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Abstract—We consider coordinated beamforming (BF) for
the Multi-Input Single-Output (MISO) Interfering Broadcast
Channel (IBC). The beamformers are optimized for the Ergodic
Weighted Sum Rate (EWSR) or various approximations and
bounds thereof, for the case of Partial Channel State Information
at the Transmitters (CSIT). Gaussian (posterior) partial CSIT
can optimally combine channel estimate and channel covariance
information. With Gaussian partial CSIT, the beamformers only
depend on the means (estimates) and (error) covariances of the
channels. We extend a recently introduced large system analysis
for optimized beamformers with partial CSIT, by a stochastic
geometry inspired randomization of the channel covariance eigen
spaces, leading to much simpler analytical results, which depend
only on some essential channel characteristics. In the Massive
MISO (MaMISO) limit, we obtain deterministic approximations
of the signal and interference plus noise powers at the receivers
for various BFs, which are tight as the number of BS antennas
and the total user subspace dimension tend to infinity at fixed
ratio. Simulation results exhibit the correctness of the large
system results and the performance superiority of optimal BF
designs based on both the MaMISO limit of the EWSR and
using Linear Minimum Mean Squared Error (LMMSE) channel
estimates.

Index terms— Massive MIMO, stochastic geometry, partial
CSIT, ergodic weighted sum rate, optimal beamforming

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter
/transmission and Rx may denote receive/receiver/reception.
The recent development of Massive MIMO (MaMIMO)
[1] opens new possibilities for increased system capacity
while at the same time simplifying system design. However,
MU systems have precise requirements for Channel State
Information at the Tx (CSIT) which is more difficult to
acquire than CSI at the Rx (CSIR). One of the pioneering
work which talks about the effect of imperfect channel
knowledge on the capacity is [2].

Indeed, in Massive MISO (MaMISO) systems, the received
signal and interference powers converge to their expected value
(channel hardening effect) due to the law of large numbers.
We refer the readers to a more detailed discussion on the state
of the art on large system analysis to [3]–[5] and instead focus
on the stochastic geometric aspects in this section.

An introduction to the literature on stochastic geometry can
be found in [6]. In stochastic geometry, generally the location
of the nodes in the wireless network is modeled as random,
following for example a poisson point process. In stochastic
geometry based methods [7], [8], the location of the users
being random, their geographic distribution then induces a
certain probability distribution for the channel attenuations.

This leads to results on the coverage probability, the capacity,
the outage probability and other fundamental limits in wireless
networks. Whereas most stochastic geometry work focuses
on the distribution of the attenuations, here we consider an
extension to multi-antenna systems. The multipath propagation
for the various users leads to randomized angles of arrival at
the BS which can be translated into spatial channel response
contributions that depend on the antenna array response. In the
massive MIMO regime in which the number of BS antennas
gets very large, it has been observed and exploited that despite
complex multipath propagation, the channel covariance matrix
tends to be low rank. Exploiting the randomized nature of
the user and scatterer positions and making abstraction of the
antenna array response, we proposed to model the user channel
subspaces as isotropically randomly oriented. This allows us
to assume the eigen vectors of the channel covariance matrix
to be Haar distributed, and this identically and independently
for all users.
A. Contributions of this paper
• We first consider the various channel estimates such

as linear minimum mean square error (LMMSE), least
sqaures (LS) and subspace projected. Further we review
the optimal BF design for the expected weighted sum rate
(EWSR) criterion in the MaMISO limit.

• We evaluate the ergodic sum rate performance for LS,
LMMSE and subspace projection channel estimators with
optimal EWSR BF. Numerical results suggest that there
is substantial gain by exploiting the channel covariance
information compared to just using the LS estimates.

• Compared to our previous work [3], we derive simplified
sum rate expressions at high SNR for the various BFs
(optimal EWSR, naive and EWSMSE) for the various
channel estimates, which clearly shows the SNR offset for
the sub-optimal BFs compared to the proposed optimal
EWSR BF.

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices respectively. The
operators E(·), tr(·) , (·)H , (·)T represents expectation, trace
, conjugate transpose and transpose respectively. diag(·) rep-
resents the diagonal matrix formed by the elements (·). A
circularly complex Gaussian random vector with mean µ
and covariance matrix Θ is distributed as x ∼ CN (µ,Θ).
Vmax(A,B) or Vmax(A) represents (normalized) dominant
generalized eigen vector of A and B or (normalized) dominant
eigen vector of A respectively and λmax(A) being the max
eigen value.



II. MISO IBC SIGNAL MODEL

We consider here an IBC with C cells with a total of
K single antenna users. We shall consider a system-wide
numbering of the users. User k is served by BS bk. The
received signal at user k in cell bk is

yk=hHk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k
bi=bk

hHk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

hHk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, hk,bk is the Mbk × 1 channel from BS bk to user
k. The Rx signal (and hence the channel) is assumed to be
scaled so that we get for the noise vk ∼ CN (0, 1). BS c
serves Kc =

∑
i:bi=c

1 users. The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk.
A. Channel and CSIT Model

For simplicity, we omit all the user indices k. Each MISO
channel is modeled according to a correlation structure [9] as

h = CD1/2c , Rhh = CDCH (2)
where c ∼ CN (0, IL) are the Rayleigh fading multipath gains
in the eigen domain. Here C is the M ×L eigenvector matrix
of the reduced rank channel covariance Rhh with diagonal
eigenvalue matrix D. This reduced rank covariance matrix of
user channels typically occurs in realistic MaMISO channels
due to the limited angular spread of the multipath components
[10]. The rank corresponds to an equivalent number of linearly
independent multipath components. The total sum rank across
all users Lt =

∑K
k=1 Lk,c is assumed to be less than Mc,

where Lk,c is the channel rank between user k and BS c.
For estimation, we start from a deterministic Least-Squares

(LS) channel estimate
ĥLS = h + h̃, (3)

where h is the true MISO channel, and the error is modeled as
circularly symmetric white Gaussian noise h̃ ∼ CN (0, σ̃2I).
Now, assuming the channel covariance subspace is known,
the LMMSE channel estimate can be obtained as ĥ =
CDCH

(
CDCH + σ̃2I

)−1
ĥLS . Applying the matrix inver-

sion lemma and exploiting CHC = IL, this simplifies to

ĥ = C
(
σ̃2D−1 + I

)−1
CH ĥLS = CD̂1/2ĉ, (4)

where D̂ =
(
σ̃2D−1 + I

)−1
D and ĉ = D−1/2(σ2D−1 +

I)−1/2CH ĥLS with Rĉĉ = I.

