
Optimal Coded Caching under
Statistical QoS Information

Emanuele Parrinello, Ayşe Ünsal and Petros Elia
Communication Systems Department, EURECOM, Sophia Antipolis, France

Email: {parrinel,unsal,elia}@eurecom.fr

Abstract— The work studies the K-user shared-link broadcast
channel with coded caching, where each user’s file-request
comes with a certain Quality-of-Service (QoS) requirement, thus
allowing – in the context of multi-layered coding – users to
download only those file layers that are necessary to meet their
own QoS requirements. The work characterizes the exact optimal
worst-case delivery time, under the assumption of uncoded cache
placement that is oblivious to the individual QoS requirement
of each user. The work derives a new index coding based
information theoretic converse, which interestingly tells us exactly
how to optimally cache.

I. INTRODUCTION

Our work is in the context of coded caching (CC) which was
invented in [1] by Maddah-Ali and Niesen who considered the
error-free shared-link broadcast channel (BC) with K cache-
enabled users that request files from a library with N files.
This work in [1] showed that pre-storing in the users’ caches
a fraction γ of the library, allows for simultaneously serving
Kγ + 1 users at a time. This was achieved with a cache
placement phase that is based on clique covering techniques
and a delivery phase during which each user requests a single
file, and during which the server aims to deliver these files,
over the bottleneck link, with a minimum possible delay. It
was later shown by [2], [3] that the worst-case delivery time
achieved in [1] is optimal under the constraint of uncoded
cache placement. Coded caching has since then been explored
in a variety of settings (see for example [4], [5], [6], [7], [8],
[9], [10]).

A. Coded caching, heterogeneous distortion requirements and
multi-layered coding

One interesting setting that motivates our work here is the
setting where files can be downloaded at different quality
levels. This is a particularly pertinent setting because most
streaming services employ adaptive streaming techniques to
serve videos with different quality levels, often as a function
of the available bandwidth, processing power, etc. Indeed
in current video coding standards such us H.264/AVC, this
adaptability is a main ingredient, and the different quality
levels are obtained via scalable video coding which encodes
videos into many streams/layers such that the more streams
the user decodes, the higher is the video quality.

This work was supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929.

This direction of coded caching with heterogeneous quality-
of-service (distortion) requirements, was first studied in [11]
by Yang and Gündüz, who presented — for the case where
the users’ QoS requirements are known during the cache-
placement phase — two coded caching schemes and a cut-set
type converse. Subsequent similar work in [12] proposes —
for the case of the cache-aided Gaussian broadcast channel
— different schemes that exploit multi-layer source coding to
serve at higher rates those users with better channels. Another
interesting work that merges the benefits of CC and multi-
layered source coding is presented in [13] by Bayat et al.
for the setting of 2-layered files, where different transmitting
nodes serve K cache-enabled users who can decode the base
layer and, if their channel strength allows, the enhancement
layer as well. Other works that jointly study CC and multi-
layered coded files can also be found in [14], [15].

Our work also considers files encoded using a layered
coding technique, where each file is encoded into L layers,
with the first layer providing the video stream of base-quality,
and where each subsequent layer can successively refine this
quality1.

a) Caching oblivious to specific QoS requirements:
Unlike other related works though, our work focuses on the
case where, at the time of cache placement, the server knows
only the QoS statistics (also referred to here as the QoS
profile), in the sense that the server only knows how many
users want a certain QoS level, but it does not know which
QoS level each particular user wants. Having caching that
is oblivious to the specific QoS requirement of each user,
can be of particular interest because the cache placement can
indeed take place long before the allowed or desired QoS is
established.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In particular, we consider the K-user cache-aided shared-
link BC, where a transmitter with access to a library of N
files W1,W2, . . . ,WN , is tasked with serving a set U =
{1, 2, . . . ,K} of K cache-aided users, where each user si-
multaneously requests a potentially different library file, at a
potentially different QoS level. Using successive refinement
source coding, each library file Wi, i ∈ {1, 2, . . . , N}

4
= [N]

1The layers follow a hierarchy so that the l + 1−th layer can only be
applied if the l−th layer was already applied.

is separated into L component layers as follows Wi =
{Wi,1,Wi,2, . . . ,Wi,L}, where Wi,l, l ∈ [L] denotes the
l−th layer of the i−th file. When a user k requests a file
Wdk , dk ∈ [N] at a QoS level l ∈ [L], this will mean
that this user must be succesfully delivered the first l layers
{Wdk,1,Wdk,2, . . . ,Wdk,l} of its desired file. Assuming that
each file has normalized unit size |Wi| = 1, we will use
rl =

∑l
j=1 |Wi,j | to denote the size of these desired l layers.

