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Chapter 1

Introduction

1.1 Motivation

As collecting structured data becomes easier and cheaper, e.g., with the expanding use of

sensors and wider adoption of social networks and personal devices, the number and the

scope of data-driven applications increase exponentially, from financial decisions and preci-

sion medicine to urban planning [57]. Major research efforts investigate how to improve the

accuracy of the models and how to make them able to quantify the uncertainty of a result.

These models are at the center of the attention, but their outcomes can be perturbed by

errors in the data [26]. This means that data can drastically bias predictions that are un-

desirable or even dangerous [89], such as navigation systems guiding tourists into lakes [77],

misdiagnoses for patients [86], and financial models leading to billions of euros losses [59].

Most of the models are validated only on a handful of manually cleaned datasets [70], but in

real applications up to 25% of critical data is flawed [99]. While society increasingly depends

on data-driven decisions, less attention has been given to the quality of the data that feed

the models, and most users of such models are not even aware of the problem.

By data we mean here structured or semi-structured data, stored in data management systems

provided with a query language, rather than unstructured contents. To explain what we

mean by “errors”, consider table Dd derived from a dataset with environmental data in the

EU Open Data Portal. The table is one of the 12K available on this website alone, and is

not representative of the real size of the datasets, which can go from thousands to millions of

records1.

Each record reports yearly values for an indicator of the waste generated in a country. Dataset

Dd shows examples of quality issues, such as duplicate records (second and third rows),

missing values (-), and incorrect values (in bold). Assume someone needs to estimate the

1https://data.europa.eu/euodp/data
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Indicator Country Instrument 2012 2014 2016
KG C1 EL PF4EE 93 109 119
KG C1 ES - 63 - -
KG C1 ESP PF4EE - 57 62
G P2 EL NCFF 79 102 145

(a) Dataset Dd with errors

Indicator Country Instrument 2012 2014 2016
KG C1 EL - 93 109 119
KG C1 ES PF4EE 63 57 62
G P2 EL NCFF 97 102 145

(b) Cleaned dataset Dc

waste generation for 2018. Since a predictive model f would return incorrect estimates y if

executed on Dd, she wants to execute it on the clean dataset Dc, i.e., y = f(Dc). To obtain

the clean version, a cleaning program p must be executed on Dd, i.e., Dc = p(Dd). Such a

program can be manually written in a procedural language (e.g., with the pandas library in

Python) or obtained from a data cleaning system.

Data cleaning systems take as input high level specifications, such as examples of the desired

output or declarative rules, and produce the program p to be executed over the dataset [26].

For Dd, a valid rule states that for every country the indicator “G P2” must have the highest

value in 2012. It can be expressed by the following denial constraint:

r1 : ¬(t1.Indicator = “G P2” ∧ t1.Country = t2.Country ∧ t1.2012 < t2.2012)

where t1, t2 are universal variables over the records. If two tuples match the conditions in

the rule, then there must be at least one erroneous value in one of the tuples. Another rule

captures that only countries with waste generation for “KG C1” below 100 for year 2014 can

benefit from the financial instrument “PF4EE”:

r2 : ¬(t.Indicator = “KG C1” ∧ t.Instrument = “PF4EE” ∧ t.2014 > 100)

Data cleaning depends on the quality of rules like r1 and r2, but writing such specifications,

or the corresponding cleaning programs, is a difficult and time consuming job.

Traditionally, data engineers guarantee the quality of the data consumed by an application,

e.g., IT staff in companies clean the customer data warehouse. This process is based on the

manual definition of data cleaning programs and takes up anywhere from 60 to 80% of the

data engineer’s time [73, 62, 32]. In the big data era, applications are built on data coming

from social media, IoT devices, data lakes, and open datasets. These heterogeneous sources

have errors from faulty sensors, automatic extractors, and human mistakes. Datasets are so

large and increasing so fast that data engineers have to make decisions on how and what to

clean. The consequences reflect the struggle with the quality of the data. Without proper
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cleaning, erroneous decisions can be taken because of data errors trickling down to the models,

or because incomplete information is fed to target applications. As the 2014 Turing Award

laureate Michael Stonebraker defines it: “Data quality at scale is the 800 pound gorilla in the

corner” [11].