Rh̃h̃ = CD̃CH = C
[
D−

(
σ̃2D−1 + I

)−1
D
]

CH . (5)

So we can write for S = Eh|ĥ
(
hhH

)
= ĥ ĥH + Rh̃h̃ =

CWLCH , where WL = D̂1/2ĉĉHD̂1/2 + D̃.

III. PARTIAL CSIT BF BASED ON DIFFERENT CHANNEL
ESTIMATES

In the MaMIMO limit, (the EWSR upper bound based)
BF design with partial CSIT will depend on the quantities
S = Eh|ĥ

(
hhH

)
= ĥ ĥH + Θ̃. We shall consider three

possible channel estimates.

(i) LS Channel Estimate
We have Θ̃ = σ̃2I, ĥLS = h + h̃ where h and h̃ are
independent.
(ii) LMMSE Channel Estimate
We have h = ĥ + h̃ in which ĥ and h̃ are decorrelated and
hence independent in the Gaussian case. Θ̃ = Rh̃h̃ is the
posterior covariance. The resulting S = Eh|ĥhhH = ĥĥH+Θ̃

is the (nonlinear) MMSE estimate of hhH (nonlinear because
quadratic in ĥ = ĥLS plus a constant). It is unbiased : EĥS =
EĥEh|ĥhhH = EhhhH and it is MMSE, hence minimum
variance since unbiased. In particular, it also minimizes the
variance of |gHh|2 = gHhhHg = gT ⊗ gHvec(hhH) where
vec(hhH) = h∗ ⊗ h.
(iii) Subspace Projection based Channel Estimate
We also investigate the effect of limiting channel estimation
error to the covariance subspace (LMMSE without weighting).
The subspace channel estimate is given as,

ĥS = PC ĥLS = h + PC h̃LS , Rh̃Sh̃S
= σ̃2PC , (6)

where PC = CCH represents the projection onto the covari-
ance subspace. Further we can write the estimate for hhH ,
S = ĥSĥHS +Rh̃Sh̃S

= CWSCH with WS = ĉĉH + σ̃2I.
One remark here is that subspace channel estimator represents
a simplification of the LMMSE channel estimator, since it
doesn’t require the knowledge of the eigen value matrix D and
without negligible performance loss compared to the LMMSE
estimator as is validated in our numerical simulations. Another
point to be noted is that, combining subspace channel estima-
tor and LMMSE estimator, we can write ĥ = CUCH ĥLS ,
where for LMMSE UL = (I + σ̃2D−1)−1 and for subspace
US = I. This observation also hints at the possibility of opti-
mizing U (LMMSE is not necessarily the best) to maximize
the ergodic capacity, but this is left for future work.

A. Max EWSR BF (ESIP-WSR Upper Bound)
In the following hk,bi , ĥk,bi , h̃k,bi denote the actual channel,

channel estimate and estimation error resp. between user k
and BS bi. Once the CSIT is imperfect, various optimization
criteria such as outage capacity can be considered. Motivated
by the ergodic capacity formulations in [11] for point to point
MIMO systems, and in [12] for multi-user MISO systems,
the design here is based on expected weighted sum rate
(EWSR) (and normally with LMMSE channel estimates). In
a first stage, the WSR is averaged over the channels given the
channel estimates and covariance information (i.e. the partial
CSIT), leading to a cost function that can be optimized by the
Tx. The optimized result then needs to be averaged over the
channel estimates to obtain the final ergodic WSR. From the
law of total expectation

EWSR = Eĥ max
g

EWSR(g),where

EWSR(g) = Eh|ĥWSR(g) =

K∑
k=1

uk Eh|ĥ ln(sk/sk)

= Eh|ĥ

K∑
k=1

uk ln(1 +
|hHk,bkgk|

2

sk
)



(a)
≈ Eh|ĥ

K∑
k=1

uk ln(1+
|hHk,bkgk|

2

Eh sk
)

(b)

≤
K∑
k=1

uk ln(1 +
Eh|ĥ|h

H
k,bk

gk|2

Eh|ĥ sk
)

=

K∑
k=1

uk ln(r−1
k
rk) = ESIP−WSR(g) (7)

where uk are the rate weights, g represents the collection of
BFs gk. Transition (a) is due to the MaMISO limit (K →∞)
and (b) is due to the concavity of ln(.) and Jensen’s inequality.
This leads to the ESIP-WSR (Expected Signal and Interference
Power WSR) upper bound. sk is the (channel dependent)
interference plus noise power and sk is the total received
power, with conditional expectations rk, rk:
sk = 1 +

∑
i 6=k
|hHk,bigi|

2, sk = sk + |hHk,bkgk|
2

rk = Eh|ĥsk = 1 +
∑
i 6=k

gHi Sk,bigi,

rk = Eh|ĥsk = rk+gHk Sk,bkgk, Sk,bk = Ck,bkWk,bkCk,bk .
(8)

The ESIP-WSR upper bound can be somewhat loose (gap
is maximal at high SNR, see [13]), because inspite of hk
being MISO, gHk hk is only a simple complex Gaussian scalar.
Nevertheless, this gap is upper bounded by the Euler constant
γ = 0.58, regardless of SNR. And for the case of only coCSIT
(ĥ = 0), the gap is exactly γ, which means that it has no
influence on the optimal gk.

