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Abstract

The normalization of the stepsize in the Least Mean
Sgquare (LMS) algorithm allows for an easy control of
the range of stable operation for the normalized step-
size in the normalized LMS (NLMS) algorithm, and
also for an easy determination of the stepsize for maz-
imum convergence speed. In this paper, we consider
stochastic gradient algorithms in which the gradient
vector differs from the data vector. For such “nonsym-
metric” stochastic gradient algorithms, we propose a
generalized stepsize normalization. We shall consider
in detail the following three applications: the stochas-
tic Newton scheme, the sign-data LMS algorithm, and
a certain instrumental variable method recently pro-
posed to speed up the convergence of the LMS algo-
rithm.

1 Motivation

In order to maximize the convergence speed of
a stochastic gradient algorithm, a large stepsize is
needed. Also, when one wants to address the issue
of the maximum stepsize at which the algorithm con-
verges, one needs a theory that is valid beyond an in-
finitesimally small stepsize range. At this time, almost
no exact theory for the evolution (learning curve) of
the excess mean squared error (EMSE) exists. Exact
results for the EMSE in the LMS algorithm actually
only exists for the asymptotic case of small stepsize
4 [1]. However, the outlook is more optimistic when
we focus on the stepsize issue, at least for the LMS
algorithm. The LMS algorithm is described by the
following equations

dy — Wi X,
Wi + Xepeed

P
G =

we o 0

where the superscript H denotes Hermitian (complex
conjugate) transpose, Xy = [zf zf_l---zf_N+1]H
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is the regression vector, z; and dj are the input and
desired-response signals respectively and can be com-
plex matrix valued in general (which should explain
the special way in which the update equation for W
above is written), W contains the set of N filter co-
efficients which are of dimensions commensurate with
di and =z, and p; is the stepsize which in general
can be a complex matrix of appropriate dimensions.
Below, we shall write the algorithm equations such
that the matrix nature of the various quantities is re-
spected, but we shall often restrict the analysis to the
case where z; is a real scalar for simplicity. Assume
at first that the minimum MSE (MMSE) is zero or
in other words, the desired-response d = W°H X is
the output of an optimal FIR filter W°. Then we get,
with W, = W° — W, the error in the estimated filter
coefficients,

..f; = WkHlek @)
We = &:Wioy, &e=[I- X XH)

The eigenvalue distribution of the matrix ®; is
1 , multiplicity N —- 1 (3)
M=1-p | Xl® , multiplicity 1

At the time instant k, the error in the filter estimate
gets reduced only in the direction of Xk, by a fac-
tor |A;|. In order to maximize convergence speed,
a constant stepsize ur = p has to be chosen fairly
large. However, especially for signals with a medium
or high kurtosis, this will imply that |A;| > 1 at
many time instants. So, although the algorithm will
be converging on the average, certain updates at iso-
lated points in time will actually represent diverging
steps. This means an inefficient use of data. To max-
imize convergence speed, we clearly have to choose
pe=(XEX)™ = A =0, @y =1-Px, = Ps,
where Px, is the projection matrix onto the sub.
space spanned by X} and P,J(-k is the projection ma-



trix onto its orthogonal complement. This normal-
ization ensures that the filter estimate error compo-
nent in the direction of X gets nulled out, which
is the best we can do. More generally, in order to
have a well controlled convergence behavior, we should
choose px = 7/ ||X]|>. This leads to A, = 1—7, which
is stable for € (0,2). This normalization allows for
a very much predictible convergence behavior, with
A1 and the stable range for 7 being independent of
the input signal statistics. The thus normalized LMS
{NLMS) algorithm has been introduced in {2] and is
also known as the projection algorithm [3].

1.1 Example: Sign-Data LMS

In this paper, we consider more general stochastic
gradient algorithms in which the gradient vector dif-
fers from the data vector. A typical example is the
sign-data LMS algorithm, which can be described by
the following equations:

& = de—Wil,X,

Wi = Wioi+ sign(Xi)peel? )
For noise-free system identification, we get
‘_3’,; = sz_le ©)
Wi = @ Wiy, & = [I— sign(Xp)peXF]
The eigenvalue A; of ®; is now:
N-1
A=1- ka{l sign(Xz) =1 — pg Z [zx| . (6)
=0

For maximum convergence speed, we put again A; =0
which leads to pr = (X# sign (Xk))_l. So the nor-
malized stepsize becomes pr = 7 (X¥ sign (X;‘))_1
which leads to |A;| = |1 -7} < 1 for & € (0,2), inde-
pendently of the signal statistics. Nagumo and Noda
[2] proposed this normalization and found:
e 71 =1 does not necessarily lead to fastest conver-
gence
o the range of stable operation for &7 can be smaller
than (0,2) or even (0,1)

Hence, |A;| is not the proper indicator for convergence.