After obtaining my Ph.D. in 2007, my work has been dedicated to the development of tech-

niques that support users in improving the quality of their data, and in particular on methods

to mine and use declarative rules for data cleaning. Two main challenges must be addressed

to make data cleaning a principled and scalable process that can be effectively adopted in all

domains.

1. Discovering cleaning specifications. Even for a single table, the number of specifications

needed to capture all quality issues is extremely large. Rules alone are usually in the thou-

sands [98, 34]. In the example, rules similar to r1 should be stated for years 2014 and 2016,

more rules like r2 are needed to handle different instruments (e.g., “NCFF”), and at least an-

other rule is needed to identify other issues, such as merging the duplicate “ES” records into

one. In general, for every new dataset, a data engineer has to team up with a domain expert,

such as a chemist or a neurologist, to define semantically meaningful specifications. These

collaborations further increase the cost and the delay due to cleaning. While rules can be

executed to deal with the high volume of the data, the diversity in the data sources aggravate

the specification process [11]. Part of my research activities focused on rule discovery tech-

niques, and in particular on data mining techniques that identify expressive specifications in

first order logic. Part I of this thesis is dedicated to my contributions to tackle the challenges

arising from mining complex rules from large datasets.

2. Identifying errors and repairing data. Even when the quality rules have been carefully

setup, a domain expert is involved again to manually update a large portion of the errors

identified by the cleaning systems [3]. In fact, rules are able to detect inconsistencies that

involve multiple values, i.e., cells of the database that together forms a violation. In the

example, rule r1 can identify a violation across the first and the fourth tuples spanning

attributes Indicator, Country, and 2012. However, a user is needed to identify value 79 as

faulty and to change it to the correct value 97. Going from a - potentially large - set of

cells to the one or more values that are recognized as erroneous is no obvious. It is even

more challenging to automatically update such erroneous values so that the specifications

are satisfied. The process of repairing the data requires a number of user interactions that

depends on the size of the data, making the human effort orders of magnitude larger compared

to the specification task in the first challenge. I devoted part of my research activities in the

last few years to develop techniques that make it possible to reduce the human effort in fixing

errors in noisy datasets. Part II of this thesis focuses on such approaches.
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1.2 Plan of the thesis

The thesis is divided in two parts.

• In response to the first challenge, Chapter 2 of the thesis deals with methods that I

proposed for Mining of declarative rules.

• In response to the second challenge, Chapter 3 of the thesis reports some of my work

on Data repairing with declarative rules.

The papers included in the thesis contain experiments in various real-world and synthetic

datasets. The final chapter of the thesis will draw some conclusions and will discuss some of

the ongoing and future work.
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Chapter 2

Mining of declarative rules

This part of the thesis focuses on the developments that I proposed to identify semantically

valid declarative rules from datasets. In particular, these approaches deal with the problem

of discovering data quality rules expressed in different fragments of first order logic, namely

denial constraints [27], temporal functional dependencies [2], and Horn rules [80]. The work

reported in this part of the thesis proposes ways to identify rules that have support in the

data without assuming that the data is already clean. This is a key property for our target

application (data repair) and allows users to apply the methods without manually crafting

clean samples of their datasets.

Resources and grants: These activities involved my time and that of a number of col-

laborators. In particular, the research on relational data [2, 27] was conducted during my

experience as a scientist at the Qatar Computing Research Institute (QCRI) working in col-

laboration with interns and post-docs under my co-supervision. Support for these activities

came from public funding (national Qatar funding body). The work on rule discovery in

knowledge graphs [80] has been conducted with PhD students under my supervision and has

been supported by a faculty research award from Google during the time I spent as assistant

professor at Arizona State University (ASU).

• Discovering Denial Constraints. Specifications, including declarative rules, are

metadata for the given dataset that need to be cleaned. The main issue is that the user

effort to write down specifications is very high as it requires both technical skills in logic

or programming and deep understanding and knowledge of the data domain [73, 62, 32].

To assist domain experts in this task, numerous studies have attempted to discover

data quality rules [72], such as Functional Dependencies (FDs) [56, 109], Conditional

Functional Dependencies (CFDs) [25, 42, 50], and Matching Dependencies (MDs) [94].

