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Abstract

We consider the covariance formulation, or hence
a rectangular window for the least-squares (LS) crite-
rion. We are specifically interested in the case when
the window length L is shorier than the FIR filler or-
der N, leading to an underdetermined LS problem.
We develop Fast algorithms in Transversal Filter form
(FTF) for an adaptive filtering strategy consisting of
treating consecutive blocks of L data. The resulting
BUC FTF algorithm can be situated in between the
Normalized Least-Mean-Square (NLMS) algorithm for
L =1 and one extreme case of the Block-processing
FTF algorithm for L = N. A projection mechanism
onto a subspace of dimension L renders their conver-
gence less sensitive to the coloring of the inpul signal
spectrum than is the case for the NLMS algorithm.
Their underdetermined LS character additionally en-
dows them with relatively fast tracking characteristics.
Relations to existing algorithms and various imple-
mentations with varying degrees of complezity are also
discussed.

1 Introduction

The tracking characteristics of the (N)LMS algo-
rithm are inherent in the iterative nature of the algo-
rithm; the rate of convergence depends on the eigen-
value spread of the input covariance matrix. For Re-
cursive LS (RLS) algorithms, the tracking is indepen-
dent of the eigenvalue spread and can be made arbi-
trarily fast by appropriate choice of the (effective) win-
dow length. Fast RLS algorithms and especially the
FTF algorithms [1] take only 7N /8N (stabilized form)
flops with prewindowing (and exponential weighting),
or 14N /15N flops in the Sliding Window Covariance
(SWC) formulation [2],[3]. This should be compared
to the 2V flops for the LMS or Normalized LMS al-
gorithms.

Here we propose a new class of algorithms which
are intermediate between LMS and fast RLS in com-
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plexity, and in tracking performance (or sometimes the
best). Before we get more specific, let us consider the
following motivations.

1.1
A stochastic Newton algorithm is characterized by
the following update equations:

& = dp+ W1 X
Wi Wi_1 — M fix,fIR_l

Stochastic Considerations

(1)

where ideally R = E XkX,fI is used to compensate for
the non-white spectrum of the input signal ;. (Xx =

[zH .. .zf_N“]H is the data vector.) The NLMS al-

gorithm omits this decorrelation (R = || X || I), while
the RLS algorithm uses the sample covariance matrix
Ry as an estimate for L R. One should notice that in
the RLS algorithm, the size of the decorrelation matrix
is automatically put equal to the length of the (FIR)
filter that is being adapted. In many applications how-
ever, this coupling may not be well motivated. Con-
sider for instance the problem of acoustic echo cancel-
lation. Here, FIR filters of very great lengths are being
used. On the other hand, the input signal is typically
a speech signal for which in speech coding, predic-
tion filters with an order of typically only 10 are used
(to whiten the signal). So one could consider using a
banded matrix for R=! in (1) (corresponding to an AR,
model for the input) with a (one-sided) bandwidth of
only 10. This has been proposed in [4], in which non-
fast and fast recursive algorithms are then developed.
The resulting algorithm could be considered to be of
the symmetric Instrumental Variable type. Note that
this approach corresponds very closely to first send-
ing the input signal through an adaptive prediction
filter of order 10, and then using the whitened input
signal as input to the (N)LMS algorithm. This last
approach has been proposed in [5]. One may remark
that in this last approach, when considering tracking
non-stationarities, the lag in the prewhitening process



has to be added to the lag of the (N)LMS algorithm.
In the Fast Newton Transversal Filters (FNTF) of [4]
on the other hand, some peculiarities have been ob-
served [6] when the input signal is nonstationary, due
to the fact that the optimal low-order prediction fil-
ter may change considerably over the length of the
adapted FIR filter.

1.2 Deterministic Considerations

Nevertheless, the FNTF algorithm, which is inter-
mediate between the LMS and RLS algorithms in var-
ious ways, yields a significant improvement in conver-
gence speed (in particular a substantial reduction in
sensitivity to eigenvalue disparity of R) when the in-
put signal is strongly colored. However, it is useful to
also take a look at some deterministic aspects. Indeed,
. based on only the above stochastic considerations, it
is not possible to explain why the RLS algorithm con-
verges significantly faster than the (N)LMS algorithm
(e.g. by a factor of 5) even in the white input signal
case! This advantage of the RLS algorithm is due to
the fact that the RLS algorithm solves a (overdeter-
mined) set of equations exactly at each time step (N
equations are sufficient to get an unbiased estimate of
the N FIR filter coefficients). Although asymptoti-
cally for large window lengths, the rectangular win-
dow and the exponential window give equivalent per-
formance for corresponding window lengths [7], there
is reason to believe that the rectangular window leads
to better tracking performance for short windows in
strongly non-stationary environments.

