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ABSTRACT
The amount of information available in social media and special-
ized blogs has become useful for a user to plan a trip. However,
the user is quickly overwhelmed by the list of possibilities offered
to him, making his search complex and time-consuming. Recom-
mender systems aim to provide personalized suggestions to users
by leveraging different type of information, thus assisting them
in their decision-making process. Recently, the use of neural net-
works and knowledge graphs have proven to be efficient for items
recommendation. In our work, we propose an approach that lever-
ages contextual, collaborative and content information in order
to recommend personalized destinations to travelers. We compare
our approach with a set of state of the art collaborative filtering
methods and deep learning based recommender systems.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies →Neural Networks.

KEYWORDS
Recommender Systems, Neural Networks, Knowledge Graph, Em-
beddings, Tourism
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1 INTRODUCTION
Traveling is no longer considered to be just a need and it has clearly
become a desire. Users became exposed to many inspirational
tourism posts and advertisements in social media, travel forums,
travel agencies and airline websites. Although inspirational, many
of these posts might not fit a particular user’s profile and, thus,
they may not be relevant to him. In recent years, destination rec-
ommender systems (DRSs) have been proposed to suggest a ranked
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list of destinations, sometimes composed of sights, events and cities
to visit, based on information provided by the user [10, 13, 27].
Recommender systems can also take contextual information into
account, for example, by leveraging event-based social networks
data [15]. Location-based Social Networks (LBSNs) allow users to
publicly or privately share their position by performing a check-in
when visiting a certain venue or Point-of-Interest (POI). Leveraging
this data enables to first know what a city is best characterized by
(restaurants, sport events, museums, parks, etc.), and then to iden-
tify the user’s interests [17]. Finally, a user profile can be enriched
with his booking history.

Figure 1: Deep Knowledge Factorization Machines architec-
ture for next trip destination.

Recent works have illustrated the effectiveness of using knowl-
edge graph embeddings (KGE) [19, 24, 28] and neural networks [2,
7, 8] for item recommendation. In this paper, we propose a Deep
Knowledge Factorization Machines (DKFM) architecture to recom-
mend destinations. Our approach relies on learning i) a represen-
tation of cities using different data sources including Wikipedia
and LBSN, ii) the long-term user’s behavior using his booking his-
tory and iii) a representation of the context associated with each
past trips. More specifically, we combine textual embeddings rep-
resenting cities based on their wikipedia content description with
knowledge graph embeddings that represent cities’ characteristics
in terms of venue check-ins made by users in LBSNs. We also com-
bine two existing deep learning based recommender systems [2, 7]
to build our so-called DKFM architecture (Figure 1) which takes as
input content, collaborative and contextual information related to
user bookings.

The main contributions of our work are:
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(i) We leverage three types of information (collaborative, con-
tent and contextual) in order to recommend a next trip.

(ii) We present a deep neural network model that takes as input
these three different types of information.

(iii) We perform an empirical comparison on a real-world dataset
of our DKFM architecture with state-of-the-art collaborative
filtering methods and deep learning based recommender
systems.

The rest of the paper is organized as follows. Section 2 provides a
literature review of the related work. Section 3 introduces some pre-
liminaries concepts, the recommendation problem and the dataset
we use for the experiments. In Section 4, we present the approach
to build the DKFM architecture. Section 5 presents the experiments
carried out to show the effectiveness of our model. Finally, in Sec-
tion 6, we provide some conclusions and we discuss some future
work.

2 RELATEDWORK
This section provides a literature review of recommender system
in the tourism domain, which has known growing interest from
many academic and industrial researchers, trying to tackle several
recommendation tasks such as recommending POIs, suggesting
sequence of attractions/activities to do or proposing a complete
trip plan. This section presents state-of-the-art methods that utilize
knowledge graph embeddings and deep learning methods for item
recommendation.