The discovery of rules involving lookup over trusted resources subsumes the traditional

problems of matching relational tables [76, 63, 75, 79, 85, 14, 113], Web tables [111, 23,

71], and ontologies [37, 33, 97].
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Despite these efforts, there is still a big space of rules that cannot be captured by the

constraint types above. There is an infinite space of business rules up to ad-hoc programs

for enforcing data quality [64]. However, the more expressive power a rule language has,

the harder it is to exploit it, for example, in automated data cleaning algorithms, or in

writing SQL queries for consistency checking. It is easy to see that a balance should be

achieved between the expressive power of a constraint language in order to deal with

a broader space of business rules, and at the same time, the restrictions required to

ensure adequate static analysis of the rules and the development of effective cleaning

and discovery algorithms.

Denial Constraints (DCs) [39], a universally quantified first order logic formalism, serve

as a great compromise between expressiveness and complexity for the following reasons:

1. they are defined on predicates that can be easily expressed in SQL queries for

consistency checking;

2. they are more expressive than FDs and CFDs and have been proven to be a useful

language for data cleaning in many aspects, such as data repairing and consistent

query answering;

3. while their static analysis turns out to be undecidable, we show that it is possible

to develop a set of sound inference rules and a linear implication testing algorithm

for DCs that enable an efficient adoption of DCs as a rule language.

However, DCs also requires an expensive process with experts in the constraint language

at hand in consultation with domain experts. To assist domain experts in obtaining

useful rules from their data at hand, we give the formal problem definition of discovering

DCs and introduce static analysis for them with three sound axioms that serve as

the cornerstone for our implication testing algorithm as well as for our DCs discovery

algorithm (FASTDC) [27, 29]. To handle datasets that may have data errors, we extend

FASTDC to discover approximate constraints, a feature that is clearly crucial for data

cleaning in practice.

• Temporal Rules Discovery for Web Data Cleaning. Declarative rules, such as

denial constraints, are used for several tasks, including cleaning data. To support do-

main experts in specifying these specifications, algorithms profile the data and expose

rules. However, most discovery techniques have traditionally ignored the time dimen-

sion. Recurrent events, such as persons reported in locations, have a duration in which

they are valid, and this duration should be part of the rules or the cleaning process

would simply fail. For example, while the publisher of a certain edition of a novel does

not change over time (title, year and edition jointly identify the publisher), some other

functional relationships are true only for a certain amount of time, e.g., a person cannot

be reported landing in two countries at the same time (the person name identifies the

flight destination in a time window of less than one hour), or the same product can-
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not have different weights reported at the same release date (product model implies its

weight in the time window between two releases).

In this work we study the rule discovery problem for temporal web data [2]. Such a

discovery process is challenging because of the nature of web data; extracted facts are

(i) sparse over time, (ii) reported with delays, and (iii) often reported with errors over

the values because of inaccurate sources or non robust extractors. We handle these

challenges with a new discovery approach that is more robust to noise. We focus on

mining approximate dependencies over noisy dataset with the goal of identifying useful

time-windows, or durations, to mine the interval in which a dependency should be

considered valid, e.g., a person is not reported traveling to two countries in a 1-hour

window. Without such a time dimension, rules are not usable for events. Our solution

uses machine learning methods, such as association measures and outlier detection, for

the discovery of the rules, together with an aggressive repair of the data in the mining

step itself. Our experimental evaluation over real-world data from Recorded Future1, an

intelligence company that monitors over 700K Web sources, shows that automatically

discovered temporal rules can improve the quality of the data with an increase of the

average precision in the cleaning process from 0.37 to 0.84, and a 40% relative increase

in the average F-measure.

• Robust Discovery of Positive and Negative Rules in Knowledge-Bases. Graph

databases are becoming popular as a flexible data structure to organize information.

This is especially common for RDF knowledge-bases (KBs), graph databases that store

information in the form of triples, where a predicate instance (an edge) expresses a

binary relation between a subject and an object (two nodes). KB triples, called facts,

store information about real-world entities and their relationships, such as “Michelle

Obama is married to Barack Obama”.

