)|+ |〈g′t−1(xt−1), (xt − xt−1)〉|
≤ F +GD.

Using the above we get that:

Q(t+ 1)2 ≤ Q(t)2 + 2Q(t)ĝt(xt) + ĝt(xt)
2

≤ Q(t)2 + 2Q(t)ĝt(xt) + (F +GD)2.

Rearranging the terms, dividing by 2 and using the definitions of B and ∆(t)
completes the proof.

Corollary 1. Plugging Lem.(1) into DPLPS definition, Eq.(6.12) we get
the resulting upper bound:

∆(t) + V f̂t−1(xt−1) + α||xt − xt−1||22 ≤ B+

Q(t)ĝt(xt) + V f̂t−1(xt−1) + α||xt − xt−1||22.

We define rt(x):

rt(x) ,B +Q(t)ĝt(x) + V f̂t−1(xt−1) + α||x− xt−1||22.

Hence, DPLPS(xt) ≤ rt(xt).

Lemma 2. Our policy xt minimizes rt(x)

xt ∈ argmin
x∈X

{rt(x)}.

Proof. First, observe that by definition our policy is:

xt , ΠX

[
xt−1 +

Ht

2α

]
,
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where Ht is the constant from past observations:

Ht , V f ′t−1(xt−1) +Q(t)g′t−1(xt−1).

It suffices to show that this projection actually returns a minimizer of
rt(x). We have that, 〈Ht, xt − xt−1〉 = Q(t)〈g′t−1(xt−1), (xt − xt−1)〉 +
V 〈f ′t−1(xt−1), (xt − xt−1)〉.

xt = argmin
x∈X

{rt(x)}

(a)
= argmin

x∈X
{〈Ht, x− xt−1〉+ α||x− xt−1||22}

(b)
= argmin

x∈X

{
〈Ht, x− xt−1〉+ α||x− xt−1||22 +

H2
t

4α

}
= argmin

x∈X

∣∣∣∣∣∣∣∣ Ht

2
√
α

+
√
α(x− xt−1)

∣∣∣∣∣∣∣∣2
2

(c)
= argmin

x∈X

∣∣∣∣∣∣∣∣x− (xt−1 −
Ht

2α

)∣∣∣∣∣∣∣∣2
2

= ΠX

[
xt−1 −

Ht

2α

]
.

Here, in the (a) we discard the constant terms Q(t)gt−1(xt−1) + V ft−1(xt−1)
that do not depend on variable x. The (b) equality does not change the
minimizer since we add a constant term that completes the square norm.
Finally, (c) is the definition of euclidean projection on set X , hence the last
equality follows and completes the proof.

Using the fact that our policy minimizes the DPLPS, by Lem.(2) and
the bound on the drift by Lem.(1), we will prove that the predictor queue
is bounded; this result is an intermediate step towards proving that the
constraint residuals are bounded. The idea is to compare our policy’s
DPLPS, with the upper bound for a policy that satisfies the constraint at
a rolling window of K rounds, namely the K-benchmark policy xK∗ . The
properties of the K -benchmark policy will help us bound the performance
of our policy, that minimizes DPLPS.

Lemma 3 (Queue Bound). For any t ∈ {0, 1, . . . , T}, the queue is bounded
as:

Q(t+ 1) ≤
{

2BKt+ 4FV t+
V 2G2t

α
+ 2αD2+

2BK2 + 2BK(t+ 1)

} 1
2
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Proof. First, by Lem.(2), xt is the minimizer of rt(x) at round t. Furthermore,
rt(x) is a 2α-strongly convex function, hence rt(xt) ≤ rt(y)− α||y − xt||22 for
any y ∈ X . We have that DPLPS(xt) ≤ rt(xt) ≤ rt(y) − α||y − xt||22. We
expand and re-arrange terms:

∆(t) ≤ B +Q(t)ĝt(y)︸ ︷︷ ︸
(a)

+V 〈f ′t−1(xt−1), (y − xt−1)〉︸ ︷︷ ︸
(b)

−V 〈f ′t−1(xt−1), (xt − xt−1)〉 − α||xt − xt−1||22︸ ︷︷ ︸
(c)

+

α||y − xt−1||22 − α||y − xt||22︸ ︷︷ ︸
(d)

. (A.2)

To continue with the proof we need to work on the terms (a),(b),(c) and (d)
appearing on the right hand side. Since ft(x) is convex, (b) term is upper
bounded by:

ft−1(y) ≥ ft−1(xt−1) + 〈f ′t−1(xt−1), (y − xt−1)〉
〈f ′t−1(xt−1), (y − xt−1)〉 ≤ ft−1(y)− ft−1(xt−1)

〈f ′t−1(xt−1), (y − xt−1)〉 ≤ 2F.

For (c) term we prove a technical Lemma:

Lemma 4. [40]

−〈V f ′t−1(xt−1), (xt − xt−1)〉−α||xt − xt−1||22 ≤
V 2G2

2α
.

Proof. Since ||α||22 + ||β||22 − 2〈α, β〉 = ||α+ β||22:

− 〈V f ′t−1(xt−1), (xt − xt−1)〉 − α||xt − xt−1||22 ≤

−
∣∣∣∣∣∣∣∣V f ′t−1(xt−1)

√
2α

+

√
α(xt − xt−1)√

2

∣∣∣∣∣∣∣∣2
2

+
V ||f ′t−1(xt−1)||22

2α

≤ V 2G2

2α
.

Now we pick y = xK? , according to Def.(2), and we sum the inequality
for K consecutive rounds.

K−1∑
τ=0

∆(t+ τ) ≤ BK +

K−1∑
τ=0

Q(t+ τ)ĝt+τ (y)︸ ︷︷ ︸
(a)

+2FV K+

V 2G2K

2α
+ α

K−1∑
τ=0

{
||y − xt+τ−1||22 − ||y − xt+τ ||22

}
︸ ︷︷ ︸

(d)

.
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For the term (a) we use Cor.(2) (see A.1.2 at the end of this subsection for a
proof),

K−1∑
τ=0

Q(t+ τ)ĝt+τ (y) ≤ BK(K − 1).

We get to:

K−1∑
τ=0

∆(t+ τ) ≤ BK2 + 2FV K +
V 2G2K

2α
+ (d).

We take the telescopic sum for t = {1, . . . , T −K}:

K−1∑
τ=0

T−K∑
t=1

∆(t+ τ) ≤ BK2(T −K) + 2FV K(T −K)+

V 2G2K(T −K)

2α
+
T−K∑
t=1

(d)

≤BK2T + 2FV KT +
V 2G2KT

2α
+
T−K∑
t=1

(d).

For the term (d) we have that:

α
K−1∑
τ=0

T−K∑
t=1

(
||y − xt+τ−1||22 − ||y − xt+τ ||22

)
=

α
K−1∑
τ=0

(
||y − xτ ||22 − ||y − xT−K+τ ||22

)
≤

α
K−1∑
τ=0

||y − xτ ||22 ≤ αKD2. (A.3)

The intermediate drift terms in the telescopic sum are canceled out, hence:

K−1∑
τ=0

Q(T −K + τ + 1)2

2︸ ︷︷ ︸
e

−
K−1∑
τ=0

Q(τ + 1)2

2︸ ︷︷ ︸
f

≤

BK2T + 2FV KT +
V 2G2KT

2α
+ αKD2.
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Since ĝt(xt) ≤
√

2B, the following holds for all t:

Q(t+ 1) = [Q(t) + bt(xt)]
+ ≤ |Q(t) + ĝt(xt)|

≤ |Q(t)|+ |ĝt(xt)| ≤ Q(0) +
T∑
τ=0

|ĝt(xt)|

≤
t∑

τ=0

√
2B ≤ (t+ 1)

√
2B (A.4)

We use Eq.(A.4) to upperbound (f):

(f) ≤ 1

2

K−1∑
τ=0

((τ + 1)
√

2B)2 ≤ BK(K + 1)(2K + 1)

6
,

giving us the new bound:

K−1∑
τ=0

Q(T −K + τ + 1)2

2︸ ︷︷ ︸
(e)

≤ BK2T + 2FV KT+

V 2G2KT

2α
+ αKD2 +B

K(K + 1)(2K + 1)

6
. (A.5)

To continue we need to come up with a lower bound for term (e) based on
Q(T + 1). We will use Eq.(A.13):

Q(T −K + τ + 1) ≥ Q(T + 1)−
T∑

n=T−K+τ+1

|ĝn(xn)|
(i)

≥ 0. (A.6)

here (i) is true if Q(T + 1) ≥ K
√

2B ≥ (τ + 1)
√

2B1. We take the square of
each side of Eq.(A.6):

Q(T −K+τ + 1)2 ≥
(
Q(T + 1)−

T∑
n=T−K+τ+1

|ĝn(xn)|
)2

≥ Q(T + 1)2 − 2Q(T + 1)
T∑

n=T−K+τ+1

|ĝn(xn)|.

