
Mapping Heterogeneity Does Not Affect
Wireless Coded MapReduce

Eleftherios Lampiris, Daniel Jiménez Zorrilla, Petros Elia
Communication Systems Department, EURECOM

Sophia Antipolis, France
Email: {lampiris, jimenez, elia}@eurecom.fr

Abstract— The work considers a Coded MapReduce setting
where computing nodes of different processing capabilities
coexist. Motivated by scenarios where the mapping phase is
performed by nodes of heterogeneous computing capabilities,
we explore the setting with K1 nodes that can each map a
fraction γ1 ∈

[
1
K
, 1
]

of the dataset, and K2 nodes that can
each map a smaller fraction γ2<γ1. For the standard wireless
(single-antenna) device-to-device channel or its equivalent wired
network with network-coding capabilities at the nodes, we
propose a solution of assigning data to the nodes and a method of
communicating intermediate values during the shuffling phase,
that can be applied to any MapReduce problem and which
entirely removes the affects of heterogeneity. The surprising
outcome of this work is that the shuffling-phase delay is reduced
by a factor of K1γ1+K2γ2, matching the performance of the
corresponding homogeneous setting, thus revealing for the first
time that heterogeneity during the mapping phase does not
inherently deteriorate the overall performance.

I. INTRODUCTION

The MapReduce (MR) model [1] is a parallel computing
framework that transforms a sequential problem into a parallel
one. For a setting of K computing nodes connected through
a bottleneck channel, the ultimate objective is the parallel
computation of Q ≥ K functions on a dataset F comprized of
f elements. To facilitate the execution of Q

K functions at each
node i.e., to allow a parallel execution of the final problem, the
MR process takes place in three distinct steps, i) the mapping,
ii) the shuffling, and iii) the reduce phases.

The required execution time of the MR model, assuming
that phases happen in sequence, can be seen to be

TMR
tot = Tmap

(
f

K

)
+ Tshuf

K − 1

K
+
Q

K
Tred (1)

where Tmap(df) is the time spent, by one node, to pre-
process a fraction d of the dataset, Tshuf is the required time
to communicate the entire amount of intermediate values
between any two nodes, and Tred denotes the time required,
by a single node, to complete the reduction part of a single
function.

Coded MapReduce: By examining Eq. (1), it can be
evident that while the mapping and reduce phases are scalable
with the number of computing nodes, the real bottleneck
becomes the communication (shuffling) phase. To tackle the
above bottleneck, a novel method was introduced in [2],

The work is supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929. (ERC project DUALITY)

[3], named Coded MapReduce (CMR), that draws inspira-
tion from the coded transmissions used in the cache-aided
communications literature [4], where the redundant storage
of data across the different caches translated in speeding up
the communication phase. The main idea in [2], [3] is for each
node to map an equal fraction γ> 1

K of the dataset, allowing
for each element of the dataset to be mapped a total of Kγ
times across the different nodes. This increased redundancy
(from 1 to Kγ) equips nodes with more intermediate values,
thus impacting the shuffling phase in two ways. Firstly each
node, having mapped a bigger part of the dataset, will have
to receive less intermediate values from the other nodes;
this reduction can be referred to as a local gain. Secondly,
due to this same redundancy, each transmitted message can
now contain a combination of several desired intermediate
values (usually combined in the form of a XOR), because
now decoding at receiving nodes is assisted by the computed
intermediate values which are used to remove the interfering
messages inside the XOR. This allows for a shuffling phase
that serves more than one node at a time. This number of
nodes served at a time is referred to as the coding gain and,
when the nodes are able to map an equal fraction of data, this
gain has been shown in [2], [3] to match the aforementioned
redundancy Kγ. Hence, we know from [2], [3] that the
shuffling-phase delay can be reduced by a factor equal to the
dataset redundancy, and thus the overall completion time of
CMR takes the form

TCMR
tot = Tmap(γf) + Tshuf

1− γ
Kγ

+
Q

K
Tred. (2)

Compared to MR, this shuffling delay reduction comes at
the expense of an increase in the delay for the mapping
phase, and thus a tradeoff is formed between the cost of
increased mapping time and the associated gains that this
increase entails.