Depending on the application domain and the effort spent in data curation, KBs can

have different levels of data quality. It is safe in general to assume that they can

be erroneous and incomplete. This is especially common for KBs bootstrapped by

extracting information from sources with minimal or no human intervention. As for the

web data, false facts are propagated from the sources to the KBs, or introduced by the

extractors. In order to identify data quality issues in KBs with declarative rules, we

study in this work the discovery of two types of rules [80, 81]. What we call positive

rules are useful to identify missing facts and therefore enrich the KB by increasing its

coverage. On the other hand, we also discover negative rules, which, similarly to DCs,

are useful to spot logical inconsistencies and identify erroneous triples.

Unfortunately, there are three main challenges that make this problem hard. First,

as for relational data, errors can be present in the graph. More specifically to this

setting, usually KBs do not limit the information of interest with a schema, but let

1https://www.recordedfuture.com/
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users add facts defined on new predicates by simply inserting new triples. Third, since

closed world assumption (CWA) does no hold in KBs, it is not possible to assume that

a missing fact is false, but we rather label it as unknown (open world assumption).

Given these challenges, we formally define the problem of rule discovery over erroneous

and incomplete KBs. The input of the problem are two sets of positive and negative

examples for every predicate, which we generate. In contrast to the traditional ranking

of a large set of rules based on a measure of support, our problem definition aims at the

identification of a subset of approximate rules, i.e., rules that do not necessarily hold

over all the examples, since data errors and incompleteness are in the nature of KBs.

The solution is then the smallest set of rules that cover the majority of input positive

examples, and as few input negative examples as possible. To enable value comparison,

in the spirit of DCs, we discover rules by judiciously using the memory. The algorithm

incrementally materializes the KB as a graph, and discovers rules by navigating only

the paths that potentially lead to the best rules. By materializing only the portion of

the KB that is needed for the promising rules, the disk-access is minimized and the low

memory footprint enables the mining with a richer rule language that includes literal

values comparisons.

We experimentally tested the resulting rule discovery system2 over popular and widely

used KBs and found that it delivers accurate rules, with a relative increase in average

precision by 45% both in the positive and in the negative settings w.r.t. state-of-the-art

systems.

2https://github.com/ppapotti/Rudik
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ABSTRACT
Integrity constraints (ICs) provide a valuable tool for enforcing cor-
rect application semantics. However, designing ICs requires ex-
perts and time. Proposals for automatic discovery have been made
for some formalisms, such as functional dependencies and their ex-
tension conditional functional dependencies. Unfortunately, these
dependencies cannot express many common business rules. For
example, an American citizen cannot have lower salary and higher
tax rate than another citizen in the same state. In this paper, we
tackle the challenges of discovering dependencies in a more ex-
pressive integrity constraint language, namely Denial Constraints
(DCs). DCs are expressive enough to overcome the limits of pre-
vious languages and, at the same time, have enough structure to
allow efficient discovery and application in several scenarios. We
lay out theoretical and practical foundations for DCs, including a
set of sound inference rules and a linear algorithm for implication
testing. We then develop an efficient instance-driven DC discov-
ery algorithm and propose a novel scoring function to rank DCs for
user validation. Using real-world and synthetic datasets, we exper-
imentally evaluate scalability and effectiveness of our solution.

1. INTRODUCTION
As businesses generate and consume data more than ever, enforc-

ing and maintaining the quality of their data assets become critical
tasks. One in three business leaders does not trust the information
used to make decisions [12], since establishing trust in data be-
comes a challenge as the variety and the number of sources grow.
Therefore, data cleaning is an urgent task towards improving data
quality. Integrity constraints (ICs), originally designed to improve
the quality of a database schema, have been recently repurposed
towards improving the quality of data, either through checking the
validity of the data at points of entry, or by cleaning the dirty data
at various points during the processing pipeline [10, 13].Traditional
types of ICs, such as key constraints, check constraints, functional

∗Work done while interning at QCRI.
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dependencies (FDs), and their extension conditional functional de-
pendencies (CFDs) have been proposed for data quality manage-
ment [7]. However, there is still a big space of ICs that cannot be
captured by the aforementioned types.