1We will later prove our bound holds even if this assumption is not true.
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Now, we sum the resulting inequality for K consecutive slots, arriving at:

K−1∑
τ=0

Q(T −K + τ + 1)2 ≥

≥ KQ(T + 1)2 −
K−1∑
τ=0

2Q(T + 1)

T∑
n=T−K+τ+1

|ĝn(xn)|

(i)

≥ KQ(T + 1)2 −
K−1∑
τ=0

2(T + 1)
√

2B
T∑

n=T−K+τ+1

√
2B

≥ KQ(T + 1)2 − 4(T + 1)B
K−1∑
τ=0

(K − τ − 1)

≥ KQ(T + 1)2 − 4(T + 1)B
K(K − 1)

2
,

where (i) follows from Eq.(A.4) and ĝt(xt) ≤
√

2B. We rearrange and use
Eq.(A.5):

KQ(T + 1)2 ≤

≤
K−1∑
τ=0

Q(T −K + τ + 1)2 + 4(T + 1)B
K(K − 1)

2

(i)

≤ 2BK2T + 4FV KT +
V 2G2KT

α
+ 2αKD2+

B
K(K + 1)(2K + 1)

3
+ 2(T + 1)BK2,

where (i) is true due to Eq.(A.5). Dividing by K and taking the square root,
we get

Q(T + 1) ≤
{

2BKT + 4FV T +
V 2G2T

α
+ 2αD2+

+B
(K + 1)(2K + 1)

3
+ 2(T + 1)B(K + 1)

} 1
2

(i)

≤
{

2BKT + 4FV T +
V 2G2T

α
+ 2αD2+

2BK2 + 2(T + 1)BK

} 1
2

, (A.7)

where in (i) B (K+1)(K+2)
3 ≤ 2BK2, for K ≥ 1. We note here that we

proved Eq.(A.7) for Q(T + 1) ≥ K
√

2B, for Q(T + 1) < K
√

2B obviously
Eq.(A.7) is an upper bound. This result can be easily generalized for any
T ′ ∈ {K,K + 1, . . . , T}. For T ′ ∈ {1, . . . ,K − 1}, we have from Eq.(A.4)
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that Q(T ′) ≤ T ′
√

2B ≤ K
√

2B, which is again upper bounded by Eq.(A.7).
This finishes the proof.

We may now use the queue bound from Lem.(3) to prove that our policy
guarantees sublinear growth of constraint residual.

Lemma 5 (Constraint Residual Bound). The Constraint Residual is bounded
as:

T∑
t=1

gt(xt) ≤
{

2BKT + 4FV T +
V 2G2T

α
+

2αD2 + 2BK2 + 2(T + 1)BK

} 1
2

+
GV T

2α
+

G2

[√
2BK +

√
4FV +

√
V 2G2

α +
√

2BK

]
T

3
2 +T√

2

2α
+

G2
[√

2αD2 +
√

2BK2 +
√

2BK

]
T

2α
.

Proof. We start with the queue update from Eq.(6.10):

Q(t+ 1) = [Q(t) + ĝt(xt)]
+ ≥ Q(t) + ĝt(xt)

≥ Q(t) + gt−1(xt−1) + 〈g′t−1(xt−1), (xt − xt−1)〉.

Re-arranging terms in the above, we have:

gt−1(xt−1) ≤ Q(t+ 1)−Q(t)− 〈g′t−1(xt−1), (xt − xt−1)〉
(a)

≤ Q(t+ 1)−Q(t) + ||g′t−1(xt−1)||2||(xt − xt−1)||2., (A.8)

where in (a) we use the Cauchy-Schwarz inequality. Let us now denote:

y , xt−1 −
1

2α

(
V f ′t−1(xt−1) +Q(t)g′t−1(xt−1)

)
,

as in Eq.(6.9). We have:

||xt − xt−1||2 = ||ΠX (y)− xt−1||2
(a)

≤ ||y − xt−1||2
(b)

≤ ||y − xt−1||1,

where (a) is true due to the non-expansiveness of euclidean projection on a
convex set, while for (b) we used the norm inequality. Combing this finding,
Eq.(A.8) and the fact that ||g′t(x)||2 ≤ G we get:

gt−1(xt−1) ≤ Q(t+ 1)−Q(t) +G||y − xt−1||1.
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We now expand y as

gt−1(xt−1) ≤ Q(t+ 1)−Q(t)+

G
||V f ′t−1(xt−1) +Q(t)g′t−1(xt−1)||1

2α

≤ Q(t+ 1)−Q(t) +
V G2

2α
+
G2Q(t)

2α
.

We take the sum for T rounds and we drop Q(1) = 0:

T∑
t=1

gt−1(xt−1) ≤ Q(T + 1) +
G2V T

2α
+
G2
∑T

t=1Q(t)

2α
. (A.9)

We now use the queue bound (Lem.(3)), from which it follows that

T∑
t=1

Q(t) ≤
T∑
t=1

{
2BKt+ 4FV t+

V 2G2t

α
+

2αD2 + 2BK2 + 2(t+ 1)BK

} 1
2

≤
T∑
t=1

[√
2BKt+

√
4FV t+

√
V 2G2t

α
+

√
2αD2 +

√
2BK2 +

√
2BK(T + 1)

]
≤

[
√

2BK +
√

4FV +

√
V 2G2

α
+
√

2BK

]
T∑
t=1

√
t+[√

2αD2 +
√

2BK2 +
√

2BK
]
T.

To proceed futher, we use the norm inequality (Cauchy-Schwarz) for the
vector [

√
1,
√

2,
√

3, ...,
√
t, ...,

√
T ], from which we get√√√√ T∑

t=1

t ≤
T∑
t=1

√
t ≤

√√√√T

T∑
t=1

t ≤ T
3
2 + T√

2
,

hence:

T∑
t=1

Q(t) ≤
[√

2BK +
√

4FV +

√
V 2G2

α
+
√

2BK

]
×

T
3
2 + T√

2
+
[√

2αD2 +
√

2BK2 +
√

2BK

]
T.

By using the bounds for Q(t) and
∑

tQ(t) in inequality Eq.(A.9) we complete
the proof.

127



APPENDIX A. ONLINE CONVEX OPTIMIZATION WITH
LONG-TERM BUDGET CONSTRAINTS

A.1.1.1 Proof of the Regret Bound

In the second part of the proof, we will prove the regret bound (6.14) against
any K-benchmark. Since our policy xt minimizes the DPLPS by Lem.(2)
and xK? by Def.(2) has has minimum cost subject to no constraint residuals
over any window of K rounds, comparing xK? with our policy will produce
the result.

Lemma 6 (Regret Bound). The upper bound of the regret of our policy
against an xK? (Eq.(2)) benchmark is:

T−1∑
t=0

ft(xt)−
T−1∑
t=0

ft(y) ≤ BKT

V
+
V G2T

2α
+

B
(K + 1)(2K + 1)

6V
+
αD2

V
+ 2F (K − 1).

Proof. We begin by Eq.(A.2), where we add on both sides the term V ft−1(xt−1),
with y = xK? . We remind that:

f̂t(xt) , ft−1(xt−1) + f ′t−1(xt−1)(xt − xt−1).

Using Lem.(4) on Eq.(A.2)(c) and summing the resulting inequality for
K = {t, . . . , t+K − 1} consequent rounds, we get:

K−1∑
τ=0

∆(t+ τ) +
K−1∑
τ=0

V ft+τ−1(xt+τ−1) ≤ BK+

K−1∑
τ=0

Q(t+ τ)ĝt+τ (y)︸ ︷︷ ︸
(a)

+V

K−1∑
τ=0

f̂t+τ (y)︸ ︷︷ ︸
(b)

+
V 2G2K

2α
+

α
K−1∑
τ=0

||y − xt+τ−1||22 − α
K−1∑
τ=0

||y − xt+τ ||22. (A.10)

We now use Lem.7 (see A.1.2 at the end of this subsection for a proof) in
order to bound term (a) in a way so we can use the sample path property of
the static policy xK? , and convexity of ft(x), hence f̂t(x) ≤ ft−1(x), in order
to bound term (b).

Taking Eq.(A.10) and using the Cor.(2) for term (a) and convexity of
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ft(x) for term (b), we get the following:

K−1∑
τ=0

∆(t+ τ) + V
K−1∑
τ=0

ft+τ−1(xt+τ−1) ≤ BK+

BK(K − 1)︸ ︷︷ ︸
(a)

+V
K−1∑
τ=0

ft+τ−1(y)︸ ︷︷ ︸
(b)

+
V 2G2K

2α
+

α

K−1∑
τ=0

[
||y − xt+τ−1||22 − ||y − xt+τ ||22

]
.

We sum the inequality from t = {1, . . . , T −K}:
K−1∑
τ=0

T−K∑
t=1

∆(t+ τ)︸ ︷︷ ︸
(d)

+V
K−1∑
τ=0

T−K∑
t=1

ft+τ−1(xt+τ−1)
(i)

≤

BK2T + V

K−1∑
τ=0

T−K∑
t=1

ft+τ−1(y) +
V 2G2KT

2α
+

α

K−1∑
τ=0

T−K∑
t=1

||y − xt+τ−1||22 − α
K−1∑
τ=0

T−K∑
t=1

||y − xt+τ ||22︸ ︷︷ ︸
(e)

. (A.11)

where in (i), we use where needed that T > T −K. To continue with the
proof we need to lower bound the negative terms of the drift expression (d):

K−1∑
τ=0

T−K∑
t=1

∆(t+ τ) =

1

2

K−1∑
τ=0

Q(T −K + τ + 1)2 − 1

2

K−1∑
τ=0

Q(τ + 1)2

≥ −1

2

K−1∑
τ=0

Q(τ + 1)2
Eq.(A.4)

≥ −1

2

K−1∑
τ=0

((τ + 1)
√

2B)2

≥ −BK(K + 1)(2K + 1)

6
.

