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Abstract
The recent paradigm shift introduced by the Internet of
Things (IoT) has brought embedded systems into focus as
a target for both security analysts and malicious adversaries.
Typified by their lack of standardized hardware, diverse
software, and opaque functionality, IoT devices present
unique challenges to security analysts due to the tight coupling
between their firmware and the hardware for which it was de-
signed. In order to take advantage of modern program analysis
techniques, such as fuzzing or symbolic execution, with any
kind of scale or depth, analysts must have the ability to execute
firmware code in emulated (or virtualized) environments.
However, these emulation environments are rarely available
and are cumbersome to create through manual reverse
engineering, greatly limiting the analysis of binary firmware.

In this work, we explore the problem of firmware re-hosting,
the process by which firmware is migrated from its original
hardware environment into a virtualized one. We show that an
approach capable of creating virtual, interactive environments
in an automated manner is a necessity to enable firmware
analysis at scale. We present the first proof-of-concept system
aiming to achieve this goal, called PRETENDER, which uses
observations of the interactions between the original hardware
and the firmware to automatically create models of peripherals,
and allows for the execution of the firmware in a fully-emulated
environment. Unlike previous approaches, these models
are interactive, stateful, and transferable, meaning they are
designed to allow the program to receive and process new
input, a requirement of many analyses. We demonstrate
our approach on multiple hardware platforms and firmware
samples, and show that the models are flexible enough to allow
for virtualized code execution, the exploration of new code
paths, and the identification of security vulnerabilities.

1 Introduction

The new wave of commercialized embedded systems, brought
about by trends such as the IoT, has resulted in their use for an
increasing number of security and safety-critical applications.
The most unusual feature of this new computing paradigm is
its extreme diversity, in terms of both hardware and software.

At the software level, each new device comes with its unique
firmware, which is purpose-built for its specific function,
and may not include a conventional operating system. At the
hardware level, each device includes its own unique selection
of hardware, both on the board (sensors, actuators, etc.) and
on the chip (bus controllers, timers, and other I/O peripherals),
which combine to form the unique execution environment of
the firmware.

Unfortunately for security researchers, in stark contrast to
the desktop and mobile ecosystems, market forces have not
created any de facto standard for components, protocols, or
software, hampering existing program analysis approaches,
and making the understanding of each new device an
independent, mostly manual, time-consuming effort.

Emulators for these systems are a key component in en-
abling dynamic analysis of the firmware at scale, as transparent
on-device analysis is rarely possible, and it is impractical to
acquire hundreds of identical physical devices to parallelize
the analysis process. However, appropriate emulators are
typically unavailable, particularly due to the impracticality of
properly supporting the thousands of incompatible embedded
CPUs, and an enormous selection of external peripherals.
Worse yet, the physicality of these devices means that
analyzing their firmware without the sensors, actuators, and
other components may not be useful, or even possible at all.

Previous efforts have avoided the problem through the
use of an operating system abstraction [3, 8], or with a
hardware-in-the-loop scheme [15, 16, 26]. However, these
techniques impose severe limits on the scale and scope of
analyzable targets, such as requiring that a general-purpose OS
is present, or a significant amount of potentially costly original
hardware to be tractable. Without these approaches, analysts
must manually implement models of all the on-chip and
off-chip peripherals for a device. This requires that the analyst
can obtain complete documentation or thorough understanding
for every component of the system, and spends the time
to manually develop components usable by the emulator.
Manufacturers can also use completely custom components,
for which no documentation can be obtained, rendering
emulation by any existing method extremely difficult.

We explore the possibility of automated firmware re-hosting.



The key idea behind firmware re-hosting consists of analyzing
a given firmware/hardware combination (possibly through
multiple execution rounds), understanding what the firmware
expects from the surrounding hardware, and then attempting to
replace the hardware altogether, so that the firmware analysis
can be carried out with software-only components. In essence,
firmware re-hosting would allow analysts to decouple the
execution of firmware from the hardware on which it expects
to be executed. This allows for the scaling of popular dynamic
analysis techniques, outperforming hardware-in-the-loop or
device-only approaches [20].

We identified four key aspects that are necessary for
building a re-hosting solution to deal with today’s embedded
firmware: A re-hosting scheme must be virtual to allow for
scale and reduce costs; should also be interactive, to allow
the firmware to process new input and actually withstand
program analysis; should be abstraction-less (i.e., it should
not rely on high-level concepts, such as operating systems and
hardware abstraction layers) to allow the system to handle the
widest possible variety of firmware. Finally, re-hosting should
be automated, so that the system can overcome the extreme
diversity that is impractical for humans to handle. Although
previous approaches to the problem are numerous, all are
missing at least one of these aspects.

In this work, we develop an approach to re-hosting
that achieves all of them, and propose a proof-of-concept
system, called PRETENDER, which is able to observe
hardware-firmware interactions and create models of hard-
ware peripherals automatically. Our system first creates a
recording of real interactions between the firmware and its
hardware, and uses machine learning and pattern recognition
techniques to create models for each peripheral on the CPU.
The generated models can then be leveraged by popular
full-system emulators (e.g., QEMU [2]) or program analysis
engines (e.g.,angr [23]) to enable precise, scalable, interactive
analyses of the accompanying firmware.

While automated re-hosting may seem conceptually straight-
forward, the challenges in modeling even simple hardware-
firmware interactions are numerous. We may think of a pe-
ripheral, such as a serial port, as a simple object that sends and
receives data, but the firmware’s view of this hardware is much
more complex, consisting of dozens of individual configura-
tion, status, or data registers, which, from the point-of-view of
the firmware, appear as only opaque memory accesses, with-
out any indication of their layout or behavior. Two peripherals
performing the same function on two different CPUs, even
from the same vendor, vary wildly in terms of memory layout
and implementation details. On top of this, accesses to these
peripherals occur within the CPU itself, and obtaining these in-
teractions for modeling is its own challenge. Interrupts are also
a common feature of embedded peripherals, and must occur
exactly as expected, or the hardware or firmware may fail.

To evaluate our approach, we demonstrate our recording and
modeling techniques on a set of six unique “blob” firmware
samples,each on three different hardware platforms, with
associated external peripheral devices. Our experiments
show that PRETENDER is able to successfully extract the

peripheral models and execute the firmware in a fully emulated
environment. The models offer enough interactivity to allow
for the exploration of parts of the program not seen during
recording or training. We further show the potential for direct
applications to dynamic analysis, by using these modeled
environments to trigger synthetic security vulnerabilities in the
firmware samples. The hardware modeled in these experiments
represents CPUs and other components common to low-power
IoT and embedded devices. However, many challenges remain
before typical commercial devices can be modeled in full.
We nevertheless believe that the goal of automated firmware
re-hosting is both achievable and necessary. Therefore, we con-
clude with a discussion of limitations, open problems, and next
steps toward tackling the complexity of commercial devices.

In summary, our contributions are as follows:
• We explore the problem of firmware re-hosting, and show

that virtual, interactive, automatic, and abstraction-less
approaches are needed to handle today’s diverse firmware.

• We present PRETENDER, a proof-of-concept system able
to automatically build hardware models, through a mix of
novel hardware and interrupt recording techniques, machine
learning, and peripheral state approximation.1.

• We apply PRETENDER to multiple firmware samples across
multiple hardware platforms and show that the generated
peripheral models are accurate, automatic, and interactive
enough to enable program analysis and vulnerability
discovery.

2 The Re-hosting Problem

To deal with the plethora of software applications that need
to be analyzed on desktop and mobile platforms, the security
community has developed many techniques for enabling the
scalable analysis of programs to find bugs and detect malice.
In this section, we examine what makes embedded systems
different and much less tractable to these techniques, as well as
propose qualities that a system capable of analyzing arbitrary
firmware must have.