2 General Stochastic Gradient Algo-
rithm

In this paper, we shall consider more general
stochastic gradient algorithms of the form

E‘,; = dk—WkI{le (7)
We = Wioy+ Yiueed¥
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where X is the data vector and Y: is (part of) the
gradient vector. The filter estimate W}, converges to
a filter W satisfying E {(d — WHX;)Yi} = 0 or
hence W = RyyRya (where Rgy = E ab¥). For
noise-free system identification, we get

&
Wi

WE | Xe

8
S Wiy, @k = [I - Yipe XF] (8)

We again consider the issue of finding the stepsize se-
quence that will lead to fastest convergence, and the
related issue of stepsize normalization such that we
can specify bounds on the normalized stepsize that will
guarantee algorithm convergence. For reasons similar
to those that led to the normalized LMS algorithm,

we shall limit the scope for possible stepsize normal-
izations:

e normalization based on convergence dynamics
considerations (and not measurement noise am-
plification, double-talk detection etc.). The nor-
malization should furthermore only depend on
the instantaneous dynamics, hence on ®;

o the normalized stepsize should be independent of
the “level” of X; and Y;, and hence should only
depend on the angle 8; between X; and Y;

So we shall restrict the stepsize sequence to be of the
form

=7 g(cos )
Xl 1Yl
where cosf = Vf}_(k and X; = X; (Xka)_H/z,

Y=Y (YH Y,,)—H/ ? are normalized vectors. The
state transition matrix becomes

He =P f (Xe, Yi) )

— —H

@ = I-aYy g(cosby) X, . (10)
In the instrumental variable method [4], the gradient
vector Y; has the same structure as the data vector
X}, except that it is filled up with the instrumental
variables y;: Yy = [yF i, ~--yf_N+I]H Under
certain conditions, we can apply a Law of Large Num-
bers to arrive at

—H—
cosby =X, Y =pgy + O (7117)

11
poy = Res/* Ry Ry W
where O (c) is a zero mean random variable with stan-
dard deviation O(c). So for high filter orders, the
angle between the vectors X; and Y; gets highly con-
centrated around a value determined by the crosscor-
relation between the two signals.



2.1 Projection Algorithm

With the restrictions on the normalization put for-
ward in equation (9), the normalization design is-
sue becomes an issue of determining the function
g(cos ;) =?. For the convergence of the mean of We,
we need to consider the eigenvalues of . This matrix
has one nontrivial eigenvalue A\; = 1-7ig(cos 6 ) cos 6
while the other eigenvalues equal 1. Considering A,
the proper stepsize normalization would be

glcosBr) =1/cosbp = Ay =1—-7 . (12)
This leads to an oblique projection
-1
@ =I -7 Pryx,, Pryx, =Y (XIY) T XH (19)

where Py, x, is the projection onto Y; along the or-
thogonal complement of X;. While the e priori er-
ror € is computed using the previous filter estimate
Wi_1, the a posteriori error ¢ is computed using the
updated filter estimate W;:

& =di — WX, =\ (14)
The update of the filter estimate results in a reduction
of the error signal by a factor A;. However, we know
from the sign-data LMS example that |\, | is not the
proper indicator for convergence.

2.2 Convergence of the Learning Curve

However, we are not just interested in the conver-
gence of the mean, but especially in the convergence
of the learning curve, and hence in the convergence of
the second-order moments of W;. To illustrate how
this comes about, consider the system identification
setup: the desired response d = WoH X, + ny is the
sum of the output of an optimal filter W° plus some
independent zero-mean i.i.d. measurement noise with
variance £° E n}. So the filter estimation error
system for algorithm (7) is

& = WH x +n
_k -1k T RE o (15)
We = &Wioi—Ye e nfl |

With COV, = E (WkaH) and introducing the in-
dependence assumption (treating X} and Wk_l as in-
dependent), the learning curve becomes

