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On the Convergence Behavior of the LMS and the
Normalized LMS Algorithms

Dirk T. M. Slock, Member, IEEE

Abstract—This paper has three parts. First, we indicate that
the normalized least mean square (NLMS) algorithm is a po-
tentially faster converging algorithm compared to the LMS al-
gorithm, when the design of the adaptive filter is based on the
usually quite limited knowledge of its input signal statistics.
Second, we propose a very simple model for the input signal
vectors that greatly simplifies analysis of the convergence be-
havior of the LMS and NLMS algorithms. Using this model,
answers can be obtained to questions for which no answers are
currently available using other (perhaps more realistic) models.
The answers thus obtained can only acclaim a qualitative value,
but we give examples to illustrate that even quantitatively, they
can be good approximations. Finally, we want to emphasize that
the convergence of the NLMS algorithm can be speeded up sig-
nificantly by employing a time-varying step size. We are able
to specify a priori the optimal step-size sequence for the case of
a white input signal with arbitrary distribution.

1. INTRODUCTION

HE LMS algorithm [1] is undoubtedly the most pop-

ular algorithm for adapting the impulse response W =
[W° - -+ WN¥"1] of an FIR filter so as to minimize the
mean-square error (MSE) between its output signal WX,
and a desired-response signal d;. It updates the filter coef-
ficients according to'

€
Wk =

dp — Wi 1 X
Wi_1 + et Xy (1

where X, = [x7 xP_, - x¥_y.1)Y is the input signal
vector and u the adaptation gain or step size. The (LMS)
algorithm is a nonvanishing step-size version of a sto-
chastic gradient algorithm. The popularity of the LMS al-
gorithm is to a large extent due to its computational sim-
plicity. Furthermore, it is generally felt that its behavior
is quite simple to understand [1], [2] and the algorithm
appears to be fairly robust against implementation errors.

In this discussion, we want to concentrate on two im-
portant characteristics of an adaptive filter: its conver-
gence behavior and the steady-state MSE, which remains
after the algorithm has converged. Exact results for both
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'Superscript H denotes Hermitian (complex conjugate) transpose.

of these items are very scarce, and actually only exist for
the asymptotic case of small step-size p. Perhaps the lat-
est results on the steady-state MSE have been obtained by
Solo. In [3], [4] results are given for the steady-state MSE
that are exact up to first order in u, with scenarios for the
input and desired-response signals that are considerably
more general than considered before in the literature. As
far as convergence behavior is concerned, the only quality
that is established in [3] is exponential convergence of the
filter estimate (under appropriate conditions), in the form-
of an upper bound (lower than 1) on the eigenvalues in-
volved in the average algorithm dynamics. This is the only
qualification on the convergence behavior that is needed
for the analysis of the steady-state MSE in [3], [4]. This
type of worst case approach to the analysis of the conver-
gence dynamics (resulting in not necessarily tight bounds)
has been used quite often in the control literature over the
last decade or so (see, e.g., [5]-[8]), often involving the
concept of persistent excitation (or regularity of the co-
variance matrix of the input signal vector). Exact results
are available for the eigenmodes of the adaptive filter dy-
namics, but also only for the asymptotic case of small step
size. These results involve the so-called weak conver-
gence theory of stochastic difference equations (see, €.g.,
the work of Kushner [9], [10]).

When one wants to maximize the convergence speed of
the LMS algorithm, a big step size is needed, and espe-
cially when one wants to address the issue of the maxi-
mum step size for stable operation of the algorithm, one
needs a theory that is valid beyond an infinitesimally small
step-size range. At this time, no exact theory of that na-
ture exists. All results for big step size currently available
use the so-called independence assumption. (See [41] for
some recent exact analysis, that turns out to be quite in-
volved, though.) The independence assumption specifies
that the sequence of input vectors {X;} is an i.i.d. se-
quence. This assumption, though clearly violated since in
the typical time series applications, X, and X, _, have N
— 1 elements in common, simplifies the analysis signifi-
cantly. The independence assumption was used early on
in [11], [12] and popularized in [2]. The discrepancy be-
tween theoretical results based on this assumption and the
true algorithm behavior was investigated in [13] and found
to be relatively small. Extensive results based on the as-
sumption were obtained by Gardner in [14], where further
references can be found.
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A specific form of the LMS algorithm, with a repa-
rameterized step size, is the NLMS algorithm, viz.,

& = dy — Wi X,
W= W, + s (X{X) ' XF 2

which corresponds to the choice (if X, has only one col-
umn) u; = &/[X,]|* in the LMS algorithm. According to
Tsypkin [15], this algorithm corresponds to the algorithm
of Kaczmarz [16]. In the Western literature, it was first
proposed by Nagumo and Noda [17]. In the control lit-
erature, it is also known as the projection algorithm [18]
for the following reason. Assume the minimum MSE
(MMSE) is zero or, in other words, the desired response
d, = W°X, is the output of a FIR filter W° of order <N,
fed by the same input signal as the adaptive filter. Then
we get, with W, = W° — W, being the error in the esti-
mated filter coeflicients,

e‘i = Wi_1X;

Wi = W, Il - BXeXIX) ™' XH. 3)
The matrix multxplymg the step size is the projection ma-
trix onto X, in ® " and, for @ = 1, the matrix within the
square brackets is the projection matrix onto the orthog-
onal complement of X;. In other words, with w = 1, the
error component in the filter estimate along X, is projected
out exactly at time k. If N consecutive input vectors X,
are orthogonal (e.g., the signal {x,} contains a certain
nonzero sample and N — 1 zero samples before and after
it), then the filter converges exactly in N samples. The
matrix within the square brackets has N — 1 eigenvalues
equal to 1 and one eigenvalue equal to 1 — . This is very
much a well-controlled situation compared to the equiv-
alent situation for the LMS algorithm, where the matrix /
— pX, X alsohas N — 1 eigenvalues equal to 1, but the
last eigenvalue is equal to 1 — p |le|| which is not so
easy to control in general. We believe this deterministic
projection interpretation is a key ingredient in understand-
ing the possible advantages of the NLMS algorithm and
also illuminates immediately the potential faster conver-
gence characteristics of the NLMS algorithm. Interest-
ingly, the update produced by the NLMS algorithm can
be interpreted as the solution to the following least squares
problem

) 1
min {udk — Wl + (: _ 1) I 1w WHMZ}
Wi 123

“

providing an interpretation to the NLMS update for & €
[0, 1] as a compromise between the fit to the new data and
the deviation from the prior estimate, with & determining
the relative importance of the two terms. A similar inter-
pretation can easily be worked out for the LMS algorithm
too, but now the relative weighting factor (1/p) — ||X,]?
can easily take on negative values for large step sizes.