Today’s state-of-the-art program analysis techniques, in-
cluding dynamic analysis tools such as AFL [27] or symbolic
execution engines such as angr [23] or S2E [4], rely on some
form of abstraction to be tractable. Dynamic approaches typi-
cally rely on virtualization to enable parallel, scalable analyses,
while symbolic approaches rely on function summarization
of the underlying operating system to minimize the code that
they need to execute. In order to use any of these tools, the
analyst must take the program out of its original execution
environment, and provide a suitable analysis environment able
to execute it. This is a process referred to as re-hosting.

For desktop and mobile programs, the standardization of
the execution environments (e.g., commodity hardware, which
consists of a relatively small number of OSes and architectures)
has made this re-hosting process simpler. However, with
embedded firmware, many well-established assumptions fail.

1To allow the reproducibility of this work, the source code to this work
is available at https://github.com/ucsb-seclab/pretender

https://github.com/ucsb-seclab/pretender


For example, there may not be a general-purpose operating
system designed to run arbitrary code on the device, leaving
the analyst to deal with the hardware directly. This is especially
true for low-power IoT devices, which are typically based on
microcontroller-class CPUs that lack the ability to run such
OSes. Firmware for these devices is typically obtained in
the form of a binary blob, an opaque code object containing
no metadata about its contents. How this blob is handled is
entirely dependent on the CPU hardware, and will vary widely
from chip to chip. This also makes distinguishing between
library code and device-specific code challenging. With no
visible abstractions to use, the execution environment for
embedded firmware is the hardware itself. We can break this
hardware down into three distinct categories:

• CPU Core. The CPU core itself must, of course, be emu-
lated. This includes the instruction set, but also any function
able to directly alter code execution, such as the chip’s pri-
mary interrupt controller.

• On-Chip Peripherals. These peripherals include timers,
bus controllers, serial ports, General Purpose Input and Out-
put (GPIO), and other features typically included on the die
of the CPU itself. Most CPUs expose these peripherals to
the program as Memory-Mapped Input/Output (MMIO),
where they are organized as a group of contiguous memory
locations, that do not behave like normal memory. Each
group may contain multiple locations, used for configuring,
checking the status of, and exchanging data with the periph-
eral. An example of a typical MMIO peripheral mapping is
shown in Figure 1. On-chip peripherals are also responsi-
ble for issuing interrupts, events that trigger asynchronous
changes in control flow in response to a hardware event.
More precisely, a peripheral is associated with one or more
numbered interrupt “channels” or “lines”; when an inter-
rupt occurs, the code in the firmware associated with that
interrupt (known as an Interrupt Service Routine, or ISR) is
executed. When, how, and why a peripheral issue interrupts
are all properties of the peripheral’s hardware on a particular
chip, but typically includes the arrival of data, the expiration
of timers, and error conditions.

• External Peripherals. These peripherals are the sensors,
actuators, and other circuitry on the device’s circuit board(s).
They are exposed to the program only through one of the
on-chip peripherals, including GPIO, or a bus such as Inter-
Integrated Circuit (I2C) or Serial Peripheral Interface (SPI).
While from the programmer’s perspective, communicating
with these peripherals is as easy as sending and receiving
messages thanks to software libraries, the resulting com-
piled firmware does so through a complex series of accesses
to the MMIO regions of on-chip peripherals, making the
direct flow of data in and out of each peripheral difficult to
observe. This is also the source of the most variety in em-
bedded systems, as these devices typically contain entirely-
custom circuit boards, with whatever array of components
the designers felt were necessary.

Table 1: Excerpt of tools tackling the re-hosting problem

Tool Virtual Interactive Abstraction-less Automatic
Simics [17] X X X -
FIE [9] X X X -
Avatar [26] - X X -
PROSPECT [14, 15] - X - X
Surrogates [16] - X X -
Firmadyne [3] X X - X
Avatar2 [19] X X X -
PRETENDER X X X X

2.1 Re-hosting Aspects and Related Work
Many solutions have been proposed to enable firmware
re-hosting, each with their own qualities and drawbacks. To
showcase their differences, we identify four salient properties
that an ideal analysis system, capable of handling arbitrary
firmware, should possess. Table 1 shows prevalent tools that
tackled the re-hosting problem in the past, and classifies them
according to the aspects, which are described as follows.

Virtual. A re-hosting solution should not depend on the pres-
ence of hardware during analysis. Many proposed approaches
to firmware analysis [7, 15, 16, 26] require hardware-in-the-
loop execution. However, such approaches inherently limit the
scale of the analyses. In a dynamic context, only one thread
of execution is possible per-device, and re-starting execution,
which happens very often in modern fuzzers, can incur a
significant time penalty [20]. Symbolic execution is even
more impacted by such approaches; analyses using hardware-
in-the-loop must be careful to only execute portions of code
that do not contain hardware interactions, to avoid corrupting
the hardware’s state visible by all parallel code paths being
explored. Cost also becomes a factor, as each analyst wishing
to explore a set of devices must purchase and instrument
the devices, which raises the barrier to entry for firmware
analysis. While hardware-in-the-loop techniques do allow for
interactive, relatively low-effort analyses, they are by no means
adequate for thorough program analyses of arbitrary firmware.

Interactive. A re-hosting solution should be responsive
to new program input. While defining the notion of input
on an embedded firmware is itself a nuanced problem, the
remaining hardware (not used as the source of input) should
react accordingly. Trace replay-based solutions, such as
PANDA [10], while quite flexible and useful for certain
analyses, are not interactive and cannot be used to implement
fuzzing or symbolic execution, which rely on this primitive.

Abstraction-less. An ideal re-hosting solution should not
rely on a software abstraction that greatly limits the kinds of
firmware on which it can be used. Recently, advances have
been made in re-hosting firmware based on the abstractions
provided by the Linux OS [3, 8]. Using such an abstraction,
when it exists, is advantageous, but it naturally limits the scope
of firmware to those that do not have a significant coupling
between their primary function and the underlying hardware.
Relying on an OS precludes the analysis of, for example, the
blob firmware we explore in this work.

Automatic. An ideal re-hosting solution should not require
a significant effort per-device to use. The diversity in on-chip



and external peripherals is so severe, that it is highly unlikely
that any firmware can be emulated out-of-the-box with a
commercial or open-source emulation package. While some
commercial systems provide the ability to rehost completely
custom hardware architectures (e.g., Simics [17]), these
systems still require the hardware models to be programmed
manually. This is made worse by customizable CPU cores, and
the diverse array of electronics components that the electronics
industry continues to support. Even static and symbolic anal-
ysis tools [9, 12, 22] heavily rely on the manual specification
of hardware behavior, particularly around IO and interrupts.

While there is little useful data able to quantify embedded
CPU diversity, and documentation from vendors is not
in a comparable form, we managed to locate a dataset of
555 CMSIS System View Description (SVD) files [21],
which are XML files describing chipsets based on Cortex-M
microcontrollers. They detail the on-chip peripheral locations
and layouts of 463 distinct chips across 13 different chip
vendors. This collection is by no means complete (it does
not even include all of the chips used in our experiments in
Section 4), but it shows the complexity and the scale of this
problem. In this dataset alone, we could identify 1592 unique
implementations of peripherals demonstrating the immense
variety of peripheral and chip designs.

This complexity increases even more when considering ex-
ternal peripherals connected to the chip via on-chip buses and
interrupt controllers. Hence, emulators such as QEMU [2] have
to include carefully and—up to now—manually crafted imple-
mentations of peripherals and align them at the right location.
In fact, the upstream version of QEMU only exposes implemen-
tations for three different Cortex-M chips, none of them present
in the above dataset. As a result, analysts end up creating their
own peripheral and board implementations and maintaining
them in separate forks of the project, such as QEMU STM32 [1]
or GNU MCU Eclipse [13]. A different approach is taken by
LuaQEMU [5] and avatar2 [19], which provide an interface
for the analyst to define the peripheral layout. While these may
be preferable to languages such as C used by QEMU itself, the
analyst is still required to obtain and understand the full doc-
umentation for the particular CPU model used, and this effort
may not transfer entirely to other similar CPUs, even from the
same vendor. Therefore, it is very clear that an automated solu-
tion is needed to be able to make firmware analysis tractable.