Furthermore, term (e) is upper bounded by (e) ≤ αKD2, as shown by
Eq.(A.3). Realigning Eq.(A.11) with the new bounds we get:

V

K−1∑
τ=0

T−K∑
t=1

ft+τ−1(xt+τ−1)− V
K−1∑
τ=0

T−K∑
t=1

ft+τ−1(y) ≤

BK2T +
V 2G2KT

2α
+B

K(K + 1)(2K + 1)

6
+ αKD2.
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Here, this expression already compares the cost of our policy against the xK?
policy. To continue with the proof we add and subtract terms in order to
make Regret (RK(T ) =

∑T−1
t=0 [ft(xt)− ft(y)]) appear K times:

K−1∑
τ=0

T−K∑
t=1

(ft+τ−1(xt+τ−1)− ft+τ−1(y)) =

K−1∑
τ=0

T−K∑
t=1

(ft+τ−1(xt+τ−1)− ft+τ−1(y)) +

K−1∑
τ=0

τ−1∑
t=0

(ft(xt)− ft(y))−
K−1∑
τ=0

τ−1∑
t=0

(ft(xt)− ft(y))+

K−1∑
τ=0

T−1∑
t=T−K+τ+1

[
ft(xt)− ft(y)− ft(xt)− ft(y)

]
=

K
T∑
t=1

(ft−1(xt−1)− ft−1(y))−

K−1∑
τ=0

τ−1∑
t=0

(ft(xt)− ft(y))−
K−1∑
τ=0

T−1∑
t=T−K+τ+1

(ft(xt)− ft(y))

Then, we upper bound the red and blue terms:

K−1∑
τ=0

τ−1∑
t=0

(ft(xt)− ft(y))−
K−1∑
τ=0

T−1∑
t=T−K+τ+1

(ft(xt)− ft(y)) ≤

2FK(K − 1)

By dividing both sides with V, K and using the above inequalities we can
complete the proof:

T−1∑
t=0

ft(xt)−
T−1∑
t=0

ft(y) ≤ BKT

V
+
V G2T

2α
+

B
(K + 1)(2K + 1)

6V
+
αD2

V
+ 2F (K − 1).

A.1.2 Upper Bound on
∑K−1

τ=0 Q(t+ τ)ĝt+τ (xt+τ )

Finally, we prove an important technical result regarding upper bounding
the quantity

∑K−1
τ=0 Q(t+ τ)ĝt+τ (xt+τ ) for any sequence of actions xt, and

then specifically for the action selected by the K-benchmark.
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Lemma 7. For any sequence of actions {xt}:

K−1∑
τ=0

Q(t+ τ)ĝt+τ (xt+τ ) ≤

Q(t)
K−1∑
τ=0

ĝt+τ (xt+τ ) +BK(K − 1).

Proof. We start by the queue update equation Eq.(6.10) and give a lower
bound for Q(t+K) for any K ≥ 1:

Q(t+K) = [Q(t+K − 1) + ĝt+K−1(xt+K−1)]+

≥ Q(t+K − 1) + ĝt+K−1(xt+K−1)

≥ Q(t) +

K−1∑
τ=0

ĝt+τ (xt+τ ). (A.12)

and an upper bound:

Q(t+K) = [Q(t+K − 1) + ĝt+K−1(xt+K−1)]+

≤ Q(t+K − 1) + |ĝt+K−1(xt+K−1)|

≤ Q(t) +

K−1∑
τ=0

|ĝt+τ (xt+τ )|. (A.13)

Next, we use these bounds so that Q(t) appears as a common term in the
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sum. We denote max{0, f(·)} , [f(·)]+ and min{0, f(·)} , [f(·)]−:

K−1∑
τ=0

Q(t+ τ)ĝt+τ (xt+τ ) =

K−1∑
τ=0

Q(t+ τ)
{

[ĝt+τ (xt+τ )]+ + [ĝt+τ (xt+τ )]−
} (a)

≤

K−1∑
τ=0

{
Q(t) +

τ−1∑
i=0

|ĝt+i(xt+i)|

}
[ĝt+τ (xt+τ )]++

K−1∑
τ=0

{
Q(t) +

τ−1∑
i=0

ĝt+i(xt+i)

}
[ĝt+τ (xt+τ )]−

(b)

≤

Q(t)
K−1∑
τ=0

{[ĝt+τ (xt+τ )]+ + [ĝt+τ (xt+τ )]−}+

K−1∑
τ=0

{
τ−1∑
i=0

|ĝt+i(xt+i)|

}
[ĝt+τ (xt+τ )]++

K−1∑
τ=0

{
τ−1∑
i=0

ĝt+i(xt+i)

}
[ĝt+τ (xt+τ )]−

(c)

≤

Q(t)

K−1∑
τ=0

ĝt+τ (xt+τ )+

K−1∑
τ=0

{
τ−1∑
i=0

|ĝt+i(xt+i)|

}
|ĝt+τ (xt+τ )|

(d)

≤

Q(t)
K−1∑
τ=0

ĝt+τ (xt+τ ) + 2B
K−1∑
τ=0

τ−1∑
i=0

1 ≤

Q(t)
K−1∑
τ=0

ĝt+τ (xt+τ ) +BK(K − 1).

For (a) we take the upper bound for queue on the positive terms (Eq.(A.13))
and the lower bound on the queue for the negative terms (Eq.(A.12)), this
gives an upper bound on the total. In (b) we rewrite the equation by
bringing in the front the common Q(t) terms. Next, at (c) we upper bound
the non-Q(t) terms with their norm and by passing the norm to every
element the inequality follows. Finally, (d) follows by taking the upper
bound |ĝt(x)| ≤

√
2B.
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Corollary 2. For policy y = xK? :

K−1∑
τ=0

Q(t+ τ)ĝt+τ (y) ≤ BK(K − 1).

Proof. Usingthe above Lem.(7), replacing xt + τ for all τ with y, since y
has the property that

∑K−1
τ=0 gt+τ−1(y) ≤ 0, ∀t and ĝt(x) ≤ gt−1(x) due to

convexity, the proof follows.

A.2 Proof of Theorem 1

Keeping in mind that K is a free variable, we restrict our analysis to choices of
α, V such that both Ctr(T ), RK(T ) are o(T ), and the bounds are optimized.
These restrictions allow us to drop some terms in (6.13)-(6.14) which are of
smaller order than the rest terms.

First, we note that 1 ≤ K ≤ T . Hence, we may eliminate from (6.13) the
following dominated terms: 2BK2 = O(2BKT ),

√
K2/T = O(

√
K).

Second, we observe that K < V < T . This is because: if V ≤ K,
then the term BKT/V will become Ω(T ), and if V ≥ T , then the term√

4FV T will become Ω(T ). Accordingly, we have the following dominated
terms: 2BKT = O(4FV T ),

√
K = O(

√
4FV ), B(K − 1)(2K − 1)/(6V ) =

O(2F (K − 1)), 2F (K − 1) = O(BKT/V ).
Dropping constants, and applying the above relations, we have arrived

at the following simplified bounds:

Ctr(T ) = O

(
V T

α
+

T√
α

+

√
V T + α+

V 2T

α
+ (A.14)

+
T

3
2

α

(√
V +

V√
α

))
,

RK(T ) = O
(
KT

V
+
V T

α
+
α

V

)
. (A.15)

Next, we work to simplify (A.14). From the terms V T
α , αV in the regret

expression, we may infer that: V = o(α), α = o(V T ).
Hence, we have the following dominated terms: V T

α = O(
√
V T T

α ), T√
α

=

O(
√
V T√
α

T√
α

), α = O(
√
V T ), V

√
T√
α

=
√
V T

√
V√
α

= O(
√
V T ), V√

a
= O(

√
V ).

Therefore (A.14) simplifies to:

Ctr(T ) = O
(√

V T +
√
V T

T

α

)
.

Now comparing the above with (A.15), we observe that the only term that
benefits from setting α < T is the term α

V , and all other terms improve when
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α increases. However, for α < T the term α
V is dominated by KT

V . Hence,
we may restrict α ≥ T with no loss of optimality. In the sequel we further
restrict α ≥ T . This brings us to the following simplified bounds:

Ctr(T ) = O(
√
V T ),

RK(T ) = O
(
KT

V
+
V T

α
+
α

V

)
.

These bounds contain all cases where both constraint residuals and regret
are sublinear to T . Next, consider two cases:

Case 1: K < V <
√
T . This case exists only when K <

√
T . In this

case, we obtain no benefit by increasing α beyond T (since the benefiting
term V T/α is already less than

√
T ), hence the best choice is α = T . Then,

notice that T
V = O(KTV ), and V <

√
T = O(KTV ). Thus we get:

Ctr(T ) = O(
√
V T ), RK(T ) = O

(
KT

V

)
.

Case 2:
√
T ≤ V < T . In this case, there are admissible values for α to

make the two terms (containing α) equal, hence we select α = V
√
T . This

yields:

Ctr(T ) = O(
√
V T ), RK(T ) = O

(
KT

V
+
√
T

)
.