It is clear that in the LMS algorithm, one should take
the step size inversely proportional to the input signal
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variance ¢2 for stability reasons. Therefore, in many ap-
pllcatlons this variance is estimated on-line (e.g., using

(k) =p6;k -1+ (1 - p) llx.1? and the step size is
reparametenzed as e = /62(k). One could regard the
NLMS algorithm as a special case of this with §2(k) =
Ak /N. This is basically the viewpoint taken by Ber-
shad in [19]. However, we wish to disagree with this view
and we believe that the projection interpretation is a cru-
cial characteristic of the NLMS algorithm, the nice prop-
erties of which do not follow from the use of an arbitrary
6 (k). In [19], the NLMS algorithm is analyzed with,
apart from the independence assumption, a Gaussian dis-
tribution for the input signal vectors. However, the results
in [19] pertaining to the comparison of LMS versus NLMS
are only valid for small step size. In this case, it is plau-
sible that one finds that LMS and NLMS behave quite
similarly. The potential advantages of the NLMS algo-
rithm, however, only become apparent for big step-size
values. In [20], the NLMS algorithm was analyzed using
the independence and Gaussian assumptions also. Due to
analytical difficulties, the analysis is limited to the two
cases of white noise (just one distinct eigenvalue) and two
distinct eigenvalues, one bigger value and the other ei-
genvalue with multiplicity N — 1, but with arbitrary step-
size values. With the step sizes in both LMS and NLMS
optimized for convergence speed, Tarrab and Feuer find
that the NLMS algorithm converges faster than the LMS
algorithm, but to a higher steady-state MSE.

It is useful to have simple approximation techniques
which allow for a straightforward analytical exploration
of the qualitative behavior of a system. Such a simple
analysis for the LMS algorithm was provided in [2]. This
analysis led to a widespread understanding of the modal
behavior of the LMS algorithm. It was based on the in-
dependence assumption. However, in fact, only the mean
behavior of the filter estimates was analyzed, leading to,
e.g., estimates for the range of stable operation for the
step size that are way off. Though a more careful analysis
had been done already in the late 1960’s [11], it took a
while before second-order moments in a more proper
analysis of the learning curve acquired widespread atten-
tion. By now, the proper analysis of the evolution of the
second-order moments in the Gaussian case (with the in-
dependence assumption) has appeared in several papers,
for both the LMS [14], [21]-[23] and the NLMS algo-
rithms [19], [20]. This analysis is relatively tractable (es-
pecially for LMS) but leads to a system in which the dy-
namics of the modes are coupled. Obtaining further insight
into these dynamics is hard in general and therefore fur-
ther elaborations have been restricted to the cases of one
(white noise) or two distinct eigenvalues for the input
covariance matrix. For LMS, some bounds for the adap-
tive system’s eigenvalues in the general case were offered
in [22]. For NLMS, analytical expressions for those sys-
tem eigenvalues have not been provided, even in the case
of only two distinct input covariance eigenvalues. In this
paper, we provide a new approximation which allows for
a quick hit at the modal behavior of the second-order mo-
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ments. We were motivated to carry out this analysis by
some unexpected observations in simulations, showing
much faster convergence for some ill-conditioned input
covariance matrices than for the white noise case. These
observations can be explained by the analysis presented
here, showing the interplay between the time constant of
a mode and its relative contribution to the total MSE.

In the next section, we introduce and motivate a spe-
cific i.i.d. distribution model for the input signal vectors,
and continue to analyze the convergence of the NLMS
algorithm with the assumptions thus introduced. The as-
sumptions introduced lead to such a simple analysis that
results are obtained for any eigenvalue scenario. This al-
lows us to obtain new insights into the eigenvalue-distri-
bution-dependent convergence behavior of the NLMS al-
gorithm. The parallel analysis for the LMS algorithm is
then presented. Next, learning curves thus obtained ana-
lytically are compared with simulations. In Section III,
we address the issue of using a time-varying step size in
order to overcome the compromise between fast conver-
gence speed and low steady-state MSE. The optimal step-
size sequence is derived for a white but otherwise arbi-
trary input signal. The resulting step-size sequence agrees
very well with intuition. We also consider the case of
slowly drifting parameters and show how the NLMS al-
gorithm can outperform the RLS algorithm, depending on
the covariance matrix of the parameter increments. In
Section IV, we summarize our findings and offer some
concluding remarks. This paper is an extended version of
[24], in which a simpler input signal model was used
which only applied to the NLMS algorithm.

II. CONVERGENCE ANALYSIS AND MODAL BEHAVIOR

We start out by introducing a simple model for the in-
put signal vectors {X,}.

A. A Model for the Purpose of Analysis

First, we take the independence assumption (A1) de-
scribed in the previous section, assuming the vectors X,
to be independent and identically distributed (i.i.d.). Then
we take a distribution for the vector X, that we require to
be as simple as possible, but consistent with the actual
first- and second-order statistics of the input signal. So,
consider the eigendecomposition of the covariance matrix

N
R=EX X! =vIvi= 2 \vVH )

i=1
where the V; are orthonormal. We shall assume that the

random vector X, is the product of three independent
variables that are i.i.d., viz.,

(A2) X, = srV
Pr{s = +1} =4
where ) r ~ [ Xl
Pr{*v=V,.}=p,=trﬂ, i=1, N
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where tr denotes trace and r ~ || X,|| means that r has the
same distribution as the norm of the regression vector
filled with samples from the original input signal. Note
that

N

Z] N = tr R = No?
Note also that EX, = 0, EX, X} = R. The model (A2)
decouples two aspects of the distribution of X;. The dis-
tribution of the projection matrix X, (X¥X,)"'X# depends
solely on the ‘‘angular’’ distribution of X, (the distribu-
tion of sV), not on its ‘‘radial’’ distribution (the distri-
bution of r). The angular distribution is defined on a hy-
persphere and is obtained by integrating the distribution
along radial directions. So the model (6) can be seen to
be a discretization of the angular distribution into N di-
rections. N is the minimum number of directions in order
to have a nonsingular covariance matrix and hence to rep-
resent the second-order moments correctly. The descrip-
tion of random variables with a discrete distribution is
closer in some sense to a deterministic description than a
description with a continuous distribution. Considering
the simplicity of the convergence analysis of the steepest-
descent algorithm (the deterministic counterpart to the
LMS algorithm), we may expect some benefits to accrue
from the model (A2) in the convergence analysis of the
(N)LMS algorithms.

We can identify the following desirable ergodic impli-
cation of the models (A2) (such implication only depends
on the consistent second-order description). If the eigen-
values of the covariance matrix are different, then there
are certain directions in ® " along which the input signal
vector lies more often than along others. Consider the an-
gle 8, with cos 8, = V7 X, /||X,|, then E(cos 0,)° = p;.
In an extreme case, this means that if R is singular, then
there is a subspace of ® ¥ in which X; never appears.

Though the radial distribution of X, is irrelevant for the
dynamics of the convergence of the NLMS algorithm, it
plays a crucial role, however, in the convergence behav-
ior of the LMS algorithm.

N
and 'Zl pi =1

B. The NLMS Learning Curve Associated with the
Model

To analyze the learning curve, we shall now assume
that the MMSE is not zero (or d;, = W?X,) as in the in-
troduction. However, we shall need the following addi-
tional assumption (typical of the system identification ex-
periment):

(A3)

where {e;} is i.i.d. with zero mean and variance £°, and
independent of {X,}. We can rewrite the a priori (pre-
dicted) filtering error €} in (1) as

dk B WOXk + EZ (7)

& =ep + Wi 1 X,
‘with Wk = W° — Wk- (8)

Hence € has two independent components and we can
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write the learning curve (MSE) as
& = E|&I? = ¢° + E|W,_, XI?