Now optimizing ESIP −WSR(g) w.r.t. gk leads to the
following generalized eigenvector.

g′k = Vmax(B̂k, Âk+µbk I) . (9)

where Âk =
K∑

i=1,6=k
βiSi,bk , B̂k = r−1

k
Sk,bk . We skip here

the details of the derivation of the BFs and user powers and
refer to our paper [3] due to space limitations. (9) comes
from the difference of convex functions programming (DCP)
[14] and βk = uk(

1
rk
− 1

rk
)). Substituting gk =

√
pk g′k

and optimizing using DCP leads to the following interference
leakage (σ(2)

k ) aware water filling

pk =

(
uk

σ
(2)
k + µbk

− 1

σ
(1)
k

)+

, (10)

where (x)+ = max{0, x}, σ
(1)
k = g′Hk B̂kg

′
k, σ

(2)
k =

g′Hk Âkg
′
k, and the Lagrange multipliers µc are adjusted (e.g.

by bisection) to satisfy the power constraints.
B. Further Considerations on EWSR Bounds

We observed that ESIP-WSR represents an upper bound to
the massive MIMO ergodic capacity. Three types of BF design
with partial CSIT can actually be analyzed. We get for the Rx
signal,

yk = ĥHk,bk gk xk + h̃Hk,bk gk xk︸ ︷︷ ︸
sig. ch. error

+

K∑
i=1,6=k

(ĥHk,bi gi xi + h̃Hk,bi gi xi︸ ︷︷ ︸
interf. ch. error

) + vk .

(11)

Fig. 1. COST2100 MIMO Channel Model.

1) Naive BF EWSR: just replace h by ĥ in a perfect CSIT
approach, i.e. ignore h̃ everywhere.
2) EWSMSE BF (Expected Weighted Sum MSE) [15]: ac-
counts for covariance CSIT in the interference terms, but also
associates the signal h̃ term with the interference ! EWSMSE,
also called the ”use and forget lower bound” in [16], can
indeed be shown to be a lower bound for EWSR.
3) EWSR upper bound ESIP-WSR: also accounts for covari-
ance CSIT in the interference term but, unlike EWSMSE,
associates the signal h̃ term with the signal power.

IV. STOCHASTIC GEOMETRY MAMIMO REGIME

The channel model (2) results from multipath propagation
and the use of BS side antenna arrays. An example of a
geometry based stochastic channel model is provided by the
COST2100 channel model [17], and can be depicted as in
Figure 1. One particular application of this model for the
user covariance matrices is considered in [18]. [18] considers
the scenario in which the support of the multipath angle of
arrival or departure (AoA/AoD) for any desired user does not
overlap with that of the interfering users. The authors show
that the multipath components with AoA/AoD outside the
angular support of the desired user tend to fall in the null space
of its covariance matrix in the large antenna limit, leading to
orthogonal subspaces C in the MaMISO regime. Here we add
a stochastic geometry regime, in which the random positions of
users and scatterers lead to antenna array responses at random
angles. In reality, the antenna array responses will be more
complex than the Vandermonde vectors for Uniform Linear
Arrays considered in [18] due to mutual antenna coupling
and various other effects. As a result of this randomness of
angles and antenna array responses, and due to limited angular
support, the multipath channels live in subspaces that are of
limited dimension and uniformly randomly oriented in array
response space. As a result, an appropriate random model for
the semi-unitary matrices C spanning these subspaces is a
Haar distribution. We shall consider that as the number of
antennas M grows unboundedly, the subspace dimensions L
also go to infinity (leading to hardening of the signal power),
but slower than M . As a result, for the large system analysis
we may equivalently consider the elements of C as i.i.d. with
zero mean and variance 1/M so that asymptotically such a
C is still semi-unitary: CHC

M→∞−→ IL. The subspaces C of
different channels will be considered independent.



In this section, we summarize the large system results from
[19] we use and directly write the simplified form of the BF
expression of gk in (9) and refer to [3] for the derivation. For
the large system analysis, we use Theorem 1, Lemma 1, 4, 6
from [19]. We briefly summarize the Lemma’s here. Lemma
4 in Appendix VI of [19] states that xHNANxN

N→∞−−−−→
(1/N)trAN when the elements of xN are iid with variance
1/N and independent of AN , and similarly when yN is
independent of xN , that xHNANyN

N→∞−−−−→ 0. Lemma 6 from
[19] (rank 1 perturbation lemma) states that 1

N tr{A−1N } −
1
N tr{(AN + vvH)−1} N→∞−−−−→ 0 to approximate terms of the
form [

∑
i 6=k

βiCi,cWi,cC
H
i,c+µc I]−1= [

∑
i=1

βiCi,cWi,cC
H
i,c+

µc I]−1. Theorem 1 from [19] implies that any term of the form
1
N tr{(AN−zIN )−1}, where AN is the summation of indepen-
dent rank one matrices with covariance matrix Θi is equal to

the unique positive solution of ej = 1
N tr{(

K∑
i=1

Θi

1+ei
−zIN )−1}.

Thus tr{[
∑
i6=k

βiCi,cWi,cC
H
i,c+µc I]−1} can be simplified as ec,

which is defined as the solution to the following fixed point
equation,

ec = ( 1
Mc

K∑
i=1

Li,c∑
r=1

βiζ
(r)
i,c

1+βiζ
(r)
i,c ec

+ µc)
−1, (12)

where ζ(r)i,c follows from the eigen decomposition of Wk,c=

Vk,cΛk,cV
H
k,c, where Λk,c = diag(ζ(1)k,c , ..., ζ

(Lk,c)
k,c ). We also

remark that Ck,cVk,c which is the product of two matrices
(also remains unitary) has the identity covariance matrix, so
theorem 1 is still valid here. From [3], we write the optimized
BF w.r.t. partial CSIT, in the stochastic geometry MaMIMO
regime as,

g′k =
g′′k
‖g′′k‖

, g′′k = [
∑
i6=k

βiSi,bk+µbk I]−1Ck,bkvk,bk ,

where, vk,bk = Vmax(Wk,bk).
(13)