EXAMPLE 1. Consider the US tax records in Table 1. Each
record describes an individual address and tax information with 15
attributes: first and last name (FN, LN), gender (GD), area code
(AC), mobile phone number (PH), city (CT), state (ST), zip code
(ZIP), marital status (MS), has children (CH), salary (SAL), tax
rate (TR), tax exemption amount if single (STX), married (MTX),
and having children (CTX).

Suppose that the following constraints hold: (1) area code and
phone identify a person; (2) two persons with the same zip code
live in the same state; (3) a person who lives in Denver lives in
Colorado; (4) if two persons live in the same state, the one earning
a lower salary has a lower tax rate; and (5) it is not possible to
have single tax exemption greater than salary.

Constraints (1), (2), and (3) can be expressed as a key constraint,
an FD, and a CFD, respectively.
(1) : Key{AC,PH}
(2) : ZIP → ST
(3) : [CT = ‘Denver’]→ [ST = ‘CO’]

Since Constraints (4) and (5) involve order predicates (>,<),
and (5) compares different attributes in the same predicate, they
cannot be expressed by FDs and CFDs. However, they can be ex-
pressed in first-order logic.
c4 : ∀tα, tβ ∈ R, q(tα.ST = tβ .ST ∧ tα.SAL < tβ .SAL

∧tα.TR > tβ .TR)
c5 : ∀tα ∈ R, q(tα.SAL < tα.STX)

Since first-order logic is more expressive, Constraints (1)-(3) can
also be expressed as follows:
c1 : ∀tα, tβ ∈ R, q(tα.AC = tβ .AC ∧ tα.PH = tβ .PH)
c2 : ∀tα, tβ ∈ R, q(tα.ZIP = tβ .ZIP ∧ tα.ST 6= tβ .ST )
c3 : ∀tα ∈ R, q(tα.CT = ‘Denver’ ∧ tα.ST 6= ‘CO’)

The more expressive power an IC language has, the harder it is
to exploit it, for example, in automated data cleaning algorithms,
or in writing SQL queries for consistency checking. There is an
infinite space of business rules up to ad-hoc programs for enforcing
correct application semantics. It is easy to see that a balance should
be achieved between the expressive power of ICs in order to deal
with a broader space of business rules, and at the same time, the
restrictions required to ensure adequate static analysis of ICs and
the development of effective cleaning and discovery algorithms.

Denial Constraints (DCs) [5, 13], a universally quantified first
order logic formalism, can express all constraints in Example 1 as
they are more expressive than FDs and CFDs. To clarify the con-
nection between DCs and the different classes of ICs we show in



TID FN LN GD AC PH CT ST ZIP MS CH SAL TR STX MTX CTX
t1 Mark Ballin M 304 232-7667 Anthony WV 25813 S Y 5000 3 2000 0 2000
t2 Chunho Black M 719 154-4816 Denver CO 80290 M N 60000 4.63 0 0 0
t3 Annja Rebizant F 636 604-2692 Cyrene MO 64739 M N 40000 6 0 4200 0
t4 Annie Puerta F 501 378-7304 West Crossett AR 72045 M N 85000 7.22 0 40 0
t5 Anthony Landram M 319 150-3642 Gifford IA 52404 S Y 15000 2.48 40 0 40
t6 Mark Murro M 970 190-3324 Denver CO 80251 S Y 60000 4.63 0 0 0
t7 Ruby Billinghurst F 501 154-4816 Kremlin AR 72045 M Y 70000 7 0 35 1000
t8 Marcelino Nuth F 304 540-4707 Kyle WV 25813 M N 10000 4 0 0 0

Table 1: Tax data records.

Figure 1 a classification based on two criteria: (i) single tuple level
vs table level, and (ii) with constants involved in the constraint vs
with only column variables. DCs are expressive enough to cover
interesting ICs in each quadrant. DCs serve as a great compromise
between expressiveness and complexity for the following reasons:
(1) they are defined on predicates that can be easily expressed in
SQL queries for consistency checking; (2) they have been proven
to be a useful language for data cleaning in many aspects, such as
data repairing [10], consistent query answering [5], and expressing
data currency rules [13]; and (3) while their static analysis turns out
to be undecidable [3], we show that it is possible to develop a set of
sound inference rules and a linear implication testing algorithm for
DCs that enable an efficient adoption of DCs as an IC language, as
we show in this paper.

