

WCROWNCOM

RAN Slicing: Challenges, Technologies, and Tools

Navid Nikaein Professor - Eurecom OpenAirInterface Software Alliance Mosaic-5G Initiative

Tutorial at CrownCom 2019 11-12 June, 2019, Poznan, Poland.

Provide an overview of 4G, 5G and RAN slicing

Highlight the importance and timeliness of softwarization, virtualization, and disaggregation of RAN to enable multiservice multi-tenant RAN toward So-RAN architecture

Cover a **well-balanced research** topics and challenges

Tutorial Objectives

5G shall enables Connected, Controlled, and Flexible Network as a service

Digital Society -

Value Creation Consistent experience Sustainable business model

5G Promises

LT-> Driving Forces of 5G

Is 4G enough?

Monolithic BS Stateful network entities Transactional communication mode Certain level of CP and UP separation Common entity for user mobility and session management

Communication-oriented 4G

Multi-operator RAN(MORAN)

Shared RAN nodes, dedicated spectrum, but separated CN per operator

Multi-operator CN (MOCN)

Shared RAN nodes and spectrum, but separated CN per operator with proprietary services

Gateway CN (GWCN)

shared RAN and part of core networks

Dedicated core (DECOR)

Deploy multiple dedicated CNs (DCNs) within a single operator network

One or multiple MMEs and SGWs/PGWs, each element

Evolved DECOR (eDECOR)

UE assisted DCN selection

Network Node Selection Function (NNSF) at RAN to select directly the proper DCN towards which the NAS signaling needs to be forwarded

Congestion control and load balancing among multiple DCN with shared MME

4G Network Sharing Models

Mindful about

3GPPP facts and figures

514 Companies from 45 Countries
50,000 delegate days per year
40,000 meeting documents per year
1,200 specifications per Release
10,000 change requests per year

3GPP R8 Facts and Figures

Evolution from 4G to 5G

Dimension in increasing capacity

Overall 5G Components

5G is not just a new radio/spectrum, but also a new architecture and business helper

• • • • •	Software Defined Networking		Fog Computing Edge Computing		SDN/NFV Orchestration
	Network Function Virtualization	•	Cloudification Virtualization	\$\$	Contextual Networking
\$∽	Heterogeneous Networking	\mathbf{x}	Self Organization Networking	Ø) Ultra dense network
(((r))	Advanced MIMO		Advanced waveforms	<i>`</i>	Millimeter Wave
-/	Carrier Aggregation → of discontinuous bands	\mathbb{X}	Flexible and high capacity backhaul		Single channel full duplexing
		New Spectro Allocations	um $\downarrow \downarrow \downarrow$ $\uparrow \uparrow \uparrow$	More Flexib Spectrum	le © Coherent Project
5(G Tech	no	ogy	Ena	blers

Turn physical infrastructure into multiple logical networks, one per service instance: **One-Network**, **Many-Service NOT** a one-size fits all architecture **NOT** a Dedicated Network

Service-oriented 5G

5G novel usage scenarios: eMBB, uRLLC, mMTC Multi-disciplinary approach with the fusion of computing, communication, information, and IT

Service-oriented 5G

3GPP Role Model (3GPPP 28.801)

g.: End user, Small & Medium Entreprise, Large entreprise, Vertical, Other CSP, etc.

Network Slicing evolves the value-chain of telecom industry:

Decoupling of Players, but the reality might be different

Service-oriented 5G

56 3GPP Re-Architects Mobile Network

	3G	4G	5G
Downlink waveform	CDMA	OFDM	OFDM, SCFDMA
Uplink waveform	CDMA	SCFDMA	OFDMA, SCFDMA
Channel coding	Turbo	Turbo	LDPC (data) / Polar (L1 contr.)
Beamforming	No	Only data	Full support
Spectrum	0.8 – 2.1 GHz	0.4 – 6 GHz	0.4 – 90 GHz
Bandwidth	5 MHz	1.4 – 20 MHz	Up to 100 MHz (400MHz for >6GHz)
Network slicing	No	No	Yes
QoS	Bearer based	Bearer based	Flow based
Small packet support	No	No	Connectionless
In-built cloud support	No	No	Yes

© 3GPP

3GPP 5G Features

(1) Ultra-flexible radio-access configurations Higher bandwidth Higher spectral efficiency (bits/s/Hz/m2) Bandwidth parts: tailor bandwidth to UE class (like eMTC narrowbands/widebands)

Network slicing : new abstractions for service classification down to L1

(2) Compatibility with 4G/5G cores (NSA & SA mode)

5G dual-connectivity (non-standalone operation) Interconnection of evolved 4G eNodeB (ng-eNB) with 5G core

(3) Service-oriented 5G core with cloud-native architecture

5G Main Objectives

3GPP Releases

17

Overall 5G Architecture

Overall 5G Architecture

20

5 3GPP Re-Architects Mobile Network

3 Tier RAN Node

CU0 → DU[0-n] → RRU[0-m] Functions Split CP - UP split

Service-Oriented CN

service catalog and discovery Slice selection function CP - UP split

3GPP 5G RAN and CN

56 3GPP Re-Architects Mobile Network

3GPP 5G RAN and CN

Functional Split : RAN & CN

QoS Class Indicator (QCI)

5G Flow-level QoS FW

Newly introduced SDAP layer

- Reflective QoS
- Explicit Configuration

4G LTE : 1:1 mapping of EPS bearer to DRB5G NR : One or more QoS flows may be mapped onto one DRB.