A. Computation of eigen values of Wk,bi

For the convenience of analysis we omit the user and BS
index here. We represent W by WL,WS for LMMSE and
subspace channel estimators respectively. From Section III,
we define d̂ = CH ĥLS , WL = (I + σ̃2D−1)−1d̂d̂H(I +
σ̃2D−1)−1+D−D(σ̃2I+D)−1D. At both high and low SNR,
we can replace the error covariance D−D(σ̃2I+D)−1D by
its dominating term D1,1σ̃

2/(D1,1+σ̃
2)e1e

H
1 , assuming D1,1

is the largest diagonal element of D and e1 is vector of all
zeros with the first element 1. Thus WL becomes the sum of
two rank one matrices and we propose the resulting rank 2
approximation for WL for all SNR. It will be all the more
precise at intermediate SNR if D1,1 dominates the rest of D.
Further we look at the computation of the eigen value matrix
Λ of WL. For the LMMSE,

WL = UL(d̂d̂H + σ̃2I)UH
L + (I−UL)D(I−UL)H (14)

where UL = (I + σ̃2D−1)−1, ULd̂ = ĉL for short. At high
SNR, we can approximate (I + σ̃2D−1)−1 = I − σ̃2D−1.
So up to first order in σ̃2, we obtain WL ≈ ĉLĉHL + σ̃2I,
where the first term contains first-order terms also. At low

SNR, UL ≈ σ̃−2D and we can obtain WL ≈ ĉLĉHL + D.
For any SNR, these two extremes can be connected by the
following approximation:

Λ = σ̃2D(σ̃2I + D)−1 + ||ĉL||2e1eH1
= σ̃2D(σ̃2I + D)−1 + tr{D(I + σ̃2D−1)−1} e1eH1

(15)
where the last equality is due to the law of large numbers.
For subspace channel estimator, WS = d̂d̂H + σ̃2I, the eigen
value matrix becomes Λ = σ̃2I + tr{D} e1eH1 .

V. VARIOUS BF HIGH SNR SUM RATE EXPRESSIONS
WITH LMMSE/SUBSPACE CHANNEL ESTIMATOR

In the Appendix A, we derive the sum rate expressions
(uk = 1,∀k) applicable at all SNR for the various BFs
(optimal EWSR, naive and EWSMSE). In this section, using
the results from the Appendix A, we consider the simplified
high SNR sum rate expressions for naive, EWSMSE and
optimal EWSR BFs for LMMSE/Subspace/LS channel esti-
mators under multi cell (C cells), with identical parameters,
σ̃2
k,c = σ̃2, Lk,c = L, Dk,c =

ηk,c
Lk,c

I and Mc = M,∀k, c.
Number of users in cell c is denoted as Kc = K/C,∀c. We
obtain,

ζ
(1)
k,c =

η2k,c
Lσ̃2 + ηk,c

+
σ̃2ηk,c

Lσ̃2 + ηk,c
, (16)

and rest of the eigen values ζ(r)k,c =
σ̃2ηk,c

Lσ̃2+ηk,c
,∀r = 2, ..., L.

For the subspace channel estimator, the eigen values are ζ(1)k,c =

(ηk,c + Lσ̃2) + σ̃2, ζ
(r)
k,c = σ̃2,∀r 6= 1. For LS only channel

estimate, the eigen values are ζ(1)k,c = (ηk,c + Lσ̃2) + σ̃2 and
ζ
(r)
k,c = σ̃2. We define ρk,c = ηk,cpk, where ρk,c is the received

SNR at user k from BS c. Substituting these values, we observe
that the sum rate expressions at high SNR can be expressed
as,

R =

K∑
k=1

ln(1 + αρk,bk), (17)

where α = 1−z
1+y , where z, y varies w.r.t the channel estimator

and the type of BF design. The corresponding α for the
9 different combinations of channel estimator and BFs are
depicted in the Table I below. If we consider the simplified
case of identical channel attenuation for all users in the
system, ηk,c = η,∀k, c, for which the sum rate simplifies
to R = K ln(1 + αρ), ρ = η P

Kc
. Note that at high SNR,

EWSR BF with subspace channel estimator converges to the
performance of the LMMSE estimator, hence we have merged
the values of subspace and LMMSE estimator in the tables.

A. Sum Rate Analysis at Low SNR for LMMSE and Subspace
Channel Estimators

For simplicity of notation, we drop user and BS indices in
this section. So, at low SNR, all the interference are negligible
and the BF gets simplified as, g = Vmax(ĥĥH + Rh̃h̃) =

CVmax(W), where W = U(d̂d̂H + σ̃2IL)U
H + (U −

I)D(U − I)H where d̂ = CH ĥLS = d + d̃. And at low
SNR, the following simplifications can be done for U and W
for LMMSE estimator,



TABLE I
HIGH SNR SUM RATE OFFSET FOR VARIOUS BFS

α naive EWSMSE ESIP-EWSR

LS
(1−K−1

M
)

(σ̃2P+1)

(1−K−1
M

)

(1+σ̃2P )

(1−K−1
M

)

(1+σ̃2P )

LMMSE/Subspace
(1−K−1

M
)

1+ 1
M
σ̃2P

(1− (K−1)L
M

) (1− (K−1)L
M

)

UL = (I + σ̃2D−1)−1 ≈ σ̃−2D,
So, WL = σ̃−2D(σ̃−2d̃d̃H + IL)D + D.

