SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

A Personalized Preference Learning Framework
for Caching in Mobile Networks

Adeel Malik, Joongheon Kim, Senior Member, IEEE, Kwang Soon Kim, Senior Member, IEEE,
and Won-Yong Shin, Senior Member, IEEE

Abstract—This paper comprehensively studies a content-centric mobile network based on a preference learning framework, where
each mobile user is equipped with a finite-size cache. We consider a practical scenario where each user requests a content file
according to its own preferences, which is motivated by the existence of heterogeneity in file preferences among different users. Under
our model, we consider a single-hop-based device-to-device (D2D) content delivery protocol and characterize the average hit ratio for
the following two file preference cases: the personalized file preferences and the common file preferences. By assuming that the model
parameters such as user activity levels, user file preferences, and file popularity are unknown and thus need to be inferred, we present
a collaborative filtering (CF)-based approach to learn these parameters. Then, we reformulate the hit ratio maximization problems into

a submodular function maximization and propose two computationally efficient algorithms including a greedy approach to efficiently
solve the cache allocation problems. We analyze the computational complexity of each algorithm. Moreover, we analyze the
corresponding level of the approximation that our greedy algorithm can achieve compared to the optimal solution. Using a real-world
dataset, we demonstrate that the proposed framework employing the personalized file preferences brings substantial gains over its

counterpart for various system parameters.

Index Terms—Caching, collaborative filtering, learning, mobile network, personalized file preferences.

1 INTRODUCTION

He growing trend in mobile data traffic drives a need of
T anew wireless communication technology paradigm in
which radios are capable of learning and decision making in
order to autonomously determine the optimal system con-
figurations. In this context, equipping the communication
functionality with machine learning-based or data-driven
algorithms has received a considerable attention both in
academia as well as in industrial communities.

1.1 Prior Work

Cache-enabled (or content-centric) wireless systems are
equipped with finite storage capacity, which restricts us

o A, Malik is with the Department of Communication System, EURECOM,
Sophia-Antipolis 06904, France.

E-mail: adeel_malik91@yahoo.com.

e] Kim is with the School of Electrical Engineering, Korea University,
Seoul 02841, Republic of Korea.

E-mail: joongheon@korea.ac.kr.

e K. S. Kim is with the Department of Electrical and Electronic Engineering,
Yonsei University, Seoul 03722, Republic of Korea.

E-mail: ks.kim@yonsei.ac.kr.

o W.-Y. Shin (corresponding author) is with the Department of Computa-
tional Science and Engineering, Yonsei University, Seoul 03722, Republic
of Korea.

E-mail: wy.shin@yonsei.ac.kr.

from storing the entire content library at the local cache.
In order to bring content objects closer to requesting users,
deciding which content needs to be cached at which user’s
or helper’s cache plays a crucial role on the overall per-
formance of content-centric wirelss networks. This cache
placement problem has recently attracted a wide attention.
In general, the prior work on caching can be divided into
two categories: caching at small-cell base stations (or helper
nodes) [1], [2], [3], [4] and caching at users (or devices)
[5], [6], [7], [8]. Since the optimal caching problems in
[1], [2], [3], [4], [5], [6] cannot be solvable in polynomial
time, approximate solutions with performance guarantees
were presented. It was shown in [1], [5] that the optimal
cache placement problem fell in the category of monotone
submodular maximization over a matroid constraint [9],
and a proposed time-efficient greedy algorithm achieved
an approximation within the factor of 1 of the optimum.
In [5], a dynamic programming algorithm whose com-
plexity increases exponentially with the number of users
was also proposed to obtain the optimal solution. Simi-
larly, a joint routing and caching problem [2], a multicast-
aware caching problem [3], and a mobility-aware caching
problem [4] were studied, while proving the NP-hardness
of their caching problems and presenting polynomial-time
greedy algorithms to obtain their approximate solutions.

On the one hand, studies on integrating machine learning-

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

based or data-driven algorithms into caching frameworks in
wireless networks have recently received attention [10], [11],
[12], [13]. In [10], [11], the optimal caching problems were
studied when the file popularity profile is unknown—each
problem was modeled as a combinatorial multi-armed ban-
dit problem to learn the content popularity distribution for
caching at one base station. Moreover, a transfer learning-
based technique exploiting the rich contextual information
(e.g., users” content viewing history, social ties, etc.) was
proposed in [12] to estimate the content popularity distribu-
tion. The training time in a transfer learning-based approach
to obtaining a good estimate of the content popularity
distribution for caching was also investigated in [13].

On the other hand, the importance of personalized file
preferences in content-centric networks was studied in [6],
[14], [15], [16]. In [6], a low-complexity semigradient-based
cooperative caching scheme was designed in mobile so-
cial networks by incorporating probabilistic modeling of
user mobility and heterogeneous interest patterns. It was
assumed in [6] that all users have the same activity level
(i.e., the same number of requests generated by each user)
and the user file preferences are known, which may be
hardly realistic. Later, the optimal caching policy via a
greedy algorithm for cache-enabled device-to-device (D2D)
communications was presented in [14] by modeling the
behavior of user requests resorting to probabilistic latent
semantic analysis. In [15], when there is some coordination
between recommender systems and caching decisions in
a wireless network with small cells, possible benefits that
can arise for the end users were investigated. In [16], a
recommender system-aided caching placement scheme was
also developed in wireless social networks. Recently, the
benefits of user preference learning over the common file
preferences were studied in wireless edge-caching scenarios,
where the network edge such as fog access points [17],
small-cell base stations [18], and macro base stations [19] is
taken into account so that users fetch the content of interest
from edge caches. However, different from existing litera-
ture in [17], [18], [19], our focus is on D2D caching at mobile
users by inferring different user activity levels and user file
preferences for each user. Moreover, in [20], [21], [22], [23],
there have been various attempts to tackle caching problems
by taking into account the concern that several issues such
as limited memory [8], security [24], limited energy [25], and
social ties [24] may discourage mobile users to share their
content files with other users over the D2D transmission.
In this context, proper incentive mechanisms (e.g., trust
based on friendships [21] and monetary incentives [22]) for
those users who are willing to share their files via D2D
communications were introduced offered by operators.

As another caching framework, coded caching [7], [26],

2

[27] and maximum distance separable (MDS)-coded caching
[1], [8] have received a lot of attention in content-centric
wireless networks. The content placement is optimized so
that several different demands can be supported simulta-
neously with a single coded multicast transmission, while
MDS-coded subpackets of content objects are stored in local
caches and the requested content objects are retrieved using
unicast transmission.

1.2 Main Contribution

In this paper, we present a preference learning framework
for a content-centric mobile caching network in which mobile
users equipped with a finite-size cache are served by one
central processor (CP) having access to the whole file library.
Each user requests a content file from the library indepen-
dently at random according to its own predicted personalized
file preferences. Unlike most of the prior work (e.g., [8], [28],
[29], [30] and references therein) in which a user requests
according to the common file popularity distribution, our
model is motivated by the existence of heterogeneity in file
preferences among different mobile users, e.g., applications
involving on-demand videos requested by mobile users. In
our mobile network model, we consider single-hop D2D
content delivery and characterize the average hit ratio.
Then, we aim to develop caching strategies in the sense
of maximizing the hit ratio (also known as the offloading
ratio) for two file preference cases: the personalized file pref-
erences and the common file preferences. The most distinct
feature in our framework is to incorporate the notion of
collaborative filtering (CF), which was originally introduced
in the design of recommender systems [31], [32], [33], [34],
into caching problems in order to infer/predict the un-
known model parameters such as user activity levels, user
file preferences, and file popularity. Despite the existence
of several techniques to predict the file popularity, CF is
the most widely used method to predict users’ interests
in a particular content object (e.g., the content ratings in
recommender systems), since it can be implemented easily
without requiring in-depth domain knowledge, producing
satisfactory prediction accuracy. The main idea of CF is to
exploit users’ past behaviors and infer the hidden user pref-
erences. We aim at showing a successful application of such
a well-known technique in one domain (e.g., recommender
systems) to another domain (e.g., content-centric wireless
systems) by predicting our model parameters via CE. We
note that the accessing frequency of a file in [14] may not be
a suitable metric for predicting unknown model parameters.
This is because content files such as season episodes or
news talk shows do not need to be accessed more than once
as users tend to watch them only once. In our study, we

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

thus exploit the user rating history as a metric for learning
the above model parameters instead of using the number
of times that each user accesses a file. The main technical
contributions of this paper are summarized as follows:

o We first introduce a file preference learning frame-
work in cache-enabled mobile network, which intel-
ligently combines caching and CF techniques.

e We characterize the average hit ratio under our
content-centric mobile network according to both
personalized file preferences and common file pref-
erences.

e We present a CF-based approach to infer the model
parameters such as user activity levels, user file
preferences, and file popularity by utilizing the user
rating history.

e We formulate hit ratio maximization problems for
our two caching strategies and analyze the compu-
tational complexity of the optimal solutions.

o We reformulate the hit ratio maximization problems
into a submodular function maximization subject to
matroid constraints in order to obtain an approxi-
mate solution within provable gaps.

o We present two computational efficient algorithms,
including a greedy approach, and analyze corre-
sponding computational complexities. Additionally,
we show the corresponding level of the approxima-
tion that our greedy algorithm can achieve compared
to the optimal solution.

o Using a real-world dataset adopted for evaluating
recommender systems, we perform intensive numer-
ical evaluation and demonstrate that 1) the proposed
framework employing the personalized file prefer-
ences leads to substantial gains over the baseline
employing the common file preferences with respect
to various system parameters and 2) the performance
of our computationally efficient approaches is quite
comparable to the optimal one while they manifest
significant complexity reduction.

To the extent of our knowledge, this paper is the first
attempt to present personalized parameter learning in cache-
enabled mobile networks.