=£°+ tr (R Covi_y) &)
where Cov, = EWZW,. Note that Cov, is the second mo-
ment of W,, and hence is the sum of its variance and its
mean squared. So if Cov, converges, or equivalently (un-
der a condition of persistent excitation (R nonsingular))
& converges, then the propagation of both the mean and
the variance of W, must be asymptotically stable. Hence
it is convenient to concentrate on the convergence of the
learning curve £, since the convergence of, e.g., the mean
of W, will automatically be subsumed in that. From the
NLMS equations (2), and (8), we get

We =W Il - BXcXEX) ' XH] - meg (XX x¥
(10)

which leads to lim;_, . EW, = 0, at least if the learning
curve converges (a sufficient condition).? Hence the pa-
rameter estimates are asymptotically unbiased. Taking the
expectation of the outer product of (10) with itself, we get

xkxk] { xkxk}
Cov, = I- W, -
ov, = E ([ m x7x, Wi Wiy |1 w X7x,

_ s X X2
+ 5E (ueknz”;‘wﬁ)

X Xy
= F <|:I - [LXI‘HXk} COVk_l |:I -
—2,0 1
+ nlt (E 7) (EVVH)
X x
- ({1 T in’xk] Vi1 [’ B
—2&0
3 1
+ —_—
wR X <E r2>
where the cross-products of the two terms in (10) disap-

pear because of the independent and zero mean character
of €° (or of 5). We introduce the diagonal elements

_XkXi’D
Fxix
k Ak

_ xkxf]
#Xx,

1D

Ny = (VHCov, V), i=1,---,N. (12)
The learning curve may now be rewritten as
N
=87+ 2NNk - D). (13)

By premultiplying and postmultiplying (11) with V;, we

?An alternative approach would be to consider the unknown W° as hav-
ing a prior distribution with mean W_, and some finite covariance matrix
Cov_,, typically a multiple of the identity matrix.
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get

X; (k)
X xa
= E<V{’ [1— ﬁX*,,X'j Covy_, {1 -
k

—2s0

p ¢ 1
+ | E=

tr R )\'< r2>

N

_Xka} v
I XI‘?Xk i

=,-1trR
e (e5)

(1 — BNk — 1) + Nk — I)E,trR
%%"N (Ei>

—2s0 1
=[1—#(2—M)—]>\(k—1)+" i )\i<Eﬁ>.

<V”[1 — &V;V/1 Covi_ I - uV,-V}*W,->

(14)
We see that convergence occurs if and only if

ne©,2) (15)

which is a condition on the step size that is independent
of the eigenvalue distribution of R. The fastest conver-
gence occurs for

p=1 (16)

which corresponds to the projection interpretation dis-
cussed in the introduction. The steady-state MSE is often
expressed in terms of the misadjustment, viz.,

£w — &° B 1
TE““‘, My ms =3 —ﬁtr RE'r_z - an
Forthecase)\l == XL = )\, )\L+1 =+ = XN
= 0, we find from (13), (14)

M=

1
& — £0 = [1 -2 - ﬁ)z} -1 — £9

_2,0trTR 1

+ ¢ 2 E el (18)
This result coincides with the result that one can obtain
using the Gaussian assumption [19], [20]. The result of
(18) also coincides, for L = N (the white noise case), with
the result one can obtain using only the assumptions (A1),
(A2) and that the distribution of x; is symmetric with zero
mean. This coincidence is determined by the fact that for
a white symmetric distribution, the projection matrix
X, X7 /XHX, averages out to the identity matrix, and the
fact that the driving term only depends on the radial dis-

tribution of X; (which is modeled correctly in (A2)). When
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L = N, one may use the series expansion
11 1

1 1
_oi(N+1—vx)+0<_3>

1
TN+ 1 -y s
where », = Ex} / 01 measures the kurtosis of the input
signal. The approximations in (19) hold if », << N. v,
varies from 1 for a binary distribution, to 1.8 for a uni-
form distribution, to 3 for a Gaussian distribution, to o
for a Cauchy distribution. In the Gaussian case, the ap-
proximate expression in (19) holds exactly, even for 2 <
L < N, with L replacing N.

C. Modal Behavior of the NLMS Learning Curve

We shall now analyze the noiseless case (£° = 0) in
more detail. To do so, we need to make some assumptions
about initial conditions. In absence of any a priori knowl-
edge of the optimal filter W°, one normally takes the in-
itial value W_; = 0. Also, the representative situation is
the one in which all A,(—1) are equal (the unknown W?°
has components of equal magnitude along all eigenvectors
of R, maximum entropy assumption). Taking also into ac-
count that, with W_; = 0, E||}||> = 0% = Ed%, a possible
choice for W to meet the constraints just mentioned is

2 o
0 od_g H
W = [———— 1yV
Q tr R N

where 1y = [1 - - - 1]. We shall take this choice in sim-
ulations. We can reexpress the learning curve in the
noiseless case as

(20)

£ = fio] 3}

with

N
fo= X (A= ap)p, 2)
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and @ = u(2 — u) € (0, 1), p; = \;/tr R. The learning
curve is determined by f; and to study its convergence as
a function of the eigenvalue distribution, it is better to
express it explicitly in terms of independent degrees of
freedom (remember: L, p; = 1), viz.,

N-1
s PN-1) = 211 (A — op;)p;

(r-a(1-E0)) (-5 0): @

The behavior of the learning curve is illustrated in Fig. 1.
One can see for example in Fig. 1 that initially the
learning curve is concave as a function of eigenvalue dis-
tribution. This is true in general, as is readily deduced
from (23) for k = 0, 1. Because of symmetry, the MSE
attains its maximum for the uniform eigenvalue distribu-
tion. As time progresses however, the white noise case
will not remain the worst. We shall find the last moment
ko for which white noise gives the largest MSE by finding
the last moment for which the Hessian of f; remains neg-
ative definite. Therefore consider the first derivatives

i
ap;

fo = filprs -

—ap) ' = alk + Dp)

(o5

=(1

N-1
. <1 —ak+ 1) <1 - 121 p,>>,
i=1,--- ,N—-1, k=1 24)
and the second derivatives
2
Sk _ —a(l — ap)*"2k@ — alkk + p;) §;
apiapj

N—1 k-2

- a<l -« <1 - 1§1 p,>> k
N-1

. (2 —ak +1) <1 — E]l p,>>,

ij=1,-"-,N—1, k=2

So we get for the Hessian, evaluated at the uniform ei-
genvalue distribution,

|: azf;( i\N—l
H =|——
aPial’j ij=1lp;=1/N

a2 o
~'Ol<l—ﬁ> k<2—ﬁ(k+l)>

RTINS I VS P2 (26)
So, H, is negative definite for
2N
k < koo, N) = {E— IJ. 27
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p

Fig. 1. Behavior of the learning curve for N = 2, = 0.5, trR =1, asa
function of p = p,, at consecutive time instances k = 1, - - - | 8.

For the example in Fig. 1, we get kg = 4, which agrees
with the figure. For the reduction in MSE at ky, we get

[2N/o=1] Njo— o
Jo = <1 - 2> — ¢

N (28

which also agrees with Fig. 1. So the reduction at k = k,
is only about 10 dB. However, this is the worst case. The
learning curve for the example of Fig. 1 is displayed in
Fig. 2 for different eigenvalue distributions. One can see
that for any time instant k, it is possible to find an eigen-
value distribution for which the MSE at that time is lower
than for the white noise case. Such extreme (increasingly
ill conditioned) eigenvalue distributions give a rapid ini-
tial decrease of the MSE, but an exceedingly slow asymp-
totic convergence after a certain ‘‘knee’’ has been
reached. Whether the MSE reduction achieved before the
knee is useful depends upon the application. The main
point we want to draw attention to is the interplay between
the convergence speed of a mode and its contribution to
the total MSE, as revealed in (22): in an average situa-
tion, the slowest modes have the smallest contribution to
the MSE.