Recommender System in Tourism: Tourism includes travel-
ing for business or leisure. It involves complex decision-making
from travelers to select destinations, hotels, events, activities, etc.
On the other side, travel industry players (e.g. travel agents) are
helping travelers to find the most suitable options. Early works
have focused on personalized techniques in order to provide rec-
ommendation based on user’s preferences and interests [22]. More
specifically, the idea is to match items in a catalogue of destinations
with the user needs, and interests expressed by the offered language.
Kiseleva et al. [13] proposed a multi-criteria rating system (MCRS)
based on naive bayes approach in order to recommend travel des-
tinations in a hotel booking platform1. MCRS are based on which
aspects a user liked for a given item, while classical recommenda-
tion systems are based on a single rating (e.g. giving a rating for
a movie). Wolfgang et al. [26] proposed an approach to generate
sequence of POIs when visiting a city based on three user’s inputs:
start and end point plus interests. However, user preferences or
item characteristics are in many cases insufficient to have accurate
recommendation. Macedo et al. [15] have proposed to use contex-
tual signals provided by LBSNs such as time or location for events
recommendation. In our work, we combine three different types
of input: the traveler-destination interaction which is represented
by a booking, the context of each booking, and the content that
characterizes each destination, to suggest destinations to travelers.

Knowledge Graph Embeddings for Items Recommenda-
tion:AKnowledge graph embedding is a representation of a knowl-
edge graph’s component into continuous vector space. The idea is
to ease the manipulation of graph components (entities, relations)
for prediction tasks such as entity classification, link prediction
1Booking.com: https://www.booking.com

or recommender systems [28]. A survey of approaches and appli-
cations for knowledge graph embeddings was done by Wang et
al. [25]. Two main approaches exist in order to learn knowledge
graph embeddings from a KG: translational distance models where
the goal is to minimize the distance between neighbors entities
in the graph; semantic matching models which are based on the
semantics of the graph components compute a similarity score that
measures the semantic similarity between each entity in the graph.
In order to enrich the collaborative information represented by
the user-item interaction with additional information, knowledge
graphs have been used to provide knowledge about items and/or
users to enhance the performance of the recommendation. In [28],
the authors used a knowledge base containing different external
resources: textual information, visual information and structural
information (knowledge graph embedding) to enrich the user im-
plicit feedback for items recommendation. In [18], the authors used
the concept of property-specific knowledge graph to learn embed-
dings based on node2vec [5] of each subgraph and then used a
ranking function to provide items recommendation. In our work,
we use a knowledge graph from LBSN’s check-ins in order to learn
knowledge graph embeddings that represent cities.

Deep learning based Recommender System: In the recent
years, deep learning has demonstrated its effectiveness when ap-
plied to information retrieval and recommender system. In [4], the
authors used a multilayer perceptron that takes as input the (user,
item) interaction and learn user and item embeddings. In [8], the
authors combined a multilayer perceptron with a generalization of
matrix factorization represented by a single layer perceptron. In
[2], the authors proposed wide and deep learning model for app
recommendation2. The wide learning component is a single layer
perceptron which enables to capture memorization and the deep
learning component is a multilayer perceptron which enables to
capture generalization. In [6], the authors combined factorization
machines and multilayer perceptron. The idea is to model the high-
order feature interactions via multilayer perceptron and low-order
interactions with Factorization Machine [20]. In [7], the authors
proposed to use a pooling layer that computes the first order fea-
ture interaction term in factorization machines formula [20], then
feed the obtained vectors in a multilayer perceptron. Other neural
network architectures have been used for recommendation, such
as Recurrent Neural Networks (RNNs) (e.g. session-based recom-
mendation) or Convolutional Neural Networks (CNNs) used for
example to capture images representation in order to enrich item
representation.

Our work focuses on feed-forward neural networks. We combine
two existing deep learning based recommender systems [2, 8] to
build our recommender system.

3 DATA & PROBLEM FORMULATION
In this section, we first provide definitions of some concepts useful
to build our recommendation system. Then, we present the next
trip recommendation task. Finally, we present the dataset used to
address the next trip recommendation.