1.3 Organization

The rest of this paper is organized as follows. In Section 2,
the network and caching models are described. In Section 3,
problem definitions for both proposed and baseline caching
strategies are presented. In Section 4, a CF-based parameter
learning method is introduced. The optimal and greedy
caching algorithms are presented with complexity analysis
in Section 5. In Section 6, numerical results are shown to

TABLE 1: Summary of Notations

Parameters Description

Number of users

Cache size of each user

Library size

Collaboration distance

Time period for cache update

User activity level

User file preference

File popularity

Cache allocation strategy

Average hit ratio

Contact probability between users u; and u;
Average outage probability

A Outage capacity

Rating matrix

Rating given by user uy to file f,
n Number of ratings given by user uy,

NATTIAY @z
SR

<
Q

analyze the impact of personalized file preferences in our
network. Finally, Section 7 summarizes the paper with some
concluding remarks.

1.4 Notations

Throughout this paper, P(-) is the probability, @ is the
empty set, and |X| denotes the cardinality of a set X'. We
O(g(z)) means that
there exist constants a and ¢ such that f(z) < ag(x) for

use the asymptotic notation f(x) =

all x > c. Moreover, Table 1 summarizes the notations
used throughout this paper. Some notations will be more
precisely defined in the following sections, as we introduce
our system model and proposed approaches.

2 SYSTEM OVERVIEW

2.1 Network Model

Let us consider a wireless network illustrated in Fig. 1,
having a CP serving N mobile users denoted by the set
N = {ur,us, -

work, we assume a practical scenario where each mobile

,un }. In our content-centric mobile net-

user u; € N is equipped with a local cache of the same finite
storage capacity S (i.e., the cache can store up to S content
files) and acts as a helper to share the cached files via D2D
single-hop communications. We assume that all the users are
willing to share the content files with other users altruisti-
cally over the D2D transmission all the time!. The CP is able
to have access to the content library server (e.g., YouTube)

1. We leave how to incentivize the users in another setting with user
selfishness as future work since the design of incentive mechanisms
for file sharing in content-centric networks is not straightforward and

needs to be judiciously incorporated into the overall caching framework
including D2D content delivery.

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

0

& & Mobile user

& g @)
& g &@;&@ﬁ ﬂ

Content library

Fig. 1: Our content-centric mobile network model.

via infinite-speed backhaul and initiates the caching process.
We consider a practical scenario that the number of content
files in the library is dynamic and keeps updated due to the
continuous addition of new user-generated content (UGC).
It has been observed that the traffic toward the content
library server is dominated by the small portion of popular
content files [35]. To adopt this behavior, we assume that
users are interested in requesting the content file from a
, fr} that
dominates the request traffic, where the size of each file is

set of F' popular content files F = {fi, fo, -

the same.

In our network model, the time is divided into inde-
pendent slots ¢;,¢2,--- and each user generates requests
for content files during its allocated time slot. Note that
each user can generate the request of content files that are
not in the set F, but for our content-centric network, we
are interested in caching only the popular content files that
dominate the request traffic.

In addition, we would like to illuminate two important
real-world observations that were largely overlooked in
most studies on cache-enabled wireless networks [8], [28],
[29], [30]: the file popularity is not the same as the preference
of each individual user; and only a small portion of users
are active in creating the data traffic. On the other hand, the
main focus of this study is on comprehensively studying
the impact and benefits of personalized file preferences in our
mobile network by assuming that each user u; € A has a
different activity level P(u;) and a different personalized file
preference P(f;|u;). To this end, we formally define three
model parameters as follows:

o Activity level P(u;) of user u; is defined as the
probability that user u; € N is active by requesting
a content file, where P(u;) € [0, 1]. More specifically,
P(u;) indicates the ratio of the number of active time
slots in which user u; sends a content request to
the total number of time slots, 7, in a specific time
period.

o Personalized file preference P(f;|u;) of user u; is

4

defined as the conditional probability that user u; €
N requests file f; € F given that the user sends a
request, where 3 . » P(fjlu;) = 1 and P(f;|u;) €
[0,1]. More specifically, P(f;|u;) indicates the ratio
of the preference that user u; has given to file f; to
the sum of all file preferences of the same user.

« File popularity P(f;) is defined as the probability
that a file f; is requested, where >, . » P(f;) = 1
and P(f;) € [0,1]. This probability represents how
popular a content file is in a network. Note that
this is the case where all users have the common file
preferences (i.e., P(fjlus) = P(fjlus) = P(f;)) as
in [8], [28], [29], [30].

It will be described in Section 4 how to learn these three pa-
rameters based on the CF-based inference approach. More-
over, due to the continuous addition of new UGC to the
content library, the popularity of content files changes over
time. In our study, we assume that the model parameters
such as user activity levels and user file preferences are fixed
for a certain period of 7 time slots, and after every period 7T,
the CP iteratively learns the model parameters based on the
updated popularity so that it initiates the content placement
phase to fill the cache of each user.

2.2 Caching Model

In content-centric wireless networks, a caching mechanism
can be divided into the following two stages: the content
placement phase and the content delivery phase. We first
describe the content placement phase which determines the
strategy for caching the content objects in the cache of N
mobile users. During the content placement process, each
user u; € N stores the content files according to a caching
vector Cy, = [Cuy f1sCus,fas” s Cus,fr) (Will be optimized
later on the basis of the personalized file preferences), where
Cu,,f; 1S given by
1 if the user u; caches file f;

Cus, f; = (1)
0 if the user u; does not cache cache f;.

In order to have a feasible cache allocation strategy CV*¥" =

[Cuy;Cuyi v+ 3 Cuyl, CNVXF should satisfy the following
constraints:
> cung <8, Yu; € N, @)
fi€F
Cu,,f; € {0,1}, Y, EN,fj e F. 3)

Note that the constraint in (2) is the individual user’s
storage capacity constraint. Due to the dynamics of the file

popularity, the caching strategy C™¥* ¥

should be iteratively
determined by the CP based on the predicted model pa-
rameters after every time period 7 during the off-peak time,

representing the time period when network resources are in

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

abundance (i.e., the data traffic is very low). One example
includes such a midnight time that the content request
activity from the network is very low as most of mobile
users are not active during this time.

We now move on to the delivery phase which allows the
requested content objects to be delivered from the source to
the requesting user over wireless channels. In our network
model, the users are assumed to prefetch a part of (popular)
content objects in their local caches from the content library
server or the CP when they are indoors. For example, during
off-peak times, the CP can initiate the content placement
phase and fill the cache of each user. On the other hand,
for the case when the actual requests take place, we confine
our attention to an outdoor environment where users are
moving. This comes from the fact that in the fast mobility
scenario, reception of large-scale files (e.g., a high-resolution
video) through cellular networks, operating on licensed
spectrum bands, may not be cost-effective. Thus, in the
outdoor setting, a reasonable assumption is that only D2D
communications are taken into account for content delivery,
i.e., the server and base stations do not participate in the
delivery phase, which essentially lies in the same line as
in [7], [8], [28]. More specifically, in our content-centric
mobile network, we focus on the peak time in which each
mobile user retrieves the requested content file either from
his/her own cache or via single-hop D2D communications
from one of the users storing the requested content file
in their caches within the collaboration distance D of the
requested user (refer to Fig. 1). In Section 6.2.5, we shall
relax this assumption and numerically show the effects of
deploying cache-enabled femto-cell base stations (FBSs) on
the performance by considering the content retrieval on both
D2D and cellular modes. In our study, the protocol model
in [36] is adopted for successful D2D content transmission.
According to the protocol model, the content delivery from
source user us to requesting user uq will be successful if
the following conditions hold: 1) dy_q,(t;) < D and 2)
duyu, (ti) > (1 + A)D, where dy,_q, (t;) and dy, v, (i) repre-
sent the Euclidean distances between user pairs (us, ug) and
(up, uq), respectively, at given time slot ¢;, for every user u;
that is simultaneously transmitting at the same time slot,
and A > 0 is a guard factor. We assume that the number
of users, N, in the network is sufficiently large, so that each
square cell of area D? contains at least one requesting user
with high probability (refer to [36] for more details). When
successful transmission occurs (i.e., the two conditions in
the protocol model hold), we assume that the total amount
of data transferred during one time slot is large enough to
transfer a complete content file from a sender to a receiver
(requester). Nevertheless, in a given time slot, a requesting
user can receive no more than one content file.

3 PROBLEM DEFINITION

In this section, we first define the average hit ratio as a per-

formance metric used throughout this paper. Then, we intro-
duce our problem formulation in terms of maximizing the
average hit ratio in our content-centric mobile network em-
ploying the personalized file preferences. For comparison,
we present a baseline strategy that employs the common
file preferences. Finally, we show a way to reformulate the
hit ratio maximization problems into submodular function
maximization subject to matroid constraints.

3.1 Performance Metric

The goal of our cache-enabled mobile network is to reduce
the traffic caused by the infrastructure mode in which users
retrieve their requested content through the CP, which will
be enabled either during off-peak times or when the content
is not available via D2D communications. To this end, the
performance metric of interest is the average hit ratio Hgq
at any time slot and is defined as follows [6], [14].

Definition 1 (Average hit ratio Hgy.g). Let H,, s, denote
the hit probability that a user u; € N requesting a content file
fa € F at any time slot retrieves the requested content either
from his/her own cache or from the cache of a user which falls
in a given time slot within collaboration distance D between the
requesting user u,; and another user holding the requested content
file. In this case, the average hit ratio H 4 that the content file is

successfully retrieved via D2D communications is defined as

Z Z fa|uz) Uiy far (4)

w; €N fo €F
where m = 37, <\ P(u;) is the normalization constant, which

avq

is used so that H .4 lies between 0 and 1.

We aim at solving our caching problems in terms of max-
imizing the hit ratio in (4). However, we also demonstrate
that our approach offers potential gains over the baseline
method in terms of outage capacity defined as follows.

Definition 2 (Outage Capacity A). Let O, ¢, denote the
probability that there is no user within the collaboration distance
D of user u; that is storing the content f, that the user has

requested. Then, the average outage probability Og.q is given by

Z Z PU’L fa|u7,) Wiy far (5)

" EN faeF
where m = Y7, s P(u;) is the normalization constant. Let \

avg

denote the maximum number of single-hop D2D communication
links that can be established simultaneously in each time slot.
Then, the outage capacity A is defined as

A=X(1=Oguy)- 6)

Note that the outage capacity A quantifies the maximum
number of simultaneous requests that can be successfully

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

served by local caches at mobile users over the entire
network.