Last, we observe that in the first case, we also have KT
V = Ω(

√
T ) due

to the restricted values of V , hence we can express both cases with the
expression:

Ctr(T ) = O(
√
V T ), RK(T ) = O

(
KT

V
+
√
T

)
.

This concludes the proof.
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Chapter 8

Résumé [Français]

8.1 Introduction

Récemment, nous avons assisté à une explosion de la disponibilité des données.
Actuellement, des quantités massives de données sont régulièrement collectées
dans toutes les entreprises, y compris les opérateurs de réseaux sans fil, les
plates-formes de cloud computing (en français l’informatique en nuage ou
nuagique ou encore l’infonuagique), et les détaillants. Cela a provoqué une
tendance dans les problèmes de réseau; exploiter la puissance des données
disponibles pour extraire des modèles et traiter les incertitudes. Le but
de cette thèse est d’augmenter l’arsenal d’algorithmes afin de résoudre des
problèmes de réseau, en proposant des cadres algorithmiques pour des réseaux
sans fil, basés à la fois sur l’optimisation classique ou pilotée des données et
sur l’apprentissage automatique.

Dans les réseaux sans fil, l’application de l’optimisation gagne du ter-
rain, à la fois dans la pratique et dans la recherche, dans la mesure où
il est envisagé d’améliorer considérablement l’efficacité de l’utilisation des
ressources. Une application rigoureuse des techniques d’optimisation sur les
ressources existantes peut réduire le coût d’exploitation. En réduisant par
exemple la puissance, en augmentant les performances (maximiser le débit,
en équilibrant la charge ou en minimisant les délais [32]), la qualité de service
peut s’améliorer en offrant des garanties de performance (Quality of Service).
À tour de rôle, différents outils d’optimisation peuvent être utilisés pour la
future planification du réseau; l’expansion, le partage de ressources entre
opérateurs et l’installation ou la réservation proactive de ressources.

En outre, l’intégration de l’optimisation dans des systèmes futurs est
rendue possible par les avancées technologiques récentes, qui peuvent être
utilisées pour renouveler l’architecture de réseau. Les principaux facteurs que
nous identifions sont les suivants: i) la Softwarisation des services de réseau
- officiellement désignée comme Network Function Virtualization (NFV) et
Software Defined Networking (SDN) et la centralisation des ressources de
calcul pour les réseaux – l’architecture Cloud-Radio Access Network (C-
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RAN). Le groupement des deux permet une gestion centralisée des ressources
(orchestration) et fournit une connaissance collective et une puissance de
calcul, capables de résoudre les principaux problèmes d’optimisation. ii)
Collecte massive de données et leurs techniques d’exploration. Les données
collectées par le réseau de manière centralisée peuvent nous donner des
informations sur le système et sur le comportement de l’utilisateur et être
utilisées par des techniques d’apprentissage automatique afin d’améliorer
l’efficacité du réseau.

Malgré l’évolution récente de la conception et de l’orchestration du
réseau, le provisionnement de ressources dans les réseaux sans fil demeure
un défi. Ceci peut être expliqué par les facteurs suivants: i) grande variation
spatiotemporelle de la demande - l’environnement sans fil évolue rapide-
ment suivant l’activité humaine, ii) grande dimension de l’optimisation - les
problèmes rencontrés sont à grande échelle avec des millions de variables et
(iii) le couplage des décisions - le réseau doit être reconfiguré en fonction
de l’évolution de la demande dans le but de conserver son efficacité. Le
défi consiste à proposer des méthodes d’optimisation rapides, évolutives en
s’adaptant rapidement aux modifications apportées par le signal d’entrée;
tout en assurant une résistance contre les fluctuations afin de répondre aux
exigences du service.

Les propositions de cette thèse sont séparées en deux grandes parties. La
première partie correspond aux chapitres 3 et 4, où nous nous concentrons
sur l’optimisation de l’utilisation des ressources des réseaux en temps réel.
Dans les chapitres 6 et 7 qui suivent, nous analyserons les réservations de
ressources proactives. Tandis que le chapitre 5, sert de pont entre les deux
parties, car il traite un problème en ligne avec une solution hors ligne basée
sur les données. Dans cette étude, nous présentons deux cas d’utilisation
principaux: l’association d’utilisateurs et la réservation de ressources. Les
solutions présentées peuvent être également appliquées à une multitude de
problèmes, à la fois hors du champ de la mise en réseau (vous trouverez les
principaux exemples dans les chapitres 5 et 7).

En somme, les chapitres sont organisés de la manière suivante:
Chapitre 2 – Association d’Utilisateurs Distribuée avec des Garanties de
Qualité de Service.
Chapitre 3 – Association d’Utilisateurs Centralisée et Scalable Basée sur le
Transport Optimal Computationnel.
Chapitre 4 – Association d’Utilisateurs Data-Driven, Basée sur l’Optimisation
Robuste.
Chapitre 5 – Réservation en Ligne de Ressources en Nuages avec des
Contraintes Budgétaires.
Chapitre 6 – Réservation Générale de Ressources en Nuages en Ligne avec
Contraintes Budgétaires: Un Nouveau Cadre.

Dans un premier temps, nous présenterons brièvement le contenu de
chaque chapitre ainsi que les résultats les plus importants de ceci.
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8.2 Association d’Utilisateurs Distribuée avec des
Garanties de Qualité de Service

On étudie le problème d’association distribuée d’utilisateurs dans des Réseaux
Ultra Dense (RUD) pour deux services réseau; l’un requérant des garanties
QdS pour les flux VIP, et le service meilleur effort. Le but est de tirer avantage
du multiplexage statistique pour optimiser l’utilisation des ressources, tout
en s’assurant que les flux VIP disposent de garanties de performance active.

Regardons Fig.8.1 comme un example servant de motivation. Une
méthode d’association de base qui ne prend pas en compte la différentiation
des flux (pas de priorités ni de contraintes VIP) aboutira a de fortes charges
pour les flux VIP Fig.8.1a pour la SB 1, et une qualité de service faible.
Améliorer le réseau avec un système qui considère en priorité les flux VIP
(Fig.8.1b), fixe temporairement la garantie de preformance pour les flux VIP,
sans impacter la charge totale. Cependant, lorsqu’un autre flux VIP est
ajouté á la SB 1 (Fig.8.1c), la QdS de la SB 1 ne peut être atteinte, du fait de
la forte concentration de charge VIP. Dans cette configuration, l’algorithme
que nous proposons va passer un des deux flux VIP á la SB 2, permettant
d’atteindre la QdS VIP pour les deux SB, au coût d’une diminution du SINR
ou du taux instantané pour le flux que l’on a changé de SB.

Figure 8.1: Exemple simplifié pour différentes stratégies d’association

Dans notre travail, nous étendons le cadre de l’association d’utilisateurs
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de [19], et faisons les contributions suivantes : (i) A la différence de [19], pour
s’assurer de l’isolation, nous supposons qu’á chaque SB on a un ’priority-
based MAC scheduler’, pour lesquels les flux VIP sont toujours servis avant
les flux BE. Nous montrons qu’un tel scheduler peut être modélisé par
une queue Processor Sharing (PS) á deux priorités. (ii) Nous introduisons
une contrainte sur la charge VIP á chaque SB, qui sert á apporter des
garanties de performance pour les VIP. (iii) Nous établissons de nouvelles
règles l’association d’utlisitateurs distribuée, pour les services VIP et BE,
pour lesquelles on prouve qu’elles convergent et optimisent une fonction α-
optimale de la charge totale des stations de base. Cela maximise les gains du
’statistical multiplexing’ dans la région de faisabilité. (iv) Nous montrons que
notre politique d’association surpasse en performance la politique originale
de ’meilleur effort’ de [19], ainsi qu’une version améliorée de celle-ci, adaptée
á la configuration 2 classes, qui utilise la règle d’association originale, tout
en donnant la priorité aux flux VIP, en utilisant des traces telecom de la
région de Milan [33].

8.2.1 Garanties de Qualité de Service

Nous motivons la priorité stricte donnée aux flux VIP ainsi que la contrainte
cap pour chaque station de base en prouvant la proposition suivante:

Proposition 1 (Isolation et garanties de performance). En considérant que
les stations de base suivent aussi une politique préemptive de priorité aux
flux VIP, toutes les équations ci-dessus sont écrites pour ρVi . En limitant la
charge des VIP ρVi ≤ ci, on obtient les bornes supérieures suivantes:

E[NV
i ] ≤ 1

1− ci
− 1,

E[DV
i ] ≤ 1

λi
(

1

1− ci
− 1).

Ainsi, pour garantir une certaine performance moyenne dans le delai, on
optimise ρ pour la contrainte ρVi ≤ ci à chaque station de base.

8.2.2 Formulation du problème

Nous définissons donc l’ensemble de faisabilité convexe des vecteurs de charge
qui atteignent la QdS en se basant sur la proposition 1, et nous formulons le
problème d’optimisation convexe:

Definition 1. F est l’ensemble des vecteurs de charge à flux différenciés
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faisables ρB,ρV :

F = {ρ | ρi =

∫
L

(
%Vi (x)πVi (x) + %Bi (x)πBi (x)

)
dx

0 ≤ ρi ≤ 1− ε, ∀i ∈ B
0 ≤ ρVi ≤ ci, ∀i ∈ B∑
i∈B

πTi (x) = 1, ∀x ∈ L, T = V,B

0 ≤ πTi (x) ≤ 1, ∀i ∈ B, ∀x ∈ L, T = V,B},

où ci est le seuil de la charge VIP de la station de base i.