Naturally
∑L
l=1 |Wi,l| = rL = |Wi| = 1, ∀i ∈ [N].

The user-QoS association is defined by the partition

U = {U1,U2, ..,UL} (1)

telling us exactly the QoS level of each user, where users in
set Ul must be delivered exactly (and only) layers 1, 2, . . . , l
of their respective requested file. Related to this, the number
Kl = |Ul| will denote the number of users with QoS level
l ∈ [L], and will define the QoS profile

L = {K1,K2, . . . ,KL}.

Each QoS profile L defines a class UL comprising of all U
that share the same profile2 L.

a) Key assumptions and objective: We will assume that
each user has an isolated cache of size M (in units of ‘file’),
corresponding to a fraction γ , M/N of the entire library.
As it is commonly the case, we will assume that the cache
placement phase is oblivious to the subsequent demand vector
d = (d1, d2, . . . , dK). In addition, here, we will assume that
the placement is also oblivious to the user-QoS association
{U1,U2, ..,UL} but that it knows the QoS profile L. The
subsequent delivery phase will commence by notifying the
server of the demand vector d and of the exact user-QoS
association {U1,U2, ..,UL}.

Under these assumptions, our objective is to characterize
the optimal (optimized over any caching-and-delivery strategy
χ) worst-case delivery time

T ∗(L) , min
χ

max
(U,d)∈(UL,{1,...,N}K)

T (U ,d, χ) (2)

for any given QoS profile L.

III. MAIN RESULTS

We proceed with the main result that identifies the optimal
performance T ∗(L). This will be achieved by the scheme of
Section IV and it will be capped by the matching converse of
Section V.

Theorem 1. In the K-user cache-aided BC with L-layer file
coding and statistical QoS information during caching, the
optimal worst-case delivery time for any profile L, takes the
form

T ∗(L) =

L∑
l=1

K∑
g=0

∑q
r=1

(
K−r
g

)(
K
g

)
N︸ ︷︷ ︸

cg,l

x∗g,l (3)

2We can easily see that the number of different partitions U associated to
any fixed L, is given by the well known multinomial coefficient

(K
K1,··· ,KL

)
.

where q = min{K − g,K −
∑l−1
j=1Kj} and where the set

{x∗g,l}l∈[L],g∈{0∪[K]} is the optimal point of the linear program

minimize
xg,l

L∑
l=1

K∑
g=0

cg,lxg,l (4)

subject to
K∑
g=0

xg,l = (rl − rl−1)N, l = 1, . . . , L (5)

K∑
g=0

g ·
(L∑
l=1

xg,l

)
≤ KM, (6)

xg,l ≥ 0, l = 1, . . . , L g = 0, 1, . . . ,K. (7)

where {xg,l}l∈[L],g∈{0∪[K]} are the optimization variables.

The converse — as we will see in Section V — coincides
with the optimal value of the linear program (LP) in (4)-(7)
which, as it will become evident from Section IV, is directly
used to design the scheme that optimally reflects the QoS
statistics L.

We complete this section by providing an achievable per-
formance for the case where caching is oblivious to L.

Proposition 1. In the K-user cache-aided BC with L-layer
file coding, and with caching that is oblivious to statistical
QoS information, the following is achievable

Tobl(L) =

L∑
l=1

∑q
r=1

(
K−r
Kγ

)(
K
Kγ

) (rl − rl−1) (8)

where q is now fixed at q = min{K −Kγ,K −
∑l−1
j=1Kj}.

The achievable scheme corresponding to the above propo-
sition, is presented in Section IV as a by-product of the main
scheme, essentially by properly choosing feasible values xg,l
that do not depend on the QoS profile. This ‘oblivious’ scheme
designed here, is compared in the plot in Fig. 1, to the optimal
scheme that employs statistics.