While we, of course, do not claim to have achieved the goal
of ideal re-hosting in this work, in the following sections, we
will showcase a proof-of-concept approach that has all of the
above properties, with limitations discussed in Section 5.

3 Methodology

In this section, we present PRETENDER, a step toward
automating the modeling of MMIO and interrupt-driven
hardware peripherals to enable re-hosting. The goal is to
gather data on, and build models of, these peripherals, such
that the firmware under analysis can later be independently
executed in a CPU emulator. We present our solution in the
context of its use to support dynamic analysis of firmware,
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Figure 1: The memory layout for a simple 32 bit memory-mapped
timer on the STM32 embedded processor.

although the generated models have other possible uses, which
we will discuss in more detail in Section 5.

The success metric we adopt to evaluate the completeness
of the extracted models is what we call survivable execution,
which we define as the ability for the firmware to execute the
same regions of code as it would if the original hardware were
present, without faulting, stalling, or otherwise impeding this
process. We include in this definition the need for our program
to be interactive, as this is a requirement for many analyses.
That is, the firmware and our hardware models need to be
able to operate on inputs and execute code paths that were not
observed during the recording and model-generation phase.
Assumptions and Prerequisites. We make a few basic
assumptions in the implementation of PRETENDER.
• We assume that a CPU emulator is available for the target

device, and that this emulator supports all CPU features that
can impact control flow, including the interrupt controller.

• We assume the analyst has the ability to observe memory
accesses and the occurrence of interrupts in the device in
real-time. We will present a method for accomplishing this
on any device with a basic debugging interface, lowering
the requirement to the ability to read and write the device’s
memory.

• We assume that the basic memory layout of the target
device is known, particularly the location of code and data
in the memory space. More generally, we need to know
where these areas are not located, as we can assume that the
remaining areas are interesting locations we wish to model,
including the MMIO regions.

• We assume that a human or automated process is able to
interact with the hardware and that it achieves sufficient
code coverage during the recording phase to reveal enough
hardware interactions to generate a model. The more
complete the code coverage is, the more detailed the
extracted model will be.

A discussion of these assumptions can be found in Section 5.
PRETENDER works in the following phases:
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Figure 2: Overview of the functionality of PRETENDER

1. Recording. We instrument the device to obtain a trace
of accesses to the MMIO regions, and any interrupt that
occurs during the execution.

2. Peripheral Clustering. We locate the boundaries of each
distinct peripheral within the device’s memory space, and
divide the recording into sub-recordings for each peripheral.

3. Interrupt Inference. Based on the interleaving of
interrupts with MMIO, we assign each numbered interrupt
event to a peripheral group. We then infer which bits in
which memory location in the peripheral control interrupts,
and create timing patterns to be used during emulation.

4. Memory Model Training. In this step, we attempt to select
and train known models for each memory location within
the identified peripheral regions. Any unidentified memory
locations will be modeled using State Approximation.

5. Test Harness Creation. Finally, the analyst must decide
how input should be introduced into the system, through
the creation of a simple test harness. This is the only
manual step in the process, as the decision depends on the
analyst’s needs.
A complete overview of PRETENDER and the interplay

between its different parts can be seen in Figure 2. In the
remainder of this section, we will discuss the individual phases
of the system in detail.

3.1 Recording
On ARM-based platforms, MMIO accesses occur through
normal load or store instructions from the CPU, and take place
across the CPU’s internal memory buses. Since we cannot ob-
serve this activity directly, or either via a debugger or through
physical access, we can instead effectively extend the memory
bus outside the chip where the data required for modeling can
be recorded. To this end, we leverage a hardware-in-the-loop
execution approach, where the firmware is deployed in an
emulator, and the MMIO requests are forwarded to the original
hardware, which allows recording in-transit. We built upon the
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Figure 3: State diagram of interrupt recording in PRETENDER. *
indicates the initial state.

avatar2 framework [19], which allows for the simultaneous
control and orchestration of emulators and hardware. Avatar2

supports an event-based callback infrastructure, which
allowed us to implement the recording of memory events. All
extensions and modifications to avatar2 developed during this
work will be released as open-source alongside with the code
of PRETENDER upon the publication of this paper.

Recording Interrupts In order to fully model on-chip
hardware peripherals, we must observe the interrupts that they
generate, in the context of the MMIO activity of the firmware.2
Figure 3 shows how interrupts are recorded in PRETENDER.
As interrupts are generated on the real device, we should have
the Real CPU running. Hence, we always have the Real CPU
execute an infinite loop. Furthermore, we replace the ISR of

2Recording interrupts is a particularly complex matter, requiring precise
synchronization of the emulator and hardware to avoid incorrect behavior.
We detail the problem and the rationale behind our approach in Appendix A.



all the interrupts with a recording stub (shown in dotted box
in the Figure 3).

When an interrupt occurs (Step 1), the recording stub is
triggered, which immediately reports the interrupt number to
PRETENDER (i.e., the Emulated CPU), and halts the Real CPU
(Step 2). The emulated CPU then starts executing the actual
ISR for the corresponding interrupt, and directs the real CPU
to run a loop in the interrupt’s context to mimic the execution
of the interrupt (Step 3). Once the ISR completes execution
on the emulated CPU (Step 4), PRETENDER redirects the
execution of the Real CPU to the default infinite loop, and the
Emulated CPU to continue executing the firmware (Step 5).
This ensures that both the hardware and emulated interrupt
controllers are synchronized.

3.2 Peripheral Clustering
With the combined MMIO and interrupt recording collected,
we can now proceed to reason about and model the peripherals
themselves. In the end, we need to construct a model, such that
each MMIO location that the firmware accesses returns a rea-
sonable value. However, these locations are not independent;
multiple locations represent one logical device in the silicon of
the chip, which has its own concept of state, control interrupts,
and so on. For example, writing a byte to the data register of
a serial port may cause the “transfer in progress” or “busy”
flag to become active in the same peripheral’s status register.
Therefore, a major prerequisite to the future modeling steps is
to group all memory accesses by their associated peripherals.

To do this, we rely on the intuition that each MMIO periph-
eral is typically associated with a block of contiguous memory
addresses (e.g., 0xC00-0xCFF in Figure 1) . While we cannot
be sure exactly what the boundaries between the peripherals
are, we assume there is some fixed alignment for—and the
minimal gap between—them, likely due to the underlying
details of the peripheral buses that serve MMIO peripherals.
These details are supported by the SVD data explored in
Section 2, as well as the manuals for all of the devices explored
in Section 4. We can, therefore, find our peripheral boundaries
through clustering techniques. For this work, we take the
set of accessed addresses and employ the Density-based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [11] to recover the peripheral groupings.

The intuition behind this choice is that each peripheral will
appear as a small cluster of accesses in a relatively sparse mem-
ory space. For example, in Figure 1, while an entire page of
memory (0x1000) is allocated to the timer, only a small por-
tion (0x00-0x50) of that memory space is actually used, mean-
ing that subsequent peripherals in memory will likely have
large gaps between their relative clusters. DBSCAN is able to
quickly discern these clusters, providing us with the capability
to efficiently group the various accesses. In our work,we set our
maximum gap between any of the addresses in a cluster (i.e.,
epsilon) to be 0x100 and the minimum cluster size to be one.
Almost any reasonable value for epsilon (e.g., 0x8-0x100)
would likely produce identical and useful clusters, and our
minimum cluster size of one ensures that we will not exclude

simple or infrequently-used peripherals from our models.