Problem 1 (P1: Le Problème de l’Association d’Utilisateurs avec de
Différenciation de Service).

minimize
ρ∈F

φα(ρ) =
∑
i∈B

(1− ρi)1−α

α− 1
. (8.1)

8.2.3 Règles d’Association d’Utilisateurs Distribuée

On procède à la relaxation des contraintes sur les charges VIP, ce qui
crée une formulation du lagrangien partiellement relaxée, et on dérive des
nouvelles règles d’association d’utilisateurs distribuée. Enfin, on présente le
Distributed Constrained User Association Algorithm (DCUAA) qui résout le
problème relaxé en combinant les règles optimales d’association d’utilisateurs
dérivées, et en utilisant le sous-gradient pour calculer les multiplicateurs
de Lagrange. L’algorithme est ’trigger based’ et va continuer les itérations
jusqu’à convergence. La sortie sera une carte d’association optimale pour
les deux types de flux, connectant la localisation x ∈ L à la station de base
i ∈ B.
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(a) MaxSINR (b) DCUAA VIP (c) Kim et al VIP

Figure 8.2: Comparaison de violation de contrainte entre les algorithmes,
rouge signifie violation, jaune est étroit, bleu signifie inférieur au seuil. (b)
et (c) sont calculés pour α = 1.

Distributed Constrained User Association Algorithm (DCUAA)

Itérer sur t jusqu’à convergence

Les stations de base calculer γ
(t+1)
i ←

[
γ

(t)
i + s(t)∇gΦα

]+

Diffuser γ
(t+1)
i

Itérer sur k jusqu’à convergence
Utilisateur sur place x ∈ L calcule πi(x):

πVi (x) = 1

{
iV (x) = argmax

j∈B

{
Cj(x)(1−ρ(k)j )α

1+γ
(t+1)
j (1−ρ(k)j )α

}}

πBi (x) = 1

{
iB(x) = argmax

j∈B

{
Cj(x)(1− ρ(k)

j )α
}}

La station de base i ∈ B mesure l’utilisation:
U

(k)
i = min

[∫
L(%Vi (x)πVi (x) + %Bi (x)πBi (x))dx, 1− ε

]
ρ

(k+1)
i = βρ

(k)
i + (1− β)U

(k)
i

Diffuser ρ
(k+1)
i

8.2.4 Résultats

Dans nos expériences, nous montrons qu’il n’y a pas de violations de la
contrainte sur les flux VIP sur des données traces réelles de traffic de réseau
mobile, tandis que la politique distribuée baseline ’meilleur effort’ appliquée à
cette configuration amène jusquà 46,5% de violations. Ainsi, nous concluons
que, dans un environnement qui évolue lentement, et pour lequel l’estimateur
de charge moyenne converge, l’algorithme distribué dérivé fournit la QdS
tout en utilisant efficacement les ressources du réseau.
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Table 8.1: Résultats de Simulation sur le Milan Ensemble de Données

Algorithm Constr. Violation % Av. Delay Tot (s)

DCUAA α = 1 0 0.2575

Kim et al. α = 1 46.5 0.2471

DCUAA α = 2 0 0.2814

Kim et al. α = 2 38.9 0.2874

DCUAA α = 5 0 0.4404

Kim et al. α = 5 9.5 0.4368

8.2.5 Publications

Le travail exposé dans ce chapitre a été publié dans l’article suivant:

• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “User Association
for Wireless Network Slicing with Performance Guarantees”, IEEE
GLOBECOM, Abu Dhabi, UAE, December 2018
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8.3 Association d’Utilisateurs Centralisée et Scal-
able Basée sur le Transport Optimal Compu-
tationnel.

Dans ce chapitre, on étudie le problème qui consiste à connecter le traffic
mobile aux stations Clous Radio Access Network (C-RAN). L’approche
centralisée de ce chapitre est motivée par l’arrivée de l’architecture 5G
pour les réseaux sans-fil. L’architecture C-RAN permet d’économiser en
computation et en traitement du signal en migrant la partie calcul des stations
de base vers un cloud centralisé. Le fait d’avoir les informations dans le
controleur C-RAN permet, à la différence du chapitre précédent, de prendre
des décisions informées sur la centralisation de l’association d’utilisateurs.

La très grande échelle des futurs réseaux sans-fil va encore causer des
limitations computationnelles pour l’optimisation des performances. En
pratique, un système générique de résolution de système linéaire échouera
à résoudre un probmème d’optimisation de cette échelle, qui a des millions
de variables [54]. Pour attaquer ce problème de connectivité massive, nous
proposons une approche basée sur la théorie du transport optimal [29,30,54],
qui étudie le transfert à moindre coût de deux distributions de probabilité.
La méthodologie proposée peut ainsi inspirer des algorithmes scalables pour
des problèmes d’optimisation à grande échelle dans les réseaux sans-fil.

8.3.1 Transport Optimal Régularisé

Le Transport Optimal (OT) discret est essentiellement un programme linéaire
[29]. Le TO discret correspond à trouver un flux s-t à une unité, de minimum
coût. En utilisant un réseau simplicial [62], on peut obtenir une solution en
O(E2 log V , ce qui, pour V = m+n, E = mn, and n = m, devientO(n4 log n),
donc essentiellement quadratique en la taille de l’entrée mn. Même si une
telle solution est polynomiale en la taille de l’entrée, la dimension de notre
problème est si grande que le degré du polynôme devient important. Dans
ce qui suit, nous décrivons le TO régularisé, une méthode qui donne une
approximation du TO en O(n2 log n).

En 2013, Cuturi [54] propose d’approximer le TO par une version
régularisée. En particulier, il a proposé de modifier l’objectif du TO en
soustrayant l’entropie H(π) = −

∑
ij πij(log πij − 1), pondérée par le coeffi-

cient force de régularisation ε > 0. Le TO régularisé devient:

142



CHAPTER 8. RÉSUMÉ [FRANÇAIS]

min
πij

∑
ij

Cijπij + ε
∑
ij

πij(log πij − 1) (8.2)

s.t.
∑
j

πij = pi, i = 1, . . . ,m,

∑
i

πij = qj , j = 1 . . . , n.

8.3.2 Sinkhorn Algorithme

On peut reformuler le problème Eq.8.2 et le résoudre par l’algorithme
Sinkhorn:

Sinkhorn Algorithme

Input : C, p, q, ε
Output :π

1 initialize b(0) = 1, ξij = e−Cij/ε;
2 while accuracy do
3 k ← k + 1 ;

4 a
(k)
i ←

pi∑
j b

(k−1)
j ξij

, ∀i ;

5 b
(k)
j ←

qj∑
i a

(k)
i ξij

, ∀j ;

6 end

7 πij ← ξija
(k)
i b

(k)
j , ∀(i, j)

On peut montrer le théorème suivant sur la complexité de l’algorithme:

Theorem 1 (De [69]). Supposons que m = n, fixons τ > 0, et choisissons
γ = 4 logn

τ . L’algorithme Sinkhorn calcule une τ -approximation d’une solution
de (4.2) en O(n2 log nτ−3) opérations.

8.3.3 Choix de design pour l’association d’utilisateurs

Pour obtenir une règle faisable d’association d’appareils, on doit sélectionner
les éléments suivants:

• Pour C : nous proposons d’utiliser (i) la distance euclidienne entre la
position xi de l’appareil i, et la position xj du RRH, i.e. Cij = ||xi−xj ||,
ou bien la charge subie par unité de trafic : Cij = 1

µRij
.

• Pour p : le trafic d’entrée, pi = λi.
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• Pour q : nous proposons d’utiliser (i) trafic RRH égal qj =
∑

i λi/n,
(où n est le nombre de RRHs) ou bien (ii) le trafic RRH à partir de la
règle maxSINR, Λj =

∑
i π

SINR
ij λi.

8.3.4 Association d’Utilisateurs Performance d’Algorithme
de Sinkhorn

Devices RRHs LP-glpk
Sinkhorn

τ = 1%
Sinkhorn

τ = 0.1%

10 25 6 2.27 5.02

50 25 88 4.09 8.95

100 25 315 8.09 9.7

500 25 8130 10.1 31.6

1000 25 out of memory 27 37.9

5000 25 out of memory 135 204

10000 25 out of memory 434 568

Table 8.2: Comparaison d’Exécution (msec) Sinkhorn vs LP-glpk.

8.3.5 Equilibrage Heuristique de la Charge

Nous proposons également un algorithme itératif, où à chaque itération
k l’algorithme Sonkhorn est utilisé avec q(k) pour obtenir une association
qui donne une charge RRH spécifique ρj(π

(k)). A partir de cette charge,
une nouvelle marginale q(k+1) est calculée, et le procédé se répète jusqu’à
satisfaction du critère de précision. Plus spécifiquement, notre algorithme
sélectionne le RHH avec la plus grande charge, et diminue son trafic agrégé
par un term fixé δ, en dispersant le trafic à tous les autres RHH. Nous
précisons qu’augmenter le trafic pour un RHH lointain entrâınera un grand
nombre de changements dans les associations de l’algorithme Sinkhorn, ce
qui assure que le trafic dirigé maintient un coût de transport minimal.