Figure 1: The ICs quadrant.

While DCs can be obtained through consultation with domain
experts, it is an expensive process and requires expertise in the con-
straint language at hand as shown in the experiments. We identified
three challenges that hinder the adoption of DCs as an efficient IC
language and in discovering DCs from an input data instance:
(1) Theoretical Foundation. The necessary theoretical foundations
for DCs as a constraint language are missing [13]. Armstrong Ax-
ioms and their extensions are at the core of state-of-the-art algo-
rithms for inferring FDs and CFDs [15, 17], but there is no similar
foundation for the design of tractable DCs discovery algorithms.

EXAMPLE 2. Consider the following constraint, c6, which
states that there cannot exist two persons who live in the same zip
code and one person has a lower salary and higher tax rate.
c6 : ∀tα, tβ ∈ R, q(tα.ZIP = tβ .ZIP ∧ tα.SAL < tβ .SAL

∧tα.TR > tβ .TR)
c6 is implied by c2 and c4: if two persons live in the same zip

code, by c2 they would live in the same state and by c4 one person
cannot earn less and have higher tax rate in the same state.

In order to systematically identify implied DCs (such as c6), for
example, to prune redundant DCs, a reasoning system is needed.
(2) Space Explosion. Consider FDs discovery on schema R, let
|R| = m. Taking an attribute as the right hand side of an FD, any
subset of remaining m − 1 attributes could serve as the left hand
side. Thus, the space to be explored for FDs discovery ism∗2m−1.
Consider discovering DCs involving at most two tuples without
constants; a predicate space needs to be defined, upon which the
space of DCs is defined. The structure of a predicate consists of two

different attributes and one operator. Given two tuples, we have 2m
distinct cells; and we allow six operators (=, 6=, >,≤, <,≥). Thus
the size of the predicate space P is: |P| = 6 ∗ 2m ∗ (2m− 1). Any
subset of the predicate space could constitute a DC. Therefore, the
search space for DCs discovery is of size 2|P|.

DCs discovery has a much larger space to explore, further justi-
fying the need for a reasoning mechanism to enable efficient prun-
ing, as well as the need for an efficient discovery algorithm. The
problem is further complicated by allowing constants in the DCs.
(3) Verification. Since the quality of ICs is crucial for data qual-
ity, discovered ICs are usually verified by domain experts for their
validity. Model discovery algorithms suffer from the problem of
overfitting [6]; ICs found on the input instance I of schema R may
not hold on future data of R. This happens also for DCs discovery.

EXAMPLE 3. Consider DC c7 on Table 1, which states that
first name determines gender.
c7 : ∀tα, tβ ∈ R, q(tα.FN = tβ .FN ∧ tα.GD 6= tβ .GD)

Even if c7 is true on current data, common knowledge suggests
that it does not hold in general.

Statistical measures have been proposed to rank the constraints
and assist the verification step for specific cases. For CFDs it is
possible to count the number of tuples that match their tableaux [8].
Similar support measures are used for association rules [2].

Unfortunately, discovered DCs are more difficult to verify and
rank than previous formalisms for three reasons: (1) similarly to
FDs, in general it is not possible to just count constants to measure
support; (2) given the explosion of the space, the number of dis-
covered DCs is much larger than the size of discovered FDs; (3)
the semantics of FDs/CFDs is much easier to understand compared
to DCs. A novel and general measure of interestingness for DCs is
therefore needed to rank discovered constraints.

Contributions. Given the DCs discovery problem and the above
challenges, we make the following three contributions:

1. We give the formal problem definition of discovering DCs
(Section 3). We introduce static analysis for DCs with three
sound axioms that serve as the cornerstone for our implica-
tion testing algorithm as well as for our DCs discovery algo-
rithm (Section 4).

2. We present FASTDC, a DCs discovery algorithm (Section 5).
FASTDC starts by building a predicate space and calculates
evidence sets for it. We establish the connection between
discovering minimal DCs and finding minimal set covers for
evidence sets. We employ depth-first search strategy for find-
ing minimal set covers and use DC axioms for branch prun-
ing. To handle datasets that may have data errors, we extend
FASTDC to discover approximate constraints. Finally, we
further extend it to discover DCs involving constant values.