Coding for Straggler Mitigation: Another line of work
(see [5]–[10]), has considered a different bottleneck of dis-
tributed computing (not falling under the MR framework)
that is now caused by some nodes experiencing delays during
the computation, thus causing significant delays in the overall
execution time of the algorithm. The main idea behind these
efforts to alleviate this so-called straggling effect, is to split
the dataset into some L < K parts and assign to nodes a
function of one or more parts (usually in the form of coded
linear combinations), thus needing only a subset of nodes (in
particular the faster ones) to recover the result.

× ××

×

× ×
× ×

××

Fig. 1. Illustration of the wired setting. × denotes a network coding
operation.

While coding for straggling nodes can provide an increased
performance, nevertheless it suffers from two main limita-
tions: i) an increased load assigned to each node (fraction
1
L instead of fraction 1

K of the dataset), and ii) a restriction
to linear problems (with the notable extension to polynomial
problems [11]) thus excluding other tasks such as sorting.

Stragglers in Coded MapReduce: It is interesting to note
that the tools from the straggler mitigation literature have been
imported in CMR to address straggling nodes [12], [13].

Wireless Coded MapReduce: Recent works on CMR
have migrated from the assumption of the shared wired
communication link, to also consider the equivalent shared
wireless channel (or its equivalent wired network where
intermediate nodes can perform linear operations (see Fig. 1)).
This approach — while maintaining the fundamental shared-
link limitation of the channel (i.e., while maintaining the
exact same Tshuf) — has in some cases allowed for increased
communication gains. For example, the work in [14] exploits
the potential for full-duplex to double (for some parameters)
the communication gains compared to the original CMR [2],
while the work in [15] utilizes node-coordination among sets
of some L nodes to increase communication gains by a factor
of up to L in practical scenarios where the dataset size is
bounded1.

Overview of our Solution

In this work, we assume that nodes have heterogeneous
computing capabilities during the mapping phase. Specifically,
K1 nodes (set K1) can perform mapping faster than the rest
K2 =K−K1 nodes (set K2), and as a result each node of
the first type is tasked with mapping a fraction γ1 ∈

[
1
K1
, 1
]

of the dataset, while each node of the second type is tasked
with mapping a smaller fraction γ2 ∈ [0, γ1). Our approach
is applied to the CMR framework, under the assumption of
a wireless channel between the nodes or its equivalent wired
network with network-coding capabilities at the intermediate
nodes and uses a solution that takes advantage of the fact that,

1This coordination requires no additional exchange of dataset information
across the nodes (no dataset exchange overhead), and its gains are achieved
by dramatically reducing the required number of subpackets of the original
CMR approach where the coding gains came at the expense of having to split
the dataset into a number of packets that grows exponentially with the gain.
For a discussion on the impact of high subpacketization on the maximum
coding gains that can be achieved under finite dataset sizes, see also [16].

while the rank of the channel to any one node is still the same
(unit rank), the rank of the channel between two sets of nodes
can be more than one.

Using this increased set-to-set dimensionality, we exploit
the redundancy at all nodes and reduce the shuffling delay by
a factor of K1γ1+K2γ2 that matches exactly the cumulative
computed redundancy. This solution will show that even
though the system suffers from computational heterogeneity,
it actually performs like an equivalent homogeneous system
where each node could map a uniform fraction γ= K1γ1+K2γ2

K
of the dataset.

Data assignment uses a modification of the original CMR
algorithm of [2]. The novel communication algorithm during
the shuffling phase manages to consistently serve K1γ1 +
K2γ2 nodes per transmission, a gain that appears either
because a) nodes can transmit messages as if the two types
were not interfering, or otherwise because b) nodes of set K1

can jointly transmit as if they were a single transmitter with
K1γ1 antennas.

Setting Description

We assume K computing nodes that are tasked with calcu-
lating a total of Q≥K functions over dataset F , comprized of
f elements. Specifically, node k ∈ [K] , {1, 2, ...,K} will be
responsible for calculating Q

K functions {gq, q ∈ Qk ⊂ [Q]}.
To perform their tasks, nodes use the MR framework, in

accordance to which it is assumed that function gq , q ∈ [Q]
can be decomposed as gq(F) = rq(mq(F1), ...,mq(FS)),
∪Ss=1Fs = F , where mq and rq represent, respectively, the
mapping and the reduce functions.