2Google Play Store: https://play.google.com/store
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3.1 Preliminaries
We define a Knowledge Graph similarly to what has been done in
[18].
Definition 1. A knowledge graph is a set K = (E,R,O ), where E is
the set of entities, R ⊂ E × Γ × E is a set of typed relations between
entities and O is an ontology.
In recommender system realm, there are two different types of
feedback: explicit feedback where the user gives a rating on how he
liked the item or not, and the implicit feedback where we know only
the interest of a user for an item. Concretely, in our case, the implicit
feedback denotes the fact that a traveler t visited a destination d .
Definition 2. Given a matrix T ∈ Rn×m , where ti j is the number
of times the traveler i traveled to destination j, n the number of
travelers andm the number of different destinations. We define the
traveler binary feedback matrix R ∈ Rn×m as follows:

ri j =



1 if ti j > 0
0 otherwise .

(1)

3.2 Problem Formulation
Definition 3. Given a traveler, his demographics information (age,
nationality, etc.), his historical bookings and the contextual data
related to those bookings (day of week, number of passengers, stay
duration, etc.), we aim to recommend to this traveler a ranked list of
destinations he would like to go to. A destination is represented by a
city that has an airport. The Figure 2 illustrates the recommendation
task we want to tackle.

Figure 2: The recommendation task is to predict a ranked
list of next destinations for a traveler given his historical
bookings.

3.3 Data Preprocessing
Experiments were conducted on a real-world dataset of bookings
from the so-called CEM3 database, an Amadeus database contain-
ing bookings over a dozen of airlines. Each booking is stored using
Personal Name Records (PNR) information. The PNR is created at
reservation time by the airline and contains information about the
purchased ticket (travel itinerary, traveler demographics informa-
tion, payment information, ancillary services bought with the air
ticket, etc.). The considered dataset contains 4.8 Million bookings
for 814.919 unique travelers4.

3CEM: Customer Experience Management
4Statistics of the pre-processed dataset are given in Tables 3 & 4

Table 1: Features used for business/leisure classification

Feature Name Type Range

Number Passenger Numerical {1..9}
Stay Duration Numerical [0,99]
Saturday Stay Binary {0,1}

Purchase Anticipation Numerical {0..364}
Age Numerical {0..99}

Gender Categorical {Female, Male, Unknown}

Table 2: Business/Leisure classification performance

Metric Score

Accuracy 0.87
Precision 0.87
Recall 0.91

Customer segmentationmodel: The approach to recommend
destinations to business/leisure travelers is expected to be different
as explained in [3]. In our work, we focus only on recommending
travels for leisure purpose. Hence, we need to split the bookings into
business/leisure segments. Given an historical dataset of bookings
that are already labeled into business/leisure travels, we build a
Random Forest based classifier in order to classify our bookings.
Table 1 shows the dataset’s features used for this classification
task. In order to train our classifier, we use an existing dataset
that contains bookings already labeled (Business/Leisure). This
dataset was collected from travel agencies from February 2014 to
February 2017 and contains 122,242 bookings (60% leisure). The
classifier (Random Forest) was tuned using grid-search algorithm
over the following hyper-parameters: maximum tree depth taken
in {5, 8, 10}, maximum used features taken in {0.6, 0.65, 0.7, 0.75},
minimum samples in leaf taken in {1, 2}, number of trees taken in
{100, 150, 200}. Finally, to evaluate our classifier, we used a 10 Fold
Cross Validation method by splitting our dataset into training and
test sets (90 % training, 10 % test set) and compute the accuracy,
precision and recall metrics for the tuned classifier.We also compute
the importance of each feature for the classification based on the
relative information gain of each feature; The number of passenger
is the most important feature for this classification task.

The classifier was then used to classify bookings of the consid-
ered dataset into Business/Leisure bookings. We keep only leisure
bookings for our work. We obtained 2 Million bookings made
for 629.156 unique travelers, which represent 42% of the whole
dataset.