(18)

There is no signal concentration along h or d, Vmax(WL)
remains a random projection in the channel subspace C, if D
is a multiple of identity. If D is not a multiple of identity,
Vmax(WL) is a function of d̃, D and σ̃2, independent
of d which appears in h. Further considering the signal
part, E(|gHh|2) = tr{DEVmax(WL)Vmax(WL)

H} , for
example, in the extreme case, D = tr{D}e1eH1 . Then WL

is proportional to e1eH1 , hence g = Ce1. Then E(|gHh|2) =
tr{D} but with ‖g‖ = 1. For subspace channel estimator,
WS = d̃d̃H + σ̃2IL and Vmax(WS) = d̃. Substituting for
g = Cd̃ in the signal part and applying law of large numbers
leads to E(|gHh|2) L,M→∞−−−−−−→

a.s
d̃HDd̃

L→∞−−−−→
a.s

σ̃2tr{D}. Sim-

ilarly computing ‖g‖2 = d̃H d̃
L→∞−−−−→
a.s

tr{σ̃2IL} = σ̃2L. So,
we conclude that the signal power equals tr{D} for optimal
EWSR BF with LMMSE instead of tr{D}/L for subspace
channel estimator. This explains why LMMSE performs better
than subspace estimator at low SNR, also illustrated by our
simulations.

Further we consider the simplified case of Dk,c =
η
LI,∀k, c.

Doing a similar analysis as above at low SNR for naive and
EWSMSE BFs for the various channel estimates, we observe
that the sum rate can be written as follows,

R = C ln(1 + γρ)
a
≈ Cγρ, where, ρ = ηP, (19)

where in (a), we made the approximation ln(1+x) ≈ x, when
x � 1 and γ represents the SNR offset for various BFs. In
Table II, we show the γ (detailed derivations are omitted) for
different BF and channel estimator combination to explain the
SNR offset for sub-optimal BFs compared to the ESIP-WSR
BF. Note that at low SNR, ILA-WF allocates all the power to
the strongest (in terms of channel attenuation) user resulting
in the received SNR ρ = ηP for the corresponding user.

VI. SIMULATION RESULTS

In this section, we present the Ergodic Sum Rate Evalua-
tions for BF design for the various channel estimates. Monte
Carlo evaluations of ergodic sum rates are done with the
following parameters: C, number of cells. Kc, number of
(single-antenna) users in cell c and K =

∑
c

Kc. M , number

of transmit antennas in each cell. We consider a path-wise or
low rank channel model as in section II-A, with L = number
of paths = channel covariance rank. d : scale factor in the LS

TABLE II
LOW SNR SUM RATE OFFSET FOR VARIOUS BFS (ηk = η)

γ naive EWSMSE ESIP-EWSR

LS
1+ σ̃2M

η

(1+P σ̃4M2

η+σ̃2M
)

1+ σ̃2M
η

(1+P σ̃4M2

η+σ̃2M
)

η
η+σ̃2M

LMMSE η
Lσ̃2(1+ρ η

Lσ̃2
)

η
Lσ̃2(1+ρ η

Lσ̃2
)

1

Subspace Lσ̃2

η(1+ρLσ̃
2

η
)

Lσ̃2

η(1+ρLσ̃
2

η
)

1
L

-20 -10 0 10 20 30 40 50 60

Transmit SNR in dB

0

20

40

60

80

100

120

S
u

m
 S

p
e
c
tr

a
l 
E

ff
ic

ie
n

c
y

iCSIT

ESIP-WSR BF, LMMSE Ch. Est.

ESIP-WSR BF, LMMSE Ch. Est. Large System Approx.

ESIP-WSR BF, Subspace Ch. Est.

EWSMSE BF, LMMSE Ch. Est.

Naive EWSR BF, LMMSE Ch. Est.

Naive EWSR BF, Subspace Ch. Est.

ESIP-WSR BF, LS Ch. Est.

Naive EWSR BF, LS Ch. Est.

Fig. 2. EWSR for C = 1 cell, K1 = K = 10 users, M = 64, L = 2,
σ̃2 ∝ 1/SNR.

channel estimation error variance σ̃2 = d/SNR. Notations:
in the figures, iCSIT refers to the optimal BF design for the
instantaneous CSIT case [20]. In Figure 2, we plot the optimal
BF performance with LMMSE channel estimator comparing
to the optimal BF performance for the case of large system
approximation. It is evident that the deterministic approxima-
tions are accurate even for finite M,K. It is evident from the
figure that exploiting the channel estimation error covariance
information has significant performance gain compared to the
sub-optimal methods such as EWSMSE and naive BFs. In
Figure 3, we plot the EWSMSE beamforming performance
also and it is evident from the figure that ESIP-WSR based
beamformers (i.e. MaMISO limit based) perform better EWSR
approximations than a EWSMSE design. From the numerical
simulations in both Figures 2,3, it is quite evident that just
using LS channel estimates may lead to substantial EWSR
loss. In Massive MIMO, the exploitation of channel subspaces
(reduced rank covariances) in channel estimates may lead to
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Fig. 3. EWSR for C = 2 cells, K1 = K2 = 5 users, M = 32, L = 2,
σ̃2 ∝ 1/SNR.

substantial reductions in SNR loss due to partial CSIT. More-
over, there is significant gain from exploiting (error) channel
covariances in addition to (LMMSE) channel estimates and
proper handling of channel error covariance in the direct link
in the BF design.

VII. CONCLUSION

This paper investigated the optimal linear precoder based
on partial CSIT in the multi-cell MU-MISO downlink. We
introduced a stochastic geometry inspired randomization of the
channel covariance eigen spaces and analyzed the large system
behavior. Moreover, we show the improvement in performance
by using an LMMSE channel estimate compared to just
having LS estimates, and by furthermore properly exploiting
all covariance information. Numerical simulations suggest that
the large system approximations are accurate even for finite
values of M,K. We provided simple and elegant expressions
for the sum rate at high and low SNR, providing useful
analytical insights into the SNR offsets between different sub-
optimal BFs which matches with our simulations.