The Block-Processing RLS algorithm [8] provides
the least-squares solution to L > N equations, which
are obtained by writing out the error signal at L con-
secutive time steps:

. 2
fg‘,}hﬂ{"dl.,k - XN W } 2
where
dre = [dk"'gk—L+l]H .
Tk TE-N+41 @)
Xnee = : :
zH z
k—L+1 k-N-L+2

When L < N, the above problem is underdetermined.
A unique solution can still be found though by taking
the minimum-norm solution. In fact, the NLMS algo-
rithm (with normalized stepsize i = 1) provides this
minimum-norm solution for L = 1. We shall consider
algorithms for the cost function (2) with 1 < L < N,
which hence cover a continuous range between the
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Block-Processing RLS algorithm and the NLMS al-
gorithm, and which have the deterministic projection
interpretation of making L consecutive error samples
exactly zero.

2 A Unified Least-Squares Criterion

We shall mostly adhere to the notation of [1},{2],[3].
The following criterion will prove to encompass quite
a number of different adaptation techniques. Consider

pin (.= X, e Wi s+ IWR L PR sl 7o}

(4)
where ||v||§ = v# Sy and Si, T are Hermitian positive
definite matrices. Before discussing various applica-
tions of this formulation, let us consider the minimiza-
tion of this criterion (4). Setting the gradient equal to
zero, and applying the Matrix Inversion Lemma (MIL)
to solve the resulting linear equation in-Wy i, we get

Wre = Whi-m+ (df,;, - WN,k-MXﬁ,L,,,)

-1
x (XN,L,kaX,{,’,L,,, + Sk) XN Tk .
(5)

The Hessian of the quadratic criterion (4) is
He = Ty + XRS5y Xns (6)

to which we have applied the MIL to obtain (5).
Usually, M = 1, unless we consider block process-
ing. In all applications we consider here, the idea is
to equalize the nature of both terms that constitute
Hi. In a first class of algorithms, we take L = 1
and Si = I, which renders the nature of the second
term in (6) of a covariance type (be it of low rank).
Hence, T ! is chosen to be representative of the co-
variance matrix of Xx (k). In the stochastic Newton
algorithms, we choose (apart from a scalar multiple)
T, ' = Ry = E Xn(k)XH (k). In the absence of sec-
ond order statistics, the RLS algorithms with expo-
nential weighting factor A uses T~ 1= ARN k-1 where
Ry = Ef:o M=iXn(i)XH (7). In the Fast Newton
algorithm [4], Rn ¢ is replaced by the Maximum En-
tropy extension of a banded restriction of Ry (with
banded inverse).

In a second class of algorithms, one takes T, = I,
which has all eigenvalues equal to a constant. Hence,
now Si should be chosen such that the eigenvalues
of the second term in (6) are either constant or zero
(since the term is not of full rank). The way to achieve
this exactly is to make the second term in (6) pro-
portional to a projection matrix and hence to choose
Sk = m,XN,L,kXﬁ'L'k. With L < N, we have an “un-
derdetermined” problem (strictly speaking, we only



get an underdetermined problem as p; — 0). The
filter solution (5) can now be rewritten as

Whe = Whie-m+
(df,k - WN.k—MXﬁ,L,k) RZ,IN,kXN,LJr
(M
where Ry vy = XL,N,kXF,N,k is the sample covari-
ance matrix for a Block-Processing problem with fil-
ter length L and window length N interchanged. One
immediately recognizes the NLMS algorithm when
M = L = 1. Using (7), one can establish the following
relation between the a posteriori and the a priori error
vectors

1
T+

df W XH L =
L.k NEkANLE 1+
(8)

One may note that the convergence of (7) is governed
by a product of matrices of the form I — ﬁ:PXﬁ,L,.‘
(where Py is the projection matrix onto the column
space of X), from which one can see a prewhitening
effect of order L—1 transpire. In particular for p; = 0,

this matrix becomes the projection matrix P)#I,V,L g

leading to L a posteriori errors being zeroed.

