
Abstract-This work considers the transmission of information
from many independent sources to a common receiver over a
channel impaired by multipath propagation. In cellular radio
communications this is the case of the uplink.

We start by examining the achievable rate region of the multi-
user frequency-selective fading channel without knowledge of
the channel on the transmission end. It has been shown that
SSMA (Spread Spectrum Multiple Access) is theoretically capable
of higher data rates than FDMA (Frequency Division Multiple Ac-
cess) or slow frequency-hopping[1]. When the average received
power for all the users is equal, which corresponds to a perfect
slow power control, we show that the maximum spectral effi-
ciency of SSMA exceeds that of FDMA or slow frequency-hop-
ping by .5772 nats/s/Hz for many users and Rayleigh fading.

Also, we formulate the optimal multiple-access scheme when
all the channels are known to the transmitters. In turns out that
only one user should transmit at any given frequency. Moreo-
ver, the input power spectra for the transmitters are water-fill-
ing formulae both in frequency and time. It is shown that the
spectral efficiency for the optimal scheme is significantly higher
than both those of SSMA and FDMA.

I INTRODUCTION

By far the greatest challenge for mobile radio communi-
cation engineers is the design of robust and efficient sys-
tems which are transparent to the hostile effects of
multipath propagation. Because of the enormous growth
of cellular communications in recent years, this has be-
come even more important. The focus of this work will be
on fundamental performance limits of different multiple-
access methods in multipath fading channels.

Recent papers dealing with the information capacity of
time-varying channels which are unknown to the trans-
mitters include [2], in which the capacity vs. outage char-
acteristics of two-path Rayleigh fading channels are
addressed. This work handled the TDMA (Time Division
Multiple Access) case and is essentially a single-user re-
sult. Comparisons are made for varying degrees of path
delays and different diversity techniques. The multiuser
case is addressed in [1] where the achievable rate regions
of SSMA (Spread-Spectrum Multiple-Access) and FDMA
(Frequency Division Multiple-Access) are compared for ar-
bitrary frequency-selective fading channels. It is shown
that the achievable rate region of FDMA is contained
within that of SSMA and consequently higher data rates
are theoretically possible with SSMA. The achievable rate
region of FDMA is also that of a slow frequency-hopping
system such as the Global System for Mobile Communica-
tions (GSM) (see [3, Chap 8]).

In [4] the single-user frequency-flat fading channel is ex-
amined from the point of view of power control, which is
simply a form of channel feedback. It turns out that a

power control law which is water-filling in time can in-
crease spectral efficiency for low average signal-to-noise
ratio. In [5] the optimal power control laws for a multius-
er system with channel feedback in frequency-flat fading
are considered. They are optimum in the sense that they
maximize the total sum-of-rates, which is a good funda-
mental measure of the performance of a multiuser system
when the average received power of the users are equal.
This requires perfect control of the slowly-varying or av-
erage statistics of the channels. In the optimal system,
only one user is permitted to transmit at any given time.
The total sum-of-rates for this scheme is significantly
greater than the non-fading Gaussian channel when the
number of users is large.

In this work we first discuss the model of the frequency-
selective fading channel followed by the achievable rate
region of the multiuser channel. When the channels are
known to the receivers, but not to the transmitters, we
show that the total sum of rates for SSMA, with perfect
slow power control, exceeds that of FDMA or slow fre-
quency-hopping by.5772 nats/s/Hz in Rayleigh fading.

We then consider the case of channels known to the trans-
mitters. Using the total sum of rates as a figure of merit
we derive the optimal multiple-access scheme when the
basestation can allocate the users’ transmits powers arbi-
trarily in the spectrum. We show that as the number of
users grows, the optimal scheme has a significantly high-
er spectral efficiency than SSMA and FDMA.

II MULTIUSER FADING CHANNEL MODEL

In the uplink of a single-cell multiuser communication
system we have  users sharing a fixed bandwidth .
Each user signal, , is transmitted over a different
channel with time-varying impulse response . This
is the response at time  to an impulse at time . We
have the following composite complex baseband signal at
the basestation,

, (1)

where  is complex gaussian noise with power spec-
tral density . The impulse response is the result of
multipath propagation, and can be expressed as

, (2)

where  and  are the zero-mean complex signal
strength and time delay for the  path of channel  re-
spectively. We ignore any slow variations in received sig-
nal level due to path loss and shadowing [6]. This is done
since we will be concerned later with the average signal-
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to-noise ratio (SNR) which can incorporate any slowly-
varying or constant terms, provided they are perfectly
controlled. From this point onward, we refer to this as
perfect slow power control. Furthermore, the multipath
components are scaled such that  and are as-
sumed to be uncorrelated.

In the following section, we will assume that the channels
are time-invariant for blocks of length . In addition, we
place a guard-time  between such blocks upon trans-
mission which is at least as long as the multipath delay
spread. This assures that the received signal in any block
is independent of the information from previous blocks.
The channel responses for
blocks  are denoted by

. These restrictions will allow for frequency-do-
main representations for the average mutual information
functionals.