8.3.6 Résultats

Nous montrons que l’heuristique décrite ci-dessus équilibre la charge et
éloigne le trafic des stations surchargées, ce qui réduit le délai par un facteur
4. Notre procédé atteint une complétion moyenne de 6.3 msec, tandis que la
règle maxSINR donne 24 msec, ce qui correspond à une amélioration par un
facteur de proche de 4.
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(a) maxSINR (b) TO Adaptatif

(c) Charge (trafic non uniforme)

Figure 8.3: Comparaison de MaxSINR et du Transport Optimal.
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8.3.7 Publications

Le travail exposé dans ce chapitre a été publié dans l’article suivant:

• G. Paschos, N. Liakopoulos, Mérouane Debbah, Tong Wen, “Computa-
tional Optimal Transport for 5G Massive C-RAN Device Association”,
IEEE GLOBECOM, Abu Dhabi, UAE, December 2018
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8.4 Association d’Utilisateurs Data-Driven, Basée
sur l’Optimisation Robuste

Dans ce qui suit, nous étudions le problème d’association d’utilisateurs avec
garanties QdS, dans le contexte d’UDN, où le trafic de demande évolue
rapidement en temps et en espace, en suivant l’activité humaine. Dans ce
contexte, les algorithmes d’adaptation standard deviennent inefficaces [9, 16,
96]. Ici, nous proposons des décisions d’association faites par l’intelligence
centrale du réseau sans-fil, le C-RAN, basées sur des données d’activités de
télécommunication collectées et traitées par le réseau.

Nous montrons d’abord comment prédire la vraie demande de trafic et
son erreur, puis nous montrons via un lemme que le vrai charge d’une station
de base ( charge et erreur moyenne) dépend de la décision d’association,
c’est pourquoi nous optimisons les statistiques de second ordre (à la fois
la moyenne et la variance de l’erreur), et nous montrons comment rendre
le problème convexe et le résoudre, pour n’importe quel objectif convexe
et séparable, soit exactement soit approximativement, selon la difficulté à
calculer les dérivées. Par la suite, nous présentons les résultats numériques,
et concluons par la validation du modèle d’erreur gaussien sur l’ensemble de
données choisi, et mettons en lumière les améliorations obtenues en utilisant
des techniques de prédiction avancées.

8.4.1 Méthodes Statistiques Pour la Prédiction du Trafic Mo-
bile

Le trafic mobile présente des régularités diurnes, ce qui le rend sa prédiction
possible [13–15]. Nous utilisons un ensemble de données public collecté dans
la région de Milan, analysé dans [13], où il a été observé que le schéma
journalier est plus marqué lorsque l’on considère chaque jour de la semaine
et chaque lieu de Milan séparément.

Definition 2 (Prédicteur de Charge de Trafic). Soit Xt,d
i (x) l’intensité

mesurée (nombre d’arrivées/h) à la position x, l’heure t, et le jour d de la
semaine, i jour avant le jour actuel. La prédiction de l’intensité spatiale est
basée sur les données des n dernières semaines;

λ̄t,d(x) =
1

n

n∑
i=1

Xt,d
i (x). (8.3)

Nous nous concentrons sur un unique intervalle de temps (heure/jour) et
omettons la notation t, d. La vraie valeur de l’intensité du trafic est modélisée
par:

λ̂(x) = λ̄(x) +Nn(x), (8.4)
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où Nn(x) ∼ N(0, σ2
n(x)), et σ2

n(x) et la variance de l’échantillon, qui est
donnée par

σ2
n(x) =

1

n

n∑
i=1

(Xi(x)− λ̄(x))2.

Le lemme qui suit caractérise le comportement de la charge de la station
de base en fonction de l’erreur de prédiction.

Lemma 1. On fixe (t, d). Soit l’intensité horaire spatiale du trafic λ̂(x)
liée à celle prédite, comme dans Eq.(8.4). On fixe le vecteur d’association
d’utilisateurs π. La vrai charge ρ̂i de la station de base i est liée à celle
estimée ρi par:

ρ̂i = ρi(πi) + Yi(πi), (8.5)

où Yi - l’erreur de prédiction de la charge de la station de base - est un v.a.
gaussienne de moyenne nulle et de variance:

S2
i (πi) =

∫
L

π2
i (x)

µ2C2
i (x)

σ2
n(x)dx. (8.6)

On crée des ’Robust User Association Maps’ (RUAM) qui sélectionnent
π en considérant de manière jointe leur impact sur l’objectif de charge de la
station de base et l’erreur de prédiction.

8.4.2 Robust User Association Maps

Pour créer des cartes robustes en termes de fonction objectif, on cherche à
optimiser EY [φ (ρ̂(π))], et l’espérance est calculée par rapport à l’erreur de
prédiction gaussienne. En termes de contraintes, on requiert que la vraie
charge de la SB ne dépasse pas un paramètre réglable ci avec une certaine
probabilité εi:

P(ρ̂i ≥ ci) ≤ εi. (8.7)

On prouve le lemme suivant pour pouvoir remplacer la contrainte stochastique
par une contrainte convexe équivalente:

Lemma 2. L’inégalité P(ρ̂i ≥ ci) ≤ εi est équivalente à ρi+αiSi ≤ ci, quand
ρ̂i = ρi + Yi est choisi selon Eq.(8.5), où Yi suit une loi normale centrée et
de variance S2

i (πi), et αi = Q−1(εi), où Q(·) est la queue de probabilité de
la loi standard.

La formulation du problème d’optimisation robuste est:

Definition 3 (Ensemble de Faisabilité Convexe Fc).

Fc =

{
π ∈ [0, 1]L×B

∣∣∣∣ ρi + αiSi ≤ ci, ∀i ∈ B,∑
i∈B πi(x) = 1, ∀x ∈ L.

}
(8.8)

Problem 2 (P: Convex Robust User Association Problem).

minimize
π∈Fc

E [φ(π)] . (8.9)
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8.4.3 Algorithme de Carte Robuste Généralisé

Dans ce qui suit, on relaxe la contrainte sur la charge; l’ensemble de faisabilité
du problème relaxé (intérieur) pour un multiplieur donné γ est un simplexe,
et on peut le résoudre avec un algorithme de gradient projeté efficace.

Projected Gradient Descent (PGD) on F ′

Initialiser: π(0) (peut être infaisable), γ?.
Répéter: sur n, jusqu’à convergence

y(n+1) = π(n) − η(n)∇πΦ(π(n),γ?) (8.10)
π(n+1) = Πsplx[y(n+1)] (8.11)

Où Πsplx est la projection euclidienne sur F ′:
Trier y(n+1) par ordre décroissant (y1 ≥ y2 ≥ . . . ≥ y|B|)
Sélectionner m = argmax

j∈B
{j | yj + 1

j (1−
∑j

i=1 yi) > 0}

π
(n+1)
i =

[
yi + 1

m(1−
∑m

i=1 yi)
]+
, i = 1, . . . , |B|

Enfin, on présente l’algorithme GRMA, qui est basé sur une méthode de
sous-gradient dual avec moyennage que la suite primale π(k), et on montre
qu’il converge vers la carte robuste optimale.

Generalized Robust Map Algorithm (GRMA)

Initialiser: π(0) (e.g. MaxSINR, peut être infaisable), γ(0).

Répéter: sur k, jusqu’à la convergence:

γ(k+1) = [γ(k) + s(k)g(k)]+

π(k+1) ← PGD(γ(k+1))

Garder la moyenne courante du π(k) (Eq.(4.15)):

π̄(k) = 1
k

∑k−1
i=0 π

(i)

Nous prouvons que GRMA résout de manière optimale P2:

Theorem 2 (Convergence à Primal Optimal). La moyenne des itérées
primales π̄(k) = 1

k

∑k−1
i=0 π

(i), où

π(i) ∈ argmin
π∈F ′

E[φ(π)] +
∑
j∈B

γ
(i)
j (ρj + αjSj − cj)

 , (8.12)

converge asymptotiquement vers (ou se rapproche) de la carte d’association
robuste optimale π?, i.e.:

lim
k→∞

||g(π̄(k))+|| → 0 and lim
k→∞

E[φ(π̄(k))] = E[φ(π?)].
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8.4.4 Approximation de Cartes Robustes

Selon le choix de la fonction d’objectif, le calcul des dérivées peut être très
complexe, c’est pourquoi nous proposons des méthodes pour approximer la
carte optimale, basées sur des approximations de Taylor, l’inégalité de Jensen
(MCEL), et l’ε- intervalle de confiance supérieur (MWCC).
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Figure 8.4: Courbes de coûts pour les méthodes d’approximation. Les cartes
robustes sont générées pour chaque méthode d’approximation pour l’objectif
de minimisation du delai (α = 2). 10000 échantillons sont générés en se
basant sur la prédiction du trafic pour une heure de pointe de l’ensemble de
données. Les échantillons dont ordonnés par le coût de l’approximation de
Taylor. On observe que le coût pour MCEL explose en s’approchant de la
queue de distribution, tandis que les autres méthodes restent robustes.