3.3 Interrupt Inference
In order to model interrupts correctly, we need to establish a
reasonable approximation for when to fire each interrupt and
which MMIO event triggered it. First, we find the association
between the interrupt number and the peripheral firing the
interrupt, which is a property of the hardware that varies widely
between chip models. Then, we discern which MMIO register
is used to enable and disable each interrupt, so that we do not
fire it too soon or too late in the execution. Finally,we determine
how often to fire interrupts when they are eventually enabled.

To associate an interrupt with a peripheral, we examine
the interleaved interrupt and MMIO traces and locate all of
the MMIO operations that occur during an Interrupt Service
Routine (ISR) (e.g., between an interrupt event and the
emulator returning from the ISR). We leverage the intuition
that the purpose of most interrupts is to trigger the firmware
to communicate with the interrupting peripheral, by executing
the code in the ISR. Therefore, we associate an interrupt
number with a peripheral if that peripheral’s MMIO addresses
were accessed the most during the ISR’s execution.

We then locate the memory location containing the inter-
rupt’s trigger, which is a location in the peripheral which, when
a certain bit pattern is written, causes interrupts to be enabled.
The location can be determined by finding the very first
interrupt for a given interrupt number, and seeking backward
in the MMIO/interrupt trace until a write to the associated
peripheral is found. This is intuitively the configuration,
or interrupt-enable register, as it is best practice to enable
interrupts as the final step during peripheral configuration, as,
after this point, any operation could be interrupted. However,
this memory location may be shared with other functions, and
many bit patterns may be written to it during an execution
which have no effect on interrupts. The next step is therefore to
refine the bit pattern which can enable interrupts in the model,
based on which writes appear to control interrupt behavior in
the hardware. We start with the assumption that all bits in the
trigger location control the interrupts. For each write to the de-
tected trigger location, if a bit is set to 0 when interrupts occur,
it is unlikely to be the interrupt trigger bit, and is removed from
consideration. The remaining bits are considered the final
interrupt trigger; during emulation, when these bits are set in
the trigger location, interrupt events will be fired by the model.

Finally, we must determine how often to fire interrupts when
they are enabled. There are various kinds of interrupts: pulse
interrupts occur once for every event they represent, and level
interrupts occur repeatedly until some MMIO action disables
them. While level interrupts would be easy to model based on
the state of the peripheral, we cannot reliably distinguish these
two types in the recording data. As a result, the most general,
flexible approach is to use interrupt timings. Interrupts can
also be very frequent. Since these are the timings seen during
PRETENDER’s recording, we can be sure that the emulator can
at least support interrupts at this speed. We collect the timings
between an interrupt return and the beginning of the next



interrupt (as well as between the trigger and the first interrupt)
and create a repeating sequence. As long as interrupts are
enabled via the correct bits in the interrupt trigger location,
they will be fired repeatedly until they are disabled.

The result is a peripheral model for which interrupts can be
enabled and disabled by the program in a realistic manner, and
with timing intervals that the emulator can support. We find
that these intuitive heuristics both align well with the design
of peripherals, and also work well in practice, as we show in
Section 4.

3.4 Memory Model Training
In this step, we select a model for each memory location in a
peripheral. We first look for common memory access patterns,
which allow us to train accurate models for these common
types of interactions. For some memory locations, where more
complex, stateful, functionality is implemented, we employ a
state approximation mechanism, able to provide known-valid
sequences of observed values for that specific memory
location, based on what state we infer the peripheral to be in.

There are a few basic types of MMIO registers common to
many peripherals (e.g., configuration registers, status registers,
and counters). By using simplified models for these, we can al-
low this part of our model to maintain flexibility, and operate as
independently as possible from the circumstances of the record-
ing. We identify and model a number of classes of MMIO:
• the Simple Storage Model is used for memory locations

that were observed to always act like normal memory. That
is, the value returned for a read from a location was always
identical to the most recent value written to that location;

• the Pattern Model is used for memory locations whose
read values appear to follow some repeating pattern (e.g.,
0,1,1,0,1,1, ...), including locations that always return a
static value;

• the Increasing Model is used for values that are eventually
monotonically increasing (i.e., the last half of the obser-
vations were increasing), which is typically indicative of
a timer or counter;

• and the Write-only Model is used for memory locations that
were only ever observed to be written to, which are effec-
tively ignored from a modeling perspective, but interesting
for our state approximation, as they are likely configuration
registers that directly affect the state of the peripheral.
While these models are relatively straightforward, our

Increasing Model requires multiple iterations of linear
regression modeling to find the best fit line. This is because
these incrementing values are typically configured during
the boot process, which means that their initially read values
are unlikely to be indicative of the actual rate of increase. For
example, a counter may start on boot at a certain rate, then
the firmware will configure a new rate and reset the timer,
resulting in two distinct functions represented by the same
memory value. To handle this, we iteratively remove outliers
(i.e., values that have a correct p-value greater than 0.0001)
from our regression model until we have a good-fitting
function for the steady-state increase. When we are replaying

this model, we first replay the initial outlier values verbatim,
and only switch our projection function once initial values are
exhausted and the long-term behavior is expected.
State Approximation. The remainder of locations within a
peripheral represent those locations that do not follow any
easily identifiable pattern. These locations can represent
external sources of input or external physical phenomena,
reflect large amounts of state invisible to the CPU (e.g., the
internals of on-chip peripherals), and be related to the behavior
of interrupts. Therefore, methods relying on function-fitting
or direct recovery of a state machine involving these memory
locations simply will not suffice.

As a first step toward addressing these challenges, we
instead make an approximation of the device’s state, using only
the observed trace’s data and ordering, by inferring state tran-
sitions we know must exist. We observe that writes to MMIO
addresses are typically used to cause a change in state (e.g., the
transmission of data to external hardware or a change in the
internal configuration of a peripheral), and approximate that
the activity between two writes found in an MMIO recording
may roughly represent the same state of the overall peripheral.
Interrupts also represent a change in state, although we cannot
know concretely what change in state they represent. Reading
data can also change the state of a peripheral, but in a more
subtle way (e.g., reading a byte from a serial port causes it to be
removed from an internal hardware buffer, and a subsequent
read to the same address will return a different value).

With these intuitions in mind, our State Approximation
model consists of the trace of MMIO and interrupt activity
for a given peripheral, and a state pointer consisting of where
in the trace we believe best approximates the state of both the
program and the peripheral. At the beginning of execution,
the state points to the beginning of the trace. We update this
state based on the following rules: When an MMIO address
for this peripheral is read, we look ahead in the trace to find
the next time this location was read. If it is found, we return
this value, and update the state pointer to this location. If we
encounter a write, an interrupt, or the end of the trace before
we find one, we instead return the most recent value for that
location, and do not update the state pointer. This encodes
the behavior that values read from MMIO may be sequential
(as in the serial port buffer mentioned earlier) and that they
respect the boundaries of state caused by writes and interrupts.

When a write to the peripheral’s MMIO occurs, or the
associated interrupt event is triggered, we look forward in the
trace for the next location where the same event occurred, and
update the state pointer. If we do not find it before the end
of the trace, we instead seek backward through the trace. If
the value written is entirely new, we do not update the state
pointer. These rules allow our model to respond intelligently
to changes in its mode, or new commands, regardless of the
order they occur during execution, particularly when new
input causes deviation from the trace.3

Test Harness Creation. Finally, in order for this system to be
fully interactive, as we discuss in Section 2, the analyst must

3For a walk-through of the state approximation model in action and the
challenges faced by it, see Appendix B.



decide how input is to be introduced into the emulated envi-
ronment. No standards exist for input and output in embedded
firmware and hardware; exactly where an input is introduced
is both a function of the target device’s hardware, and the ana-
lyst’s goals. For example, a serial port, in one device, could be
connected to a human-controlled terminal (the obvious source
of input), while in another, it could be wired across the circuit
board to a simple sensor with a serial interface (a model-able
device). PRETENDER, therefore, requires the analyst to provide
their own means of input, in the form of a test harness. We lever-
age avatar2’s Python scripting interface to allow any MMIO
location to be easily replaced by custom logic. As an example,
for the firmware presented in Section 4, we created a harness
consisting of feeding input data via the device’s serial port.