IV. OPTIMAL SCHEME

In this section we present the caching and delivery schemes
that achieve the optimal delay of Theorem 1. The key idea is
to use the LP obtained from the information-theoretic converse
in Section V (as this LP is described in (4)-(7)), as the
main building block for the cache placement algorithm. The
delivery algorithm builds on the aforementioned placement
and modifies the delivery in [1] to serve the users at different
QoS levels. An illustrative example of the cache placement
and delivery scheme described in this section can be found in
the extended version [16] of this work.

A. Cache Placement

The first step is to evaluate the optimal solution

x∗
4
= [x∗0,1, x

∗
1,1, ..., x

∗
K,1, x

∗
0,2, ..., x

∗
K,2, ..., x

∗
0,L, ..., x

∗
K,L]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D
el

ay

Optimal cache placement
per-layer MAN cache placement
(oblivious scheme)

0 0.05 0.1 0.15

1.5

2

2.5

3

3.5

4

Fig. 1. Comparison of delay between the optimal and the ‘oblivious’
case corresponding to Proposition 1. This is done for QoS profile L =
{12, 10, 8, 5, 3, 2, 1} and sizes rl = 2l−L,∀l ∈ [L], L = 7.

of the LP3. With x∗ in place, for any given l ∈ [L], we split
each subfile Wi,l into K + 1 mini-files Wi,l = {Wi,l,g}Kg=0

such that |Wi,l,g| = yg,l
4
=

x∗g,l
N where, due to (5), we have

that
∑K
g=0 yg,l = |Wi,l| = rl − rl−1. Intuitively, for each

layer l ∈ [L], we have K + 1 redundancy levels indexed by
g ∈ {0, 1, . . . ,K}.

Next, we further split each mini-file Wi,l,g into
(
K
g

)
equally-

sized micro-files W Ti,l,g as follows Wi,l,g → {W Ti,l,g| |T | =
g, T ⊂ [K]}.

At this point we can fill the cache Zk of each user k, by
placing in it, from each file Wi, all the micro-files W Ti,l,g for
any T 3 k, as described below

Zk ← {W Ti,l,g | k ∈ T , i ∈ [N], l ∈ [L], g ∈ {0, 1, ...,K}}.

We now prove that the above placement adheres to the
cache-size constraint.

1) Compliance of the placement scheme with the cache
constraint: We first recall that for each mini-file Wi,l,g, i ∈
[N], l ∈ [L], g ∈ {0, 1, ...,K}, any derived micro-file W Ti,l,g
with |T | = g, T ⊂ [K], must have size |W Ti,l,g| =

yg,l

(Kg)
. Due

to the symmetry in the cache placement, each user k ∈ [K]
stores exactly

(
K−1
g−1

)
micro-files W Ti,l,g from any fixed mini-

file Wi,l,g, which means that, for each mini-file Wi,l,g, each
user stores

(
K−1
g−1

) yg,l
(Kg)

= g
K yg,l units of file. Consequently the

total amount of data from the l−th layer of file Wi, i ∈ [N]

stored by each user k, takes the form Sk(Wi,l)
4
=
∑K
g=0

g
K yg,l,

and thus the total memory employed by each user to cache a
portion of a file Wi, i ∈ [N], takes the form

Sk(Wi)=

L∑
l=1

Sk(Wi,l)=

L∑
l=1

K∑
g=0

g

K
yg,l=

1

KN

K∑
g=0

g

L∑
l=1

x∗g,l.

3The LP in (4)-(7) has complexity linear with K (L · (K+1) variables to
optimize).

Finally, summing over all library files, we see that each user
caches

N∑
i=1

1

KN

K∑
g=0

g

L∑
l=1

x∗g,l =
1

K

K∑
g=0

g

L∑
l=1

x∗g,l (units of file)

which does not exceed M due to the constraint in (6).

Remark 1. In the context of Proposition 1, in the absence
of knowledge of L, the cache placement is obtained from the
above by substituting x∗l with a vector4 xl whose only non-
zero value is N(rl−rl−1) and is located in position g = Kγ,
corresponding to xg,l = 0,∀g ∈ [K] \ {Kγ} and xKγ,l =
N(rl − rl−1).

B. Delivery Scheme

The delivery scheme sequentially serves all the requested
files, and does so layer by layer, in accordance to the now
known user-QoS association {U1,U2, ..,UL}. The scheme
operates in L rounds, one for each layer, where in particular,
round l ∈ [L] serves the l−th layer of the files requested by

the users in the set Σl
4
=

L⋃
j=l

Uj , which have a QoS level

of l or above. Specifically, round l aims to deliver subfiles
Wdk,l,∀k ∈ Σl.