3.2 Problem Formulation

In this subsection, we present our problem formulation
for the optimal cache allocation strategy that maximizes
the average hit ratio H,,, in (4) for the content-centric
mobile network employing the personalized file preferences
in Section 2.1.

Let pu, ., denote the contact probability that that users
u;,u; € N are within the communication distance D at
a time slot. Then, given three probability distributions of
the activity level P(u;) of each user, the personalized file
preference P(f,|u;) of each user, and the contact probability
Pu;u,, the average hit ratio H,,, depends solely on the
cache allocation strategy CV*¥". Among all the cache alloca-
tion strategies, the optimal one will be the one that leads to
the maximum H 4. Now, from the caching constraints in (2)
and (3), the optimal cache allocation strategy C™V*¥" for the
content-centric mobile network employing the personalized
file preferences can thus be the solution to the following
optimization problem:

[P1]51V% S>> Pui) P(falwi) [1-T[0= cuy.puPus)| (72)

ui ENfa €F u; EN
subject to
Y Cunda <5 Vu; € N, (7b)
fa€F
Cuy, fa 6{0,1}, Vu]' EN,faEf, (7c)

where c,; 7, is defined in (1). Here, the normalization con-
stant m is dropped from (7a) since it does not depend on
CN*F. The term 1 — I, epr (1 = Cuj,fuPus ;) in (7a) indi-
cates the hit probability H,, r, in (4) to retrieve the content
file f, € F via D2D single-hop communications, which thus
corresponds to the probability that the requesting user u;
comes in contact with another user u; storing the desired
content. This implies that [, (1= Cuy,fuPusu,) is the
probability of the event that there is no user storing the
content f, that user u; has requested within the distance
D. If user u; € N is holding the content requested by
the user that is within the communication distance D (i.e.,
Cu;.f, = 1), then the D2D communication can be initiated.
Intuitively, increasing D leads to an increment of the user
density within D, which yields an enhancement of H,g4.
This due to the fact that the contact probability Du;u; 0 (78),
which denotes the probability that two users u; and u; are
within the communication distance D increases with the
user density within D, thus resulting in the improvement
on the average hit ratio H,.

6
Step 1 Step 2 Step 3
Tterate for Data collection Prediction of | . ol
every period ¥ for past T - missing | o Update of model ||
Y P! time slots information parameters
with 7 slots

Parameter learning (see Section 4)

Step 5 Step 4

Decision of a
new caching
strategy

Content
placement

Caching (see Section 5)

Fig. 2: The schematic overview of our parameter learning
and content placement cycle.

Remark 1. Note that the main focus of the paper is to design
the optimal caching strategies that maximize the hit ratio. Thus,
the optimal solution to the problem (7) may not Quarantee the op-
timality in terms of other performance metrics. However, we shall
empirically validate the effectiveness of our caching framework
with respect to the outage capacity in Section 6.2.

As described in Section 2.1, the model parameters such
as user activity levels P(u;) and user file preferences
P(fq|lu;) are assumed not to change during every time
period 7 so that the caching strategy CV*F should be
iteratively determined by the CP with updated parameters
after every time period 7 during the off-peak time. Fig. 2 is
an illustration of the proposed framework composed of our
parameter learning and content placement cycle, in which
these two major tasks are repeated for every period with
T time slots. First, the CP learns (and updates) the model
parameters such as user activity levels and user file pref-
erences after predicting missing information (e.g., missing
ratings in recommender systems) of each user based on the
data collected for the past 7 time slots. Second, by using
the predicted parameters, the CP determines the caching

CN><F

strategy and initiates the content placement to fill the

cache of each user.

3.3 Baseline Strategy

In this subsection, we describe a baseline caching strat-
egy for comparison. While the focus of our study is on
analyzing the impact of personalized file preferences in a
content-centric mobile network, for our baseline, we use
the case adopted in many previous studies [8], [28], [29],
[30] where all users have the common file preferences (i.e.,
P(falui) = P(faluj) = P(fa)), where P(f,) is the proba-
bility that a file f, is requested (i.e., the file popularity).

Now, from the caching constraints in (2) and (3), the op-
timal cache allocation strategy C™ *¥" for the content-centric

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

mobile network employing the common file preferences can
thus be the solution to the following optimization problem:

(P2lmax> D P(unP(fa)(1—H<1—cuj,fapui,uj>) (82)

ui €ENfo €F ujEN
subject to
> cup <, Yu; € N, (8b)
fa€F
Cuj,fa G{Oa]-}a Vuj GN,faéf, (SC)

where p,, ., is the contact probability that two users
u;,uj € N are within the communication distance D and
Cu,,f, is defined in (1).

In practice, since users have different content file pref-
erences, incorporating the knowledge of personalized file
preferences into the cache allocation problem is expected
to bring a substantial performance gain. This implies that
content placement according to the caching strategy via the
solution to the optimization problem in (8) will not perform
better than the one obtained by solving the optimization
problem in (7), which will be empirically demonstrated in
Section 6.

3.4 Problem Reformulation Using Submodular Proper-
ties

In this subsection, we show that each of the optimization
problems in (7) and (8) can be formulated as optimization
(i.e., maximization) of a submodular function subject to
matroid constraints. Since the problems in (7) and (8) are
NP-hard [6] and thus solving them for large system param-
eters such as N and F' may not be tractable, a common
way to solve these problems is the use of computationally
efficient greedy algorithms. The computational efficiency
comes at the cost of performance degradation. In this con-
text, the problem reformulation enables us to obtain an
approximate solution within provable gaps from greedy
algorithms. Implementation details of greedy algorithms
and the corresponding level of approximation that they can
achieve compared to the optimal solution will be specified
in Section 5.

First, we begin with formulating an equivalent optimiza-
tion problem in (7) similarly as in [6]. Let W = N x F denote
a ground set, where (u;, f,) € W represents the configura-
tion that user u; € N caches file f, € F and the ground
set W contains all possible configurations of file placement.
Then, we aim to find the subset of YV that maximizes the
average hit ratio H,,, under the constraint (2). We define a
discrete set function G : 2"Y — R on subsets V of the ground

set WV as follows:

G(V)él Zp(uz)P(fauz)(H(l pu,:,uj)) » 9)
(uisfa)EV (uj,fa)EVAWa)
where We) = {(u;, f,) : u; € N'} indicates the possible
placement configuration for content file f, and G(V) is a
discrete set function, which gives us the average hit ratio for
given subsets V (i.e., the caching strategy) of the ground set
W, when personalized file preferences P(f,|u;) of users are
available . Then, from (9), we are capable of establishing the
following equivalent optimization problem to the original

one in (7):
P 1
[P3] max G(V) (10a)
subject to
|VﬂW(ui)| <S5 YVe T, u €N, (10b)

where 7 € 2" is a family of feasible sets that satisfies the
cache size constraint (10b) and W,y = {(ui, fa) : fo € F}
indicates the possible cache placement configuration for
user u;’s cache. Note that each user’s cache size constraint
in (10b) is a matroid constraint corresponding to (2). We are
now ready to show the following submodular property.

Lemma 1. The function G(V) in (9) is a monotone non-
decreasing submodular function as adding one more configuration
to given configuration subsets (i.e., (u;, fo) U V) leads to an
increment of G(V).

Proof. The proof essentially follows the same steps as those
in [6, Lemma 1] by just replacing 1/M (i.e., the term assum-
ing the same activity level for all users) by the probability
P(u;) with which a user u; generates a request (i.e., hetero-
geneous activity levels of users). O

Next, we move on to the baseline strategy where all
users have the common file preferences (i.e., P(fq|u;) =
P(falu;) = P(fa)). According to the above problem refor-
mulation argument, the following equivalent optimization
problem to the original one in (8) can be established:

[P4] max G(V) (11a)
veJ
subject to
VO Wy <8 YWe J,u €N, (11b)

where G(V) for the baseline strategy is given by

[JI¢ —pui’uj)> . (12)

(uj,fa)EVNW(fa)

GV 213 P(unP(fa)(
(ui,fa)EV

Lemma 2. The function G(V) in (12) is a monotone non-

decreasing submodular function as adding one more configuration

to given configuration subsets (i.e., (u;, fo) U V) leads to an

increment of G(V).

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

We shall design caching algorithms based on greedy
approaches in terms of maximizing a submodular function
subject to the matroid constraints in Section 5.

4 PARAMETER LEARNING

Thus far, we have characterized the caching optimization
problems in Section 3 under the assumption that the key
model parameters such as activity levels P(u;), file prefer-
ences P(f,|u;), and file popularity P(f,) are available. In
this section, we focus on the parameter learning phase of
the iterative cycle illustrated in Fig. 2 in order to completely
solve the caching optimization problems in Section 3. We
describe a method to learn these three parameters based on
the user rating behaviors, i.e., the rating matrix containing
the ratings of N users to F' content files (items). We first
present a CF-based inference approach to predicting missing
ratings for acquiring a complete rating matrix, denoted by
RY*F | from the fact that users tend to give ratings to only
few items. We then show how to compute three parameters
using the complete rating matrix. Note that since there is a
little understanding of how to apply such rating prediction
to wireless systems including cache-enabled networks, we
adopt a simple CF-based approach in our study (rather than
more sophisticated inference methods), which is sufficient to
guarantee satisfactory performance improvement over the
baseline strategy (refer to Section 6.2).

4.1 Predicting Missing Ratings

Collaborative filtering (CF) is one of prevalent techniques
widely used in recommender systems mostly to predict
ratings of unrated items or to suggest the most favorable
top-N items for a user by analyzing users’ past behaviors on
items. In CF, user behaviors are presented along with ratings
(explicit) or clicks (implicit) on content files. In our study,
we focus on predicting the missing ratings using the user—
item rating matrix based on the explicit feedback and each
rating reflects a user preference for a certain item. The CF-
based inference is built based upon the basic assumptions
that (i) two users tend to have similar behavior patterns
in the future when the two users share similar behavior
patterns in the past; and (ii) the user behavior patterns are
consistent over time. The CF-based techniques are generally
classified into memory-based approaches including user-
based CF [31] and item-based CF [32] and model-based
approaches such as singular value decomposition (SVD)-
based CF [33] and autoencoder-based CF [34]. In CF, the
missing ratings are predicted to obtain the complete rating
matrix RY*¥ containing the ratings of N users to F files
(items).