4 Evaluation

To demonstrate the efficacy of PRETENDER, we use it to create
models of the hardware in the context of multiple firmware
images. We then use these models, together with freshly
generated inputs, to uncover code paths and orderings not seen
during recording and modeling. The newly covered parts of
the firmware include synthetic security vulnerabilities, which
the system is able to trigger and detect within the modeled
environment.
Targets. We applied our system to firmware running on three
different embedded CPUs on development hardware, the ST
Nucleo L152RE, the Maxim MAX32600MBED [18] and the
STM Nucleo F072RB [24]. The targets represent ARM-based
microcontrollers common to embedded applications; the first
two represent Cortex-M3-based designs, while the latter is
based on a Cortex-M0. The layout of the peripherals, and the
function of each MMIO register varies widely, even between
the two targets from the same vendor. It is worth noting that
QEMU has no official support for any of these chips, or any of
their contained peripherals. Third-party forks contain partial
support for related chips but would have to be heavily adapted
and extended to work on these firmware samples. Access to
all devices was obtained using a commodity CMSIS-DAP
debugger. We showcase the function of our models in-depth
in the context of the STM Nucleo L152RE, but provide results
from all three.

We evaluated our technique on six example firmware: four
of these were directly obtained from the ARM mbed [25]
development suite’s library of examples. These were designed
to exercise interesting features of the hardware, and we chose
them to demonstrate the challenges PRETENDER has to
overcome for successful hardware modeling. We extended
three of these examples with additional functionality, which
we do not trigger during the recording and modeling phases.
Besides additional hardware interactions, our additions also
include synthetic security vulnerabilities, similar to the kind
that an analyst may wish to locate in a binary firmware. The
other two examples, not taken from the mbed examples, are
more complex and mimic real-world firmware found on a
door lock controller and a thermostat. All of our examples
were compiled using GCC 5.0, and ARM’s mbed hardware ab-

Table 2: Approximate basic block coverage for firmware samples
with PRETENDER, as measured by QEMU

Firmware Name Peripherals Blocks Executed

Rec. Null
Model SA Fuzzing

Nucleo L152RE
blink_led Timer, GPIO 218 86 218 n/a
read_hyperterminal Timer, GPIO, UART 545 85 545 636
i2c_master Timer, I2C, AM3215 1185 61 1185 n/a
button_interrupt Timer, GPIO, Button 344 68 314 n/a
thermostat (custom) Timer, I2C, AM3215 1263 62 1261 1276
rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665 758
Nucleo F072RB
blink_led Timer, GPIO 405 117 405 n/a
read_hyperterminal Timer, GPIO, UART 828 102 828 999
i2c_master Timer, I2C, AM3215 1572 103 1572 n/a
button_interrupt Timer, GPIO, Button 362 103 362 n/a
thermostat (custom) Timer, I2C, AM3215 1662 103 1662 1918
rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960 972
MAX32600MBED
blink_led Timer, GPIO 280 9 280 n/a
read_hyperterminal Timer, GPIO, UART 514 8 514 668
i2c_master Timer, I2C, AM3215 941 8 942 n/a
button_interrupt Timer, GPIO, Button 188 8 188 n/a
thermostat (custom) Timer, I2C, AM3215 1009 8 1009 1066
rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692 712

straction layer. While we had the source code available during
our analysis, it should be noted that no part of PRETENDER
leverages this information; PRETENDER operates solely on
binary firmware and the hardware itself. While this may seem
like a small number of samples in comparison to previous
approaches [3, 8], the need to obtain and instrument original
hardware necessarily limits the number of firmware samples.

We evaluated our system’s effectiveness in terms of its
achieved code coverage on each example, as measured through
execution traces from QEMU. We note that good code cover-
age during our recording phase is an important factor in our
modeling, as we want to explore as much of the hardware’s
functionality as possible. Table 2 summarizes the used pe-
ripherals and execution behavior of each firmware. We note
that the reported block counts are approximate, particularly
for those examples with interrupts, as QEMU re-defines basic
blocks based on where an interrupt occurs and returns, leading
to imprecision. The table shows vastly different amounts of
covered basic blocks for the same firmware across different
devices, although the exact same compiler, source code, and
system library was used for all of the examples. This hints
toward the many subtle differences in the hardware abstraction
layer, which are required to deal with the diverse hardware plat-
forms. The block count in the “Rec.“ column serves for baseline
comparison and shows the coverage reached during the initial
recording phase. The “Null Model“ column represents the cov-
erage obtained when all MMIO is replaced with a model that
simply returns a zero value for every location (this is in contrast
to not having a model at all, where all of the firmware would
cause QEMU to crash). The “SA” column shows the coverage
with complete modeling, including the State Approximation
of the firmware’s source of input. A firmware that is entirely
input-driven will have finite behavior when the source of input
is modeled, but unlike previous approaches, the firmware will
continue to execute after the input ends, but with no additional
input-triggered behavior. We manually verified that all of the



Table 3: Snippets from a capture of all memory-mapped input/output
(MMIO) accesses from an STM32 firmware.

(a) Increasing read-only (Timer 5
@ 0x40000C24)

Op. # Operation Value
. . .

524 READ 3690781
. . .

595 READ 3731433
. . .

658 READ 3534604
662 READ 5549086
663 READ 6053877
665 READ 7060952

(b) Read/write storage (Flash
controller configuration @
0x40023C00)

Op. # Operation Value
. . .

14 READ 0
15 WRITE 4
16 READ 4
17 WRITE 6

. . .
77 READ 6
78 WRITE 7
79 READ 7

firmware samples performed the same overall behavior as was
present during recording. That is, even when no hardware was
present, the firmware used our generated models to function
similarly to when it was running on the actual hardware. In the
last column, Fuzzing, we feed automatically generated random
data to the three firmware examples whose execution is data-
dependent, which is equivalent to a naïve fuzzing approach. We
accomplished this by attaching a test harness in place of a serial
port controller to the system, which, instead of supplying mod-
eled data, provides IO from the host system. This allows new
input to be supplied to the firmware program for exploring new
functionality, while letting the rest of the PRETENDER-created
models function normally. As the table shows, PRETENDER
successfully discovered new blocks, and, subsequently, re-
vealed new functionality of the firmware. In all cases, this
extra functionality actively interacted with the other peripher-
als models, such as timers and system configuration, not just the
serial port. While we discuss details of the hardware peripher-
als when commenting on PRETENDER‘s behavior, our system
is not aware of the specific layout,names,or functionality of any
of the peripherals, aside from the test harness, and basic details
of the standardized interrupt controller coupled to the CPU.

Our evaluation demonstrates that PRETENDER is able
to successfully allow re-hosting, while enabling survivable
execution at the same time. As a result, analysis techniques
such as fuzzing could be parallelized and scaled. Rather than
simple random data, smarter fuzzing techniques [6] could be
used; however, we would like to emphasize that the goal in
this work is not specifically to find new bugs in firmware via
fuzzing, but to enable dynamic analysis, which is necessary
to achieve this, and other security goals going forward.