III ACHIEVABLE RATE REGION (NO CHANNEL
KNOWLEDGE)

In this section we consider the achievable rate region
when the users have no complete knowledge of the chan-
nels. We assume, however, that all the channels are
known to the receiver. The multiaccess coding theorem
[7][8] states that the achievable information rates over an
observation interval , , , are
bounded by

(3)

where  is the average mutual information
functional for the processes  and . Using similar
arguments to those for the single-user case in [2] and the
stationary block assumption from Section II, the RHS of
the inequalities in (3) can be expressed as

(4)

which can be inner-bounded by

(5)

The information processes are chosen to be Gaussian in
order to maximize the mutual information functional,
and  and  are respectively the power spec-
trum of the  users’ signal and the frequency response
of the  channel if the  block were infinite in dura-

tion. The channel responses are taken to be ergodic ran-
dom processes, which is valid given our assumption of
perfect slow power control, so that reliable communica-
tion is possible if

(6)

We also assume that the average transmit power (not in-
cluding slow power control) is constrained to

(7)

Without channel knowledge on the transmission end, the
optimal input spectrum is flat over the entire bandwidth
(i.e. ). This follows from the fact that
the statistics of the channel responses are independent of
frequency. In order to achieve these rates, long observa-
tion times are required, or equivalently long interleaving
depths, in order to average over many possible channel
realizations.

For the case of equal average received SNR, the inequali-
ty in (6) which interests us the most will be the one corre-
sponding to , which is the total sum
of rates. This is because, in the symmetric case, the equal-
rate line  intersects the portion of
the achievable rate region defined by this inequality. This
intersection point determines the maximum rate at which
all the users can transmit reliably. This is shown in Fig. 1
for a two-user system, where  denotes the maximum
achievable rate for a single-user (which is the same for
both users in the symmetric case) and  denotes the
sum of rates.

The capacity region in (6) is essentially that of an SSMA
system, since all the users transmit over the entire availa-
ble bandwidth. For the sake of comparison, consider an
FDMA system where each user occupies one of  equal
size sub-bands. In this case, the achievable rate region is
given by

(8)

It is shown in [1] that this rate region is strictly enclosed
by the region of an SSMA system s. Moreover, a slow fre-
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quency-hopping system is also bounded by these ine-
qualities. This implies that higher data rates are
theoretically possible with SSMA than with systems
which use slow frequency-hopping.

Consider the case when , which corresponds to the
case when the average powers are equalized. The achiev-
able sum of rates for an SSMA system is given by

(9)

Similarly, for FDMA or slow frequency-hopping we have

. (10)

It is clear that  by the convexity of the
logarithm [1]. Furthermore, for large  and , it can be
shown that

. (11)

If we assume a Rayleigh fading model,  is expo-
nentially distributed with unit mean so that

, (12)

where  is Euler’s constant.

IV OPTIMAL POWER ALLOCATION USING
CHANNEL KNOWLEDGE

In the previous section we considered the case when the
channels were not known to the users, aside from the av-
erage received SNR. Now we assume the channels are
known completely to the users and they can choose to
transmit their signals in arbitrary parts of the available
bandwidth. The DECT system employs a technique along
these lines. In this system, the available bandwidth is di-
vided into several channels, which we assume to be fre-
quency flat. The users measure the strength of each
channel, and choose the best available channel on which
to transmit. We show that under certain conditions the
optimal scheme is a generalization of such techniques.

In many situations, the tap weights change slowly
enough (with respect to the data rate) to be estimated ac-
curately. Any RAKE receiver (see [9]), for instance, must
perform this type of estimation. Assuming this is possi-
ble, consider a situation where the basestation estimates
the channel response for each channel and instructs the
users (via the downlink) to transmit with power spec-
trum, . Channel state
information of this sort is a generalization of convention-
al power control which is normally frequency independ-
ent. Moreover, the instantaneous power spectrum for a
given user depends on the channel responses of all the
users in the system, which is not the case in conventional
power control.

We would like to choose the power controllers
(we have dropped explicit mention of the channel re-
sponses from the power controllers to simplify notation)
to maximize a useful performance measure under the
power constraint in (7). Assuming perfect slow power
control and equal average received powers, the most log-
ical choice for the performance measure is the total sum

of rates. Since we have complete channel knowledge at
the transmission end and equal average received powers,
the maximization will yield the equal rate point on the ca-
pacity region. For a more detailed discussion see [10].

Using the Kuhn-Tucker theorem to solve this maximiza-
tion problem, we obtain the following familiar water-fill-
ing formulae for the input power spectra (power control
laws)

(13)

where  is a Lagrange multiplier chosen to satisfy (7). It
is a water-filling solution since
is constant when user  is transmitting. This effect is sim-
ilar to the single-user case [4,11] with a two added fea-
tures. Firstly, the fact that there are multiple users and
that the basestation can allocate different parts of the
bandwidth arbitrarily, only one user is permitted to
transmit at any given frequency. This user has the strong-
est instantaneous response at that frequency. Secondly, it
is also water-filling in time; this is because more power is
allocated when the channel is good and less when it is
bad, which changes dynamically in time. The frequency-
flat case [5] is a special case where we have a water-filling
effect in time only, and only one user transmits at any giv-
en time over the entire bandwidth.