The process commences with the mapping phase, where
the dataset F is divided into S chunks, F1, ..., FS , which are
distributed to the nodes, where each node is responsible for
executing a set of mapping functions {mq, ∀q ∈ [Q]} on each
of its assigned dataset chunks. The result of the mapping phase
is the set of intermediate values {mq(Fs), q ∈ [Q], s ∈ [S]}.

At the end of the mapping phase, all nodes need to com-
municate intermediate values guaranteeing that node k ∈ [K]

will gather Iq = {mq(Fs) , F
(q)
s , s ∈ [S]}, ∀q ∈ Qk. We

define as Category q ∈ [Q] the collection of all intermediate
values that, after reduction, can produce result q ∈ [Q].

During the reduce phase the objective is for each node to
perform functions rq, ∀q ∈ Qk on the set Iq of intermediate
values that it has gathered.

To reflect the heterogeneous capabilities of the computing
nodes during the mapping phase – as stated before – we con-
sider a set of K1 computing nodes, {1, 2, ...,K1},K1, being
able of mapping on time a fraction γ1∈

[
1
K , 1

]
of the dataset,

while the rest K2=K−K1 nodes, {K1+1, ...,K} , K2, are
able to map a smaller fraction γ2 ∈ [0, γ1) of the dataset.

The shuffling phase may take place over a wireless fully-
connected channel or a wired, high-rank2 network. During the

2A wired setting can possess the same desirable properties of the wireless
setting (see [15]) by having intermediary nodes perform linear operations on
received data and then forward them (cf. Fig. I). The purpose of the linear
operations is to form a high-rank matrix between transmitter and receiver
sets. As will become clear later on, the matrix rank of the wired system
needs to match the product K1γ1.

communication, if nodes in set τ ⊂ [K] are transmitting then
the message at a receiving node k ∈ [K] \ τ takes the form

yk =
∑
m∈τ

hm,kxm + wk (3)

where hm,k ∈ C denotes the channel (or network coding)
coefficient between nodes m and k, E(‖xm‖2)≤P , ∀m ∈ τ
for some power constraint P , and wk ∼ CN (0, 1). We assume
that during communication, channel state information at both
the transmitters (CSIT) and receivers (CSIR) (or the network
coding coefficients in the wired setting), are known with
perfect3 accuracy. Further, node cooperation will refer to clock
synchronization, data selection and exchange of CSIT/network
coding coefficients between the nodes and not intermediate
values exchange.

II. MAIN RESULTS

The main contribution of this work is the design of a new
algorithm for dataset assignment, and a new transmission
policy during the shuffling phase. The achievable performance
for any values of γ1, γ2 yields

T hCMR
tot (γ1,γ2)=max

{
T (1)

map(γ1f), T
(2)
map(γ2f)

}
+
Tshuf

K

1−γ1
γ1

+
Tshuf

K

K2

(
1− γ2

γ1

)
min{K2,K1γ1+K2γ2}

+
Q

K
Tred (4)

where T (j)
map(γjF), j = 1, 2 corresponds to the time required

for each node in group j to map fraction γj of the dataset, and
where the delay reflects the fact that the shuffling phase will
conclude when the mapping at any node has finished. In order
to minimize Eq. (4), we choose values γ1, γ2 in such a way to
reflect the relative computing capabilities4 i.e., T (1)

map(γ1F) =

T
(2)
map(γ2F). This is summarized in the following theorem.

Theorem 1. The achievable time of a MapReduce algorithm
in a heterogeneous distributed computing system with K1

nodes each able to map fraction γ1 of the total dataset, while
K2 nodes can map fraction γ2 of the dataset each, takes the
form

T hCMR
tot (γ1, γ2)=T

(1)
map(γ1f)+

Tshuf

K

1− γ1
γ1

+

+
Tshuf

K

K2

(
1− γ2

γ1

)
min{K2,K1γ1+K2γ2}

+
Q

K
Tred (5)

where the communication (shuffling) cost can be simplified,
in the case of K2≥K1γ1+K2γ2, to

T hCMR
comm (γ1, γ2)=

Tshuf

K

K1(1− γ1) +K2(1− γ2)
K1γ1 +K2γ2

(6)

Proof. The proof is constructive and presented in Sec. III.