APPENDIX A
SUM RATE EVALUATION

A. Optimal EWSR BF with LMMSE/Subspace Estimators

In Section V, for simplicity of analysis, we consider only
the case of Dk,c =

ηk,c
Lk,c

I, the random user positions leads to
random attenuation factors ηk,c for each channel. However, we
consider that this random attenuation is known at the BS. In
this simplified case, we obtain Vmax(Wk,c) ∝ Uk,cd̂k,c. For
the convenience of analysis, we write gk = Γ−1k Ck,bkvk,bk .
Here Γk =

∑
i6=k

βiSi,bk +µbk I. Also, let γ(s)k,L, γ
(s)
k,S denotes

the SINRs for user k in the case of LMMSE and subspace
channel estimators respectively. The superscript s can be ’Opt’
or ’N’ or ’E’ which represents the optimal/naive/EWSMSE
BFs respectively. By large system limit, we implies that
L,M,K →∞. First we compute the deterministic equivalent
for the signal power PSk ,

g′k = g′′k/ ‖g′′k‖ ,g′′k = Γ−1k Ck,bkvk,bk ,
PSk = pkg

′H
k Ck,bkdk,bkd

H
k,bk

CH
k,bk

g′k,

g′′Hk Ck,bkdk,bk = d̂Hk,bkUk,bkC
H
k,bk

Γ−1k Ck,bkdk,bk ,

= (dk,bk + d̃k,bk)
HUk,bkCk,bkΓ

−1
k Ck,bkdk,bk ,

(a)
= ebkE(tr{Uk,bkdk,bkdHk,bk}) = ebk tr{Uk,bkDk,bk},

(20)

where (a) follows from the law of large numbers as
Lk,bk ,Mbk → ∞ and using the large system analysis sim-
plifications shown in (36), CH

k,bk
Γ−1k Ck,bk = ebkI. Also note

that E(dk,bk d̃
H
k,bk

) = 0 since dk,bk and d̃k,bk are zero mean
and independent. Further,

g′Hk hk,bkh
H
k,bk

g′k = e2bk tr{Uk,bkDk,bk}2/ ‖g′′k‖
2
= gk,

‖g′′k‖
2
= d̂Hk,bkUk,bkC

H
k,bk

Γ−2k Ck,bkUk,bk d̂k,bk .
(21)

Further in the large system limit, ‖g′′k‖
2 gets simplified as

‖g′′k‖
2

= 1
Mbk

tr{Γ−2k }tr{U2
k,bk

E(d̂k,bk d̂
H
k,bk

)}. Further this

can be simplified as ‖g′′k‖
2

= e′bk tr{U2
k,bk

(Dk,bk + σ̃2
kI)}.

From [19], in the large system limit, for (1/Mbk)tr{Γ
−2
bk
}, we

have an almost sure convergence value as e′bk , where e′bk is
the derivative of ebk w.r.t. µbk , and thus ‖g′′k‖

2
= e′bk ,

e′c = e2c(
1
Mc

K∑
i=1

Li,c∑
r=1

β2
i ζ

(r), 2
i,c e′c

(1+βiζ
(r)
i,c ec)

2
+ 1)

=⇒ e′c =
e2c

1− e2c
Mc

K∑
i=1

Li,c∑
r=1

β2
i
ζ
(r), 2
i,c

(1+βiζ
(r)
i,c

ec)2

.
(22)

Finally we write the signal power as,

PSk = pk
e2bk

tr{Dk,bk
Uk,bk}

2

e′bk
tr{U2

k,bk
(Dk,bk

+σ̃2
kI)} , (23)

xc =
e2c
Mc

K∑
i=1

Li,c∑
r=1

β2
i ζ

(r), 2
i,c

(1+βiζ
(r)
i,c ec)

2
, e′c =

e2c
1−xc ,

therefore, PSk = pk(1− xbk)
tr{Dk,bk

Uk,bk}
2

tr{U2
k,bk

(Dk,bk
+σ̃2

kI)} ,

(24)

Deterministic limit for interference power PIk : Each
term in PIk is of the form, g′′Hi hk,bih

H
k,bi

g′′i =

vHi,biC
H
i,bi

Γ−1i Ck,bidk,bid
H
k,bi

CH
k,bi

Γ−1i Ci,bivi,bi . Since
Ci,bivi,bi is independent of all other random quantities in
this expression, we apply Lemma 4 and then Lemma 6
to get, vHi,biC

H
i,bi

Γ−1i Ck,bidk,bid
H
k,bi

CH
k,bi

Γ−1i Ci,bivi,bi =
1
Mbi

tr{Γ−1i Ck,biE(dk,bid
H
k,bi

)CH
k,bi

Γ−1i }tr{U2
i,bi

(Di,bi +

σ̃2
i I)}. Applying Lemma 1 to each of the rows of CH

k,bi
Γ−1i ,

then Lemma 4 and 6, we obtain the following simplified
expression,
pig
′′H
i hk,bih

H
k,bi

g′′i = pi
1
Mbi

tr{Dk,biB
−2
k,bi
},

where, Bk,bi = diag(1 + βkζ
(1)
k,bi

ebi , ..., 1 + βkζ
(Lk,bi )

k,bi
ebi).

(25)
Finally, we write the SINR as,

γ
(Opt)
k,L =

pk(1−x(L)
bk

)tr{Dk,bk
(I+σ̃2

kD−1
k,bk

)−1}
1

Mbi

∑
i6=k

pitr{Dk,bi
B−2
k,bi
}+1

,

γ
(Opt)
k,S =

pk(1−x(S)
bk

)
tr{Dk,bk}2

tr{Dk,bk+σ̃2
k
I}

1
Mbi

∑
i6=k

pitr{Dk,bi
B−2
k,bi
}+1

.