One notes in Fig. 1 that for k > k,, we get two peaks
in the MSE, whose abscissas move as a function of time.
One may wonder what the MSE surface looks like in gen-
eral. Intuitively, due to the special form of f;, it is clear
that for k > ky, we get N peaks positioned symmetrically
in the hyperplane L}_, p; = 1, with N — 1 p;’s equal to
some value p, and the Nth p; equal to 1 — (N — 1)p. To
obtain information about this value p, consider the fact
that the first derivatives have to vanish at such a distri-
bution, viz.,

% =0=(01-op)"'l = ak + Dp)
ap"pi=p
— (1= a(l = (N = Dpy)*!

(1l —akk+1DHA-O-Dpy. 29
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p=116
-30 p=18 4
p=12 p=1/4
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40
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discrete time
Fig. 2. Behavior of the learning curve for N = 2, p = 0.5, trR = 1, as a
function of time k, forp = p;, =27, i=1, -+ ,7.

On the other hand, the Hessian has to be negative definite,
which implies from (25) the following bound:

2
p<

=< —a(k T 30

This means that for large k, the second terms in the
expressions for f;, df;/dp;, and 3°f,/dp,dp; behave as the
exponential decay (1 — a)* and hence become negligible
compared to the first terms. Considering the derivative
again in (29), this means that p has to make the first term
zero or hence

_ 1
T ak+ 1)
for large values of k. Plugging this value into (23), we
get that any learning curve is asymptotically upper
bounded by the following curve:
N — De™!
o=
atk + 1)
which is also shown in Fig. 2 for that particular example.
Note that this inverse proportionality with time has noth-
ing to do with a similar law for the step size in the case

of stochastic approximations (we consider the noiseless
case here).

p 3D

for large k& (32)

D. The Learning Curve of the LMS Algorithm

Paralleling the steps for the NLMS algorithm, we find
the following string of expressions:

Wy = Wi Il — pX XP1 — pei Xy (33)
cov, = E(I — pXiX'] Covi—y I — pXe Xi1)
+ u?t°R (34)
- Er4 -
(k) = — —p=— I NINGK -1
A (k) {1 /A<2 ”‘trR> )\.] A ( )
+ plEON. (35)
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From (35), one determines that the LMS algorithm con-
verges if and only if

tr R
0,2 — 36
e < Er4> (36)
and the fastest convergence is obtained for
tr R
===, 37
T Er G

In general, we have tr R/Er* < 1/tr R and for the Gauss-
ian case in particular, we get

N
E—r4=trR+2é>\—?. (38)
tr R tr R
The misadjustment is given by
Mivs = Ll;ra,- 3%
2 —pu TR

We may note that the quantities in (36)-(39) are quite de-
pendent on the distribution of X;.

Forthecase Ay = * ** =N, =N, Aoy = = My
= 0, we find
Er*\ tr R
— ¢° = 1 — — = - o
£, — ¢ { #<2 utrR)L](ékl £°)
tr R)?
+p.2£"( L) (40)

which can be rewritten in the Gaussian case (for r), or if
L = N (white noise case), as

L+ v, —1\trR
—£° = - 7 — i S Bl
£ — & {1 u< ptrR 3 >L}
, (tr R)?
I

These results coincide with those of [25], [14] for the
white noise case (and a general zero-mean distribution for
the input signal), and coincide also with the results that
can be easily derived from the discussion of the Gaussian
case in [25], [14]. In the white noise case, the coincidence
is due to the fact that X, X¥ averages out correctly to R in
our model, and the fact that E || X,}|2X, X is a multiple of
the identity matrix, with the multiple depending solely on
the radial distribution of X, (which is modeled correctly
in A2)). In the Gaussian case, (41) leads to the following
range of stable operation:

02 L
FE\PwRL+2)
From (35), it is clear that the discussion of the modal
behavior of the NLMS algorithm also applies to the LMS

algorithm, with just a different definition of the gain fac-
tor a. :

(ko — B0+ pE 1)

42)
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We have modeled the distribution of X, as the product
of two marginal distributions, the ‘‘radial’’ distribution
and the ‘‘angular’’ distribution, and we have discretized
the angular distribution. For the NLMS algorithm, this
factorization has no repercussions for the exactness of the
resulting analysis (only the discretization introduces an
approximation). For the LMS algorithm, the radial distri-
bution is of paramount importance, not only because of
possible unboundedness issues, but also because of a pos-
sible destabilizing interaction due to the dependence of
[ Xc|l on the “‘angle”” of X, (see [26] for some analysis of
this aspect). As far as the former (unboundedness) aspect
is concerned, one may note from (35) or (41) that the LMS
algorithm cannot work for signals with unbounded fourth
moments. However, since signals are bounded in prac-
tice, this should not be taken too literally. For the NLMS
algorithm on the other hand, a basic result of our analysis
is that (15) is a necessary and sufficient condition for ex-
ponential covariance of the MSE (assuming a persistent
excitation). In spite of the assumptions (A1)-(A3) we
made in arriving at this result, this conclusion can be
shown (see, e.g., [8]) to hold for general signal distribu-
tions.

E. Verification of the Results and Discussions

Due to our assumptions, especially (A1) and (A2), one
may wonder about the relevance of these resuits to the
true algorithm behavior. One cannot expect our model to
be quantitatively accurate for say, the case of Gaussian
input signals. Nevertheless, in Fig. 3, we compare sim-
ulations of the NLMS and LMS algorithms, and the learn-
ing curves predicted by our theory for NLMS. We con-
sider two cases. The input signal used in the simulations
is a Gaussian first-order autoregressive (AR (1)) process
with pole @ = 0 and a = 0.9 in the respective cases. The
filter order used is N = 20 and the eigendecomposition
for the covariance matrix of size 20 for the AR (1) process
was computed in order to obtain the theoretical learning
curves. The step size used was u = 1 for the NLMS al-
gorithm, which seemed to be optimal in all cases. For the
LMS algorithm, some experimentation with the step size
yielded the (approximately) optimal values u = 1.0/tr
(R) for the case a = 0, and p = 0.3 /tr (R) for the case a
= 0.9. Note the capability of the theoretical learning
curves to closely predict the behavior of the actual curves.
Actually, the (simulation) curves for the NLMS algorithm
(with fixed @ = 1) and the LMS algorithm (with u opti-
mized for the particular input signal) do not differ very
much (over this short time span), though the NLMS al-
gorithm converges consistently faster than the LMS al-
gorithm. This was one of the main points of [20]. One
may also note that the theoretical curves for the NLMS
algorithm seem to correspond more closely to the simu-
lated learning curves for the LMS algorithm (with opti-
mized p for each particular AR pole a, thus not g = & /tr
R) than those for the NLMS algorithm. A similar remark
holds when one compares the largest eigenvalue in the
propagation of Covy 1 as given by our model (see (14)),
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Fig. 3. Monte Carlo simulations (100 runs) of the NLMS and LMS algo-
rithms, compared with a simulation of the NLMS algorithm with inde-
pendent regressor vectors, and the NLMS learning curve predicted from
(21), (22) for a Gaussian AR (1) input process with pole @ = 0 and a =
0.9, respectively, and N = 20, £° = 0. The (constant) step sizes are set
for fastest convergence in all algorithms.

with the eigenvalues given in [20, figs. 4 and 5] for the
cases considered there.