Remark 1. The effect of heterogeneity can be completely
removed.

3The feedback overhead can be expected to be very small because in
realistic distributed computing settings, nodes are expected to have very low
or no mobility.

4Thus, if nodes in K1 are twice as fast as nodes in K2, then γ1 = 2γ2.

The above holds directly from Eq. (6) where we see that the
delay matches that of a homogeneous system with K nodes
and a uniform γ= K1γ1+K2γ2

K .

Remark 2. Heterogeneous systems with interference are faster
than multiple homogeneous systems even when the latter
multiple systems experience no inter-system interference.

This is because, by comparing the proposed solution with
a second system where now the two sets K1 and K2 are
‘magically’ non-interfering (isolated), we conclude that while
the mapping delay of the two systems would be the same,
the shuffling phase delay Tcom = Tshuf

K max
{

1−γ1
γ1

, 1−γ2γ2

}
=

Tshuf
K

1−γ2
γ2

of the second system would exceed that of our
system. This reveals an important advantage of larger hetero-
geneous systems over multiple non-interfering homogeneous
ones, and it suggests that the collaborative effects from
mapping data to more nodes, despite heterogeneity, exceeds
any effect of having parallel (smaller, homogeneous) systems.
This surprising conclusion is mainly due to the fact that
“strong” nodes have the potential to assist the transmission
of intermediate values to the “weak” nodes, thus boosting the
overall performance.

III. SCHEME DESCRIPTION

Data Assignment: We begin by dividing the dataset into
S =

(
K1

K1γ1

)
·
(
K2

K2γ2

)
chunks5 Fτ1,τ2 , τ1 ⊂K1, |τ1| = K1γ1,

τ2 ⊂ K2, |τ2| = K2γ2.

A. Mapping Phase

Nodes k1 ∈ K1, k2 ∈ K2 must respectively map6

Mk1 = {Fτ1,τ2 : k1 ∈ τ1, ∀τ2 ⊂ K2, |τ2| = K2γ2}
Mk2 = {Fτ1,τ2 : k2 ∈ τ2, ∀τ1 ⊂ K1, |τ1| = K1γ1}.

B. Shuffling Phase

After the mapping phase, the nodes exchange information
so that each node k ∈ [K] can collect the set

Ik =
{
F (q)
τ1,τ2 , τj ⊆ Kj , |τj | = Kjγj , j = {1, 2}, q ∈ Qk

}
where in the above we used F (q)

τ1,τ2 , mq(Fτ1,τ2).
We will employ a novel way of transmission, comprized

of two sub-phases. The first sub-phase is reminiscent of the
original CMR approach [2], where though now we will allow
two nodes to transmit simultaneously, one node from each
group; this can happen because we choose the transmitted
messages to be completely known to the receiving nodes of
the other group. During the second shuffling sub-phase, nodes
from K1 will coordinate to act as a distributed multi-antenna
system and transmit the remaining data to nodes of set K2.

5As is common in the literature, it is assumed that both K1γ1 and K2γ2
are integers, an assumption that does not interfere with the generality of the
result, since in a different case memory-sharing can be performed, as in [4].

6The dataset fraction assigned to a node in each group yields

|Mki |
F

=

(Ki−1
Kiγi−1

)
·
(Kj
Kjγj

)
(Ki
Kiγi

)
·
(Kj
Kjγj

) = γj , i, j ∈ {1, 2}, i 6= j.