8

In our study, for ease of explanation with intuition,
we adopt the memory-based CF approaches that perform
predictions based on the similarity among users or items
[31], [32].2 There exist two memory-based CF techniques:
user-based CF [31] and item-based CF [32].

In user-based CF, the missing rating r o of user ux €
N for content file f, € F is predicted using the ratings
given by the users similar to the target user u, € N, and
the similarity between the users is measured by referring
to their ratings to other items. Let U, o be the set of users
who have rated content file f, € F and has similar rating
behaviors to the target user u; € N. Then, the predicted
rating 7, o of user u;, € N to content file f, € F is given by
Yictty.. Whii(Tia — i)

Zieuk,u Wi i
where 7; , denotes the rating given by user u; € N to file
fa € F, b q denotes the biased rating value for u; € N to
file f, € F, and wy, ; denotes the similarity weight between

’Fk,a = bk,a +) (13)

users uy, u; € N.

In item-based CF, the missing rating ry, , of user ux € N’
for the target content file f, € F is predicted using the
ratings to the items similar to the target item f, € F, and
the similarity between the items is measured by referring to
the ratings given by users. Let Z, j, be the set of items that
have been rated by user u;, € N and have similar rating
behaviors to the target file f, € F. Then, the predicted
rating 7, o of user u;, € N to content file f, € F is given by
EjeIa‘k Wa,j(Tk,j — bk,5)

> JE€Ta Wa,j
where w, ; is the similarity weight between the content files

f as f j € F.
For the user-based CF approach, the steps to predict each

fk,a = bk,a +) (14)

missing rating to a content file f, € F by user u; € N are
summarized below:

1) First, we measure the similarity between users (files
in case of item-based CF) using the available rating
values. The popular similarity measures include the
Pearson correlation, cosine similarity, and Euclidean
distance. As an example, the similarity wy, ; between
two users ux, u; € N using the Pearson correlation
is given by

w ZJEJ;“ (rk7j - ’Fk:) . (’ri,j _ Ti)
kg — = i
\/Zjej]w (Tk,j B rk)Q ' ZjEJk,i(Ti»j - Ti)z

(15)

where [}, ; is the set of items that have been rated

by both users ug,u; € N and 7, is the mean value
of the ratings given by user uj € N.
2. Since our parameter learning framework is CF-agnostic, model-

based approaches and deep-learning approaches can also be adopted
with a slight modification.

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

2) Next, we use the similarity values to identify the
most similar users (ie., Uy,) to the target user
uy, € N (the most similar files (i.e., Z, ;) to the target
file f, € F in case of item-based CF), where either
the top K users (files in case of item-based CF) or
only the users (files in case of item-based CF) whose
similarities are larger than a pre-defined threshold
are taken into account.

3) Finally, we calculate the missing rating of user u; €
N for the content file f, € F using (13) ((14) in case
of item-based CF).

To further improve the prediction accuracy, it is also
possible to apply both matrix factorization techniques such
as SVD-based CF [33] to learn the hidden user patterns
based on the observed ratings and recently emerging deep
learning techniques such as autoencoder-based CF [34] into
our prediction framework. In the next subsection, we ex-
plain how to calculate the model parameters based on the
complete rating matrix RY*¥".

4.2 Parameter Calculation

In this section, we calculate user activity levels P(uy), user

file preferences P(fq|uy), and file popularity P(f,) using
the rating matrix RY*¥ collected in 7 time slots. Let Tk,a
denote the rating given by user u;, € N to file f, € F
and also nj denote the total number of ratings given (not
predicted) by user u; € N. Suppose that each user gives
ratings to all the content files that he/she requests, which
implies that ny, the number of ratings given by user uy, is
identical to the number of requests generated by the user.
Then, the user activity level P(uy) can be expressed as

Pluy) = %’f

In addition, the file preferences P(f,|ux) of each user and

(16)

the file popularity P(f,) are given by
Tk,a

P(falur) = —— 17)
i i
and
lecvﬂ Tk,a
P(fo)= =7 > (18)
Zi\le Zf:l Tk,
respectively.

Fig. 3 illustrates the parameter learning procedure. Con-
sider an example of N = F' = T = 4 as shown in Fig. 3.
We start with the observed 4 x 4 rating matrix containing
the missing ratings and let the matrix pass through one
of CF algorithms for predicting the missing ratings. The
output of the CF algorithm is a complete rating matrix R***.
Then, user activity levels can be calculated from (16). For
example, the probability that user u; generates a request
is P(u1) = 0.25 as the total number of ratings given (not
predicted) by user u; in 4 time slots is n; = 1. Next, user

Output: Complete

. . L NxXF User activity level
Rating matrix R,

[us |

N [[ui [us [ug
P(ug) in (16) T P(w) | 0.25 | 05| 0.75 | 05 |

ol [| f
u | 12| 07 205
u; |18 32| 1 .)
w4 4 5 | 3 User file preferences
ug | 25 35| 2 Nl fe | f3 | [
Pl | 52
Lt P(falur) in (17) | gl P(fulua) | FE[E 2211
Pfalus) [35 | 16 | 76 | 16
Pllaud) [|5 [B 1
Input: Observed
N x F rating matrix File popularity
Nl flfs]h Lyl P(fa) in (18) _»] [Cl [{57 [sz; [{41 |
Uy 5] [P | BT HE 5[E]
Ug 2 1
ug 4 5 3
Uy ‘ 4 2

Fig. 3: Block diagram of parameter learning with an example
of T=N=F=4.

file preferences can be calculated from (17). For example,
the probability that user us prefers file fy at the moment
of requesting the content is P(fz|uz) = 2/8 as the rating
given by user us to file fy is 722 = 2 and the sum of all
the ratings of user uy to all files is Z?Zl ro,; = 8. Lastly,
the file popularity can be calculated from (18). For example,
the probability that file f, is preferred at the moment of
11/45 as the sum of
ratings given by all users to file f; is > 5_, 754 = 11 and

requesting the content is P(f4) =

the sum of all the ratings given by all users to all four files
i 3 5oy iy Thyi = 45.

Remark 2. Let us discuss the difference between our study
and [14] in terms of the basic definitions in (16)—(18). In [14], the
activity level of user wy, € N is given by the ratio of the number of
requests generated by wy, to the total number of requests generated
by all the users (ie., P(uy) = ZN
we measure how frequently each user has been active with content

) whereas in our study,

requests, where the activity level of one user is independent of
other users’ activities. Additionally, in [14], user file preferences
P(fo|lur) and file popularity P(f,) are given by Z”’”k
1 Mk,i
and i s S
cumulative nimber of requests from ux, € N to content file

respectively, where ny o, > 0 is the

fo € F. On the other hand, in our study, we utilize the user
ratings as a metric to learn the above model parameters instead of
using the number of times that each user accesses a file. Although
the frequency of accessing a file may reflect user file preferences,
it is true only such types of content files that tend to be accessed
repeatedly such as music videos. This assumption may not hold
for other types of content files which do not need to be accessed
more than once as a user tends to watch them only once. In this
context, the user rating history would be proper for both types of
content objects stated above and can reflect a better understanding
of each user behavior.

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

5 CACHING ALGORITHMS

In this section, we present the implementation details of
several caching algorithms to solve the problems in Section 3
by focusing on the content placement phase of the iterative
cycle illustrated in Fig. 2. We also analyze the computa-
tional complexity for each algorithm while showing the
corresponding level of the approximation that our greedy
approach can achieve compared to the optimal solution. We
first show an approach via exhaustive search to obtaining
the optimal solution to the problems in (10) and (11). More-
over, we present two computationally efficient heuristic
algorithms at the cost of slight performance degradation
compared to the optimal approach.

5.1 Optimal Approach

This subsection deals with an exhaustive search method
over all feasible caching strategies to obtain the optimal
caching strategy by solving the problems in (10) and (11),
which is summarized in the Optimal Algorithm. For given
input parameters such as the activity levels P(u;), the user
file preferences P(f,|u;) (the file popularity P(f,) for the
baseline strategy), and the contact probability py, ., the
algorithm starts with an empty set V, representing the
optimal caching strategy, and zero cost (i.e., hit ratio). The
algorithm runs for |J| iterations, where J is a family of
feasible subsets (i.e, caching strategies) that satisfies the
storage capacity constraint (10b) and |J| = O(2NF). At
each iteration, the hit ratio G(V) of a feasible subset V € J
is computed according to (9) ((12) for the baseline strategy)
and the subset V € J with the maximum hit ratio G(V) is
selected as an optimal caching strategy V.

Next, we turn to analyzing the computational complex-
ity of the Optimal Algorithm.

Remark 3. The time complexity of the Optimal Algorithm is
O(NF2NEY as the algorithm runs for O(2NF) iterations (ie.,
the total number of subsets representing all the possible configu-
rations that user w; caches file fo for V.u; € N and f, € F is
2NF). In each iteration, the evaluation of G(V) takes NF basic
operations according to (9) ((12) for the baseline strategy). This
finally gives us the time complexity of O(NF2N),

The high complexity of this algorithm makes it impossi-
ble to find the optimal solution within polynomial time even
for small system parameters such as N, F, and S. To over-
come this issue, we would like to introduce computationally
efficient algorithms in the next subsection.

5.2 Computationally Efficient Approaches

In this subsection, we present two types of efficient algo-
rithms along with analysis of their computational complex-
ities.