Data Filtering forRecommendation: Despite the huge amount
of available bookings that could be used to build the recommenda-
tion system, we have a very sparse traveler feedback matrix. The
sparsity of the traveler binary feedback matrixR ∈ Rn×m is defined
as follows:

ρ (R) = 1 −
#interactions

m × n
(2)

where, n is the number of users andm is the number of different
destinations.
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Table 3: Statistics of the preprocessed dataset

#Feedbacks #Interactions #Cities #Travelers Sparsity

304019 152547 119 26019 95%

Table 4: Statistics of the preprocessed dataset

Variable Min Max Std Mean Median

#Visiting same city 1 354 3.34 2 1

#Travelers per city 20 19496 2452 1282 293

#Cities per traveler 5 37 1.49 5.86 5

In fact, for this dataset, the sparsity is 99.6%.Moreover, more than
65% of the travelers have traveled only two times. Similarly to [8, 9],
in order to cope with this issue, we keep only travelers that have
at least 5 different destinations in their history, and destinations
that were visited at least 20 times. After applying this last filter, we
obtained a dataset containing 304.019 booking for 26.019 unique
travelers. It is important to note that an interaction represents the
fact that a traveller has been to a destination at least once, which
is different from feedback, which represents the number of times
a traveller has been to that destination. Tables 3 & 4 represent
statistics of the pre-processed dataset.

4 APPROACH
Our approach is to leverage data from different sources to improve
the recommendation by enriching implicit interaction between
traveler and destination with external knowledge. Moreover, the
context in travel is an important factor to consider when doing
recommendation, thus, we also add contextual information related
to a given booking. We combine a deep component which is a multi-
layer perceptron that takes as input the implicit interaction and the
content information, with a factorization machines component that
takes as input contextual data. The deep and factorization machines
components were combined by concatenating:
• Traveler and city embeddings (the destination is represented
by a city);
• Textual and knowledge graph city embeddings;
• User demographics information;
• Contextual feature vectors computed by the pooling opera-
tion (see Section 4.4).

The concatenated vectors are fed into a multilayer perceptron. The
two components are jointly trained using backpropagation algo-
rithm to learn the weights of the deep and factorization machines
components, and also the traveler and city embeddings. In this
section, we first present how the destinations are enriched with ex-
ternal knowledge resources, and present the different components
of our model. Finally, we present how we combine the two existing
deep learning based recommender systems to build our model.

4.1 Textual Embedding
In this subsection, the goal is to explore the different ways to build
a textual representation of the cities based on the content of their

Wikipedia pages. The first step is to retrieve all the Wikipedia
pages of the 119 cities covered in our dataset. To do so, we used
the Wikipedia Python API5. Once all documents describing these
cities have been retrieved, we need to define a method to construct
an embedding of each document. In the recent years, many com-
peting algorithms were proposed to learn sentence or document
representation. In [12], the authors proposed to learn unsuper-
vised sentence embeddings based on RNN encoder-decoder which
is trained to reconstruct the surrounding sentences from the cur-
rent sentence similarly to what is done in skip-gram model for
word embeddings. In [14], the authors proposed a faster way to
learn unsupervised sentence representations by reformulating the
problem as a classification task, where the classifier has to choose
the right next sentence among a set of possibilities. While these
approaches have shown good performance, simple baseline like
averaging pre-trained word embeddings give also strong results.
We propose to encode a sentence in a weighted sum of word vec-
tors, where the weight of each word vector corresponds to the term
frequency-inverse document frequency (TF-IDF) of the word. We
used the fastText pre-trained word vectors [16]. The word vectors
were trained using Wikipedia 2017, UMBC webbase corpus and
statmt.org news dataset.

4.2 Knowledge Graph Embedding
Similarly to the previous subsection, we explore the different meth-
ods to construct a city representation based on knowledge graph.
First, we need to build a knowledge graph that contains character-
istics of cities. In [17], the authors used LBSNs to build users’ trails.
A trail is a succession of check-ins made by a user in venues. Each
venue is categorized using Schema.org6 (Restaurant, Civic structure,
etc.) and the Foursquare category which is more detailed (Italian
restaurant, Indian restaurant, etc.). The authors released the Seman-
tic Trails Datasets7 which contain two datasets. The first dataset
contains check-ins collected in the temporal interval going from
03-04-2012 to 16-09-2013, while the second one contains check-ins
collected going from 03-10-2017 to 19-10-2018. To build the Seman-
tic Trail Knowledge Graph in Figure 3, we used both datasets. The
knowledge graph represents the interaction user-venue, through
the property ’visiting’ as well as the relations between the venue
and the other entities, namely: category, schema and city.