1 for all τ1 ⊂ K1, |τ1| = K1γ1 (pick Rx nodes from first
set) do

2 for all τ2 ⊂ K2 , |τ2| = K2γ2 (pick Rx nodes from
second set) do

3 for all k1 ∈ K1 \ τ1 (pick transmitter 1) do
4 for all k2 ∈ K2 \ τ2 (pick transmitter 2) do
5 Transmit concurently:

Tx k1: xk2,τ2k1,τ1
=
⊕
m∈τ1

F
(qm),k1,k2
{k1}∪τ1\{m},τ2

Tx k2: xk1,τ1k2,τ2
=
⊕
n∈τ2

F
(qn),k1,k2
τ1,{k2}∪τ2\{n}

6 end
7 end
8 end
9 end

Algorithm 1: Shuffling Sub-Phase 1

1) First Shuffling Sub-Phase (Transmission): At the begin-
ning of the first sub-phase, an intermediate value F (qk)

τ1,τ2 , qk ∈
Qk required by node k ∈ [K], is further subpacketized as

F (qk)
τ1,τ2→


{
F (qk),k1,k2
τ1,τ2 , k1∈τ1, k2∈K2\τ2

}
k∈K1{

F (qk),k1,k2
τ1,τ2 , k1∈K1\τ1, k2∈τ2

}
k∈K2

(7)

yielding the sub-packet sizes∣∣∣F (qk),k1,k2
τ1,τ2

∣∣∣∣∣∣F (qk)
τ1,τ2

∣∣∣ =


1

K1γ1K2(1−γ2)
, if k ∈ K1

1

K1(1−γ1)K2γ2
, if k ∈ K2

(8)

meaning that sub-packets for nodes in set K2 are larger than
sub-packets for nodes in set K1. To rectify this uneveness
and allow for the simultaneous transmissions required by our
algorithm, we will equalize the packet sizes transmitted from
both K1 and K2 by further splitting the sub-packets intended
for node k ∈ K2 into two parts, with respective sizes

∣∣∣F ′(qk),k1,k2τ1,τ2

∣∣∣ =
∣∣∣F (qk)
τ1,τ2

∣∣∣
K1γ1K2(1−γ2)

(9)∣∣∣F ′′(qk),k1,k2τ1,τ2

∣∣∣ = ∣∣∣F (qk)
τ1,τ2

∣∣∣ 1− γ2/γ1
K1(1−γ1)K2(1−γ2)γ2

. (10)

The process of transmitting packets in the first shuffling
sub-phase is described in Algorithm 1, which successfully
communicates a single category to each of the nodes.

In Algorithm 1, Steps 1 and 2 select, respectively, a subset
of receiving nodes from set K1 and a subset of receiving
nodes from set K2. Then, Steps 3 and 4 pick transmitting
nodes from the sets K1 and K2, respectively such that these
nodes are not in the already selected receiver sets from Steps
1 and 2. Then, in Step 5, the two selected transmitting nodes
create and simultaneously transmit their packets.

Decoding in First Shuffling Sub-phase: In Algorithm 1,
transmitted sub-packets for nodes of set K1 are picked to be
known at all nodes of set K2, and vice versa. This allows

nodes of a set to communicate as if not being interfered by
nodes of the other set.

First Shuffling Sub-phase Performance: The above-
described steps are arranged in nested loops that will, even-
tually, pick all possible combinations of (k1, k2, τ1, τ2), thus
delivering all needed sub-packets to nodes in K1. The nor-
malized completion time of this first sub-phase is

Tcomm,1 =
Q

K

K1(1−γ1)
(
K1

K1γ1

)
K2(1−γ2)

(
K2

K2γ2

)
K1γ1K2(1− γ2)

(
K1

K1γ1

)(
K2

K2γ2

) =
Q

K

1− γ1
γ1

where factor Q
K reflects a repetition of Algorithm 1 needed

for delivering all categories, where the numerator reflects the
four loops of the algorithm, and where the denominator uses
the subpacketization level S and Eq. (8) to reflect the size of
each transmitted packet.

2) Second Shuffling Sub-Phase: The second part of the
shuffling phase initiates when the data required by the nodes
in K1 have all been delivered. The transmission during this
second sub-phase follows the ideas of the distributed antenna
cache-aided literature (cf. [16]–[19]). Specifically, nodes of set
K1 act as a distributed K1γ1-multi-antenna7 system, while
nodes of set K2 act as cache-aided receivers, cumulatively
“storing” K2γ2 of the total “library”. Directly from [16]–[19],
we can conclude that in our setting, this setup allows a total
of min{K2, K1γ1 +K2γ2} nodes to decode successfully a
desired intermediate value per transmission. The remaining
messages to be sent during this sub-phase are{

F ′′(qk),k1,k2τ1,τ2 , k1 ∈ K1 \ τ1, k2 ∈ τ2,∀τ1,∀τ2
}
.