5G Flow-level QoS FW

Network Slicing

© M. Marina

Sharing vs. Isolation

Network Slicing Concept

Multi-service multi-tenant network 1) Softwarization (SDN) Flexibility & Agility 2) Virtualization (NFV) 3) Disaggregation (Cloud) 4) Customization (MEC) NFV / Cloud Customization & MEC **SDN** Abstraction & Service Disaggregation

Slicing Technology Enablers

Multi-service multi-tenant network

- 1) Softwarization (SDN)
- 2) Virtualization (NFV)
- 3) Disaggregation (Cloud)
- 4) Customization (MEC)

Slicing Technology Enablers

5 3GPP re-architects mobile networks

3GPP Network Slicing

S-NSSAI – single network slice selection assistance information SST– slice type, describes expected network behavior SD – slice differentiator, optional, further differentiation

S-NSSAI can have standard or network-specific values Standard SST values: eMBB (1), URLCC (2), MIoT(3)

NSSAI is a collection of max 8 S-NSSAI UE sends NSSAI – basd on which related slice(s) are selected

3GPP Network Slicing

Maintenance/statistics mIoT, low throughput

**

X

 Infotainment/video streaming eMBB (Mobile Broadband)
 Safety/autonomous driving service URLLC (Ultra Reliable Low Latency)

Dedicated or Shared Functions

Dedicated or Shared Resources?

Dedicated or Shared Resources?

Multiplexing Gain

Benefit: Efficient use of radio resources

Dedicated or Shared Resources

Network slicing definitions - 3GPP, NGMN, IETF, GSMA Properties

- Virtual network space
- Customization
- Isolation and sharing
- Programmability

Current State of network slicing

- CN slicing \rightarrow 3GPP solution
- RAN slicing \rightarrow Under study

Authors (Year)	Deploy RAN	Radio resource	CP function	UP function	
FLARE (2017)	D-RAN	Dedicated spectrum allocation	Dedicated	Dedicated	
Rost et al. (2017)	D-RAN	Physical resource sharing	Split into cell and user-specific	Dedicated till real-time RLC	
Ksentini & Nikaein (2017)	D-RAN	Flexible resource sharing	Dedicated	Shared	
ORION (2017)	D-RAN	Virtualized resource sharing	Split into cell and user-specific	Dedicated till PHY	
RAN runtime (2018)	D-RAN & C-RAN	Flexible resource customization &multiplexing	Split into cell and user-specific	Different levels of isolation & sharing	

RAN Slicing : Tiny SoA

139

RAN slicing system (1) Isolate slice-specific control logics while keeping common CP/UP functions

(2) Share radio resources in virtualized or physical form

Components

(1) **Slice context manager** performs lifecycle management of each slice (SLA, active UEs, admission control)

(2) Virtualization manager

provides a generic form of abstraction for virtualizing radio resources and data plane state
presents a virtual/isolated view to each slice virtual control plane

(3) **Radio resource manager** allocates physical resources among slices

ORION

(4) **UE association manager** handles slice discovery by UEs and maps UEs to slices

41

Virtual Control Plane

(1) Interacts with the underlying infrastructure via the virtualization Manager of the Hypervisor

- translated into control-data APIs

(2) Operates over vRIB, the locally maintained state of virtual radio resources and data plane

- Slice network view and state

ORION RAN Slicing System

ORION

RAN Slicing Execution Env.

(1) run multiple virtualized RAN module instances with different level of isolation and sharing

(2) Pipeline RAN functions to either via multiplexed or customized CP/UP functions

(3) Share radio resources in virtualized or physical form

- (1) Slice data: Slice context and RAN module context
- (2) Context manager: Manage slice data and perform CRUD operation
- (3) Slice manager: slice life-cycle, program forwarding engine, conflict resolution
- (4) Virtualization manager: resource abstraction, partitioning, and accommodation
- (5) Forwarding engine: establish slice-specific UP path

RAN Slicing Model

Resources Radio spectrum resources, e.g., carriers, resource blocks, bandwidth

Processing Functional block for CP/UP operations, delimited through functional block and described with capabilities

State Status of BS CP/UP processing and associated configuration

vRAN

2-level Abstractions

vRAN Subnets enabled by 2-level Abstractions

Virtual-RAN Example

1. Heterogeneous, disaggregated RAN

2. Homogeneous view for infrastructure owner

4. Embedded slices, slice owner view

3. Embedded slices, infrastructure owner view

Spectrum Isolation or sharing

Spectrum scarcity Spectrum heterogeneity Spectrum efficiency

5G integrates heterogeneous spectrums

New applications, particular bands/numerology

Process policies defined by various stakeholders Customized programmable control logics per applications