In [19], the authors presented an empirical comparison of trans-
lational distance models for items recommendation. The results
have shown that TransE [1], the model with the least parameters in
comparison with other translational distance models [25] obtained
the best scores over a set of metrics. We propose to use TransE to
learn embeddings for the entities and relations in the knowledge
graph, and extract the cities embeddings. The idea of TransE al-
gorithm lies in minimizing a distance D, between h + l and t , so
that D (h + l , t ) ≈ 0, where the triple (h, l , t ) corresponds to (head,
relation, tail) entities. Finally, in order to match the cities of our
dataset with the cities embeddings obtained by the semantic trails
knowledge graph, we used their Wikidata id8.

5Python Wikipedia API: https://pypi.org/project/wikipedia/
6Schema.org: https://schema.org
7Semantic Trails Datasets: https://figshare.com/articles/Semantic_Trails_Datasets/
7429076
8Wikidata: https://www.wikidata.org/wiki/Wikidata:Main_Page
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Figure 3: Semantic Trails Knowledge Graph

Table 5: Semantic Trails Datasets

Feature Name Type Range or #different values

Trail ID Numerical {1..Number of Trails}
User ID Numerical {1..Number of Users}
Venue ID Categorical ∼ 4.4 Million

Venue Category Categorical 934
Venue Schema Categorical 162
Venue City Categorical 43833

Venue Country Categorical 207
Time Stamp Date 2012-04-03 To 2018-10-19

4.3 Deep Component
As shown in Figure 1, the deep component is a feed-forward neural
network, that takes as input the one-hot encoded vector of the
traveler and the city (t,c) and transform these two vectors into
low-dimensional and dense vectors through the embedding layer
which is a single layer perceptron, whose weights are initialized
randomly. Weights are updated in backpropagation phase. The
user demographics information plus the city knowledge graph and
textual embeddings are concatenated with the traveler and the city
embeddings to form the input of the deep component.

4.4 Factorization machines Component
In [7], the authors modeled the first order feature interaction fac-
torization machines term by using two layers. The first layer takes
as input the vector x corresponding to contextual information, and
create an embedding vector of each feature of x. More formally, the
first layer computes a vector vi ∈ Rk for each feature i , where k is
the dimension of features vector. In the second layer, the following
pooling operation is performed x:

f (x ) =
k∑
i=1

k∑
j=i+1

xivi ⊙ x jvj (3)

where, ⊙ denotes the element-wise product.
As shown in Figure 1, we use the same two layers in order to

compute the factorization machines feature vectors interaction
term.

4.5 Deep Knowledge Factorization machines
The obtained vectors from the deep component and the factoriza-
tion machines component are concatenated and fed in a multilayer
perceptron that contains different hidden layers. In each hidden
layer l , we perform the following computation:

a[l] = Relu (W[l − 1]T a[l − 1] + b[l − 1]) (4)

where, Relu (x ) =max (0,x ) is the rectified linear unit function. It
is used as the activation function for each layer of the multilayer
perceptron. While there are other functions that can be used as
activation function (sigmoid or hyperbolic tangent), Relu function
is proven to avoid vanishing gradient problem, and showed better
results in the experiments. a[l −1],W [l −1],b[l −1] are respectively
the activations, weights and bias of the previous layer (layer l-1).

Finally, at the end of the last hidden layer L, we compute the
prediction ŷtc by applying a sigmoid function to restrict the value
between 0 and 1 which represents the probability to recommend
the city c to the traveler t :

P (t , c |X) = ŷtc = σ (hT a[L]) (5)

where, σ (x ) = 1
1+e−x , h is the weight vector of the last neuron, X

is the input vector of the multilayer perceptron.
The objective function of the backpropagation algorithm is to

minimize the logistic loss defined as the negative log-likelihood of
the observation (1 if traveler t went to city c , 0 otherwise) given
the model’s predictions:

Loss (ŷtc ,ytc ) = −loд(P (ŷtc |W,b,h))

= −(
n∑

u=1

m∑
i=1

ytc × (loд(ŷtc ) + (1 − ytc ) × loд(1 − ŷtc ))

(6)

where, P (ŷtc |W,b,h) is the likelihood function of ŷtc , n is the
number of users, andm the number of items.