10
Optimal Algorithm
Input: P(u;), P(fa|u;), P(fa), and py, u,,V u; €N, fa €F
Output: V

Initialization: V < (); cost + 0
01: foreach V € J do

02: Calculate G(V)

03: if cost < G(V) then

04 V<V

05: cost < G(V)
06: end if

07: end for

Greedy Algorithm (G1 Algorithm)

Input: P(u;), P(fa|u;), P(fo), and py, u,, Vu; €N, fo €F
Output: V

Initialization: V < (; 7, + F,Vu; e N ;U + N

01: for k from 1 to S x N do

02: [u;, fa¢—arg maxy, cu, f,e7, (G(V U (ui, fa))-G(V))
03: V< VU (u fa)

04 Fo — Fu M

05: if].7:“] = F — S then

06: U+ Z/{\u;
07: end if
08: end for
5.2.1 Greedy Algorithm (G1 Algorithm)

We first present a greedy approach, which is summarized
in the G1 Algorithm. For given input parameters P(u;),
P(faluj), P(fa), and py, u,, the algorithm starts by initially
setting V, F,,, and U to 0, F, N, respectively, where F,,
denotes the set of content files not cached by user u; € N
and U denotes the set of users with residual cache space.
Given the system parameters N, F, and S, the algorithm
runs for SN iterations. In each iteration, one feasible ele-
ment (u;, f,) ¢ V that satisfies the storage capacity con-
straint (10b) is added and the highest marginal increase in
the hit ratio is offered if added to the set V.

Now, we analyze the performance gap between the G1
Algorithm and the Optimal Algorithm in Section 5.1 as
follows.

Proposition 1. The caching strateqy obtained from the G1
Algorithm achieves the hit ratio within the factor of & of the
optimum.

Proof. The proof technique basically lies in the similar steps
to those established in [9] since the G1 Algorithm is de-
signed based on the reformulated problem using submodu-
lar properties. O

Next, we turn to analyzing the computational complex-
ity of the G1 Algorithm.

Remark 4. The time complexity of G1 Algorithm is O(SN3F?)
as the algorithm runs for SN iterations (refer to lines 1-
8). Each iteration involves evaluating the marginal value (i.e.,

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

G (VU (us, fa)) — G(V) in line 2) of at most N F elements, that
is, the number of unassigned elements (u;, f,) in each iteration
is given by >, <y |Fu,l, and each evaluation of G(V) takes
NF basic operations. This finally gives us the time complexity
of O(SN(NF)NF) = O(SN3F?).

Remark 5. Note that there exist algorithms that can perform
better than the G1 Algorithm at the cost of higher time complexity.
In [37], a greedy algorithm was designed in such a way that maxi-
mizes a general monotone submodular function subject to matroid
constraints, while guaranteeing an approximate solution within
the factor of 1 — L of the optimum. The approximate solution is
briefly described according to the following two steps. First, the
combinatorial integer programming problem is replaced with a
continuous problem by relaxing the integer value constraint, and
then the solution to the continuous problem is found. Second, the
pipage rounding method is applied to the solution to the contin-
uous problem to obtain a feasible approximate solution. Although
this algorithm guarantees a better approximate solution within
the factor of 1 — 1 compared to the G1 Algorithm, this comes at
the cost of high computational complexity as the time complexity
of this algorithm is O((NF)®). The high time complexity of this
algorithm makes it impractical for large-scale mobile networks.

Since the complexity of the G1 Algorithm may be still
high for large system parameters N, F', and S, we shall
seek a possibility to further reduce the complexity with
acceptable performance degradation. To this end, we design
a faster heuristic algorithm that has almost comparable per-
formance to that of the G1 Algorithm in the next subsection.

5.2.2 Greedy-Like Algorithm (G2 Algorithm)

We introduce a more computationally efficient approach de-
signed in a greedy-like manner, which is summarized in the
G2 Algorithm. For given input parameters P(u;), P(fa|u;),
P(fa), Pu;u;, and the number of iterations, denoted by
[, the algorithm starts by initially setting V , F,, and U
to {Ay, UA, U---UA,}, F\ A, and 0, respectively,
where A, is the set of S most preferred content files for
user u; € N, F,, denotes the set of content files not cached
by user u; € N, and U denotes the set of users with residual
cache space. Given the system parameters N, F, and S, the
algorithm runs for [iterations, each of which is divided into
two parts. The first part runs N times, where at each time,
an element (u;, f,) € V is removed from the set V that offers
the lowest marginal decrease in the hit ratio if removed from
the set V. Then, the second part runs N times, where at
each time, one feasible element (u;, f,) ¢ V that satisfies the
storage capacity constraint (10b) is added and the highest
marginal increase in the hit ratio is offered if added to the
set V.

11

Greedy-Like Algorithm (G2 Algorithm)

Input: [, P(u;), P(falu;),P(fo), and pu, u,,Vu; EN, fa €F

Output: V

Initialization: V < {A,, UA,, U---U Ay, }; U < ;
Fu,]:\.Au“ Vu e N

01: for k from 1 to [do

02: for j from 1to N do

03: [u;, falarg ming, f,)ev (G(V) — GO\(us, £.)))

04: V<« V\(UZ7 fd)

05: .Fu7 — .7‘-“7 U fa

06: if | F,.| > F — S andu; ¢ U then

07: U+~ UUu;

08: end if

09: end for

10: for g from 1 to N do

11: [u;, f@]earg maXy, e, fo EFu, (G(V U (ui, fa)) -

12: YV« VU(U;,f@)

13: .Fu7 — fu;\fa

14: if |.7-'u| = ' — S then

15: U+ Z/{\u;

a»)

16: end if
17: end for
18: end for

Next, let us analyze the computational complexity of the
G2 Algorithm.

Remark 6. The complexity of the G2 Algorithm is O(N3F?)
as the algorithm runs for 1 iterations (refer to lines 1-8). The
first part of each iteration involves evaluating the marginal value
(ie., G(V)— GV\(us, fa)) in line 3) of SN elements N times.
The second part of each iteration involves evaluating the marginal
value (i.e., G(V U (u;, fo)) — G(V) in line 11) of at most NF
elements, that is, 3, 1/ |Fu;|, IN times. Since each evaluation
of G(V) takes N F basic operations, this finally gives us the time
complexity of O(INF(SN? + N2F)) = O(N3F?). The G2
Algorithm is computationally faster than the G1 Algorithm as
is just a constant that does not scale with other system parameters.

5.2.3 Comparison With the Prior Work in [1]

In this subsection, we compare our caching method with
the so-called FemtoCaching system in [1]. Our study basically
follows the same arguments as those in [1] in the sense
of formulating a problem as the maximization of a sub-
modular function and designing a greedy algorithm with
an approximate solution within a provable gap. However,
there are fundamental differences between two, which are
summarized as follows.

e Network model: Femto-cell static network and D2D
mobile network models are adopted in [1] and our
study, respectively. Moreover, a fixed network topol-
ogy was assumed in [1] by using a single instance
of connectivity of helpers and users, while dynamic
network topologies are assumed exploiting the statis-

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

tics (.e.g., the contact probability) of mobile users’
connectivity under the protocol model in our study.

o Caching model: Content files are assumed to be
cached at static helper nodes (i.e., dedicated small-
cell base stations) and at cache-enabled mobile users
in [1] and our work, respectively.

o Performance metric: The average per-bit download-
ing delay was used in [1], whereas the average hit
ratio and outage capacity are adopted in our study.

e Model parameters: In [1], analysis was conducted
based on the uniform user activity levels (i.e., the
case where users are always requesting content files)
and the common file popularity. In contrast, in our
study, a heterogeneous activity level of each user is
employed from the fact that it is necessary to distin-
guish high and low activity users in order to design
an effective caching strategy due to the limited cache
size at each mobile user; and the personalized file
preferences are employed along with their inference
using the CF-based approach.

6 EXPERIMENTAL EVALUATION

In this section, we perform data-intensive simulations with
finite system parameters N, F, S, and D for obtaining
numerical solutions to the optimization problems in (10) and
(11). We compare the results of the proposed caching strate-
gies in Section 3.2 with the baseline strategies in Section 3.3
to analyze the impact of personalized file preferences in our
content-centric mobile network. We first elaborate on our
experimental setup including the real-world dataset and
network settings. Then, we present the numerical results
according to various system parameters.

6.1 Experimental Setup

6.1.1 Dataset and Pre-Filtering

We use MovieLens 1M? for our experiments, which is one of

publicly available real-world datasets for evaluating movie
recommender systems [31], [32], [33], [38]. The dataset
includes 3,952 items (movies), 6,040 users, and 1,000,209
ratings, where the ratings take integer values ranging from
1 (i.e., the worst) to 5 (i.e., the best).

Note that the sparsity (i.e., the ratio of the number of
missing cells in a matrix to the total number of cells) of
the 6,040 x 3,952 rating matrix obtained from the original
dataset is 95.8%, which is very high and often causes perfor-
mance degradation. To resolve the sparsity issue, there have
been a variety of studies (see [38], [39], [40] and references

3. http://grouplens.org/datasets/movielens.

12
TABLE 2: Statistics of original and pre-filtered datasets

Original dataset Pre-filtered

(MovieLens 1M) dataset
Number of users 6,040 333
Number of items 3,952 261
Total number of cells 23,870,080 86,913
Number of missing cells 22,869,871 39,541
Sparsity 95.8% 45.5%

therein). One popular solution to the data sparsity problem
is the use of data imputation [38], [39], [40]. The zero injection
method was proposed in [38] by defining the pre-use pref-
erence as judgment of each user on items before using or
purchasing them. Due to the belief that uninteresting items
corresponding to the ones having low ranks of inferred pre-
use preference scores would not satisfy the belonging users
even if recommended, zeros are given to all of the unin-
teresting items in a rating matrix. Meanwhile, the pureSVD
method [39] and the allRank method [40] that assign zeros
and twos, respectively, to all missing cells in a rating matrix
were introduced. Even if such data imputation techniques
are known to significantly improve the prediction accuracy,
we do not employ them in our experiments since solving
the data sparsity problem is not our primary focus.

As an alternative, we use a naive pre-filtering method to
obtain a less sparse dataset before applying the CF-based
rating prediction approach since our main focus is not on
improving the performance of recommender systems. Our
pre-filtering method is given below:

1) First, among 6,040 users, we select users who have
rated at least 400 items (i.e., movies) out of 3,952
items. This gives us a reduced 333 x 3,952 rating
matrix.

2) From the reduced dataset, we select only the items
that have been rated by at least 180 users. This
finally gives us a 333 x 261 rating matrix with
sparsity of 45.5%.