3 The BUC FTF Algorithm

In the BUC FTF algorithm, we process consecutive
blocks of L data. The algorithm is the one described
by update equation (7) with M = L. We can split the
update operation into the following steps:

1. compute L a priori filtering errors (N L multipli-
cations):

9

H
€Le=dpk— XnraWy g

2. update Ry n from Rp ni-r (close-to-Toeplitz
matrix) (O(L log L) multiplications)

3. use the generalized Levinson algorithm to solve
for g« from (5.5L% + o(L?) multiplications)
1
14y

Ry ninrx = €Lk (10)

4. update the filter estimate according to (N L mul-
tiplications)

Wik = WNi-rL+ 0] e XN<Lk (11)
As far as step 2 is concerned, the generalized Levin-
son algorithm actually requires only the first row of
Rr ~nk. To update this row in a computationally effi-
cient manner, it is desirable that N is an integer mul-
tiple of L. In that case, the innner products over a

Luk (A s = Wrp-mXH )
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time span of N samples can be regarded as a sum of
T inner products over a time span of L samples. In
that way, a length N inner product can be computed
recursively from k— L to k by adding in the newest
length L inner product and subtracting out the old-
est one. The calculation of the L new length L inner
products can be done efficiently using FFT techniques
which we shall elaborate upon further below, leading
to O(Llog L) operations.

In step 3, the close-to-Toeplitz set of equations can
be solved efficiently using the generalized Levsinson
algorithm. This algorithm is spelled out in Table IV
of [8]. The “prediction part” of the algorithm (gen-
erating the backward prediction filters Br n i and er-
ror variances 81 n ) can be kept completely, but the
“Joint-process” part in equations 3,4 should be re-
placed (due to the different right hand side in our set
of equations) by

M-1,k 1 H -1
M = [ 0 ]+mBl-l,N,kﬂl—1,N,kBI—lxva61-k
(12)
for I = 1,...,L. This small modification does not

change the computations count indicated in Table IV
of [8], which has 5.5L% as its most significant term.
The significant terms in the overall complexity are
thus 2N L + 5.5L2 for treating L samples, or hence
2N +5.5L per sample. This should be compared with
2N for the LMS algorithm.
3.1 Superfast BUC FTF Algorithm

Just as the LMS algorithm complexity has recently
been shown to be susceptible to further reductions [9],
we can also reduce the 2V term in the computational
complexity of the BUC FTF algorithm. This is done
by using FFT techniques for the filtering of blocks of
data. Typically, we need to consider a product of the
form X v where X is a L x L Hankel data matrix and
visa L x 1 vector. We can embed X into a circulant
matrix X of dimension 2L

-

We also pad v with L zeros to get

;]

I O] XwWHw [

X =

(13)

Xv

1l

i 017[
o] aw
;]

where W is the unitary 2L point DFT matrix, and D
is a diagonal matrix with on the diagonal the DFT

[ 0] W”DW[



of the first row of X (we exploited the fact that a
circulant matrix has an eigen decomposition of the
form X = WHDW). What (14) says is that we
can obtain the product Xv by taking the DFT of v
padded with zeros, taking the DFT of the first row of
X, multiplying the two, and keeping the first L ele-
ments in the inverse DFT of the product. This takes
three 2L point DFT’s and 2L multiplications or hence
2 Llog(2L) + 2L multiplications.

We shall exploit the above strategy by (assummg T
is an integer) cutting Xn,z & into & blocks of L x L
Hankel matrices. The computation of Xno Wi o
ca.n then be carried out by also cutting Wy —r into
L segments of length L. The update of the filter es-
timate WN ¢ is also carried out by dividing the work
over the & T segments. This approach leads to the fol-
lowing dominating terms in the computational com-
plexity per sample

2N

log L
7 (15)

+5.5L+ 4%[ +3logL
which is easily lower than 2N. We should note that, as
is typical in a block-processing approach, the process-

ing necessitates some delay. This delay can be limited
to about L/2 samples.

4 BUC FTF Convergence Analysis

We shall limit ourselves here to a brief discussion
of a number of charactersitics of the BUC FTF al-
goirithm. When the input signal to the adaptive filter
has a covariance matrix of rank L (e.g. a mixture
of L complex exponentials), and consider the system
identification setup with no measurement noise, then
the BUC FTF algorithm converges exactly in one pro-
cessing step of L samples! This property is due to the
exact LS criterion that the algorithm minimizes. This
result should be contrasted with the FNTF algorithm,
in which the prewhitening of order L—1 is perfectly
mached to an AR(L—1) process as input.