By combining the remaining messages of category qk i.e.,
{F ′′(qk),k1,k2τ1,τ2 ∀k1 ∈ K1 \ τ1, ∀k2 ∈ K2} → F

′′(qk)
τ1,τ2 , we have∣∣∣F ′′(qk)τ1,τ2

∣∣∣ = 1− γ2/γ1
1− γ2

∣∣∣F ′′(qk),k1,k2τ1,τ2

∣∣∣ , ∀τ1, τ2. (11)

With this in place, the delay of the second subphase is

Tcomm,2 =

t2︷︸︸︷
Q

K

t3︷ ︸︸ ︷
1− γ2/γ1
(1−γ2)

t4︷︸︸︷
K2

t5︷ ︸︸ ︷
(1− γ2)

min {K2, K2γ2 +K1γ1}︸ ︷︷ ︸
t1

(12)

=
Q

K

K2(1− γ2/γ1)
min {K2, K2γ2 +K1γ1}

where term t1 corresponds to the aforementioned performance
(in number of nodes served per transmission) that is achieved
by multi-antenna Coded Caching algorithms [16]–[19]. In
the above, the term t2 corresponds to a repetition of the
scheme to deliver multiple categories to each node. Finally
terms t3, t4, t5 represent the total amount of information that
needs to be transmitted, where t3 represents the size of each
category, t4 the number of nodes and t5 corresponding to the
(remaining) part that each node had not computed and needed
to receive.

7We note to the reader that at this point is where the notion of the high-rank
matrix is required in the equivalent wired system.

C. Reduce Phase

At this point, each node has the required intermediate
values to perform reduction in a completely parallel way.

IV. EXAMPLE

Let us consider a setting where the two sets are comprised
of K1 = 3 and K2 = 4 nodes, and where any node in
each group respectively maps fractions γ1 = 2

3 and γ2 = 1
2

of the dataset. The goal is the calculation of a total of Q = 7
functions. Initially, dataset F is divided into S =

(
3
2

)(
4
2

)
= 18

chunks, each defined by two indices8, τ1 ∈ {12, 13, 23} and
τ2 ∈ {45, 46, 47, 56, 57, 67}. Node k ∈ [7] is tasked with
mapping Fτ1,τ2 iff k ∈ τ1 ∪ τ2.

Following the mapping phase, each chunk, Fτ1,τ2 , has Q=

7 associated intermediate values F (1)
τ1,τ2 , ..., F

(7)
τ1,τ2 , where each

intermediate value F (qk)
τ1,τ2 , is further divided into sub-packets

according to Eq. (7), while those sub-packets meant for K2,
are further divided according to Eq. (8)-(10). For example
chunks C12,45, D12,56 are split as

C12,45 → {C1,6
12,45, C

1,7
12,45, C

2,6
12,45, C

2,7
12,45}

D12,56→{D3,5
12,56, D

3,6
12,56}→{D′3,512,56, D

′′3,5
12,56, D

′3,6
12,56, D

′′3,6
12,56}.

Directly from Algorithm 1, the first 4 sets of transmissions
that correspond to shuffling sub-phase 1 are

x4,561,23 = B1,4
13,56 ⊕ C1,4

12,56, x1,234,56 = E1,4
23,46 ⊕ F 1,4

23,45

x4,571,23 = B1,4
13,57 ⊕ C1,4

12,57, x1,234,57 = E1,4
23,47 ⊕G1,4

23,45

x4,671,23 = B1,4
13,67 ⊕ C1,4

12,67, x1,234,67 = F 1,4
23,47 ⊕G1,4

23,46

x5,461,23 = B1,5
13,46 ⊕ C1,5

12,46, x1,235,46 = D1,5
23,56 ⊕ F 1,5

23,45

During shuffling sub-phase 2, where now all information for
the first set of nodes has been delivered, the first set of nodes
will use their computed intermediate values so as to speed up
the transmission of the remaining intermediate values toward
the second set of nodes. To simplify the second shuffling sub-
phase, we will combine together sub-parts of the same upper
indices i.e., {F ′′k1,k2τ1,τ2 ,∀k1 ∈ K1\τ1,∀k2 ∈ τ2}→Fτ1,τ2 .