5 EXPERIMENTS
In this section, we will try to give answers to the following research
questions with empirical experiments:

(i) RQ1: What is the contribution of the deep component?
(ii) RQ2: What is the contribution for each input used in the

deep component: traveler demographics data, city embed-
dings?

(iii) RQ3: What is the contribution of factorization machines
component?

(iv) RQ4: How our model perform in comparison with baseline
models?

(v) RQ5: How the performance of our model is affected by the
hyper-parameters?

5.1 Experimental Setup
In this subsection, we present the different settings used to conduct
the experiments as well as the baseline models used to perform the
empirical comparison.

Dataset: We evaluate our model with the dataset obtained in
the section 3.2. The characteristics of the dataset are shown in
Tables 3 & 4.
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Training & Test Sets: The recommendation task consists in
predicting the next trip for a given traveler based on his previous
trips. Hence, the dataset must be split in such a way that the test
set must contain the last trip for each traveler. To do so, we adopt
the leave-one-out strategy used in [8]. Formally, for each traveler,
his last trip is used in the test set and the remaining trips are kept
for the training set. Finally, ns random cities where the traveler
never went to are considered as negative samples. The experiments
showed that ns was performing well for a value of 3.

Evaluation Metrics: The output of the recommender system is
a ranked list that contains all the cities where the user never went
to in addition to the city in the test set. Hence, a good recommender
system will rank this city in the test set at the top-K (we set K=10).
To evaluate, our recommender system, we used two metrics defined
as follows:

• HR@K: Hit Ratio metric measures whether the relevant
city is within the Top K in the ranked list returned by the
predictive model:

HR@K =
1
n

n∑
t=1

K∑
j=1

hit (t , c j ) (7)

• MRR@K: Mean Reciprocal Rank metric is used to mea-
sure how well the predictive model ranked the relevant city
against the irrelevant ones:

MRR@K =
1
n

n∑
t=1

K∑
j=1

1
rank (t , c j )

(8)

where, hit (t , c j is equal to 1 if the traveler t visited the relevant city
c j , rank (t , c j ) is the position of the relevant city c j in the ranked
list, n is the number of travelers.

Baseline Models: We compare our model Deep Knowledge
Factorization Machines with a set of baseline methods that include
collaborative filtering methods, factorization machines model and
also two state-of-the-art deep learning based recommender systems.
All the baselines are summarized below:

• MostPop: Cities are ranked by their popularity. The popu-
larity of a city is calculated by the number of visits by all
the travelers. The top-k popular cities are proposed to every
traveler.
• ItemKNN [23]: This is a neighborhood based collaborative
filtering algorithm based on items. The idea is to compute
an item-item similarity matrix based on Pearson correlation
coefficient.
• ImplicitMF [9]: This method was proposed to deal with
implicit feedback data when using Matrix Factorization algo-
rithm. They added a weight term to consider the confidence
of an item and proposed an alternating least square algorithm
to learn user’s and item’s latent vectors.
• BPRMF [21]: This method tailored for implicit feedback is
a Matrix Factorization based method, but rather than min-
imizing the predicted "rating" as done in classical MF, it
minimizes the pairwise ranking loss.
• FM [20]: This method was proposed by Rendle in order to in-
corporate contextual data in the recommendation. Instead of

computing only users’ and items’ latent vectors, it computes
also features latent vectors.
• WDL [2]:Wide & Deep Learning model combined a deep
component (similar to the deep component used in our
model) plus a wide component which can be seen as a linear
model that computes cross products between input features.
For this baseline, we used only the deep component. Indeed,
The wide component is not adapted for our case as it requires
the impression items.
• NCF [8]: Neural Collaborative Filtering is a state-of-the-
art collaborative filtering approach. It combines the (user,
item) interaction as input of a multilayer perceptron and a
single layer perceptron that models the matrix factorization
method.
• NFM [7]:Neural Factorization machines is a state-of-the-art
model for context-aware recommendation. The factorization
component used in our model represents a part of the neural
factorization machines, the other part is a multilayer per-
ceptron to which we add the linear term of factorization
machines formula.