Policy and rules

General policy Operator policy

SMA Policy

Spectrum slicing

51

Network Graph

- 1) Policy graph: sharing agreement/policy between MNOs
- LSA and CoPrimary
- 2) Topology (T) graph: geographic relationship of operators' cells regarding spectrum sharing
- 3) Spectrum sharing subgraphs (P+T) : match offering cells (e.g. B1:O) and requesting cells (e.g. A1:R)

Spectrum Slicing

Flexible Numerology Bandwidth Parts Abstraction

Requested resources	Abstraction types (Resource granularity)	DL allocation type	UL allocation type
Resource	vRBG Type 0 (Non-contiguous)	Type 0, Type 1, Type 2 distributed	Туре 1
Block	vRBG Type 1 (Contiguous)	Type 0, Type 2 localized	Туре 0
	vRBG Type 2 (Fixed position)	Type 2 localized	Туре 0
Capacity	vTBS Type 0 (Min RBG granularity)	All Types	All Types

4 Steps to radio resources abstraction:

- (1) Aggregation
 (2) Partitioning
 (3) Virtualization
 (4) Polling
 (5) Slice resource allocation
- (6) Slice Scheduling & Accommodation
- (7) Multiplexing/preemption

Inter-Slice Resource Partitioning and Polling

3 Slices

- 1. Slice-specific scheduling, SRM
- 2. Dynamic Resource partitioning, RM
 - Enforce policy over time

Slice programmability: Service differentiation via RRM policy enforcement

←Freq domain (N_b=100)→ Slice 1 ←Freq domain (N_b=100)⇒ Slice 1 Slice 6 Slice 5 Slice 5 (Fixed) (Fixed) S6 Largest Largest unallocated Slice 2 Slice 2 unallocated **S**7 **S7** rectangular Slice 4 Slice 4 rectangular (100PRB, 4ms) (80PRB, 3ms) Slice3 Slice7 **S7** Slice3 Slice 6 Slice 6 -Time domain (T_b=10) -Time domain (T_b=10)[.]

Multiplexing Gain

Function Customization in Monolithic BS

Process Slicing

Function Customization in Disaggregated BS

Process Slicing

1) Graph partitioning to embed a slice state

State Slicing

- 2) Subgraphs per a slice
- Shared BS-common
- Isolated slice-specific
- 3) State sharing among slices through graph merging

Conclusion

Fusion of Computing, Information and Cellular technologies

(a) 5G and beyond is not only New Radio and verticals, it is also an evolution in General-Purpose computing for wireless networks

(b) More and more software technologies (NFV,SDN,MEC) and Data (mining, analytics) jointly with radio signal processing

3GPP 5G Network started from Rel. 15 phase 1

Flow-level QoS Heterogeneous and disaggregated spectrum and RAT Multi-level Network Slicing Cloud Native Architecture Open Interfaces and Edge computing

RAN slicing is an on-going research with several challengesIsolation, Sharing, Customization

Satisfy requirements of slice owner and operator/infra. provider

OpenSource tools : OAI and M5G Ecosystem

https://www.openairinterface.org/

Data-driven network control, orchestration, and management

Reason-Predict-Control is a generic framework

Performance is limited by the available computing resources

5G System:

TS23.501 - System Architecture for the 5G System

TS23.502 - Procedures for 5G System

TS29.500 - 5G System, Technical Realization of Service Based Architecture

TS29.501 - 5G System, Principles and Guidelines for Services Definition

TS 33.501: "Security Architecture and Procedures for 5G System".

5GC components

AMF: - TS29.518 - Access and Mobility Management Services

NRF: TS29.510 - Network Function Repository Services

SMF: TS29.502 - Session Management Services, TS29.508 - Session Management Event Exposure Service

UDM: TS29.503 - Unified Data Management Services

AUSF: TS29.509 - Authentication Server Services, PCF: TS29.507 - Access and Mobility Policy Control Service, TS29.512 - Session Management Policy Control Service, TS29.571 - Common Data Types for Service Based Interfaces

Others:

TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS) TS 38.413: NG-RAN; NG Application Protocol (NGAP)

5G CN Specs.

RAN:

3GPP TS 38.401: "NG-RAN; Architecture description".
3GPP TS 37.340: "NR; Multi-connectivity; Overall description; Stage-2".
3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification".
3GPP TS 38.322: "NR; Radio Link Control (RLC) protocol specification".
3GPP TS 38.323: "NR; Packet Data Convergence Protocol (PDCP) specification".
3GPP TS 37.324: "NR; Service Data Protocol (SDAP) specification".
3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".

UE:

3GPP TS 38.304: "NR; User Equipment (UE) procedures in idle mode". 3GPP TS 38.306: "NR; User Equipment (UE) radio access capabilities".

5G RAN Specs.

Personal Info:

Email: navid.nikaein@eurecom.fr

Website: http://www.eurecom.fr/~nikaeinn/

Linkedin: https://www.linkedin.com/in/navidnikaein
Tel: +33.(0)4.93.00.82.11

Mosaic-5G.io :

- Mail : contact@mosaic-5g.io
- Website : http://mosaic-5g.io
- Linkedin: https://www.linkedin.com/in/mosaic-5g

Twitter: @mosaic5g

Contact Information