In the remainder of this section, we will describe the hard-
ware platform and each example more in-depth, together with
the detailed re-hosting capabilities enabled by PRETENDER.

blink_led. This simple example blinks a Light Emitting
Diode (LED) every 0.5 seconds. While this example may seem
overly trivial, we use it to illustrate the basic level of complex-
ity inherent in any firmware compiled with ARM mbed, and
the basic behavior of timers. When booting even the simplest
firmware, the board performs a number of initialization tasks,
including using the Reset and Clock Control (RCC) to enable
various clock devices, the management of the on-board flash

controller, and the configuration of GPIO pins. The firmware
performs various self-checks on these peripherals during boot,
and if they fail to report correct status information, the firmware
will hang in an infinite loop. While this can also be solved with
simple replay, the ability to execute this firmware indefinitely
can only be achieved using modeling. Table 3 shows a memory
trace acquired by PRETENDER, and shows interactions with
the timer (Table 3a) and the flash memory controller (Table 3b).
PRETENDER correctly identified the timer as an Increasing
Model, and our linear regression approach correctly resolved
the rate at which the timer increases. Whenever wait() is
called, the value of the timer is periodically checked and
the firmware continues execution only when it exceeds an
ever increasing amount. PRETENDER’s model can correctly
produce the required values indefinitely. Furthermore, the
various RCC and other system configuration registers checked
by the timer and GPIO code continue to produce the correct
values, as we correctly deduced their simplified storage,
pattern, and state-approximated values.

read_hyperterminal. This firmware receives external input
from a user or other device over a serial port, and turns an LED
on or off (“1” or “0”) based on the input. This example shows di-
verging firmware execution based on different inputs, as a user
can send various possible inputs, in any order. We stimulated
the program by sending random “on” and “off” commands
over the serial port for the duration of the recording. During
our State Approximation-based execution, we were able to
identically reproduce the execution. After the recorded input
ends, the firmware continued to execute, waiting for more data
from the serial port. To make things more interesting, we added
a special backdoor to the firmware code. More precisely, if a “2”
is sent, the firmware will prompt for a password, a common be-
havior for a hidden backdoor functionality. This functionality
is also vulnerable to a buffer overflow when reading the pass-
word. In order to explore code-paths of the program not seen
during recording, we use the serial port test harness described
above, and provide random bytes as input. Even though this
backdoor was not exercised during our recording, PRETENDER
was able to successfully rehost the firmware accurately enough
so that our emulated version can handle this input, including
the various timer and RCC interactions present in this section
of code. When fuzzing the rehosted firmware, we were also
able to trigger the implanted buffer overflow, leading to
corruption of the program counter, and crashing the emulator.

button_interrupt. This example makes use of interrupts that
are triggered by an external event (i.e., a physical button).
When the physical button is pressed, it causes an interrupt to
execute a callback that blinks an LED. During our recording,
we pressed this button at random intervals over a period of two
minutes. Our recording functionality receives the interrupt
events and forwards them to the emulator, which in turn
executed a callback that manipulated the GPIO peripheral.
We located the trigger for the GPIO interrupt automatically
(0x40010408 with value 0x002000). However, as the timings
for the individual button presses were random, PRETENDER
falls back to State Approximation for this peripheral, still
allowing indefinite execution.



i2c_master. This example is modified from the original ARM
mbed example to support an AM2315 I2C temperature sensor,
and reports both the temperature and humidity in the room. Un-
like the previous examples, this one contains multiple sources
of interrupts; both the primary system timer (TIM5) and the
I2C bus produce interrupts, which causes a conflict during
recording. For this reason, we utilize the iterative modeling ap-
proach described in Section 3. On the first execution, we obtain
a recording of the timer’s overflow-related interrupts, and con-
vert this into a model. On the second execution, PRETENDER
identifies that we have an interrupt-enabled model of the timer
already, and uses it instead of the hardware. With this source of
interrupts removed from the hardware, we are able to clearly
observe the I2C bus’s interrupt patterns. This peripheral has
multiple bits that control interrupts, and through observing the
peripheral, we are able to locate the correct bit mask for the con-
figuration register (0x720), such that these bits being enabled
will cause our timing-based interrupts to occur. While this bus
is a source of external input like our serial port, the input is only
generated in response to an action by the firmware. Therefore,
when the firmware writes the configuration and data registers
for the I2C bus with the appropriate values to read from the
temperature sensor, the state of the peripheral will advance or
rewind to the appropriate time that this action occurred during
recording and the events will occur as expected.
Thermostat. In this example, we present a firmware that
would drive a typical thermostat, indicative of popular smart
thermostats (e.g., Google’s Nest). The firmware reads the
temperature and humidity from the AM2315 sensor used
above, but now it also accepts commands that poll for the
temperature and humidity. If the temperature is too far from
a preset temperature, it will enable a GPIO to trigger a hypo-
thetical air conditioning unit. However, in order to showcase
that peripheral models generated with PRETENDER are not
firmware-specific and can easily be transferred and reused, we
did not actually leverage a recorded peripheral trace to build the
models for this firmware.4 Instead, we reuse the models from
the i2c_master example above, together with our test harness to
uncover new functionality offered by the firmware. However,
when we fuzzed the firmware using our test harness, we were
able to discover this previously un-reached functionality,which
directly results into an increased coverage as shown in Table 2.
Rf_door_lock. This firmware uses a Grove Serial RF Pro
radio module connected to an Universal Asynchronous
Receiver/Transmitter (UART) peripheral, which accepts
multiple commands. Among others, those commands include
“ping” and “unlock,” which accept a password. If the password
is correct, the firmware activates a GPIO, which unlocks
a hypothetical mechanical lock. The functionality of this
firmware is indicative of those on popular IoT smart locks.
The radio module operates over a standard serial port. It can be
configured using various commands, and once this is complete,
it will simply transmit data received on the configured channel
to nearby radios. Similar to many small embedded systems,
this firmware provides a binary protocol we can use to send

4Note that we obtained a recording of the firmware’s execution
nevertheless to provide coverage information for comparison.

commands via our hypothetical smart lock client, including
unlock (0xbb) and ping (0xdd). To interact with this firmware
during recording, we used another radio device to send random
valid and invalid lock codes and pings to the firmware. This
firmware has an additional functionality, implemented as a
backdoor that allows any radio user to overwrite the lock code,
by sending command 0xff, followed by the desired code; this
feature is also vulnerable to a buffer overflow. As our radio uses
a normal serial port, State Approximation works as expected
here, but we cannot directly apply our serial port model and
feed it with random data to reach additional block coverage.
Instead, we need to correctly format our inputs according to
the format observed by the radio’s responses during recording;
it checks that the radio responds correctly with “OK” to config-
uration commands, and will halt execution if it does not. This
would be an excellent starting point for a mutational fuzzer, but
for the sake of simplicity, we simply “mutate” by appending
random data to the end of the data held in our model, and re-
playing it into our serial port. With this rudimentary fuzzer, we
were able to automatically discover the hidden functionality,
and even trigger the bug, causing QEMU to halt the execution.

5 Discussion and Future Work

We have shown that a virtual, interactive, and automatic
re-hosting solution is necessary to tackle the diversity in
IoT and embedded devices, and demonstrated the possibility
of such a system through PRETENDER. However, we fully
acknowledge that the problem of automated re-hosting is still
challenging to be completely solved. This section discusses
the assumptions and prerequisites laid out in Section 3, and
explores a number of the open problems and challenges that
must be overcome in order to apply re-hosting in any context
to production embedded devices.

Beyond ARM and MMIO. Currently, PRETENDER supports
ARM devices, for which an emulator for the instruction set
and any core peripherals (those which control code execution
directly) are available. This is a reasonable requirement, as
newer ARM designs, particularly the Cortex series, have
provided more rigid standards to manufacturers governing
memory layout and core components, such as the interrupt
controller. This still leaves vendors ample room to customize
every aspect of the remaining peripherals, however. While
we focus on the ARM architecture, additional architectures
can be added by providing a basic instruction set emulator,
creating the short interrupt recording stub, and providing
the needed physical memory access to the device to enable
recording. Additionally, other architectures use “port-mapped
IO” (PMIO) to perform their IO operations. While we do not
support this today, PRETENDER could be trivially extended
to record these operations instead. All other features of
PRETENDER are completely device and architecture-agnostic.

Performance. As PRETENDER involves sending peripheral
data and interrupts back and forth between the device and an
emulator, this adds some overhead to the firmware’s execution.
This is particularly noticeable with interrupts, as they tend to



be performance- and timing-critical, which could cause issues
during recording. This could be overcome through optimiza-
tion of the implementation, or through the use of purpose-built
hardware to interface with the device, as demonstrated in [7].