8.4.5 Résultats

Dans la section résultats numériques, on valide nos cartes robustes sur les
traces de la région de Milan [33], avec couverture dense, et trouvons que
l’on peut réduire les violations de 25% (infligées par un algorithme de base
adaptatif) à presque zéro. De plus, on motnre l’effet des α-objectifs [19, 32].

Table 8.3: Pic de Trafic 1ère Semaine de Décembre Micro Setup

ε Average Cost Average Delay (s) Violations (%)

Adaptive 9.671 2.858 24.6

10% 10.911 2.251 7.7

5% 11.000 2.140 3.1

0.1% 11.415 2.030 0

Enfin, on discute les méthodes avancées de prévision de séries temporelles,
comme SARIMA [34] et les réseaux de neurones LSTM [34]. En utilisant ces
méthodes sur les données [33], nous validons le modèle gaussien d’estimation
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de l’erreur et améliorons la qualité de la carte produite par GRMA en
diminuant l’écart dans le coût avec une carte optimale à 5%.
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Figure 8.5: Colonne de gauche: Configuration de la station de base Micro,
protection élevée des SLA ε = 0.001, 2 au 6 décembre (a) Violation (c) Délai
système moyen (e) Coût. Colonne de droite: Configuration de la station
de base à 2 niveaux, protection SLA légère ε = 0.05, 2 au 6 décembre (b)
Violation (d) Délai système moyen (f) Coût.
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Table 8.4: Comparaison Entre les Méthodes de Prévision du Trafic.

Prediction MSE (106) Avg Cost 11h-13h Violations

Sample Mean 1,290 6,60 11,42 <0,1%

SARIMA 0,280 6,22 10,43 <0,1%

LSTM NN 0,266 6,18 10,28 <0,1%

Oracle - 5,90 9,86 0%

8.4.6 Publications

Le travail exposé dans ce chapitre a été publié dans les articles suivant:

• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “Robust User Asso-
ciation for Ultra Dense Networks”, IEEE INFOCOM, Honolulu, HI,
April 2018
• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “Robust Optimization

Framework for Proactive User Association in UDNs: A Data-Driven
Approach”, to appear in IEEE Transactions on Networking, 2019
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8.5 Réservation en Ligne de Ressources en Nuages
avec des Contraintes Budgétaires

Nous étudions ici l’apprentissage d’une réservation de ressources à la fois
économique et robuste pour le informatique en nuages, à savoir réservation
de ressources juste satisfaisants pour répondre aux exigences d’exécution
de l’application [25]. L’objectif est d’obtenir des réservations qui répondent
exactement aux exigences: le surapprovisionnement en ressources entrâıne
des frais d’exploitation excessifs, tandis que le sous-approvisionnement peut
dégrader considérablement la qualité du service, en entrâınant des interrup-
tions et du déploiement en temps réel des ressources supplémentaires, ce qui
coûte très cher [26].

8.5.1 Charge de Travail sur le Cloud Non-Stationnaire

La réservation de ressources dans le cloud computing (informatique en nuages)
est un défi, étant donné que l’hypothèse de prévisibilité de la demande ne
tient pas [1]. Notre expérimentation sur un ensemble de données de cluster
Google [2, 86] récupère des résultats similaires, v. Fig.8.6.
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Figure 8.6: Utilisation globale des ressources du cluster Google [2]. Les
ressources sont normalisées par rapport au serveur avec la mémoire et le
CPU les plus importants. Chaque point correspond à 5 minutes, jusqu’à
29 jours mesurés. Les fluctuations sont caractérisées comme imprévisibles
dans [1]. The fluctuations are characterized as unpredictable in [1].

8.5.2 Modèle de Système

Violation garantie. Le vti dénote le cas de violation de la resource i dans
le créneau t, qui se produit lorsque la demande d’une ressource dépasse la

réservation, c’est-à-dire vti , 1

{
λti > xt,πi

}
. Une stratégie π est faisable si

les violations de moyenne temporelle de la ressource i ne dépassent pas un
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seuil prédéterminé εi:

1

T

T∑
t=1

E
[
vti
]
≤ εi, pour tous i = 1, . . . , I.

Par conséquent, la contrainte de faisabilité de la ressource i peut également
être écrite sous la forme:

T∑
t=1

P
(
λti > xti

)
≤ εiT. (8.13)

Énoncé du Problème.

minimize
x

∑T
t=1

∑
i ci(x

t
i),

subject to
∑T

t=1P
(
λti > xti

)
≤ εiT, ∀i,

(8.14)

oú λt sont choisis par un adversaire et sont révélés au décideur après que la
réservation xt soit décidée.

Le Regret. Le regret RπT est la différence cumulative de pertes entre la
stratégie π et un benchmark stratégie qui est au courant de tout le trajet de
l’échantillon mais qui est forcé de prendre une action statique tout au long
de l’horizon-souvent appelé meilleure stratégie statique a posteriori [79,80].
En particulier, nous laissons x∗ dénotent notre benchmark, qui est calculé
comme la solution au problème suivant:

x∗ ∈ arg min
x∈RI+

T C(x) s.t.
T∑
t=1

P
(
λti > x∗i

)
≤ εiT.

Le regret est ainsi défini comme suit:

RπT = E

[
T∑
t=1

C(xt,π)− T C(x∗)

]
.

Si RπT = o(T ), dans ce cas la stratégie π n’a “aucun regret” (no regret), car
RπT /T → 0 comme T →∞, à savoir les pertes moyennes du benchmark sont
amorties.

K-slot Benchmark. Le K-benchmark policy garantit la violation con-
trainte pour toutes les fenêtres deK slots dans l’horizon T , tout en minimisant
le coût:

x∗(K) ∈ arg min
x∈RI+

T C(x) (8.15)

s.t.
K−1∑
k=0

P

(
λt+ki > x∗i

)
≤ εiK, ∀t = 1, . . . , T −K.
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Nous présentons THOR et nous prouvons que cette stratégie n’a ”aucun
regret” contre le K-benchmark, lorsque K = o(T ). Il convient de noter que
ceci équivaut à montrer que π atteind la même performance moyenne que le
benchmark.

8.5.3 Time Horizon Online Reservation

Puisque les fonctions de contrainte sont révélées après que nous déterminions
la réservation du vecteur x, à chaque créneau, nous décidons sur la base de
la prédiction linéaire de probabilité d’erreur suivante :

bi(x
t
i) , Ft−1(xt−1

i ) + F ′t−1(xt−1
i )(xti − xt−1

i ). (8.16)

Notre algorithme décide des nouvelles réservations en fonction de la valeur
de la predictor queue qui rassemble l’erreur de prédiction bi(x

t
i) à chaque

itération, le paramètre de prudence V , le coût de la ressource ci, la taille
du pas α et le dérivé de la CCDF convexi du créneau horaire précédente
(F ′t−1(xt−1

i )).

Time Horizon Online Reservations (THOR)

Initialisation: Valeur initiale de la Predictor queue Q(1) = 0, reservation
initial du vecteur x0 ∈ RI

+.

Paramètres: pénalité constante V , taille du pas α, coût de l’unité de
ressource ci, exigence de contrainte par ressource εi ≤ 0.5.
Mises à jour à chaque créneau horaire t ∈ {1, . . . , T}:

xti =
[
xt−1
i − 1

2α(V ci +Qi(t)F
′
t−1(xt−1

i )
]+
, (8.17)

Qi(t+ 1) = [Qi(t) + bi(x
t
i)− εi]+. (8.18)

Oú bi(x
t
i) est donné en Eq.(5.3) et F ′t (x

t
i) c’est le dérivé de la CCDF convexi.

8.5.4 Résultats de Performance

Dans nos résultats théoriques, nous prouvons une sous-linéaire dans le temps
délimité à la predictor queue de THOR, qui servira à prouver la faisabilité, à
savoir, en moyenne temporelle, aucune violation de contrainte dans un horizon
T . De plus, nous comparons THOR avec le K-benchmark, en utilisant les
capacités du K-benchmark et nous prouvons l’ “aucun regret”. En combinant
les résultats, nous obtenons le théorème suivant:

Theorem 3 (No Regret contre K = o(T )). Fix ε > 0, en mettant α = T
3
2

V
1
2

et en prenant K = T 1−ε et V = T 1− ε
2 , THOR n’a aucun regret contre le
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K-benchmark and il est faisable:

RK(T ) = O
(
T 1− ε

2

)
,

Ctr(T ) =
T∑
t=1

P
(
λti > xti

)
− εiT = O

(
T 1− ε

4

)
.