(26)

Note that x(S)bk
> x

(L)
bk

since the eigen values of Wk,bk for
the subspace estimator is greater than that of the LMMSE



channel estimator. This leads to a reduction in signal power
for the subspace channel estimator case at low to mid SNR
range (while the interference power remains approximately the
same for both) which explains the sub-optimal performance of
subspace channel estimators. Further considering the simplifi-
cations at high SNR, we observe that ec increases with SNR
since µc converges to zero with high SNR and ec � 1. So
βiζ

(r)
i,c ec >> 1, thus we simplify,

ec = ( 1
ec

K∑
i=1

Li,c∑
r=1

1
Mc

+ µc)
−1 =⇒ ec =

1−

K∑
i=1

Li,c

Mc

µc
,

Similarly, xbk = 1
Mbk

K∑
i=1

Li,bk = x
(S)
bk

= x
(L).
bk

(27)
Note that in the case when

K
∑
i
Li,c

M → 0, ec → µ−1c or ec →
SNR−1. Finally we show that at very high SNR, in the large
antenna limit, all the interference powers converge to zero
or in other words LMMSE or subspace estimator does ZF at
high SNR. We also remark that depending on the large system
regime and behaviour of channel estimation error with SNR,
ESIP-WSR BF with LMMSE/Subspace channel estimator ZFs
to either the interfering covariance subspaces or the actual
channel estimates of the interfering users, which is left as a
future work.

1
Mbi

tr{Dk,biB
−2
k,bi
} = 1

Mbi
[
Lk,bi∑
r=1

η
(r)
k,bi

(1+βiζ
(r)
k,bi

ebi )
2
], (28)

As µc → 0, it is clear from (28) that, 1
Mbi

tr{Dk,biB
−2
k,bi
} → 0,

since each of the summation term becomes proportional to
1/SNR or 1

Mbi
tr{Dk,biB

−2
k,bi
} → K

∑
i Lk,bi
M

1
SNR . Finally we

can write rk in the high SNR regime as below,

pig
H
i hk,bih

H
k,bi

gi = 0, rk = 1. (29)

B. Naive EWSR BF with LMMSE/Subspace Channel Estima-
tors

We denote superscript (N) to denote the SINRs for the
case naive BFs (eg. γ(N)

k,L ). Also, x(NL)bk
, x

(NS)
bK

represents xbk
for the LMMSE and Subspace channel estimates respectively.
We split h = ĥ+ h̃ or d̂U = d+ d̃U , d̂U = U d̂, d̃U = (U −
I)d+U d̃ and refer to the received signal model (11). For naive
BF, we redefine Γk =

∑
i 6=k

βiCi,bkUi,bk d̂i,bkUi,bk d̂
H
i,bk

CH
i,bk

+

µbk I. First we compute the signal power,

PSk = pkg
′H
k Ck,bk d̂U,k,bk d̂

H
U,k,bk

CH
k,bk

g′k,

g′′Hk Ck,bk d̂U,k,bk = d̂Hk,bkUk,bkC
H
k,bk

Γ−1k Ck,bkUk,bk d̂k,bk ,

= ebk d̂
H
k,bk

U2
k,bk

d̂k,bk = ebkE(tr{U2
k,bk

d̂k,bk d̂
H
k,bk
}) =

ebk tr{U2
k,bk

(Dk,bk + σ̃2
kI)},

(30)
Finally, we write the signal power as,

PSk = pk(1− x(NL)bk
)tr{U2

k,bk
(Dk,bk + σ̃2

kI)}. (31)

Now consider the interference power PIk . First we consider
the interference power due to the channel estimation error part
of the direct channel for user k.

g′Hk Ck,bk d̃U,k,bk d̃
H
U,k,bk

CH
k,bk

g′k
M→∞−−−−→
a.s

E(g′Hk Ck,bk d̃U,k,bk d̃
H
U,k,bk

CH
k,bk

g′k)
M→∞−−−−→
a.s

=

e2bk tr{Uk,bk(Uk,bk − I)D +Uk,bkUk,bk σ̃
2}2.

(32)

Therefore pkg
′H
k Ck,bk d̃U,k,bk d̃

H
U,k,bk

CH
k,bk

g′k = pk(1 −
x
(NL)
bk

)tr{Uk,bk(Uk,bk − I)D + Uk,bkUk,bk σ̃
2}2 = EIk . Ex-

pressions for the interfering powers due to rest of the user’s
channel remains of the same form as in the previous section
for optimal EWSR BFs. Finally, we can write the SINR
expressions for the optimal EWSR naive BFs with LMMSE
and subspace channel estimator becomes,

γ
(N)
k,L =

pk(1−x
(NL)

bk
)tr{Uk,bk (Dk,bk

+σ̃2
kI)}

1
Mbi

∑
i6=k

pitr{Dk,bi
B−2
k,bi
}+

EIk

tr{U2
k,bk

(Dk,bk
+σ̃2I)}

+1
.

(33)
In (33), compared to the optimal EWSR estimators, the inter-
ference power got increased by the direct channel estimation
error being moved to the interference part, which explains the
degradation in performance.

C. EWSMSE BF with LMMSE/Subspace Channel Estimators

We denote superscript (E) to denote the SINRs for the case
of EWSMSE BFs (eg. γ(E)

k,L ). Also, x(EL)bk
, x

(ES)
bK

represents xbk
for the respective channel estimates. For the EWSMSE BFs,
since we consider the desired user channel estimation error as
part of the interference terms, the signal model remains same
as in (11). We need to redefine Γk =

∑
i6=k

βiCi,bkWi,bkC
H
i,bk

+

αkCi,bkD̃i,bkC
H
i,bk

+µbk I.The large system analysis will have
similar expression as for the naive BFs. However, since we
take into account the error covariance information also into the
BF optimization, x(EL)bk

, x
(ES)
bk

will be different for EWSMSE
compared to the naive BF due to the change in the eigen value
matrix Λk,bi .

D. Optimal EWSR BF with LS only Channel Estimate

For LS only estimation, optimizing EWSR(g) leads to the
following generalized eigen value problem,

νk(
∑
i 6=k

Si,bk + µbkI)gk = (ĥk,bk,LSĥHk,bk,LS + σ̃2
kI)gk,

ĥk,bk,LSĥHk,bk,LSgk = νk(
∑
i 6=k

Si,bk + (µbk −
σ̃2
k

νk
)I)gk.