The statistics for the original and pre-filtered datasets
are summarized in Table 2. We then predict all the missing
ratings in the pre-filtered rating matrix via the CF-based
approach. In our experiments, we randomly select IV users
and F' items out of 333 users and 261 items, respectively, in
the pre-filtered rating matrix. We use the Pearson correlation
in (15) to evaluate the similarity.

6.1.2 Network Setup

Now, let us turn to describing our network setup for ex-
periments. We assume that each user moves independently
according to the random walk mobility model [8], [28] in a
square torus network of unit area. In the mobility model,

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

the position z(t) of a user at time slot ¢ is updated by
x(t) = x(t — 1) 4+ y, where y, is a sequence of independent
and identically distributed (i.i.d.) random variables that
represent a user’s flight vector. In order to calculate the
contact probability py, ., in our experiments, we create a
synthetic mobility trajectory database of N users for T time
slots according to the following steps:

e Att =1, N users are distributed independently and
uniformly on a square network, which is divided into
sy smaller square cells of equal size.

e Thenatt > 1, each user moves independently in any
direction from its current location with a flight length
uniformly and randomly selected from 0 to the size
of each square cell, ;-

As addressed in Section 2.2, a requesting user can success-
fully retrieve its desired content from his/her own cache or
by communicating directly to other mobile users within the
collaboration distance D. For given D, using the mobility
trajectory database, it is possible to calculate the average
contact probability p,, ., at each time slot as the ratio of the
time slots when two users u; and u; are within the distance
D to the total number of time slots, 7.

6.1.3 Setup of System Parameters

In order to analyze the impact of each system parameter on

the performance of our proposed strategy, we first perform
four types of experiments while evaluating the average hit
ratio H,,4 according to different values of 1) the cache size
S, 2) the number of users, N, 3) the library size F, and
4) the collaboration distance D. Next, to investigate the
effects of predicted ratings on the hit ratio performance,
we conduct another experiment while showing H,,, versus
the masking percentage of the total given ratings. Finally,
we have demonstrated that the proposed strategy is also
effective with respect to the outage capacity A by evaluating
A according to the collaboration distance D.

6.2 Numerical Results

In this section, we perform numerical evaluation via inten-
sive computer simulations using the pre-filtered MovieLens
dataset. We evaluate the hit ratio for the following five
algorithms: the optimal algorithm via exhaustive search
(Opt-P1), the G1 algorithm for solving (10) (G1-P3), the
G2 algorithm for solving (10) (G2-P3), the G1 algorithm for
solving (11) (G1-P4), and the G2 algorithm for solving (11)
(G2-P4). In our experiments, the user-based CF technique
is adopted as one of CF-based prediction approaches, but
other CF techniques such as item-based CF and model-
based approaches (e.g., SVD and autoencoder-based CF
methods) can also be applied for predicting the ratings. The
number of square cells is set to s = 40,000 for simplicity.

13

Average hit ratio Hy,,

1 15 25 3 35 4

2
Cache size S

Fig. 4: The average hit ratio H,,4 versus the cache size 5,
where algorithms Opt-P1, G1-P3, and G2-P3 are compared.

6.2.1 Comparison Between the Optimal and Greedy Ap-
proaches

In Fig. 4, we first show how the average hit ratio Hgyg
behaves according to different values of the cache size S to
see how close performance of our two greedy algorithms
G1-P3 and G2-P3 is to that of the optimal one Opt-P1,
where N = I =
small values for system parameters N and I are chosen

5 and D = 0.1. In this experiment,

due to the extremely high complexity of Opt-P1 as 2%°
searches over the cache placement are necessary even with
N = F = 5. In Fig. 4, it is obvious that the hit ratio
grows monotonically with increasing S since the contact
probability becomes higher with increasing S. More inter-
estingly, since the performance of G1-P3 and G2-P3 is quite
comparable to that of Opt-P1, using our scalable greedy
strategies can be a good alternative in large-scale mobile
networks. In the subsequent experiments, we evaluate the
performance of our four greedy algorithms in Section 5 and

perform a comparative analysis among them.

6.2.2 Comparison Between the Proposed and Baseline Ap-
proaches

In Fig. 5a, the average hit ratio H,,4 versus the cache size
is illustrated to see how much caching strategies employing
the personalized file preferences are beneficial over the case
with the common file preferences, where N = 30, F' = 200,
and D = 0.05. As expected, H,,4 is enhanced with increas-
ing S. We can observe that knowledge on the personalized
file preferences brings a significant gain compared to the
baseline strategy in which all users have the common file
preferences (i.e., P(f,) = P(fa|ui) = P(fa|u;)). The perfor-
mance difference between two caching strategies becomes
significant for a higher value of S' as depicted in the figure.

In Fig. 5b, we illustrate the average hit ratio H,,q
according to different values of the number of users, N,
where S = 10, F = 50, and D = 0.1. It is observed
that the proposed strategy (G1-P3 and G2-P3) consistently
outperforms its counterpart scheme employing the common
file preferences (G1-P4 and G2-P4). Another interesting

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

Average hit ratio Hy,

Average hit ratio He,g
/ i
G

Average hit ratio H,,,

0 20 a0 4 s e 70 20 4 6 80 10 120 140
Cache size S Number of users N

(a) Cache size S (b) Number of users, N

Average hit ratio Hy,,
Average hit ratio H,,

1
20 40 60 8 100 120 140 160 180 0.05 02 0.25 03

Library size F' Ci ollﬂhonhon Distance D

(c) Library size F' (d) Collaboration distance D

Fig. 5: The average hit ratio H,,, according to system
parameters, where algorithms G1-P3, G2-P3, G1-P4, and
G2-P4 are compared.

observation is that the performance gap between the two
caching strategies tends to be reduced with increasing N
as depicted in the figure. This is because an increment of
N not only increases the overall storage capacity of the
network but also the chance of finding a source user within
D increases by virtue of an increased user density within
the D.

In Fig. 5¢, the average hit ratio H,,4 versus the content
library size F' is illustrated, where S = 15, N = 30,and D =
0.1. As expected, H,,, decreases with increasing F' since
the storage capacity of the network does not increase with
F. We also observe that the performance difference between
the two caching strategies employing the personalized file
preferences and the common file preferences is significant
for almost all values of F'.

In Fig. 5d, the average hit ratio H,,4 versus the collabo-
ration distance D is illustrated, where S = 20, F' = 70, and
N = 50. It is seen that the performance difference between
the two caching strategies is noticeable especially for small
values of D as depicted in the figure. This is due to the fact
that increasing D leads to an increment of the user density
within D, which can raise the chance such that a requesting
user can interact with more users to retrieve their content—
the contact probability p,, ., that two users u; and u; are
within the communication distance D increases with the
user density within D, thus resulting in the enhancement
on the average hit ratio H,,4. Intuitively, when D is higher,
since a user is capable of interacting with more users, the
performance difference between the two caching strategies
becomes diminished as depicted in Fig. 5d. Thus, increas-

14

L G1-P3 (No masking)
—=—G1-P3 (Masking)

G1-P4 (No masking)
09 -e--G1-P4 (Masking)

5 10 15 20 25 30 35 40 45 50

Masking percentage M (%)

Fig. 6: The average hit ratio H,,, versus the masking per-
centage M (%), where four cases G1-P3 (No masking), G1-
P3 (Masking), G1-P4 (No masking), and G1-P4 (Masking)
are compared.

ing D eventually leads to the case where the performance
of both caching strategies approaches the upper bound
Hgypg = 1.0.

From Fig. 5, we conclude that the caching strategies
employing the personalized file preferences performs sig-
nificantly better than the baseline caching strategies. We
also observe that the performance of the G2 algorithm is
quite comparable to or slightly lower than that of the G1
algorithm, whereas the complexity of the G2 algorithm can
further be reduced (see Remarks 4 and 6).

6.2.3 The Effects of Predicted Ratings

Furthermore, it is worthwhile to examine the effects of pre-
dicted ratings on the hit ratio H,,4. To this end, we generate
another rating matrix based on the pre-filtered 333 x 261
rating matrix (namely, the non-masked rating matrix) as
follows. Another pre-filtered rating matrix (the masked rating
matrix) is obtained by randomly masking M % of the total
given ratings in the original pre-filtered rating matrix. For
example, when M = 10%, the sparsity of the masked
333 x 261 rating matrix becomes 50.9%. We then predict
all the missing ratings in both non-masked and masked pre-
filtered rating matrices via CF, where the case using the non-
masked rating matrix provides an upper bound on the hit
ratio performance. The rest of environmental settings is the
same as those in Section 6.1.1.

In Fig. 6, the average hit ratio H,,, versus the masking
percentage M (%) is illustrated, where S = 20, F' = 80,
N =60, and D = 0.1. From this figure, the following obser-
vations are found: the performance of G1-P3 (Masking) and
G1-P4 (Masking) (i.e., caching based on the masked rating
matrix) is degraded with increasing M; G1-P3 (Masking) is
still quite superior to G1-P4 (No masking) (i.e., its counter-
part scheme based on the non-masked rating matrix); and
the performance gap between G1-P4 (No masking) and G1-
P4 (Masking) (the case with the common file preferences)
is negligible. The last observation comes from the fact that

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

80

0 0.05 0.1 0.15 02 025 0.3 -
Collaboration Distance D

Fig. 7: The trade-off between A (right) and 1 — Og,q (left)
according to the collaboration distance D, where algorithms
G1-P3 and G1-P4 are compared.

8

-—-G1-P3
G2-P3
G1-P4

—~-G2-P4

8

s
&

Outage Capacity A

8

0.05 0.1 0.15 0.2 0.25 0.3
Collaboration Distance D

Fig. 8: The outage capacity A versus the collaboration dis-
tance D, where algorithms G1-P3, G2-P3, G1-P4, and G2-P4
are compared.

the file popularity in (18) is calculated by summing up the
predicted ratings for a file f, € F over all N users and thus
prediction errors are averaged out.