Using a scheme similar to that of [16] and denoting with
H−1τ,µ the normalized inverse of the channel matrix between
transmitting nodes in set τ and receiving nodes in set µ, and
with hτ,k the channel vector from nodes in set τ to node k,
then the 9 transmissions that deliver all remaining data are

xτ45,67 = H−1τ,45

[
Dτ,67

Eτ,67

]
+H−1τ,67

[
Fτ,45
Gτ,45

]
τ ∈ {12, 13, 23}

xτ46,57 = H−1τ,46

[
Dτ,57

Fτ,57

]
+H−1τ,57

[
Eτ,46
Gτ,46

]
τ ∈ {12, 13, 23}

xτ47,56 = H−1τ,47

[
Dτ,56

Gτ,56

]
+H−1τ,56

[
Eτ,47
Fτ,47

]
τ ∈ {12, 13, 23}.

The message arriving at each receiving node takes the form
of a linear combination of intermediate values. In order for a

8For notational simplicity, for sets we use, for example {12} instead of
{1, 2}. We also rename as Aτ1,τ2 ,F

(1)
τ1,τ2 , Bτ1,τ2 ,F

(2)
τ1,τ2 , ..., Gτ1,τ2 ,

F
(7)
τ1,τ2 and also F

′(qk)
τ1,τ2 is denoted with F

(qk)
τ1,τ2 , since the corresponding

transmission (either in the first or second sub-phase) is clearly associated
with each of the two parts.

node to decode its desired intermediate value, first we can see
that matrix H−1τ,µ is designed in such a way so as to separate
the transmitted messages at the two nodes, i.e.,

hτ,k∈µ ·H−1τ,µ · [W 1, ...,W k, ...,Wn]T =W k.

For example, Node 4 will receive, in the first transmission,

y1245,67(k = 4) = D12,67 + h12,6 ·H−112,67

[
F12,45

G12,45

]
and then, using CSIR and its computed intermediate values
F12,45 and G12,45, Node 4 will decode its desired intermediate
value D12,67.

V. CONLUSIONS

We studied the performance of a heterogeneous Coded
MapReduce system and showed that mapping heterogeneity
does not slow down the execution, and that rather, having
slower nodes contributes to a further reduction of the com-
pletion time.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

[2] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. on Inf. Theory, 2018.

[3] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” in Int. Symp. on Inf. Theory (ISIT), June 2018.

[4] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, 2014.

[5] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
on Inf. Theory, 2018.

[6] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” arXiv preprint arXiv:1612.03301, 2016.

[7] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017.

[8] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Int. Symp. on Inf. Theory (ISIT), IEEE, 2017.

[9] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES: Codes for coded
computation that leverage stragglers,” arXiv preprint arXiv:1809.06242,
2018.

[10] C. Suh and K. Ramchandran, “Exact-repair MDS codes for distributed
storage using interference alignment,” in Int. Symp. on Inf. Theory
(ISIT), June 2010.

[11] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,” arXiv
preprint arXiv:1806.00939, 2018.

[12] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in IEEE
Globecom Workshops (GC Wkshps), Dec 2016.

[13] J. Zhang and O. Simeone, “Improved latency-communication trade-
off for map-shuffle-reduce systems with stragglers,” arXiv preprint
arXiv:1808.06583, 2018.

[14] F. Li, J. Chen, and Z. Wang, “Wireless MapReduce distributed com-
puting,” in Int. Symp. on Inf. Theory (ISIT), June 2018.

[15] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing
with node cooperation substantially increases speedup factors,” in
International Symposium on Information Theory (ISIT), June 2018.

[16] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” J. on Selec. Areas in Comm., 2018.

[17] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Funda-
mental limits of cache-aided interference management,” IEEE Transac-
tions on Information Theory, 2017.

[18] E. Lampiris and P. Elia, “Achieving full multiplexing and unbounded
caching gains with bounded feedback resources,” in International
Symposium on Information Theory (ISIT), IEEE, 2018.

[19] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
Coded Caching,” IEEE Transactions on Information Theory, 2016.