Implementation Framework & Parameter Settings: Our
model plus all the baselines were implemented using Python and
Tensorflow library9. The hyper-parameters of all the models were
tuned using grid-search algorithm. First, we initialized all theweights
randomly with a Gaussian Distribution (µ = 0, σ = 0.01), and
we used mini-batch Adam optimizer [11]. It is worth mention-
ing that other optimizers could be used in order to minimize the
loss function defined in (6), however, Adam Optimizer has shown
to be the most efficient in time and also accuracy. We evaluated
our model using different values for hyper-parameters: the size
of traveler and city embedding layers: E_size ∈ {32, 64, 128}, the
features vector size of the factorization machines component: k ∈
{8, 16, 32, 64}, the batch size: B_size ∈ {64, 128, 256, 512, 1024}, the
number of epochs: epochs ∈ {5, 10, 15, 20} and the learning rate:
lr ∈ {0.001, 0.005, 0.006, 0.008, 0.1}.

5.2 Results and Discussion
Deep component performance: In the table 6, we present the
results of the deep component using the metrics we have defined
in the previous subsection. We can notice that the traveler demo-
graphics information (DCU) remarkably improved the performance
of deep component that has only the traveler and city embedding as
input (DC). The scores of HR@10 and MRR@10 increased by 15%.
As for the city embeddings, we can notice that using the textual
embeddings (DCTEI) improved the results by 9% and 6%. When
considering the traveler demographics in addition to the textual
city embedding (DCUTEI) the results improved by 27% for HR@10
and 28% for MRR@10. Finally, when concatenating all the deep
component input, we improved our scores by 30% and 28%. The
batch size used is 256, the number of epochs used is 8. Even if
the loss defined in equation 6 decreased after 5 epochs for both
the training and validation set, the neural network is over-fitting
and the metrics HR@10 and MRR@10 decreased. Finally we used
0.006 as learning rate and 128 as the size of the traveler and city
embedding layers. It is worth to notice that the hidden layer size
9Python Tensorflow API: https://www.tensorflow.org
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Table 6: Contribution of each input in the deep component

Model HR@10 MRR@10 #Layers 1st Layer size

DC 0.66 0.32 2 256
DCTEI 0.72 0.34 2 512
DCKGEI 0.79 0.36 2 512
DCU 0.76 0.37 2 512

DCUTEI 0.84 0.41 2 1024
DCUKGEI 0.84 0.40 2 1024
DCUI 0.86 0.41 3 1024

Table 7: Contribution of each input in the deep knowledge
factorization machines

Model HR@10 MRR@10 #Layers 1st Layer size

DKFM_CTXT 0.72 0.34 2 256
DKFMTEI 0.79 0.37 2 512
DKFMKGEI 0.80 0.38 2 512
DKFMU 0.82 0.38 2 512

DKFMUTEI 0.84 0.41 2 1024
DKFMUKGEI 0.85 0.42 2 1024

DKFM 0.88 0.44 3 1024

and the number of layers used vary over the input size as shown in
the table 6.

Factorization machines contribution: The deep knowledge
factorization machines was implemented by combining the feature
vectors obtained from the factorization component by using the
number of passengers in the booking in addition to the departure
day of week as contextual data, and the deep component. Similarly
to the table 6, we report the contribution of each input in the table 7.
It is worth to notice that adding the contextual data increase the
score of HR@10 and MRR@10 (DKFM_CTXT).

HR@10 and MRR@10 increased by 10% and 9% respectively
when adding the textual embeddings (DKFMTEI). As for the knowl-
edge graph embeddings, both scores increased by 11% (DKFMGEI).
When considering the user demographics data (DKFMU), one can
notice that the results improved by 13% and 11%. Finally, when
considering all the input of our model DKFM, the results were 22%
for HR@10 and 30% for MRR@10 better than the DKFM with only
contextual data. We tested different values of k from 8 to 128, and
we did not notice any change neither on the test loss, nor on the
metrics HR@10 and MRR@10.