As addressed before, we are capable of further im-
proving the prediction accuracy by using not only more
sophisticated CF but also data imputation techniques. Such
approaches enable us to greatly enhance the hit ratio perfor-
mance of the caching strategies based on the masked rating
matrix (i.e., G1-P3 (Masking) and G1-P4 (Masking)).

6.2.4 Evaluation in terms of the Outage Capacity

Let us turn to evaluating the performance on the outage ca-
pacity A by numerically showing that our caching strategy
employing the personalized file preferences offers substan-
tial gains over the case with the common file preferences.
In Fig. 7, we illustrate the trade-off between X in (6) and
1 — Oguyg in (6) according to the collaboration distance D for
S =20, F = 70, and N = 150, where) is the maximum
number of simultaneous single-hop D2D communication
links in each time slot and Og4 is the average outage
probability. From the figure, it is found that increasing D
leads to an increment of the term 1 — O,y due to the
increased user density within D, but reduces the term X due
to less D2D communications links over the network.
Furthermore, it is worth noting that the collaboration
distance D should be decided carefully depending on the
performance metric; if we aim at maximizing the average hit
ratio Hg,g, then D should be as large as possible as depicted

15

in Fig. 5d, but this setting leads to a small), thus resulting
in the reduction on the outage capacity A. To numerically
find the optimal D* in terms of A, in Fig. 8, we illustrate
the outage capacity A versus the collaboration distance D,
where S = 20, F' = 70, and N = 150. From the figure, the
following insightful observations are made: 1) the proposed
strategy (G1-P3 and G2-P3) consistently outperforms its
counterpart scheme (G1-P4 and G2-P4); 2) the optimal D* is
found at D = 0.1 for two different caching strategies; and 3)
the performance difference between two caching strategies
is significant especially for small values of D.

6.2.5 Extension to a Mobile Hybrid Network

We extend our caching strategy to a mobile hybrid network
consisting of L static femto-cell base stations (FBSs), denoted
by the set £ = {i1,l2,-
FBS I; € L is assumed to be equipped with a local cache

-,1r}, and N mobile users. Each

of the same finite storage capacity Srps, where Spps > S
due to a physically larger storage size at each FBS. As in [41],
the network area is divided into L square cells of equal
size, each of which has one FBS placed in the center of the
belonging cell. During the content placement process, each
FBS I; € L stores the content files according to a caching
vector Cli = [Cli,fl yCli far " 7Cli7fF]’ where Cly. f; is 1 if the
FBS I; caches file f; and 0 otherwise. In order to have a
. ;ClL]
for FBSs, cﬁgg should satisfy Z‘fje]: c.f < Srps and
a,,r;, €10,1}, Vl; € L, f; € F. In the delivery phase, each
user retrieves the requested content file either from his/her

feasible cache allocation strategy C ,%gg =[C;,; Cry; -

own cache or via single-hop communications from one of
the mobile users or static FBSs storing the requested content
file in their caches within the collaboration distance D of the
requested user. In the mobile hybrid network, we present
two caching strategies as follows.

« A naive strategy: Each FBS [; € N stores the Spps
most popular content files based on the inferred
file popularity P(f,). Then, each element ¢, y, of a
feasible cache allocation strategy Cr 5% is given by

1 fiG./_'.l

0 otherwise,

(19)

Cly.fi =
where F; C F is the set of the Spps most popular
content files. The caching strategy for mobile users
is designed by solving the Problem [P3] without the
knowledge of the cached content at FBSs.

e A joint optimization strategy: We aim at show-

ing a joint cache allocation strategy C(L+N)*F —

[CLXF.CNXF}

B by solving the following optimization

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

9
o
o
a

£ 06f-J-G1-P5 g --J-G1-P5 L
T s5(- J-G2-P5 T o5 J-G2-P5

2 osll = N-GI-P3[- £ N-G1-P3| .-

s 0. < 045

= |l~-N-G2-p3|.~ = 0%[|=-N-G2-P3),.~

= 045 : =

= = 04f

g 04 %

§ 0.35 § 0.35

< 03 < 03

0 20 40 60 80 10 20 30 40 50 60
Number of FBSs, L Cache size Spps

(@) Number of FBSs, L, for (b) Cachesize Sppg for L =25
SrBs = 30

Fig. 9: The average hit ratio H,,, for N = 60, F' = 100,
S =10, and D = 0.1, where algorithms N-G1-P3, N-G2-P3,
J-G1-P5, and J-G2-P5 are compared.

problem:
(P51 max > 3 Plus)P(falus)
C(L+N)XF u,ie./\/' fae]-'
<1—H (1 —Cuj,fapu,-,uj)H (1 _Clj7fapu1j7lj)> (20a)
u; €N el

subject to
Y Cunta <5, Yu; € N, (20b)

fa€F
Z . fa < SFBS, Vi € L, (20c)

fa€F

Cuhfa,clj,faE{O,l}, VuiE./\/',lj eﬁ,fae]-'. (ZOd)

Note that the problem [P5] can be solved using
almost the same algorithms presented in Section 5.

Intuitively, the performance of the joint optimization strat-
egy should be better than the naive one, but this comes
at the price of increase in the complexity. In the following,
we evaluate the hit ratio for the following four algorithms:
the naive strategy with the G1 algorithm for solving (10)
(N-G1-P3), the naive strategy with the G2 algorithm for
solving (10) (N-G2-P3), the joint optimization strategy with
the G1 algorithm for solving (20) (J-G1-P5), and the joint
optimization strategy with the G2 algorithm for solving (20)
(J-G2-P5).

In Fig. 9a, the average hit ratio H,,4 versus the number
of FBSs, L, is illustrated, where Spgs = 30, S = 10, N = 60,
F = 100, and D = 0.1. It is observed that the hybrid
mobile network leads to substantial gains over the pure
mobile network (i.e., L = 0). The joint optimization strategy
(J-G1-P5 and J-G2-P5) consistently outperforms the naive
strategy (N-G1-P3 and N-G2-P3), where the performance
gap between the two strategies tends to get larger with
increasing L as depicted in the figure. In Fig. 9b, the average
hit ratio H 4,4 versus the FBS’s cache size Sppg is illustrated,
where L = 25, N =60, F = 100, S = 10, and D = 0.1. As
expected, H,,q is enhanced with increasing Srps, and thus
the deployment of cache-enabled FBSs brings a significant

16

@
&

o

8
[0]
=
T
I
)
8

3
]
t
o)
»
3

N

S
[N
S

o

=

>
Execution time (h

Execution time (h)
&

2

o

R e
20 40 60 80 100 20 40 60 80 100 120 140
Cache size S Number of users N

(a) Cache size S for N = 30, F' = (b) Number of users, N for S =
200, and D = 0.05 10, F =50, and D = 0.1

Fig. 10: The execution time according to system parameters,
where algorithms G1-P3 and G2-P3 are compared.

gain.

6.2.6 Empirical Evaluation of Complexity

We evaluate the execution time of the G1 and G2 Algo-
rithms to validate our analytical claims in Remarks 4 and
6, where the complexity of the G1 and G2 Algorithms are
given by O(SN3F?) and O(N3F?), respectively. In Fig. 10a,
the execution time of G1-P3 and G2-P3 versus the cache size
S is illustrated, where N = 30, F = 200, and D = 0.05.
Our findings confirm that the runtime complexity of G1-P3
scales linearly with S while the runtime complexity of G2-
P3 hardly scales with S, which coincides with our analytical
result. It is also seen that the complexity of the G2 Algorithm
is dramatically reduced compared to the G1 Algorithm. In
Fig. 10b, the execution time of both algorithms versus the
number of users, N, is illustrated, where S = 10, F' = 50,
and D = 0.1. It is observed that the complexities of G1-
P3 and G2-P3 are increasing with N, where they indeed
asymptotically follow the cubic complexity in N, which is
also consistent with our complexity analysis in Remarks 4
and 6.

7 CONCLUDING REMARKS

This paper investigated the impact and benefits of personal-
ized file preferences in a content-centric mobile network by
proposing a CF-aided learning framework that enables us
to infer model parameters based on the user rating history.
The hit ratio under our mobile network was characterized
by adopting single-hop-based D2D content delivery accord-
ing to the two caching strategies employing both person-
alized file preferences and common file preferences. The
hit ratio maximization problems were then reformulated
into a submodular function maximization, and two scalable
algorithms including a greedy approach were presented
to significantly reduce the computational complexity. The
proposed greedy algorithm was shown to achieve an ap-
proximate solution that is within a provable gap compared
to the optimal solutions. In addition, data-intensive evalu-
ation was performed using the MovieLens dataset, and it

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

was demonstrated that the caching strategy employing the
personalized file preferences has a significant performance
gain over the case employing the common file preferences.
More precisely, it was shown that the performance differ-
ence between the two caching strategies is significant under
practical scenarios such that 1) the collaboration distance D
is small, 2) the library size F' is large, 3) the storage capacity
S is neither too high to cache almost entire library nor too
low not to be even capable of caching few content files, and
4) the density of users within D is not too high for users
within D to collectively store the entire content in the library.
Moreover, the superiority of our caching strategy employing
the personalized file preferences was empirically validated
in terms of the outage capacity. In addition, our caching
strategies were extended to the hybrid mobile network to
see the effects of deploying multiple FBSs on the hit ratio.
The computational complexity was also demonstrated in
comparison with our analytical results.

ACKNOWLEDGMENTS

This work was supported by the European Research Coun-
cil under the EU Horizon 2020 research and innovation
program / ERC grant agreement no. 725929 (project DU-
ALITY) and the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT)
(No.2019R1A2C2007982).

REFERENCES

[1] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch,
and G. Caire, “Femtocaching: Wireless content delivery through
distributed caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402-8413, Dec. 2013.

[2] K. Poularakis, G. losifidis, and L. Tassiulas, “Approximation algo-
rithms for mobile data caching in small cell networks,” IEEE Trans.
Commun., vol. 62, no. 10, pp. 3665-3677, Oct. 2014.

[3] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Trans.
Wireless Commun., vol. 15, no. 4, pp. 2995-3007, Apr. 2016.