8.5.5 Résultats Numériques

Dans la section numérique, nous validons les réservations de ressources THOR
en utilisant un ensemble de données publiques fournies par Google [2]. THOR
surpasse largement notre implementation du manuel Follow the leader (FTL)
stratégie, garantissant les violations des contrainte, tout en réalisant des
performances similaires ou parfois meilleures que la stratégie de statique
oracle T -slot, dans la CPU charge de travail rigoureuse et non-stationnaire.
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Figure 8.7: Parcelles de comparaison des mises à jour de réservation pour
des différentes stratégies sur les traces de cluster Google [2]. Voir le tableau
8.5 pour la comparaison numérique.
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Table 8.5: Tableau de Comparaison des Politiques, ε = 10%

Performance T-slot Oracle FTL THOR

Average CPU Cost 3964 3203 3365

Average Violations (%) 10.00 21.41 5.64

Average MEM cost 3041 3054 3027

Average Violations (%) 10.00 11.84 3.7

8.5.6 Publications

Le travail exposé dans ce chapitre a été publié dans l’article suivant:

• N. Liakopoulos, G. Paschos, Thr. Spyropoulos, “No Regret in Cloud
Resources Reservation with Violation Guarantees”, IEEE INFOCOM,
Paris, FR, May 2019
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8.6 Réservation Générale de Ressources en Nu-
ages en Ligne avec Contraintes Budgétaires:
Un Nouveau Cadre

Dans le dernier chapitre du corpus principal du travail, nous étudions une
catégorie de problèmes d’optimisation convexe en ligne avec des contraintes
budgétaires à long terme qui se posent naturellement comme des garanties de
fiabilité ou des contraintes de consommation totale. Dans ce contexte général,
les travaux antérieurs de [37] ont montré qu’il est impossible d’atteindre
aucun regret si les fonctions qui définissent le budget de l’agent, sont choisies
par un adversaire. Pour surmonter cet obstacle, nous affinons la métrique
de regret de l’agent en introduisant la notion de K-benchmark, à savoir un
comparateur qui fait face au problème de budget alloué sur chaque fenêtre
de longueur K.

L’analyse d’impossibilité de [37] est récupérée lorsque K = T ; cependant,
pour K = o(T ), nous montrons qu’il est possible de minimiser le regret
tout en faisant face au problème des contraintes budgétaires à long terme.
Nous y parvenons via un algorithme d’apprentissage en ligne fondé sur le
Cautious Online Lagrangian Descent (COLD) pour lequel nous dérivons des
limites explicites, tant en termes de regret engagé et de violations du budget
résiduel.

8.6.1 Hypothèses

Dans le rond t, l’action xt ∈ X s’expose à une perte ft(xt) et affecte le budget
d’un montant gt(xt). Les fonctions ft et gt ne doivent pas nécessairement
être dérivables et f ′t(xt), g

′
t(xt) indiquent des sous-gradients à xt.

(A1) L’ensemble X est convexe et compact de diamètre D.
(A2) Pour toutes t = 1, . . . , T , les fonctions ft, gt : X → R sont convexes et

Lipschitz, avec ‖f ′t‖2 ≤ G et ‖g′t‖2 ≤ G.
(A3) Pour un donné K ≤ T , nous considérons l’ensemble des toutes les

actions qui conservent un budget équilibré dans toutes les fenêtres de
K ronds :

XK =

{
x ∈ X :

t+K−1∑
τ=t

gτ (x) ≤ 0, 1 ≤ t ≤ T −K + 1

}
(8.19)

Nous supposons que XK n’est pas vide.
Etant donné que X est compact et ft, gt Lipschitz, il s’ensuit qu’ils sont
également bornés, à savoir |ft(x)| ≤ F et |gt(x)| ≤ F , pour tout x ∈ X .

Les hypothèses A.1 à A.2 sont les hypothèses générales de tous les
documents OCO précédents. A.3 est essentiel afin de définir la métrique
de regret que nous utilisons, et c’est considérablement moins strict que
l’hypothèse d’interieur non vide de Slater ∩t{x : gt(x) < 0} de [40]. Par
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exemple, si gt est non négatif, l’hypothèse de Slater ne peut pas être efficace.
Ce cas figure dans des problèmes où nous voulons nous assurer qu’un taux
d’échecs ne dépasse pas un seuil, comme par exemple dans [88].

8.6.1.1 Regret sur K-benchmark

L’efficacité algorithmique est mesurée en OCO avec le regret statique : la
différence de perte totale entre l’algorithme et celle d’une action benchmark
à posteriori. Dans ce cas, la définition de regret appropriée doit préciser
la façon dont l’action benchmark se comporte par rapport à la contrainte
budgétaire à long terme. Dans ce but, nous introduisons la famille benchmark
suivante.

Definition 4 (K-benchmark). Nous fixons K ∈ {1, . . . , T}. Le K-benchmark
xK∗ est une action qui répond à:

xK∗ ∈ argmin
x∈XK

T∑
t=1

ft(x), (8.20)

où XK est défini en A.3.

Cela nous permet d’étendre la définition de regret de la manière suivante.

Definition 5 (Regret de xt sur xK∗ ). Nous fixons K ∈ {1, . . . , T}, et sup-
posons qu xK∗ soit un K-benchmark. Le regret de xt sur xK∗ est défini comme:

RK(T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
K
∗ ).

8.6.2 Cautious Online Lagrangian Descent

Cautious Online Lagrangian Descent (COLD)
Pour t = 1, . . . , T :

xt = ΠX

[
xt−1 −

V f ′t−1(xt−1) +Q(t)g′t−1(xt−1)

2α

]
(8.21)

Q(t+ 1) = [Q(t) + ĝt(xt)]
+. (8.22)

avec l’initialisation Q(1) = 0, x0 ∈ X , et oú:
• ΠX [.] signifie la projection euclidienne sur l’ensemble X ,
• V est le paramètre de prudence configurable,
• f ′t−1, g

′
t−1 sont les vecteurs sous-gradients en rond t− 1,

• Q(t) est une file d’attente virtuelle qui est mise à jour en fonction de
(8.22), et elle est appelée le predictor queue,
• α est le paramètre de force de régularisation configurable,
• ĝt(x) , gt−1(xt−1) + 〈g′t−1(xt−1), x− xt−1〉,
• [.]+ est max{., 0},
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8.6.3 Analyse des Performances

Proposition 2 (COLD performance). Si les hypothèses de Sec. (8.6.1) sont
satisfaites et des actions sont prises conformément à COLD, la contrainte
résiduelle est bornée par:

Ctr(T ) ,
T∑
t=1

gt(xt) ≤
{

2BKT + 4FV T +
V 2G2T

α
+

2αD2 + 2BK2 + 2(T + 1)BK

} 1
2

+
GV T

2α
+

G2

[√
2BK +

√
4FV +

√
V 2G2

α +
√

2BK

]
T

3
2 +T√

2

2α
+

G2
[√

2αD2 +
√

2BK2 +
√

2BK

]
T

2α
(8.23)

et le regret sur K-benchmark est borné par:

RK(T ) ,
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
K
∗ ) ≤ (8.24)

≤ BKT

V
+
G2V T

2α
+B

(K + 1)(2K + 1)

6V
+

+
D2α

V
+ 2F (K − 1).

Theorem 4 (Compromis Réalisables). Fix K ≥ 1 tel que K = o(T ) (le
plus grand K rend le K-benchmark plus solide). Choisis des V ∈ (K,T ), et
α = max{T, V

√
T}. Ensuite, (6.13)-(6.14) simplifie à :

O(KT/V +
√
T )︸ ︷︷ ︸

regret sur K-benchmark

and O(
√
V T )︸ ︷︷ ︸

contrainte résiduelle

De plus, suppose que K = T 1−ε pour certains inférieurs ε > 0 et choisis
V = T 1− ε

2 , et α = V
√
T . Ensuite, (6.13)-(6.14) simplifie à:

O(T 1− ε
2 )︸ ︷︷ ︸

regret sur T 1−ε-benchmark

et O(T 1− ε
4 )︸ ︷︷ ︸

contrainte résiduelle
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Figure 8.8: Limites réalisables pour K = T k, k = 0 : 1 : 0.2.

8.6.4 Résultats Numériques

Nos conclusions théoriques sont également validées par une série d’expériences
numériques (voir la Fig.8.9), qui suggèrent que l’augmentation de K - c’est-
à-dire l’élargissement de la fenêtre sur laquelle le budget doit être équilibré
– renforce la garantie de K-benchmark. Par conséquent, la démonstration
non regret sur K-benchmark pour un grand K aboutit aux garanties de
performance plus solides - une observation qui n’est pas a priori évidente
dans un contexte bona fide antagoniste. De plus, nous démontrons l’effet du
paramètre de prudence V , voir Fig.8.10.

8.6.5 Publications

Le travail de ce chapitre a été publié dans le document suivant:

• N. Liakopoulos, A. Destounis, G. Paschos, Thr. Spyropoulos, Panay-
otis Mertikopoulos, “Cautious Regret Minimization: Online Optimiza-
tion with Long-Term Budget Constraints”, to appear at ICML, Long
Beach, CA, June 2019
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0 2000 4000 6000 8000 10000
T

0

2

4

U
til

ity

×106

COLD (V=T0.99 1/2)

K=1 (Neely and Yu)

K=T0.9 (This chapter) K=1 [Neely andYu] 
degrades with T

(a) COLD vs K = 1,K = T 0.9

(b) K-benchmark vs T -benchmark

0 2000 4000 6000 8000 10000
T

0

2

4

U
til
ity

×106

K=T

K=T0.9

K=T1/2

K=log(T)
K=1

(c) Utility for different scaling of K

Figure 8.9: Les simulations de l’exemple de placement d’annonce en ligne.
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benchmark. (b) La perte relative absolue de K-benchmark par rapport à
T -benchmark. (c) Utilités de K-benchmark pour des valeurs différentes de
K.
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