Each round l is split into Q sub-rounds, where Q ≤ K+1 is
the total number of non-zero elements in the aforementioned
x∗l . Consequently each sub-round g serves subfiles Wdk,l,g for

all k ∈
L⋃
j=l

Uj .

In each such sub-round g of round l, we apply a variation
of the delivery scheme in [1], where we create

(
K
g+1

)
sets

Q ⊆ [K] of size |Q| = g + 1, and for each such set Q, we
pick the set of users χQ = Q ∩ Σl. If χQ 6= ∅, the server
transmits

XχQ =
⊕
k∈χQ

W
Q\{k}
dk,l,g

(9)

else if χQ = ∅, there is no transmission, and we move to the
next Q.

The decoding follows directly from [1].
a) Calculation of delay: We first recall that |Wdk,l| =

rl − rl−1 and that |Wdk,l,g| =
x∗g,l
N . We also note that in each

sub-round g of round l, the total number of transmissions is

Gl,g =

(
K

g + 1

)
−
(∑l−1

j=1Kj

g + 1

)
where the second term accounts for the number of times the
set χQ was empty. It is easy to see that if

∑l−1
j=1Kj < g+ 1,

we have Gl,g =
∑K−g
r=1

(
K−r
g

)
, else we have

Gl,g =

(
K − 1

g

)
+

(
K − 2

g

)
+ · · ·+

(∑l−1
j=1Kj

g

)

=

K−
∑l−1
j=1Kj∑

r=1

(
K − r
g

)
4x∗

l is the sub-vector of x∗ composed of entries x∗
g,l, ∀g ∈ {0, 1, . . . ,K}.

which implies that

Gl,g=

min{K−g,K−
∑l−1
j=1Kj}∑

r=1

(
K − r
g

)
.

Each transmission has duration
x∗g,l

N(Kg)
, and thus the total

duration of a sub-round is∑min{K−g,K−
∑l−1
j=1Kj}

r=1

(
K−r
g

)(
K
g

)
N

x∗g,l.

Summing over all sub-rounds and then over all rounds, we
calculate the total delivery time to be the stated

T ∗(L) =

L∑
l=1

K∑
g=0

∑min{K−g,K−
∑l−1
j=1Kj}

r=1

(
K−r
g

)(
K
g

)
N

x∗g,l (10)

which, as we will see next, is optimal.

V. INFORMATION THEORETIC CONVERSE

In this section we present the information theoretic converse
that proves, in conjunction with the achievable performance
in (10), the optimality of the delay in Theorem 1. Due to
lack of space, some details are omitted and can be found in
the extended version [16] of this work. The proof of converse
draws from the technique in [2] (and its adaptation in [5]) that
translates the coded caching problem into an equivalent index
coding problem, making use of the cut-set type outer bound
on the index coding capacity introduced in [17, Corollary 1].

The coded caching problem here is uniquely determined
when the users’ requests and QoS levels (d,U) are revealed
to the server. Focusing on the worst-case delay scenario with
N ≥ K, we define the set of worst-case demands

DL = {d(U) : d ∈ Ddif ,U ∈ UL}

associated to a given QoS profile L, where Ddif is the set of
all demand vectors d that are comprised of (the indices of) K
different files.

a) Translation to index coding: A first step in converting
the caching problem defined by d(U) into an equivalent index
coding problem, is to split a requested layer of a requested
file in the most general way. In particular, focusing on layer
l, this means that we split any Wdi,l, i ∈ ∪Lp=lUp into 2K

disjoint subfiles W Tdi,l, T ∈ 2[K], where 2[K] is the power
set of [K], and where T ∈ [K] indicates the set of users in
which W Tdi,l is cached. In the context of index coding, we
can view each such subfile W Tdi,l as a message requested by a
different user that has as side information all the content in the
cache of the requesting user from the caching problem. Given
this aforementioned representation of the requested files, the
corresponding index coding problem is fully defined by the
side information graph GU,d = (VG , EG), where VG (which
has cardinality |VG | = 2K−1 ·

∑L
j=1 jKj) is the set of vertices

corresponding to the requested subfiles W Tdi,l, and where EG
is the set of directed edges of the graph. A directed edge from
vertex v ∈ VG to v′ ∈ VG exists if and only if the index coding

user requesting the subfile corresponding to vertex v′, knows
the subfile corresponding to vertex v.