[4] Y.Guan, Y. Xiao, H. Feng, C.-C. Shen, and L. Cimini, “MobiCacher:
Mobility-aware content caching in small-cell networks,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, Dec. 2014,
pp. 4537-4542.

[5]1 R. Wang, J. Zhang, S. H. Song, and K. B. Letaief, “Mobility-aware
caching in D2D networks,” IEEE Trans. Wireless Commun., vol. 16,
no. 8, pp. 5001-5015, Aug. 2017.

[6] Y. Wu, S. Yao, Y. Yang, Z. Hu, and C.-X. Wang, “Semigradient-
based cooperative caching algorithm for mobile social networks,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Washington,
DC, Dec. 2016, pp. 1-6.

[7] M.Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp- 849-869, Feb. 2016.

[8] A.Malik, S. H. Lim, and W.-Y. Shin, “On the effects of subpack-
etization in content-centric mobile networks,” IEEE]. Sel. Areas
Commun., vol. 36, no. 8, pp. 1721-1736, Aug. 2018.

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

17

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions—I,”
Math. Program., vol. 14, no. 1, pp. 265-294, Dec. 1978.

P. Blasco and D. Giindiiz, “Learning-based optimization of cache
content in a small cell base station,” in Proc. IEEE Int. Conf.
Commun. (ICC), Sydney, NSW, Jun. 2014, pp. 1897-1903.

J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, “Learning-
based content caching and sharing for wireless networks,” IEEE
Trans. Commun., vol. 65, no. 10, pp. 43094324, Oct. 2017.

E. Bastug, M. Bennis, and M. Debbah, “A transfer learning ap-
proach for cache-enabled wireless networks,” in Proc. Int. Symp.
Modeling Opt. Mobile, Ad Hoc, Wireless (WiOpt), Mumbai, India,
May 2015, pp. 161-166.

B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-
based approach to caching in heterogenous small cell networks,”
IEEE Trans. Commun., vol. 64, no. 4, pp. 1674-1686, Apr. 2016.

B. Chen and C. Yang, “Caching policy for cache-enabled D2D com-
munications by learning user preference,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 65866601, Dec. 2018.

L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
“Caching-aware recommendations: Nudging user preferences to-
wards better caching performance,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Atlanta, GA, May. 2017, pp. 1-9.

Y. Wang, M. Ding, Z. Chen, and L. Luo, “Caching placement
with recommendation systems for cache-enabled mobile social
networks,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2266-2269, Oct.
2017.

Y. Jiang, M. Ma, M. Bennis, F. Zheng, and X. You, “User preference
learning-based edge caching for fog radio access network,” IEEE
Trans. Commun., vol. 67, no. 2, pp. 1268-1283, Feb. 2019.

P. Cheng, C. Ma, M. Ding, Y. Hu, Z. Lin, Y. Li, and B. Vucetic,
“Localized small cell caching: A machine learning approach based
on rating data,” IEEE Trans. Commun., vol. 67, no. 2, pp. 16631676,
Feb. 2019.

D. Liu and C. Yang, “Caching at base stations with heterogeneous
user demands and spatial locality,” IEEE Trans. Commun., vol. 67,
no. 2, pp. 1554-1569, Feb. 2019.

J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic, and L. Hanzo, “Pricing
and resource allocation via game theory for a small-cell video
caching system,” IEEE]. Sel. Areas Commun., vol. 34, no. 8, pp.
2115-2129, Aug. 2016.

C. Ma, M. Ding, H. Chen, Z. Lin, G. Mao, Y. Liang, and B. Vucetic,
“Socially aware caching strategy in device-to-device communica-
tion networks,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4615-
4629, May 2018.

P. Li and S. Guo, “Incentive mechanisms for device-to-device
communications,” IEEE Netw., vol. 29, no. 4, pp. 75-79, Jul./ Aug.
2015.

Z. Chen, Y. Liu, B. Zhou, and M. Tao, “Caching incentive design
in wireless D2D networks: A Stackelberg game approach,” in Proc.
IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, May 2016, pp. 1-6.
M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-
device communication in 5G cellular networks: challenges, solu-
tions, and future directions,” IEEE Commun. Mag., vol. 52, no. 5,
pp- 86-92, May 2015.

D. D. Penda, R. S. Risuleo, P. E. Valenzuela, and M. Johansson,
“Optimal power control for D2D communications under Rician
fading: A risk theoretical approach,” in Proc. IEEE Global Commun.
Conf. (GLOBE-COM), Singapore, Dec 2017, pp. 1-6.

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of
caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867,
May. 2014.

“Decentralized coded caching attains order-optimal
memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp.
1029-1040, Aug. 2015.

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

[28] G. Alfano, M. Garetto, and E. Leonardi, “Content-centric wireless
networks with limited buffers: When mobility hurts,” IEEE/ACM
Trans. Netw., vol. 24, no. 1, pp. 299-311, Feb. 2016.

T.-A. Do, S.-W. Jeon, and W.-Y. Shin, “How to cache in mobile
hybrid IoT networks?” IEEE Access, vol. 7, no. 1, pp. 27 217-27 230,
Mar. 2019.

M. Mahdian and E. Yeh, “Throughput and delay scaling of
content-centric ad hoc and heterogeneous wireless networks,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3030-3043, Oct. 2017.
[31] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in Proc. Int.
ACM SIGIR Conf. Research Development in Inf. Retrieval (SIGIR),
Berkeley, CA, Aug. 1999, pp. 230-237.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based col-
laborative filtering recommendation algorithms,” in Proc. ACM
WWW Int. World Wide Web Conf. (WWW), Hong Kong, Hong Kong,
May 2001, pp. 285-295.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” IEEE Comput., vol. 42, no. 8, pp. 30-37,
Aug. 2009.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec: Autoen-
coders meet collaborative filtering,” in Proc. ACM WWW Int. World
Wide Web Conf. (WWW), New York, USA, May 2015, pp. 111-112.
P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic charac-
terization: a view from the edge,” in Proc. ACM SIGCOMM Conf.
Internet Measurement (IMC), San Diego, CA, Oct. 2007, pp. 15-28.
P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 388-404, Mar. 2000.

G. Calinescu, C. Chekuri, M. P4l, and J. Vondrdk, “Maximizing a
submodular set function subject to a matroid constraint,” in Proc.
Integer Program. Combinatorial Optim. (IPCO), Ithaca, NY, Jun. 2007,
pp. 182-196.

W.-S. Hwang, J. Parc, S.-W. Kim, J. Lee, and D. Lee, “Told you I
didn’t like it: Exploiting uninteresting items for effective collabo-
rative filtering,” in Proc. IEEE Int. Conf. Data Eng. (ICDE), Helsinki,
Finland, May 2016, pp. 349-360.

P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-N recommendation tasks,” in Proc.
ACM Conf. Recommender Syst. (RecSys), Barcelona, Spain, Sep. 2010,
pp- 39-46.

H. Steck, “Training and testing of recommender systems on data
missing not at random,” in Proc. ACM SIGKDD Conf. Knowl.
Discovery Data Mining (KDD), Washington, DC, USA, Jul. 2010,
pp. 713-722.

C. Jeong and W.-Y. Shin, “GreenInfra: Capacity of large-scale
hybrid networks with cost-effective infrastructure,” IEEE]. Sel.
Areas Commun., vol. 34, no. 5, pp. 1179-1191, May. 2016.

[29]

[30]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

Adeel Malik received the B.S. degree in Elec-
trical (Telecommunication) Engineering from the
COMSATS Institute of Information and Technol-
ogy, Pakistan, in 2013. During 2014-2016, he
worked as a research assistant with Dr. Jalalud-
din Qureshi on Namal College funded research
projects focusing on the construction of wireless
transmission protocols. In 2018, he graduated
with an M.Sc. in Computer Science and Engi-
neering from Dankook University, South Korea. Currently, he is working
at EURECOM'’s Duality project as a PhD student under the supervision
of Prof. Petros Elia. His research focuses on content-centric wireless
networks.

18

Joongheon Kim (M'06-SM’18) is currently an
assistant professor with Korea University, Seoul,
Korea, since 2019. He received his B.S. (2004)
and M.S. (2006) in computer science and engi-
neering from Korea University, Seoul, Korea; and
his Ph.D. (2014) in computer science from the
University of Southern California (USC), Los An-
geles, CA, USA. Before joining Korea University
as a faculty member, he was with LG Electronics
(Seoul, Korea, 2006—2009), InterDigital (San Diego, CA, USA, 2012),
Intel Corporation (Santa Clara, CA, USA, 2013-2016), and Chung-Ang
University (2016-2019).

Kwang Soon Kim (S’95-M’99—-SM’04) received
the B.S. (summa cum laude), M.S.E., and Ph.D.
degrees in electrical engineering from Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 1994, 1996,
and 1999, respectively. From 1999 to 2000, he
was with the Department of Electrical and Com-
puter Engineering, University of California at San
Diego, La Jolla, CA, USA, as a Postdoctoral
Researcher. From 2000 to 2004, he was a senior member of the re-
search staff with the Mobile Telecommunication Research Laboratory,
Electronics and Telecommunication Research Institute, Daejeon. Since
2004, he has been a Professor with the Department of Electrical and
Electronic Engineering, Yonsei University, Seoul. His research interests
include signal processing, communication theory, information theory,
and stochastic geometry.

Won-Yong Shin (S'02—-M’'08-SM’16) received
the B.S. degree in electrical engineering from
Yonsei University, Seoul, Republic of Korea, in
2002. He received the M.S. and the Ph.D. de-
grees in electrical engineering and computer sci-
ence from the Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, Repub-
lic of Korea, in 2004 and 2008, respectively. In
May 2009, he joined the School of Engineering
and Applied Sciences, Harvard University, Cambridge, MA, USA, as
a Postdoctoral Fellow and was promoted to a Research Associate in
October 2011. From 2012 to 2019, he was a faculty member in the
Department of Computer Science and Engineering, Dankook University,
Yongin, Republic of Korea. Since March 2019, he has been with the
Department of Computational Science and Engineering, Yonsei Uni-
versity, Seoul Republic of Korea, where he is currently an Associate
Professor. His research interests are in the areas of data science,
machine learning, and wireless networking.