Actually, also shown in Fig. 3 are the simulation re-
sults of the NLMS algorithm with independent regression
vectors X;. These simulations correspond precisely to the
exact analytical results for the Gaussian case, but still with
the independence assumption, as can be found in [19],
{20] [simulations are used because the analytical results
have not been worked out in (and are not easily obtainable
from) [19], [20] for the input signal considered here]. So
the issue is how much closer these learning curves are to
the learning curves of the actual NLMS algorithm (no in-
dependent X,), than the curves resulting from our theory.
For the white noise case (@ = 0), the learning curve for
the NLMS algorithm with independent X, coincides with
the curve predicted from (21), (22) (and also with the LMS
algorithm with optimal step size). However, all these
curves lie slightly above the curve for the actual NLMS
algorithm. In the colored case (a = 0.9), the NLMS al-
gorithm with independent X, describes the knee behavior
during the important transient period in which all modes
are active, in a way that is quite similar to the curve re-
sulting from our theory. The knee behavior of the actual
NLMS algorithm turns out to be a bit more pronounced.
Asymptotically, when the slowest eigenmode dominates,
the curve for the NLMS algorithm with independent X,
lies in between the curve for the actual NLMS algorithm
and the curve predicted by (21), (22), indicating that the
independence assumption leads to a value for the slowest
eigenmode that is in between the actual value and the
value provided by our theory.

To bring out the differences between the slowest eigen-
modes of the NLMS and LMS algorithms more clearly,
we have performed the simulations shown in Fig. 4. For
white noise (a = 0), we find the small convergence speed
advantage of the NLMS algorithm over the LMS algo-
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Fig. 4. Monte Carlo simulations (single run, ten consecutive samples av-
eraged into one) of the NLMS and LMS algorithms with the step sizes set
for fastest convergence. The conditions are the same as in Fig. 3, but the
simulations are run over a longer time interval.

rithm (with optimized step size though!) that has been dis-
cussed in [25], [20]. In the noiseless case considered here,
the learning curve converges to —335 dB, the floor due
to roundoff errors in the double-precision floating-point
representation. Apparently, some time after convergence,
the filter coefficients lock onto their correct value. How-
ever, the colored input signal example (@ = 0.9) reveals
the big potential advantage in convergence speed of the
NLMS algorithm over the LMS algorithm (a factor 10!);
this with the LMS stepsize being optimized, leads in fact
to an unrealistic comparison.

The condition (15) for convergence of the NLMS al-
gorithm is independent of the input signal statistics and
corresponds to the actual necessary and sufficient condi-
tion for convergence. However, the accuracy of the the-
oretical predictions for the range of stable step-size values
is quite different for the LMS algorithm. The analysis of
Gardner [14] for the Gaussian case is exact, except for the
independence assumption (Al). So for the Gaussian
AR(1) examples considered above, one can determine the
optimal p which will minimize the largest system eigen-
value for a given AR pole a. For a = 0, we find p°" =
0.9/tr R (eigenvalue of slowest mode A, = 0.955),
while u = 1/tr R is quite close to optimal. Fora = 0.9,
we find approximately p°" = 1/tr R with a sharp mini-
mum at Ay, = 0.995. However, when simulating the
LMS algorithm with a Gaussian AR (1) input signal (N =
20,a =0.9), p = 1/tr Ris not at all stable, u = 1/3 tr
R is barely stable, while u = 0.3 /tr R is about optimal
(the optimal u and the stability bound for u appear to be
quite closer than the factor 2 suggested by (36), (37)). On
the other hand, the stability bound for u is computed in
[14], [22] to be the smallest value that satisfies

2

p= 43)

N
2N = e
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which gives the maximum value 4 = 2/(1 + 2/N)tr R
for white noise, and the minimum value 4 = 2 /3 tr R for
the limiting case of R of rank one. For the AR (1) example
with @ = 0.9, it gives the bound p < 1.06/tr R. The
approximation [22, eq. (32)] (considered tight in [22])
gives the bound 1.09 /tr R, while the bound resulting from
our analysis (36), (38) is 1.15 /tr R. Hence the bound pro-
vided by our analysis corresponds closely to the bound
based on the exact analysis of the Gaussian case (but with
the independence assumption). However, both bounds are
quite optimistic w.r.t. the actual bound which is about
0.3/trR.

Another example is x, = (—1)¥ 4+ n,, where n, is white
noise with a negligible variance. Note that R is approxi-
mately of rank one and that the signal x, is approximately
periodic with period 2. Our analysis (36) leads to the
bound p < 2/tr R. An exact analysis with or without the
independence assumption leads to the same bound.

The conclusion we can draw from the considerations
above is that the overall approximation error due to the
independence assumption (A1) appears to dominate ad-
ditional inaccuracies due to the distribution assumption
(A2).

As a last remark in this context, we want to come back
to the issue of viewing the NLMS algorithm as an *‘adap-
tive’> LMS algorithm with p, = 5/N&2(k) and 62(k) =
IX,/I> /N in particular. This view is not very appropriate
since, if 62 (k) would be any other estimator of of and in
particular have a long time constant (compared to N), then
the resulting algorithm would have properties which are
quite different from those of the NLMS algorithm (in par-
ticular, diverge for x = 1 on the AR (1) process consid-
ered above), since the algorithm would resemble the LMS
algorithm with p = & /tr R.

Finally, some comments on the misadjustment M. For
the NLMS algorithm, the expression in (17) appears to be
little dependent on the eigenvalue distribution of R, es-
pecially for high filter orders or signal distributions with
low kurtosis. We have not done extensive tests to check
this weak dependence (see Fig. 6 below for one example
though). Gardner [14] finds the following corresponding
expression for the LMS algorithm (using Gaussian sig-
nals, see also [22]):

N A

n
M=, 5N
i=1 1 — uN;

T (44)

n=4

which gives # = p tr R for small u. The expression for M
in (44) corresponds closely to (and may even be more ac-
curate than) a recently proposed refined expression for M
in [27]. The authors of [27], who do not seem to be aware
of Gardner’s work, however, use a not so rigorous argu-
ment in their derivation. We have checked our result (39)
for the example treated in [27, fig. 2] in which case the
input signal is a sinusoid plus white noise. Though the
frequency of the sinusoid is not mentioned in [27], with
w=n/10and, e.g., p = 0.015, we find M = 2.15 which
is exactly the experimental value determined in {27, fig.
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2]. We may note that the expression (39) gives in any case
a higher value for the misadjustment than the Nehorai es-
timate mentioned in [27], which corresponds to n = pu tr
R in (44).