DKFM against baseline Models:We have measured HR@10
and MRR@10, for the different baseline models implemented and
for our model DKFM. We present the results in Figure 4. As shown
in Figure 4, our model outperforms the collaborative filtering meth-
ods demonstrating the importance of adding the city embeddings,
traveler demographics data and the contextual data. It also shows a
slight improvement over wide and deep learning and factorization
machines where one is using city embeddings and traveler demo-
graphics data and the other is using contextual data. Considering
that training time is also an important aspect to consider when
doing recommendation, we measured training times for both DKFM

and WDL models. For each epoch, the training time is equal to 24
seconds for DKFM and 15 seconds for WDL. For our experiments,
we used an NVIDIA Tesla K40C GPUwith 12 GB of memory. Finally
we compute the metrics HR@K and MRR@K for different values
of K and we report the results in figure 5.

Figure 4: HR@10 & MRR@10

Figure 5: HR@K & MRR@K for DKFM

6 CONCLUSIONS AND FUTUREWORK
In this work, we have presented a neural network based approach
to predict next trip destination for travelers. We have leveraged
two external resources in order to enrich the characteristics of
our destinations represented by a city. Our recommender system
could be used for offline recommendations by sending emails to
travellers, as well as for online recommendations on the airline’s
website to inspire them. We publish our code as open source in
order to ease reproducibility: https://gitlab.eurecom.fr/amadeus/
DKFM-recommendation. We conducted several experiments to
address our research questions:

RQ1: What is the contribution of the deep component? The
results of the experiments presented in table 6 show that when using
Deep component with traveler demographics and city embeddings
enhance significantly the next trip recommendation. Indeed, as
shown in Figure 4, WDL outperforms all the collaborative filtering
methods and also factorization machines model.

RQ2: What is the contribution for each input used in the deep
component: traveler demographics data, city embeddings? The
experiments demonstrated that the traveler demographics data im-
proves remarkably the performance of the deep component. The
textual embedding also improves the performanc of the deep com-
ponent, but less than the traveler demographics. Finally, it showed
that the knowledge graph embeddings improve more the score
of the metrics in comparison with the two other inputs. Feeding
DKFM with more relevant features improve the results by allowing
the Deep Neural Network to learn more associations by combining
the input features. However our model is considered as a black box
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Table 8: Tuned Hyper-parameter for DKFM

Hyper-parameter E_size lr k B_size epochs

Value 128 0.06 8 256 8

in the sense that we are not able to say which input features were
most important. This is in contrast with a regression or decision
tree model where the information gain gives the information about
the important features.

RQ3: What is the contribution of factorization machines com-
ponent? Factorization machines component showed better results
than collaborative filtering methods. However, the classical fac-
torization machines got better results. This can be explained by
the linear term that we do not use in our model. Indeed this term
models the strength of each features.

RQ4: How our model perform in comparison with the baseline
models defined later in this section? Our model outperforms all
the collaborative filtering methods plus the deep learning methods
[2, 7]. One can notice that the baseline MostPop has a good score
for HR@10. Indeed, as there are only 119 cities to recommend (a
few number of items), recommending the 10 most popular cities is
at least one time out of two relevant.

RQ5: How the performance of our model is affected by the
hyper-parameters? We ran grid-search on all the DKFM’s hyper-
parameters. The tuned hyper-parameter for our dataset are pre-
sented in table 8. We compared range of values for the size of the
embedding layers, where 128 showed to be the value that has the
highest HR@10, and we also compared different values for k: the
size of feature vector from factorization machines component. For
all the values we compared (see Section 5.2), HR@10 and MRR@10
did not vary.

In the future, we will first explore new data sources such as
images that would help to enrich cities’ characteristics. Next, wewill
investigate how we could improve the performance of our DKFM
model by exploring new loss functions such as pairwise loss used in
BPRMF [21]. We will also experiment the use of similarity measures
inside the neural network such as cosine similarity. Finally, we
plan to evaluate the performance of our recommender system for
business travels.
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