&= E (6‘:)2 trace (Rxx COVi_q)+€°

COVi = E (9 COViy O ) + €° E (2 Y, Y H)
(16)
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So the dynamics of the learning curve are determined
by the second-order statistics of ®;. However, for the
purpose of normalization, we should omit the aver-
aging operation in E (® COVi-; ®¥). So the in-
stantaneous dynamics for second-order statistics gov-
erned by ®;®f. The eigenvalues of &; ¥ equal the
(singular values of ®;)2. The singular value distribu-
tion of ®; is :

multiplicity N —2

when Y; # ap X an

1

{ o1>1> 09
When Y} is proportional to Xg, then o; = |A1], 02 =1,
but this is basically the case of the LMS algorithm
which we shall not consider further. For any vector
Vi 12Vl < a1]|V|, so a worst case analysis of the
convergence may want to concentrate on ¢;. How-
ever, 01 is not the proper convergence indicator either:
o1 > 1 whenever Y; and X are not proportional, but
convergence occurs nevertheless.

3 The Proper Normalization
3.1 A First Attempt

So we have for the two non-trivial singular values
of Qk

O o1 > 1: in one direction, the error Wk_l gets
amplified,
O o2 < 1: in another direction, Wj_; gets reduced.

Any particular direction in %V gets sometimes am-
plified, sometimes reduced, so we have to consider an
averaged action. Proposed convergence measure, rep-
resentative of the averaged convergence action:

2 06?402 N -2
7 trace (2:9y) = F% —— (18

In order to find the normalization that leads to the
maximum convergence speed, consider minimizing the
convergence measure (18) with 7 = 1 (recall: &,

I—Y} g(cos b )Yf)

2 2
. O +o
min 2122

g (cosby) = cos by |
; { (19)

@ = I - Py, Py, .

Here is another point of view: €k measures the compo-

nent of Wj_ 1 along X;. Hence after the update, that
component should be reduced since we are using f, to
update the filter estimate =

mgin”<I>ka||2 = g(cosbi)=cosfy  (20)



leading to the same normalization. The normaliza-
tions we proposed so far can be summarized as follows.

criterion A1 5‘%’;
g (cosBr) oaln cos Oy
BE G=1) (X{IYk)-] (Y,f’v,,)'1 (vh”x,,) (xfx,‘)_l
A1 0 sin®f < 1
T | e || - beosil <1
@ I — Py,;x, I— Py, Px,
stepsize audacious cautious

which is a symmetric system! Hence, the optimal nor-
malized stepsize is

-1 _ -1 -
me= (20 2)7" = (XF R Xe) ™ = (XEW)
(24)
2 2
resulting from minimizing |A;| instead of 5’%’-.

3.3 Second Attempt

With an arbitrary parameter transformation U =
A W, the state transition matrix becomes ®; = I —
AYi px Xf A-'. The resulting nontrivial eigenvalue
At = 1— pp XHY), remains unchanged! However, such

2 2
a parameter transformation alters 5112’—”1. For a final
convergence measure, we should avoid pessimism. So
if there exists a parameter transformation for which

2 2
U‘Z”’ < 1, then we should not conclude divergence.

2 2
Note that the stepsize that minimizes 5#’-, leads
3 2
to |\1] < 1 and 3% < 1, while the stepsize that

minimizes |A;| leads to A; = 0, but 11;12 > 1 when
6 > %. g(cosf) = cosfy leads to a cautious step-
size since the stepsize gets reduced as the gradient
vector Yz and the data vector X (in which direc-
tion the error Wy gets measured) are less aligned.
g(cosfr) = 1/cosfp on the other hand leads to a
audacious stepsize since the stepsize increases as Yi
and X become less aligned.

3.2 Counterexample: Stochastic Newton

2 3 . .
Is 21372 the right criterion for convergence (if it

is, then 2149 _ 1 should be the boundary between
convergence and divergence)? Consider the stochastic

Newton algorithm:

dy - WH X,
Wi_1 + Ry Xemrel!

p
€k
Wi

= (21)
This is a special case of the general stochastic gradient
algorithm with Yi = Rx% Xx. For noise-free system
identification, the error system becomes

O Wi_1
I - Ry XpmeX{

Wi
®;

- (22)

What is the proper stepsize normalization in this
case? Consider the following parameter transforma-
tion: U = RgQW, then the error system gets trans-

formed into

U = @0k (23)
Qk = I—}lkaZf , Zk = R}lJé?X"
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So consider as final criterion for the optimal stepsize:

o} + 03
2

min { min
B A

(25)