III. STEP-S1ZE OPTIMIZATION
A. Motivation of the Problem and the Line of Attack

Considering the MSE, there are two conflicting re-
quirements on the step size. It should be large to have fast
dynamics and hence fast forgetting of the initial parameter
settings (or of parameter changes, see further). On the
other hand, a large step size means fast dynamics com-
bined with a significant amplification of the driving term,
which results in a large steady-state MSE. Most existing
work on step-size optimization has considered a constant
step size. Two fairly easy approaches to optimize such a
constant step size are either to minimize the maximum of
the absolute value of the eigenvalues in (14) (maximum
convergence speed) or to minimize the steady-state MSE.
The latter approach is used most often in practice since
after the initial convergence, which is a temporary phe-
nomenon, one has to live with the steady-state MSE. This
consideration leads to a small step size and hence slow
convergence. Bershad [28] has considered choosing the
step size to minimize the MSE at the end of a given in-
terval. This is a quite meaningful criterion in applications
such as channel equalization for data communications.
Here, the actual data transmission only begins after a start-
up period at the end of which one would like to have a
predictable performance, with the start-up period being as
short as possible. For this criterion, the resulting optimal
step size is a complicated function of various parameters.

Our main point here is, that whichever optimization
point of view one takes, one can do significantly better
with a time-varying step size. In practical implementa-
tions, this is what algorithm designers do, usually in the
form of a piecewise constant step size with, e.g., two val-
ues, one for rapid convergence and one that will deter-
mine the steady-state MSE. The critical point then is the
choice of the transition time. We propose here a specific
time-varying step-size sequence that is optimal for certain
scenarios, and depends on only one parameter. We shall
indicate that the choice of this parameter is not too criti-
cal.

It is clear that the optimal step-size sequence depends
on the eigenvalue distribution of R. For a general eigen-
value distribution, the optimal step size is complicated to
determine and depends critically on various parameters
such as the eigenvalues, the MMSE, the optimal filter
coefficients. The analysis simplifies considerably for the
white noise case. Also, the eigenvalues of R are usually
unknown in practice and one may consider white noise,
by lack of any further information. Furthermore, as we
saw in the previous section, the white noise case is not
the uniformly best case and hence may in some (admit-
tedly a bit skewed) sense be viewed as an average case.
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B. Derivation and Analysis of an Optimal Step-Size
Sequence

With the step-size p being replaced by a time-varying
. in the NLMS algorithm (2), the learning curve for the
white noise case is determined as (see (18))

£ =E°+ Ak — DirR
-aﬁk+ﬁ§ Eik®

Nt R
where we used the approximation E(1/r%) = 1/tr R (see
(19)) since its consequences are of little importance here.
The expressions in (45) are valid, even if assumption (A2)
is dropped. So the distribution of the white input signal
X, can be arbitrary as long as it is zero mean and sym-
metric for positive and negative values. Optimizing re-
cursively, assume we have the optimal step-size sequence
up to time

Nk = <1 + Nk - 1) + 45)

k— ARG - L B}
Then we can replace Nk — 1) in (45) by N*(k —~ 1) and
optimize A (k) w.r.t. u,. We find

Nk — 1) £°

TLZ‘=~——EO= 1 T (46)
etk — 1D + TR
which leads to
nER) = <1 - %}) NEGe — 1) + %((X*(k — 1!
EO -1\ -1
+ <trR> > ) @7n

So A*(k) is given as a convex combination of two func-
tions of )1* (k — 1): the first function alone would lead to
constant A\ *(k), while the second function would lead to
A *(k) being inversely proportional to time. One can also
find a recursion for the & by computing A *(k — 1) in
terms of g} from (46), and substituting in (47). One finds
upon a rearrangement of terms

(48)

For the initialization we assume the common practice in
absence of a priori knowledge: W_, = 0 (otherwise re-
define d, — W_, X, to be the desired-response signal).
Then we have £, = £° + X(—1)tr R = ¢, which leads
to the initialization

Caad
IS)

A =1- (49

(=}
IS S

We get g = 1 for £° = 0, which leads to zj = 1 (from
(48)). Indeed, one should use maximum convergence
speed in the noiseless case. On the other hand, £° = ¢3
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leads to g¢ = 0 and hence &y = 0 which also agrees
with intuition: equality of the MMSE to the variance of
the desired response means that no improvement is pos-
sible by adapting the filter. The sequence { %} is plotted
in Fig. 5 for various initial values ¢ .

Initially, we have 1 — & << 1 and one may derive
from (48) that ; behaves initially as

— % 1 koo —x
”kA* ~ (1=~ Ilo_* (50)
1 -y N/ 1 =1

thus, we have an exponential decay of &§ /(1 — &Zg). On
the other hand, one can consider the series expansion

1 1 1
= == + =+ O
B¢ Bi-r N -l

(51

From (48) we see that { &} is a strictly decreasing se-
quence for g € (0, 1) and converges to zero. So (51)
leads to the asymptotic approximation
1

—w o1

Bk 8k kK/N = b’
for some constant b. One can verify that the convergence
to this approximation is according to

k>N (52)

Be — & _

[ k

The constant b is asymptotically irrelevant, but plays a

role in the finite-time behavior of {g,}. A suitable con-

stant b can be determined by requiring, e.g., g, = & for

some time k;. Different initial values ¢ will lead to dif-

ferent values for b and hence a perturbation of the initial

value z & will merely correspond to a shift in time of the
convergence process.

In k
_—

0. (53)

C. Approximation and Performance Evaluation

The optimal step-size &} we found, makes sense intu-
itively. Indeed, initially Cov, and hence £, are dominated
by the mean of W, and hence we have a large step size to
reduce this mean as fast as possible. As the algorithm ap-
proaches convergence, the step size should be reduced to
reduce the variance of W,. It is a well-known result from
stochastic gradient algorithm theory that a necessary and
sufficient condition for the convergence of Cov, to zero is

[29], [30]

M s

2= o, ui< o (54)

k=0

it

and, with our model for {X,}, the same conditions hold
for {&.}. The typical example for such a sequence is p
= 1/k. One can see that i} is asymptotically of this form
and satisfies (54). However, for fast convergence it is im-
portant to deviate from the 1/k behavior initially. In a
practical implementation, one may wish to replace &}
computed from (48) by an approximation. The following
approximation captures the main features of %;* (see Fig.
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Fig. 5. Graphs of the optimal step-size sequence {u [} for N = 20 and
2o = 0.9,0.99, 0.999, and of the approximation (55) with ¢ = 2, 4, 6.

5, where py;, = 0)

P = { 1 }
m . —

B Hmie T R kNS

(55)

The degree of freedom c is related to the degree of free-
dom 7 in the optimal step-size sequence. A related prac-
tical step-size sequence was proposed in [30] for the LMS
algorithm. Note that we have introduced a certain lower
bound g, to keep the adaptive algorithm alive so that it
can track possible changes in the optimal parameters.

Some simulation results are presented in Fig. 6. The
learning curves for the optimal step-size sequence and the
approximation (55) are compared and seen to correspond
quite closely. The choice of a constant step-size u, = 1
for maximum speed of convergence performs equally well
initially, but leads to a steady-state MSE of —7 dB =
—10 dB + 3 dB, which corresponds closely to the mis-
adjustment M = 1.1 predicted by (17), (19). The choice
of a constant step-size g, = 0.2 to reach a steady-state
level at about k = 200 (the optimal z of [28], namely, the
optimal constant u to minimize £,4), leads to a value for
£, that is not optimal for k = 200 and even less so for k
< 200 or £ > 200.