The total sum of rates when the channels are known,
, can be shown to be

, (14)

where  is the first order exponential integral and
. Both the Lagrange multiplier  and the ca-

pacity are independent of the frequency-selectivity of the
channel. We have, therefore, that the sum of rates is the
same as for the frequency-flat channel [5]. The important
difference between the frequency-flat and frequency-se-
lective cases is that in the latter several users can share the
entire band. This means that in spite of the fact that fre-
quency-selectivity has no advantage in terms of average
capacity, users may have to wait less time to access the
channel. For the same total bandwidth, however, the in-
stantaneous data rate for a given user will be lower than
in the frequency-flat case.
We should also mention that in Rayleigh fading with
high SNR, the optimal power adjustment (i.e. water-fill-
ing) does not yield a significant improvement in terms of
spectral efficiency over the case when the transmit power
is kept constant, but dynamic time/frequency allocation
is still performed. Dynamic allocation is the key factor
and can be interpreted as exploiting an inherent diversity
in multiuser channels with fading.

We now compare the spectral efficiencies of FDMA,
SSMA and dynamic allocation for Rayleigh fading. We
first note that (10) can be expressed as [2]

, (15)

and (9) can be computed numerically. The three per user
spectral efficiencies (expressed now in bits/s/Hz) are
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shown in Fig. 2, along with the spectral efficiency of a
non-fading Gaussian channel with the same transmit
power ,

. (16)

As the number of users increases, the spectral efficiency
of SSMA approaches the Gaussian channel. The gap be-
tween the curves for SSMA and FDMA is on the order of

 (bits/s/Hz) for  and high SNR as in
(12). In terms of spectral efficiency (with an infinite obser-
vation interval), SSMA is not much better than FDMA,
however we believe that the capacity vs. outage charac-
teristics of SSMA as defined in [2] are better than those of
FDMA because of added diversity. We see that feedback
of the channel responses can yield a significant improve-
ment in capacity, especially with a large number of users.
Moreover, we believe the same is true for the capacity vs.
outage, since a user transmits only where and when his
channel is good.

V PRACTICAL CONSIDERATIONS

Partitioning of the available bandwidth in the optimal

fashion may be difficult to achieve practically. A more
practical alternative would be to divide the entire band-
width into  equal size sub-bands and allocate a single
user to each these sub-bands based on their instantane-
ous frequency response over the entire bandwidth. In
general, a user may occupy more than one sub-band at
any given time, or may not occupy any sub-band at all.
We can look at this as an OFDM system with one user per
carrier and dynamic allocation of the users on the carriers
based on the instantaneous frequency responses of the
users in each subband. We illustrate this in Fig. 3 for

 and , where we see that at a particular time
it is possible that a particular user occupies more of the
available bandwidth than the others. This would be to
take full advantage of the strength of the channels at a
particular time. Such a scheme may be very appropriate
for high speed wireless data networks.

The bandwidth of each of the smaller bands is
. If  is large enough, the sub-bands

, ,
can be considered as being frequency-flat (i.e.

). This reduces the problem to one with
statistically identical, but not independent, parallel chan-

S

CG W 1 S
W N0
------------+ 

 ln=

0.5772 2ln⁄ K 16=

N

K 4= N 8=

Ws W N⁄= N
W 2⁄– mWs+ W 2⁄– m 1+( )Ws+,[ ] n 0 1 … N 1–, , ,=

Ws 1 T m⁄« N

Figure 2: Multiuser Spectral Efficiency in Rayleigh Fading

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

W 1– C

(bits/s/Hz)

W 1– CFDMA

W 1– CSSMA(K 2)=

W 1– CSSMA(K 4)=

W 1– CSSMA(K 16)=

W 1– CG

W 1– CKC(K 2)=

W 1– CKC(K 4)=

W 1– CKC(K 16)=

S
W N0
------------dB



nels. The sum of rates for this simplified model must also
be given by (14). This will be a good approximation to an
optimal system provided that the frequency-flat subband
assumption holds.

VI CONCLUSIONS

In this work we considered multiple-access methods for
frequency-selective fading channels from an information
theoretic point of view. Using the achievable sum of rates
as a figure of merit for systems with perfect slow power
control and unknown channels, we have shown that the
spectral efficiency of SSMA exceeds that of FDMA or
slow frequency-hopping by .5772 nats/s/Hz for a large
number of users and high SNR in Rayleigh fading. We
then derived the optimal time-varying input power dis-
tributions when all the channel impulse responses are
known to the transmitters. The form of the input power
distributions are multiuser generalizations of the familiar
water-filling formula for AWGN channels with a non-flat
frequency response, and permit only one user to transmit
at any given frequency, at any given time. Expressions for
the spectral efficiency in Rayleigh fading were given and
compared with those of SSMA and FDMA. We show that
for a large number of users there is a significant improve-
ment when perfect channel state information is employed
at the transmission end. It would also be interesting to de-
termine the capacity vs. outage characteristics of the var-
ious schemes, since this may be a more practical measure
of the performance of a multiple-access method.
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