With B = AH A, the optimization problem (25) leads
to

W, OB 0208%) e
A pmin (EX{B'Xy) (EYBY:)
= B:—.Igiil}>o (tra.ce B"lex) (trace B Ryy)

where the approximation holds for large filter orders
(using the law of large numbers we have invoked be-
fore). Carrying out the optimization leads to

B* RyyB* = Rxx

-1/2
= mf (RERwRE)RE @)

pi= (W BY) T (VEX) (XE B X))
where all matrix square-roots in the explicit solution
for B* should be taken to be symmetric. If we intro-
duce a normalized stepsize px = fu} based on the op-
timal stepsize u} derived above, then obviously 7 = 1
is optimal, while 77 € (0, 2) is the stable range (mean-

2
7itaos < 1in that range). We also have

for large filter orders that

(Yk"B‘Yk)': (%7 Xe) (XF B~ x) ™
2 (V)" (VX)) (XEX)™
so that ux(B = I) < pe(B = B*) : stability does
not get compromized by replacing B* by the simpler

identity matrix, leading to the normalized stepsize we
found in our first attempt.

ing that Ir}Ain

(28)



4 Examples
4.1 Example 1: Stochastic Newton

With Y, = R7'X; for in fact any R = R¥ > 0, we
have Ryy = R"'Rxx R~! and hence B* = R. Thus

ki = (WB )™ (W) (X B X) ™ = (xf1%) ™

(29)
which is the projection algorithm solution we have
found before (see (24)).

4.2 Example 2: Sign-Data LMS

In this case Y3 = sign(X;). For Gaussian Tk
Ryy = %arcsin B}Tl(ﬁjRXX . Simulations on

Gaussian AR processes with the optimal B* appear
to confirm that @ € (0,2) is the stepsize interval for
convergence, and 7 = 1 is optimal.

We may note that in this case of the sign-data LMS
algorithm, the matrix Ryy is quite “similar” to Rxx.
On the other hand, the use of the optimal B* leads
to an algorithm of which the computational complex-
ity is no longer O(N) (apart from the problem that
quite some knowledge about the input process is re-
quired). Hence one may wonder how much we lose
by replacing the optimal B* by I , which leads to a
computationally simple algorithm that does not re-
quire any knowledge about the input signal statistics.
When Y; = [yf - »-yf_NH]H, we have the following
general result

— ubr(B=B*

= m(B=T
(trace Rxx)(trace Ryy)

=~ (trace B-*Rxx)(trace B* Ryy
1
- con’¢

(30)

where the limit holds for large filter orders and ¢ is

the angle between the square-roots of the power spec-

tral densities of the processes z and y;. For AR(1)

processes with pole a and filter order N = 10, we have
max

calculated :
ag(-1,1) (31)

which is rather close to 1. It appears that for the case
of the sign-data LMS algorithm, using B = I leads to
only little suboptimality.

h = 1.06

4.3 Example 3: Prewhitened IV LMS

In this case, ¥ = [yf---yf_NH]H where y =
innov {z;} is the whitened version of the input sig-
nal. This instrumental variable (IV) method was pro-
posed in [5] as a simple faster converging alternative
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to the conventional LMS algorithm. Of course, the
innovations of the input signal have to be generated
by some second (in general low order) adaptive filter.
We shall assume for simplicity that this whitening fil-
ter works perfectly. We get Ryy = I (we can assume
normalization of the innovations w.l.o.g.). Hence

B* =RY% . (32)
Limited simulation experience with the optimal B*
appears again to confirm that 77 € (0, 2) is the stepsize
interval for convergence, and 7 =1 is optimal. Since
the use of the optimal B* leads again to a compli-
cated algorithm, requiring quite some a priori knowl-
edge about the input signal, it is of interest to investi-
gate how much we lose by using the suboptimal B = J.
We find the following upper bound

N
N }E:A;

=1

N 2
(%)
i=1
where the A; are the eigenvalues of Ry x. However,
this upper bound turns out to be quite loose in general.
In fact, it can be shown that

Oy
h = O(Z)

LI

(o4

h = < =

_0_2

(33)

(34)

whenever the indicated ratio does not get too large.
For example: AR(1) with N = 10,a = +0.9 : b =
2.15, 2= =2.29
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