Obtaining Traces. The principal limitation on the applicabil-
ity of PRETENDER is not the models or modeling techniques,
but in fact the ability to obtain the data to generate them. First,
we must be able to obtain a memory data trace for MMIO. In
our case study, this is provided via the chip’s debug interface,
which simply provides access to read and write to any memory
address or CPU register. Any interface that also provides this
functionality, whether it is an intended debugging interface
or one adversarially obtained through an exploit, is sufficient,
and could be used to also extract interrupt traces using only
this basic requirement. Second, we must be able to observe
enough hardware functionality to generate a useful model.
This means that we require sufficient code coverage of those
code paths that interface with the hardware. We can explore
new program behavior using PRETENDER models, but will
logically encounter incorrect behavior if these new code
paths exercise dramatically different functionality than what
has been recorded. For example, we can re-use our timer
model on a completely new firmware that also configures the
timer in the same way (e.g., to count up), but not one with a
different configuration with vastly different behavior. In our
case studies, we utilize human and automated stimulation to
achieve maximal coverage during recording, but of course,
in the general case, this is an open problem.

Additionally, there are a few aspects of many chips that we
simply cannot model correctly with this visibility, particularly
Direct Memory Access (DMA) controllers, whose accesses
to memory are initiated by the hardware itself, and therefore
not visible externally by any conventional means. These are
particularly common in higher-speed peripherals, including
USB, networking, storage buses, and those common to modern
CPUs designed for general-purpose computing. We are un-
aware of any CPU that allows introspection into DMA activity;
however, insight into this problem may be gained by instead
observing the firmware’s code to locate DMA operations.

External Peripherals. External peripherals remain one of
the most complex parts of re-hosting firmware. PRETENDER
handles external peripherals, such as the I2C temperature
sensor, and RF hardware examples, but does so by modeling
the on-chip peripheral and its associated external device as a
composite. This makes our models specific to a given physical
hardware configuration. Ideally, this would not be the case; for
example, a common serial port can be thought of a simple bi-
directional channel over which the CPU and the external device
communicate, and we could develop models for each external
serial-based peripheral using this channel alone, and reuse
these on different host CPUs. However, these ports and bus
controllers have their own internal hardware, which follows
its own state machine, that responds to the data transferred
to and from the peripheral. A particular complication is that,
from the point-of-view of MMIO, it is impossible to reliably
distinguish values read from control or configuration registers
from data coming from outside the CPU. Separating these two

intertwined systems remains an important, open problem.

Heavily-stateful Peripherals. Not all peripherals, particu-
larly external ones, are well-modeled by a state machine. As
we discussed in Section 3, we make some assumptions to
build a state machine approximation of devices which require
it, but this is by no means guaranteed to be correct. One
notable case where this will fail is external storage devices,
such as SPI-based flash or EEPROM chips. While we could
reconstruct much of the traffic to and from these chips seen
during recording, reading and writing arbitrary data, as could
be possible through a modeled serial port used to provide
arbitrary input, will of course not succeed. Fortunately, this
problem may be dramatically simplified through high-level
modeling, or through the separation of external peripherals
from their corresponding internal peripherals, as the behavior
of a device as storage may become more apparent.

Adding Abstractions. While a system that is abstraction-less
is the most ideal solution to the re-hosting problem, modeling
using a higher-level abstraction, such as libraries or an
OS, remains an important way to make re-hosting more
robust. Many firmware images, including the ones used in
this work, were written with such libraries, which perform
most hardware interactions on behalf of the author’s code.
If located, these would also provide a convenient means of
dealing with the above problem of external peripherals and
DMA, as they provide the firmware author a high-level way of
communicating with peripherals, which can then be exploited
for modeling. However, for firmware without an operating
system, which is typically distributed as a binary blob, this
reduces to the problem of identifying library functions in
statically-compiled, stripped binary programs, a well-studied
but yet-unsolved problem. Furthermore, any code which
violates the abstraction by controlling hardware directly still
requires the use of a technique like PRETENDER. This is found
even in our simple examples, where all accesses to the GPIO
peripheral were aggressively in-lined by the compiler, such
that no library call or other abstraction remained.

6 Conclusion

In this work, we explored the area of firmware re-hosting, and
showed that an entirely new class of approaches can enable
scalable, thorough program analysis of firmware. As a first
step toward achieving this goal, we presented PRETENDER,
which generates models of peripherals automatically from
recordings of the original hardware. We demonstrated the
accuracy and interactivity of these models, by evaluating
PRETENDER on multiple firmware samples across different
hardware platforms. While there are many open problems
remaining before this technique can be generally applicable,
we believe this work shows that automated re-hosting is both
possible and necessary to ensure that increasingly-important
firmware does not go un-analyzed.
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Appendices

A Recording Rationale

While we describe our means of recording in Section 3.1, our
approach may seem overly complicated. In the following,
we point out the rationale behind the design decisions for the
recording subcomponent of PRETENDER.
Recording MMIO. The natural first step in building models
of hardware is recording a trace of the IO activity that occurred
during execution. As we outline in Section 2, the firmware de-
pends on both internal “on-chip” peripherals, and external “off-
chip” peripherals, both of which are needed for the firmware
to operate as expected. However, the firmware only commu-
nicates with off-chip peripherals through its interactions with
on-chip peripherals, so in order to have a complete recording,
we must capture all memory accesses that constitute MMIO.

Peripherals are considered “memory-mapped” because they
are attached to, and addressed via, one of the CPU’s internal
memory buses. Unlike external buses, which can be physically
probed and monitored, these interactions only occur within
the CPU’s die, and cannot be directly monitored. While some
debugging facilities used in the development of new chips offer
a data trace of the memory bus, such as ARM’s ETM/HTM
Data Trace, these features are seldom available on production
chips, and are entirely absent in the low-cost, low-pin-count
chips of commercial embedded devices. Typical CPUs found
in the wild include, at best, a debugger capable of simple
execution control, and memory/register access.

On top of this, MMIO behaves differently from a normal
region of memory; instead of just storing data, these locations

instead control or represent aspects of on-chip peripherals.
Their value or function may change based on external factors,
without any interaction with the firmware.

One possible alternative approach to MMIO recording
would be to instrument the firmware to record IO interactions.
This requires us to understand, from the binary firmware itself,
where this IO takes place. This could be done on architectures
where explicit in and out instructions are used for peripher-
als. On ARM, however, this is not a straightforward operation,
as peripherals are accessed via normal memory handling in-
structions (LDR/STR), and it is often difficult to tell statically
whether an instruction is addressing a peripheral or normal
memory. Inserting this instrumentation code non-destructively,
and collecting the cumbersome volumes of data it generates,
are both hard problems, and may even be impossible if the code
is present on a Read-Only Memory (ROM). As a result of these
complications, our approach involves virtually extending the
internal memory bus of the device, by emulating the firmware,
and forwarding and recording only the hardware-related ac-
cesses to the original physical device (as detailed in Section 3).

Recording Interrupts. Interrupts play an important role in
most peripherals, and are a particularly difficult aspect to record
and model correctly. Interrupts are triggered by some event,
whether it is an explicit MMIO operation, or an event in the
physical world, and cause the execution of Interrupt Service
Routines (ISRs) as a result. These ISRs typically contain
MMIO operations associated with the peripheral that triggered
the interrupt (e.g., reading data that arrives at a serial port or
counting the number of times a counter overflows). Without
the peripherals’ ISRs executing at the correct times, the periph-
erals may not function, or the system may crash. This behavior
is a property of the hardware itself; the internal logic of the
peripheral decides when and how often to trigger its associated
interrupts. Many peripherals allow this behavior to be adjusted
at runtime, through their configuration registers. For example,
many peripherals have a single bit in their configuration reg-
ister controlling whether interrupt events are generated at all.