Before proceeding with the proof, we recall a useful lemma
from [17], which we adapt to our setting.

Lemma 1. For a given U ,d, χ, with a corresponding side
information graph GU,d = (VG , EG), the inequality

T ≥
∑
V∈VJ

|V| (11)

holds for every acyclic induced subgraph J of GU,d, where
VJ denotes the set of nodes of the subgraph J , and where
|V| is the size of the message/subfile/node V.

Lemma 1 will be used to lower bound the delay T (U ,d, χ)
associated to any pair U ,d. To this end, we proceed to
carefully select acyclic subgraphs that will yield, via Lemma
1, tighter lower bounds for T (U ,d, χ). The following lemma
considers permutations σ = (σ1, σ2, . . . , σK) on vector
(1, 2, . . . ,K).

Lemma 2. All subfiles

W Tidσi ,l
, ∀i ∈ [K], ∀l : σi ∈

L⋃
p=l

Up

such that

σi ∈ Up ∧ σj ∈ Uw with i ≤ j ⇐⇒ p ≥ w (12)
and Ti ⊆ [K] \ {σ1, . . . , σi}

compose an acyclic subgraph J of G.

The proof of Lemma 2 follows directly from Lemma 1 in
[2] for the construction of acyclic subgraphs according to a
generic σ, while the specific choice of permutations σ, which
adheres to the condition in (12), directly draws from [5]5.

In the above, for a given QoS profile L, the total number of
permutations σ that satisfy the condition in (12) can be easily
calculated to be K1!K2! · · ·KL!. We will denote the set of all
such permutations by Σ.

After choosing an acyclic subgraph according to Lemma 2,
we return to Lemma 1 and form the following lower bound

T (U ,d, χ) ≥ T lbσ (U ,d, χ) (13)

where, assuming for notational simplicity that |UL| = 1, we
get that

T lbσ (U ,d, χ),
L∑
l=1

∑
T1⊆[K]\{σ1}

|W T1dσ1 ,l|+
L−1∑
l=1

∑
T2⊆[K]\{σ1,σ2}

|W T2dσ2 ,l|

+ · · ·+
1∑
l=1

∑
TK⊆[K]\{σ1,...,σK}

|W TKdσK ,l|. (14)

Since (14) holds for each σ ∈ Σ, we proceed to lower
bound T (U ,d, χ) with the following average

T (U ,d, χ) ≥ 1

|Σ|
∑
σ∈Σ

T lbσ (U ,d, χ). (15)

5What is different from [5] is that here, for each σ, we choose to aggregate
several maximal acyclic subgraphs.

We now recall that our interest lies on the worst-case delay
scenario for a given profile L. Hence, we can lower bound the
optimal worst-case delay as

T ∗(L) , min
χ

max
(U,d)∈(UL,[N]K)

T (U ,d, χ) (16)

≥ min
χ

1

|DL|
∑

d(U)∈DL

T (d(U), χ). (17)

Since |UL| =
(

K
K1,K2,...,KL

)
, we can easily see that the set

DL has cardinality6 P (N,K) ·
(

K
K1,K2,...,KL

)
, and thus the

above extends to

T ∗(L) = min
χ
T (L, χ) (18)

≥min
χ

1

P (N,K)
(

K
K1,K2,...,KL

)
K1!K2! . . .KL!

×

×
∑

d(U)∈DL

∑
σ∈Σ

T lbσ (d(U), χ) (19)

where T lbσ (d(U), χ) is given by (14).
Due to symmetry, all the subfiles that are cached in exactly

g users, will appear an equal number of times in the sum-
mation shown in (19), and thus in (19) the coefficients (after
expanding (19) by applying (14)) — in front of each subfile
term |W Tj,l| with a fixed |T | = g, g ∈ {0, 1, . . . ,K} — are
identical.

We can then easily calculate that in (14), for any l ∈ [L],

there are
∑min{K−g,K−

∑l−1
j=1Kj}

r=1

(
K−r
g

)
subfile terms |W Tj,l|

for which |T | = g. Consequently, since there exist in total(
K
g

)
N subfiles W Tj,l with |T | = g, in the sum in (19), the

coefficient of each |W Tj,l| with |T | = g is

P (N,K)K!