D. Comparison with the LMS Algorithm

With the. (constant) step size being optimized for con-
vergence speed in both the NLMS and LMS algorithms,
Tarrab and Feuer [20] conclude that while the NLMS al-
gorithm converges faster than the LMS algorithm, it has
a higher MSE in steady-state (higher by a factor 1 + O((»,
— 1)/N)). This last conclusion is also drawn in [19],
where it is attributed to the fact that the NLMS algorithm
uses less a priori knowledge (e.g., about tr R) than the
LMS algorithm. Tarrab and Feuer find in particular (when
the step size is set for maximum convergence speed) that
the steady-state MSE for the NLMS algorithm increases

optimal . (u0=20.9)

MSE (dB)

20 40 60 80 100 120 140 160 180 200

discrete time

Fig. 6. Simulated learning curves (100 runs, smoothed) of the NLMS al-
gorithm for Gaussian white noise with N = 20, ¢2 = 1.0, £° = 0.1 for the
following cases: optimal step-size x; from (48) with x4 = 0.9, approxi-
mation (55) with ¢ = 2, i, = 0, and fixed step-sizes & = 1 and i = 0.2,
respectively.

significantly with ill-conditioning, while this dependence
appears to be very weak for the LMS algorithm (see [31]
though for a critique on this way of comparing things).

In Fig. 7, we provide a comparison of the NLMS and
LMS algorithms with a time-varying step size. The filter
order we have used, N = 3, is very low so that the mis-
adjustment noise amplification due to E(1/r?%) can be ex-
pected to be substantial. The particular step size we have
used for the NLMS algorithm is of the form (55). Since
the input signal is far from being white (a Gaussian AR (1)
signal with pole a = 0.9), a step size of the form (55) is
not optimal, but is still helpful. Judging from (14), it ap-
pears to be a good idea to use ¢ = 0 (62 / Apin) Amip, being
the smallest eigenvalue of R) in (55) to give the slowest
mode a chance to progress substantially before the step
size starts to decrease. On the other hand, the influence
of the slowest mode may be of little significance w.r.t.
the near-convergence contribution of the fastest modes.
We have, quite arbitrarily, chosen ¢ = 10. For the LMS
algorithm, we have also taken the step size to be of the
form indicated in (55), but multiplied with some pmpay
which leads to the fastest convergence in the noiseless
case (considering that @ = 1 leads to the corresponding
situation for the NLMS algorithm). As can be seen in Fig.
7, taking the same ¢ for LMS as for NLMS leads to a
huge discrepancy between the convergence behavior of
the two algorithms. Therefore, we have also tried to favor
the LMS algorithm by giving it a much larger ¢ = 100.
Still, the faster convergence speed of the NLMS algo-
rithm predicted from Fig. 4 leads to an overall better per-
formance for the NLMS algorithm. Exploiting this faster
convergence speed and using a time-varying step size, one
can ‘‘turn down’’ the step size in the NLMS algorithm
long before the LMS algorithm nears convergence, so that
the disadvantage of a higher steady-state MSE which
would result from using a constant step size, can be over-
come.
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Fig. 7. Simulated learning curves (100 runs) of the NLMS and LMS al-
gomhms with a Gaussian AR (1) input signal with pole a=09and N =
3,0}=0dB,¢° = —30 dB. In all cases, the step size is time varying and
of the form (55) with pmis = 0. For the NLMS algorithm, ¢ = 10. For the
LMS algorithm, we have used ¢ = 10 and ¢ = 100, and gy = ppmax ix With
the value of p,, as indicated in the figure.

We may note that though the LMS algorithm may be
stable (converging) on the average over a long period of
time, it will in general be unstable (diverging) some por-
tion of the time. The duration of such an instability is a
random variable with some distribution and has some non-
zero probability to take on large values, in which case the
algorithm may diverge in practice (overflow). Such phe-
nomena become more pronounced as the stepsize gets
closer to the stability boundary. The step-size values used
in Fig. 7 are really pushed for fastest convergence and
hence are quite close to this boundary, which explains the
glitches appearing in the learning curve for the second
LMS simulation (even though 100 runs were averaged).

E. Comparison to RLS, and Influence of Eigenvalue
Distribution

In comparison, the recursive least squares (RLS) algo-
rithm has the following learning curve (asymptotically,
for k >> N) [32]:

RLS __ ] N
b =4 <1+k+1>

independently of the eigenvalue distribution of R. For the
NLMS algorithm in the case of white input noise, the op-
timal stepsize sequence leads to the following asymptotic
behavior of the learning curve (via (46), (52)):

) N
¢ <1+k—N(b+1)>'

So basically, the learning curve for the optimal NLMS
algorithm in the white noise case is asymptotically just a
delayed version of the RLS learning curve. Of course, for
time k = O(N), there may be significant differences. An-
other aspect is the asymptotic behavior of the NLMS
learning curve in case the stepsize is optimized for a white
input signal, but the actual input signal is colored. Then

(56)

£ = )

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 9, SEPTEMBER 1993

the stepsize is suboptimal. It is difficult to asses the re-
sulting performance degradation in general. One special
caseisSNy = - =X >0, N\,.; =+ Ay =0. This
leads to identical behavior (for &, not for Cov,) to the
case of L parameters with uniform eigenvalue distribu-
tion. One can verify (using the ODE approximation of
difference equations with vanishing variation) that the
learning curve is asymptotically given by

—_ 0<1+]l]—1_>
=4 k2 -L/N)

So the misadjustment is asymptotically suboptimal by a
factor N/(L(2 — L/N)), but also decays inversely pro-
portionally with time. In general the learning curve is
asymptotically dominated by the mode associated with the
smallest nonzero eigenvalue A, of R. One can verify the
following asymptotic behavior of the learning curve (us-
ing the results from the modal analysis above):

(58)

1, 2, _ 1 /o
20X<)\m<ax. S"_g<1+k2)\,,,/a—1
_1 5 _ In k

)\,,,—ZUX. Ek—.f <1 + 4k>
1 1 2)\m/a§
M < Jox k£~ <;) : (59)

Hence, the convergence slows down with increasing ei-
genvalue disparity.

F. An Alternative Normalization

The NLMS algorithm is obtained from the LMS algo-
rithm by reparameterizing the step size as u;, = me/ || X,l%.
This leads to an algorithm for which the stability condi-
tion is u; € (0, 2), a condition that is independent of the
signal characteristics. Another possible reparameteriza-
tion with similar properties is

1

S ey 60
T ©0)

R =
where 1, = 0 is a sufficient (though not necessary) con-
dition for stability. This step-size choice can be motivated
as follows. Whereas the NLMS algorithm is designed
based on the deterministic mechanism of projections, the
LMS algorithm with stepsize as in (60) is designed based
on stochastic considerations. Consider the RLS algorithm

ek

=W+ ——per—
i UT )+ XERIL X,

XERY,  (6))
where
k

Ro = ply + 2 XX{' = Re_y + XiX{

is the sample covariance matrix. Now approximate R, _,
in (61) by R, _; = w1y, then we get

14
€
W= Weoy + = : |2X£’ (62)

+ 11X
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which is exactly the LMS algorithm with step size p; of
the form (60). For instance, one could choose

k—N
= p+ Zo llx; 11
P

which is the (N, N) entry of R, . Then the step size in
(60) becomes
1 1 1 1

= +él|x“2~u+k0§=u'+k/Ntr_R
K i
i=0

(63)

which is related to (55) (with u’ = 1, ¢ = 0) through the
transformation pu;, = &;/tr R. One could obtain a LMS
algorithm with nonvanishing gain by starting from the ex-
ponentially weighted RLS algorithm. The a posteriori er-
ror ¢, = d, — W, X, for the algorithm with step size as in
(60) can be written as

Bi
|2 €f.