The system dynamics governing the algorithm’s
convergence are determined by

(16)

1 _
I— —XF L xRN e XLk

P
k T+n

For small stepsizes (large u), we can limit the investi-
gation of the dynamics to an investigation of the mean

E &, (averaging analysis). To this end, when & >
we can introduce the following approximation
E Xﬁ,L,kRZ,lN,kXN,L,k (17)

=~ E {XIIV{,L,I: (E Rewg)™ XN,L,k}
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leading to

L-1
1 ol
Ed =1-——) 2R 18
k 1_’_#‘:0”: N (18)

where 07 = (')(1 1) and R( ) is the N x N covariance
matrix of the prediction errors of order ! of the input
signal. RY gets more and more diagonally dominant
as | increases, and so does E ®;. So the influence of
the eigenvalue spread of Ry = Ry () gets diminished
as [ increases.

Consider now the system identification setup: the
desired response dy = W°X}, + n is the sum of the
output of an optimal filter W° plus some independent
zero-mean i.i.d. measurement noise nj; with variance
&° = E n}. So the filter estimation error Wy = W° —
Wi satisfies the following system

Xn Wi +nps

Lr = (19)
Wi = Wi 19— T.}._pnf,kRz,lN,kXN.L,E .
With COV, = E (Wk” Wk) and introducing the in-

dependence assumption (treating Xy, and Wk_ L

as independent), the learning curve becomes
& = E ()° = trace(Ry COVi_r) +£°
COVi = E (8 COVi_r ®;)

+‘T§,T)f E X){J’,L,kRz,zN,kXN,L,b

(20)

Let us concentrate on the driving term for the COV;
system, and omit the expectation operator. If we have
the singular value decomposition X}’v{, e =U TVH,
then we get

X" (xxHy*x =uyz-2w¥ (21)
Basically, when the sample covariance matrix R v
gets badly conditioned, then the driving measurement
noise term gets amplified significantly. So, the well-
known effect in the NLMS algorithm (BUC FTF for
L = 1), in which the stepsize normalization leads to
a potentially higher steady-state MSE (than in the
LMS algorithm) due to a bit of noise amplification,
this effect gets amplified here since now the condi-
tioning of a covariance matrix of size L comes into
play. One remedy would be to regularize Ry in
the update equation for Wy . One simple regular-
ization consists of replacing Ry~ by Rz v+ vI for
some small v > 0. The initialization of the generalized
Levinson algorithm allows for a very straightforward



incorporation of such a regularization as explained in
[8].

When one demands very high tracking capacity, the
prewindowed FTF algorithm with exponential weight-
ing is not satisfactory (numerical stability considera-
tions impose a lower bound on the weighting factor).
One has to resort to the SWC FTF algorithm, which
is also limited in flexiblity however, due to the rect-
angular window of constant length. The BUC FTF
algorithm offers more flexibility: u; can be taken to
be time-varying (this is not the same as throwing in
a stepsize factor in the SWC algorithm to boost the
gain, which makes the algorithm lose its LS nature),
L can be varied in time and one can restart at any
desired time.

An alternative to an algorithm with u > 0 is to use
the algorithm with 4 = 0 and use coefficient filtering
[10]. The algorithms with # = 0 provide the fastest
tracking characteristics, leading to a substantial esti-
mation noise component in the excess MSE. This can
be reduced with a possibly time-varying trade-off be-
tween tracking speed and noise averaging.

In order to get a feeling for the potential speedup
that the algorithm can deliver, we have simulated the
BUC FTF algorithm on a AR(2) process of which the
poles have a radius 0.95 and lie at the angles +45°.
The filter order is N = 20. We compare the algorithm
with L = 1 (LMS - dashed line) to the algorithm with
L = 3 (solid line). For comparison purposes, we also
ran a simulation of NLMS with white noise as input,
to delimit a certain “upper bound” in the convergence
speed of the BUC FTF algorithm, which would be
achieved if the algorithm could be insensitive to the
eigenvalue disparity of Ry (but it isn’t, see (18)). Nev-
ertheless, with a relatively low value of L = 3, the al-
gorithm is able to converge substantially faster than
NLMS.

In [12], we have explored fast transversal algorithms
for underdetermined growing and sliding window co-
variance LS problems. Further connections to other
work can be found there also. Basically, in [11], the
Block Orthogonal Projection Algorithm (BOPA) was
proposed, which minimizes the BUC criterion (with
#=0). This is a non-fast algorithm (with complexity
much higher than that of LMS).
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