∑min{K−g,K−
∑l−1
j=1Kj}

r=1

(
K−r
g

)(
K
g

)
N

. (20)

For xg,l
4
=

∑
n∈[N]

∑
T ⊆[K]:|T |=g |W Tn,l| being the total

amount of data of layer l ∈ [L] stored in exactly g users,
we can combine (14), (19), (20) to get

T (L, χ) ≥
L∑
l=1

K∑
g=0

∑min{K−g,K−
∑l−1
j=1Kj}

r=1

(
K−r
g

)(
K
g

)
N︸ ︷︷ ︸

cg,l

xg,l.

(21)
In terms of constraints, the successive refinement source
coding applied to the files, implies the following equalities

K∑
g=0

xg,l = (rl − rl−1)N, ∀l ∈ {1, . . . , L} (22)

while the sum cache size constraint forces
K∑
g=0

g ·
(L∑
l=1

xg,l

)
≤ KM. (23)

6We denote the number of k−permutations of n as P (n, k) = n!
(n−k)!

.

Finally, by combining (18), (21) and (22), (23), the desired
lower bound can be derived from the following linear program

minimize
xg,l

L∑
l=1

K∑
g=0

cg,lxg,l

subject to (22), (23),
xg,l ≥ 0, l = 1, ..., L.

This concludes the proof.

VI. CONCLUSIONS

In this work, we characterized the rate-memory tradeoff for
the coded caching problem with multi-layer coded files for the
case when, in the uncoded cache placement, the server knows
only QoS statistics but does not know the QoS requirement of
each user. To this end, we developed an information theoretic
converse which in turn defined the design of an optimal
scheme by defining how much of each layer should be placed
in the caches. This interesting back-and-forth between the
converse and the scheme, nicely highlights the usefulness of
finding exact information theoretic bounds, since such exact
bounds may have the potential to recreate the structure of the
optimal scheme.

REFERENCES

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, May 2014.

[2] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in Inf. Theory Workshop (ITW), IEEE, Sep 2016.

[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, Feb 2017.

[4] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Trans. Inf. Theory, Dec 2016.

[5] E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of caching
in heterogeneous networks with uncoded prefetching,” arXiv preprint
https://arxiv.org/pdf/1811.06247.pdf, 2018.

[6] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, May 2017.

[7] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary
popularity distributions,” IEEE Trans. Inf. Theory, Jan 2018.

[8] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, Sept 2017.

[9] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” J. on Selec. Areas in Comm., 2018.

[10] A. Tolli, S. P. Shariatpanahi, J. Kaleva, and B. Khalaj, “Multicast
beamformer design for coded caching,” in Proc. IEEE Int. Symp. on
Inform. Theory (ISIT), June 2018.

[11] Q. Yang and D. Gündüz, “Coded caching and content delivery with
heterogeneous distortion requirements,” IEEE Trans. Inf. Theory, 2018.

[12] M. M. Amiri and D. Gündüz, “On the capacity region of a cache-aided
gaussian broadcast channel with multi-layer messages,” in Proc. IEEE
Int. Symp. on Inform. Theory (ISIT), June 2018.

[13] M. Bayat, C. Yapar, and G. Caire, “Spatially scalable lossy coded
caching,” in Int. Symp. on Wireless Comm. Systems (ISWCS), Aug 2018.

[14] A. M. Ibrahim, A. A. Zewail, and A. Yener, “On coded caching with
heterogeneous distortion requirements,” in 2018 Inf. Theory and Appl.
Workshop (ITA), Feb 2018.

[15] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gunduz, “Coded
caching with heterogeneous cache sizes and link qualities: The two-user
case,” in Proc. IEEE Int. Symp. on Inform. Theory (ISIT), June 2018.

[16] E. Parrinello, A. Ünsal, and P. Elia, “Optimal coded caching under
statistical QoS information,” Manuscript in Preparation (arxiv), 2019.

[17] F. Arbabjolfaei, B. Bandemer, Y. H. Kim, E. Şaşoğlu, and L. Wang,
“On the capacity region for index coding,” in Proc. IEEE Int. Symp. on
Inform. Theory (ISIT), Jul 2013.