Hardware features exist on many chips for providing a
log of the interrupts, such as ARM’s Instrumentation Trace
Macrocell (ITM), but these features are not universal, and
are difficult to coordinate with simultaneous peripheral
recording or even basic hardware-in-the-loop emulation.
Hence, previous solutions, such as the first version of the
Avatar framework [26] or SURROGATES [16] tried to tackle
interrupt forwarding with custom stubs injected onto the
device under analysis. However, both of these solutions
forward interrupts in a “fire-and-forget” manner. This results
in inconsistencies between hardware and emulated firmware,
as incoming interrupts on the hardware could easily be missed
when the emulator serves a previous interrupt. Although those
inconsistencies are a negligible problem for manual analysis,
they dramatically complicate automated modeling, and must
be avoided. A more recent approach, presented by Corteggiani
et al. [7], uses a custom tailored protocol to keep hardware and
emulator synchronized during interrupt forwarding. Unfor-
tunately, this method requires custom debugging hardware
that would greatly reduce the generality of PRETENDER.
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Hence, we heavily extended avatar2 to support the notion of
forwarding and recording interrupts, while carefully keeping
the two systems synchronized without the need of specialized
debugging hardware. The current published version of avatar2

retains the hardware in a “debug-halt” state while forwarding
memory accesses, in order to avoid side-effects from the
resident code. Unfortunately, this debug-halt state inhibits
all interrupts, and thus cannot be used as-is. However, we
cannot simply keep the CPU running and forward all of the
generated interrupts into the emulator; if too many un-handled
interrupts arrive, or spurious, unwanted interrupts occur, the
hardware or emulator can experience an unrecoverable fault.
The current version of avatar2 also does not support writing
to memory while the CPU is running. To make matters worse,
halting the CPU during interrupt routines is problematic, as we
noticed that some peripherals, particularly those that control
future interrupts, will not work properly in this halted state
because they are bound to the CPU’s instruction pipeline. As
a final complication, we must ensure that we return from these
interrupts properly, both in the emulator and on the hardware
to ensure that the hardware continues to function, even though
it is not executing any code.

B State Approximation Details

Our state approximation model is used when a MMIO location
does not fit any other model. According to our observations,
these tend to be the locations in a peripheral directly affected
by external events, such as the data register of a serial port, a
bus controller, or a status and event flag register.

These locations are the most challenging to model and
emulate. For example, in the case of an I2C bus controller,
there are many sources of state, and numerous causes for
the state to change, many of which are not observable. From
the software’s perspective, the I2C bus controller presents
an MMIO interface, which specifies how the bus protocol is
spoken (baud rate, master/slave), whether queuing is enabled
or interrupt are fired, and so on. At another layer, the hardware
between the MMIO and the pins has a state, containing the data
queue, bus-related timers, and other condition flags not visible
directly through MMIO. Both of these portions also occur in
the device on the other side of the bus. Finally, the two devices
share a protocol spoken on the I2C bus itself, which specifies
an ordering of events (start symbol, address, data with ac-
knowledgment, etc.). The result of this is a series of composed,
inter-related state machines, which also rely somewhat on the
physical world’s events, and can only be observed through the
rather limited window of MMIO memory accesses.

Unfortunately, this means that we fail the requirements
of state machine recovery techniques, which are typically
used to infer states and transitions from an activity trace. We
do not know the number of possible states, we cannot tell
when two states are equivalent, and it is challenging to know
concretely if we have even changed the state of the peripheral.
We also cannot easily distinguish data registers, which may
contain data respecting some protocol, from others containing
status flags, error codes, and configuration data. However, it

is also not sufficient to simply replay values verbatim from the
recorded trace. This is because our models need to be able to
function even when we observe deviation from the recording
caused by new input, timing-related deviations caused by
differences between the hardware and emulator, as well as to
tolerate the asynchronous and non-deterministic occurrence
of interrupts. In avoiding these limitations, we created the
State Approximation algorithm we describe in Section 3.

State Approximation Example. As an example, consider a
hypothetical device that uses a serial port to act as a client
for the thermostat we model in Section 4. This device’s
firmware will query the thermostat, with ‘t’ and ‘h’, and
expect a properly formatted temperature or humidity in return.
Furthermore, the firmware reacts to this data, for instance
by sending the information across a network, or raising an
alarm. The device firmware must receive a response from the
thermostat when expected, and the response must make sense
for the given command, for the firmware to behave correctly.

An illustration of what this model might look like can be
seen in Figure B.1. Note that, in a real-world scenario, there
will be many peripherals needed to operate the firmware, but
here we focus on just one to better explain its behavior. The
client device’s serial controller contains many registers, includ-
ing a configuration register, a status register, a data register, as
well as assorted registers governing physical hardware details,
like baud rate. Each of these is addressed by its own MMIO
location, in a contiguous memory region we identified during
clustering. We notice, from our traces and previous Memory
Model Training, that the configuration register is a simple
storage location, and the baud rate control register is only ever
written to. The contents of the status register follow a pattern,
alternating between the values 0x1 and 0x3, which we will
interpret as whether data is ready to receive or not. The data
register, on the other hand, will change without respecting any
pattern or direct stimulation from the firmware. Therefore, this
location is handled by State Approximation.

When emulation begins, we start in the peripheral’s initial
state; during boot-up, the firmware configures the serial port,
writing to the configuration register to enable the serial port,
and set the baud rate to 9600, advancing the peripheral’s
state pointer to the point at which these actions occurred. The
firmware then begins its main loop, and requests a temperature,
by writing a ‘t’ into the data register. Naturally, the next
thing that happens chronologically is for the status register
to indicate that bytes are ready to read, and the firmware
will read a temperature value out of the data register one
byte at a time (e.g., “24.24C”). Similar actions occur if an
‘h’ is written to the data register by the firmware; the status
register indicates new data, and the firmware reads it back
(e.g., “50.35%”). However, when emulating with new input,
interrupts, or after the duration of the original peripheral’s
chronologically observed states, we must make a decision
about what state the peripheral is in. In these cases, following
the simple rules in Section 3, we will enter the state where a
‘t’ or an ‘h’ was written to the data register, and subsequent
reads will return a temperature or a humidity. In this simple
example, the serial port will, after some time, return only the



0x0 (CONFIG): Storage

0x4 (BAUD): Write-only

0x8 (STATUS): Pattern Model

0xC (DATA): State Approx.

...

...

Serial Port MMIO Layout Recorded MMIO Trace

READ 0x0 0x4000

WRITE 0x0 0x4040

WRITE 0x4 9600

READ 0x8 0x1

READ 0x8 0x3

WRITE 0xC 0x74 (‘t’)

READ 0x8 0x1

READ 0x8 0x3

READ 0xC 0x32 (‘2’)

... ... ...

READ 0x8 0x3

READ 0xC 0x43 (‘C’)

READ 0x8 0x1

WRITE 0xC 0x68 (‘h’)

READ 0x8 0x3 

READ 0xC 0x35 (‘5’)

... ... ...

READ 0x8 0x3

READ 0xC 0x35 (‘%’)

... ... ...

Response: “2.24C”

Response: “50.35%”

Action       Address  Value

WRITE 0x0 0x4040

Example State Transitions

READ 0x8

READ 0xC

WRITE 0xC 0x74

READ 0xCCommand: ‘t’

Command: ‘h’

Figure B.1: Illustration of State Approximation in action, on a simplified serial port peripheral

last valid temperature and humidity values, but it will continue
to return only temperatures or humidities when asked for, and

respect whatever formatting or encoding for these responses
the thermostat uses, which may be checked by the firmware.


	Introduction
	The Re-hosting Problem
	Re-hosting Aspects and Related Work

	Methodology
	Recording
	Peripheral Clustering
	Interrupt Inference
	Memory Model Training

	Evaluation
	Discussion and Future Work
	Conclusion
	Recording Rationale
	State Approximation Details