=t 64
A ©4)

€k
From the connection with the RLS algorithm (and hence
the Kalman filter), we know that 1, reflects the fact that
€% does not give a noise-free measurement of W,_, (as-
suming £° > 0, see (8)). Despite these interesting inter-
pretations for the step size in (60), we cannot really rec-
ommend the resulting LMS algorithm, since its proper
design requires a priori knowledge about R. For instance,
to determine the necessary condition on L for stability,
or to choose a 1t to achieve a given steady-state MSE,
requires (partial) knowledge of R. A similar conclusion is
drawn in [33].

G. Tracking Drifting Parameters

Finally, we investigate the case of time-varying param-
eters. To do so, we make the following assumptions about
the desired response and optimal parameters:

dy = Wi X + €

Wy =W._| + U (65)

where {e¢?} and {U,} are independent of each other and
of {x,}, and are independently distributed with zero mean
and variances £} and Q,, respectively. This leads to

Wk = W/(() - Wk
eh = Wio X + €l (66)
and using our model, we find
- . _ XXy [ H
We=W I - sy ) — °X + U,
k k—1 <: 1253 )(zijtk \|)gk|‘2 €rAg k
- _ o N\ &
NE=(1-mQ2—m) —5 ) NKk—1
tr R
m 2
" _
+ [ —= N+ Nk
<trR> Ek i 1( )
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N
o= g0+ 2NNk -1 (67)

where X, (k) = [VyQ, V];. With time-invariant &, £°, and
Q, we find for the steady-state MSE

tr R .
— — r
2 -

:ED+ ﬁ__go_i_

2 - 0

ENLMS

U

g B TR (68)
2 o

where the approximation holds for small x. The three
terms in (68) are the MMSE, the estimation noise, and
the lag noise, respectively. One could agree (as in [3],
[4]) that in the approximation of the lag noise term, one
should keep the terms of O(1) and O(p) since the esti-
mation noise term is O(u). However, the inclusion of
those terms only leads to higher order (in the misadjust-
ment) perturbation terms in the expressions in (69) re-
sulting from the optimization problem considered now.
Namely, optimization of &ypys in (68) w.r.t. u leads to

trRtr Q
T

Efims = 9+ VECURu Q. 69)
A parallel analysis of the RLS algorithm with exponential

weighting (weighting factor A) leads to the steady-state
MSE [34]

n* =

1 =X 1 1
NEC + =
2 § 21—

which holds for small enough 1 — A. Optimization w.r.t.
A leads to

Spis = &7 + tr RQ (70)

N tr RQ
E{)
Eps = £ + VE°N U RQ. 2Y)

The ratio of the minimum steady-state misadjustments for
both algorithms is

M;SLMS _ tr R tr Q
ML NuRQ '

So which algorithm is better depends on R and Q. Here
are two examples:

Q=R
Q=R"

(1 — NN =

(72)

NLMS is better

RLS is better. (73)

We may note that for a given model for the time-varying
parameters as shown in (65), the Kalman filter is the op-
timal adaptive algorithm (in the Gaussian case) and the
RLS and NLMS algorithms are just two different approx-
imations of it (see also [35], [36]).

A similar comparison was made between the LMS and
RLS algorithms in [37], and a similar conclusion was
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drawn. In [37], it was objected though that the optimal
u* thus obtained from the analysis would often be bigger
than the stability bound. However, this means that the p *
thus obtained is too big for the analysis to hold, because
the true optimal step size corresponds to a stable algo-
rithm of course. On the other hand, such an argument does
not make sense for the NLMS algorithm and in any case,
for small enough Q of a certain structure as discussed
above, also the LMS algorithm can outperform the RLS
algorithm.

IV. CONCLUDING REMARKS

We have emphasized the deterministic interpretation of
the NLMS algorithm as a (relaxed) projection algorithm.
This property implies that the NLMS algorithm is not just
stable on the average, but also deterministically at every
sample instant (in contrast to the LMS algorithm). For
analysis purposes, we have introduced a simple stochastic
model for the input signal vectors, which despite its sim-
plicity has allowed us to derive some useful results. One
of these is a better insight in the qualitative convergence
behavior of the algorithm as a function of the eigenvalue
distribution of R.

Another point of the paper was the emphasis on the use
of a time-varying step size to speed up the convergence.
Though the original stochastic gradient algorithms were
equipped with such step sizes, the usefulness of time-
varying step sizes seems to have been forgotten in the em-
phasis of recent years on adaptation. General guidelines
exist in the literature on stochastic gradient algorithms,
on how to choose a step-size sequence. However, to the
author’s knowledge, an optimal step-size sequence as ob-
tained in (48) appears to be a first result of this nature.
Another possible improvement may come from the vari-
ation in time of the order N of the FIR filter. Such tech-
niques have been used for years in the modem industry
and have recently been treated in the literature [38]. Sub-
stantial gains in convergence speed can be expected if the
lower order filter used initially captures most of the pos-
sible MSE reduction.

The choice of the NLMS algorithm over the LMS al-
gorithm is not only a way out of the problem of missing
a priori knowledge of R (or just tr R). We have seen that
the convergence of the LMS algorithm is a nontrivial is-
sue for input signals with an ill-conditioned covariance
matrix or with distributions with unbounded support. In
the first case, no existing analysis offers accurate predic-
tions of the range of stable operation for the step size
(often necessitating a very conservative design in prac-
tice). Though the second case is perhaps mostly of theo-
retical interest only, a practical circumstance that is quite
closely related is a situation with wildly varying (as a
function of time) input variance ¢2. Though this poses no
problem for the NLMS algorithm, an adaptive (to circum-
vent the lack of a priori knowledge) LMS algorithm em-
ploying an estimate 6, with a large time constant (com-
pared to N) may show unacceptably large growths in the
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variance of the parameter estimates and the filter output.
In summary, the tracking dynamics of the NLMS algo-
rithm appear to be (significantly) less sensitive to a variety
of input signal distribution aspects than holds for the LMS
algorithm.

Though many algorithm designers are aware of advan-
tages of the NLMS algorithm w.r.t the LMS algorithm,
the NLMS algorithm does not seem to be widely used in
practice. The reason for this is that the computational
complexity of the division ze%/[|X,|*> would be incom-
patible with present generation DSP’s, which usually have
a hardware multiplier, but not a divider. However, though
we wish not to go into detail here, there are many ways
of obtaining this quotient within an acceptable relative
precision of say 1% with few computations, by using se-
ries expansions, table lookups, etc. Also, the squared
norm || X,)|* can of course be computed recursively with
just one or two multiplications per update.

We have seem that for tracking steadily drifting param-
eters, either one of the NLMS and RLS algorithms can be
the better one, depending on the covariance matrix of the
parameter increments, and the covariance matrix of the
input signal (see [39], [40] for some analysis in the case
of deterministic parameter variations, leading to similar
conclusions). However, it is clear that the RLS algorithm
always wins in the initial convergence, and a similar con-
clusion would be true for the problem of tracking occa-
sionally jumping parameters [34], if proper mechanisms
could be designed for detecting such jumps, the shape of
the window in the LS criterion could be properly adjusted
after the detection of a jump, and such changing window
shapes could be accommodated in a recursive LS algo-
rithm.
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