(34)
where Si,bk = ĥi,bk,LSĥHi,bk,LS+σ̃

2
i I here. This leads to gk ∝

(
∑
i 6=k

Si,bk + (µbk −
σ̃2
k

νk
)I)−1ĥk,bk,LS . To find νk, we multiply

by gk on both sides of (34) and obtain νk,

gHk ĥk,bk,LSĥHk,bk,LSgk = νkg
H
k (
∑
i 6=k

Si,bk + (µbk −
σ̃2
k

νk
)I)gk,

So, νk = ĥHk,bk,LS(
∑
i6=k

Si,bk + (µbk −
σ̃2
k

νk
)I)−1ĥk,bk,LS

(35)
First we compute the deterministic equivalent for νk. We
define Γk =

∑
i6=k

Si,bk + (µbk −
σ̃2
k

νk
)I. In the large

system limit, νk
M→∞−−−−→
a.s

E(tr{ĥHk,bk,LSΓ−1k ĥk,bk,LS}) =



1
Mbk

tr{Γ−1k }tr{Dk,bk} + σ̃2
kE(tr{Γ−1k }) = tr{Dk,bk}ebk +

σ̃2
kMbkebk , where ec is defined as,

ec = (
1

Mc

K∑
i=1

Li,c∑
r=1

βiζ
(r)
i,c

1 + βiζ
(r)
i,c ec

+ µc −
σ̃2
k

νk
)−1. (36)

Now g′′k = Γ−1k ĥk,bk,LS , considering the signal part and
substituting for ĥk,bk,LS = hk,bk + h̃k,bk and using the fact
that hk,bk and h̃k,bk are independent,
g′′Hk hk,bk =

ĥHk,bk,LSΓ−1k hk,bk
M→∞−−−−→
a.s

E(tr{CH
k,bk

Γ−1k Ck,bkdk,bkd
H
k,bk
})

= ebk tr{Dk,bk}, g′′Hk hk,bkhk,bkg
′′
k = e2bk tr{Dk,bk}2.

(37)
Further, ‖g′′k‖

2
= ĥHk,bk,LSΓ−2k ĥk,bk,LS

M→∞−−−−→
a.s

tr{Γ−2k (Ck,bkDk,bkC
H
k,bk

+ σ̃2
kI)} = e′bk tr{Dk,bk} +

σ̃2
kMbke

′
bk

. Finally we obtain the deterministic equivalent of
the signal power as,

PSk = (1− x(LS)bk
)

tr{Dk,bk
}2

tr{Dk,bk
}+σ̃2

kMbk

. (38)

Note that x(LS)bk
has the same definition as in (24), but with the

eigenvalues, ζ(1)k,bi
= tr{Dk,bi + σ̃2

kI} + σ̃2
k, ζ

(r)
k,bi

= σ̃2
k,∀r =

2, ..., Lk,bi . Further considering the interfering user channel
powers,
g′′Hi Ck,bidk,bid

H
k,bi

CH
k,bi

g′′i =

ĥHi,bi,LSΓ−1i Ck,bidk,bid
H
k,bi

CH
k,bi

Γ−1i ĥi,bi,LS =

tr{Di,bi} 1
Mbi

tr{Γ−1i Ck,bidk,bid
H
k,bi

CH
k,bi

Γ−1i }+
σ̃2
i
Li,bi
Mbi

tr{Γ−1i Ck,bidk,bid
H
k,bi

CH
k,bi

Γ−1i } =
tr{Di,bi} 1

Mbi
e′bi tr{B

−2
k,bi

Dk,bi}+ e′bi σ̃
2
i
Li,bi
Mbi

tr{B−2k,biDk,bi}
(39)

Finally we write the interference power as,
PIk = 1

Mbi

∑
i 6=k

[tr{B−2k,biDk,bi}+ Li,bi σ̃
2
i tr{B−2k,biDk,bi}]

(40)
Finally we write the SINR expression as,

γ
(Opt)
k,LS =

(1−x(LS)
bk

)
tr{Dk,bk}2

tr{Dk,bk}+σ̃2kMbk
1

Mbi

∑
i6=k

pi[tr{B−2
k,bi

Dk,bi
}+Li,bi σ̃

2
i tr{B−2

k,bi
Dk,bi

}]+1

(41)
From (41), it can be observed that with LS only channel
estimator, signal power gets decreased by a factor tr{Dk,bk}+
σ̃2
kMbk and similarly the interference power gets added by
Li,bi
Mbi

σ̃2
i tr{B−2k,biDk,bi}. This leads to the sub-optimal perfor-

mance compared to BFs with LMMSE or Subspace channel
estimators. Now we consider the naive BF for the LS only
channel estimator. Here we need to consider the interference
power due to the desired channel estimation error part,

g′Hk h̃k,bk
M→∞−−−−→
a.s

E(ĥHk,bk,LSΓ−1k h̃k,bk) =

E(h̃Hk,bk,LSΓ−1k h̃k,bk) = ebkMk,bk σ̃
2,

So, g′Hk h̃k,bk h̃
H
k,bk

g′Hk =
(1−x(LS)

bk
)M2

k,bk
σ̃4

tr{Dk,bk
+σ̃2I} .

(42)

Finally we write the SINR expression for the naive BF as,
γ
(N)
k,LS =

(1−x(NLS)

bk
)

tr{Dk,bk}
2

tr{Dk,bk}+σ̃2kMbk
1

Mbi

∑
i6=k

pi[tr{B−2
k,bi

Dk,bi
}+Li,bi σ̃

2
i tr{B−2

k,bi
Dk,bi

}]+
pk(1−x

(NLS)
bk

)M2
k,bk

σ̃4

tr{Dk,bk+σ̃2I}
+1

(43)

Note that x(NLS)bk
has the same definition as in (24), but with

the eigenvalues, ζ(1)k,bi
= tr{Dk,bi}, ζ

(r)
k,bi

= 0,∀r = 2, ..., Lk,bi .
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