3. We propose a novel scoring function, the interestingness of a
DC, which combines succinctness and coverage measures of
discovered DCs in order to enable their ranking and pruning
based on thresholds, thus reducing the cognitive burden for
human verification (Section 6).

We experimentally verify our techniques on real-life and syn-
thetic data (Section 7). We show that FASTDC is bound by the
number of tuples |I| and by the number of DCs |Σ|, and that the
polynomial part w.r.t. |I| can be parallelized. We show that the im-
plication test substantially reduces the number of DCs in the output,
thus reducing users’ effort in verifying DCs. We also verify how ef-
fective our scoring function is at identifying interesting constraints.

2. RELATED WORK
Our work finds similarities with several bodies of work: static

analysis of ICs, dependency discovery, and scoring of ICs.
Whenever a dependency language is proposed, the static analy-

sis should be investigated.Static analysis for FDs has been laid out
long ago [1], in which it is shown that static analysis for FDs can
be done in linear time w.r.t. the number of FDs and three inference
rules are proven to be sound and complete. Conditional functional
dependencies were first proposed by Bohannon et al. [7], where im-
plication and consistency problems were shown to be intractable.
In addition, a set of sound and complete inference rules were also
provided, which were later simplified by Fan [14]. Though denial
constraints have been used for data cleaning as well as consistent
query answering [5, 10], static analysis has been done only for spe-
cial fragments, such as currency rules [13].

In the context of constraints discovery, FDs attracted the most
attention and whose methodologies can be divided into schema-
driven and instance-driven approaches. TANE is a representative
for the schema-driven approach [17]. It adopts a level-wise can-
didate generation and pruning strategy and relies on a linear algo-
rithm for checking the validity of FDs. TANE is sensitive to the
size of the schema. FASTFD is a an instance-driven approach [19],
which first computes agree-sets from data, then adopts a heuristic-
driven depth-first search algorithm to search for covers of agree-
sets. FASTFD is sensitive to the size of the instance. Both al-
gorithms were extended in [15] for discovering CFDs. CFDs dis-
covery is also studied in [8], which not only is able to discover
exact CFDs but also outputs approximate CFDs and dirty values
for approximate CFDs, and in [16], which focuses on generating
a near-optimal tableaux assuming an embedded FD is provided.
The lack of an efficient DCs validity checking algorithm makes the
schema-driven approach for DCs discovery infeasible. Therefore,
we extend FASTFD for DCs discovery.

Another aspect of discovering ICs is to measure the importance
of ICs according to a scoring function. In FDs discovery, Ilyas et
al. examined the statistical correlations for each column pair to dis-
cover soft FDs [18]. In CFDs discovery some measures have been
proposed, including support, which is defined as the percentage of
the tuples in the data that match the pattern tableaux, conviction,
and χ2 test [8, 15]. Our scoring function identifies two principles
that are widely used in data mining, and combines them into a uni-
fied function, which is fundamentally different from previous scor-
ing functions for discovered ICs.

3. DENIAL CONSTRAINTS AND DISCOV-
ERY PROBLEM

In this section, we first review the syntax and semantics of DCs.
Then, we define minimal DCs and state their discovery problem.

3.1 Denial Constraints (DCs)
Syntax. Consider a database schema of the form S = (U,R,B),

where U is a set of database domains, R is a set of database predi-
cates or relations, and B is a set of finite built-in operators. In this
paper, B = {=, <,>, 6=,≤,≥}. B must be negation closed, such
that we could define the inverse of operator φ as φ.

We support the subset of integrity constraints identified by denial
constraints (DCs) over relational databases. We introduce a nota-
tion for DCs of the form ϕ : ∀tα, tβ , tγ , . . . ∈ R, q(P1∧. . .∧Pm),
where Pi is of the form v1φv2 or v1φc with v1, v2 ∈ tx.A, x ∈
{α, β, γ, . . .}, A ∈ R, and c is a constant. For simplicity, we as-
sume there is only one relation R in R.

For a DC ϕ, if ∀Pi, i ∈ [1,m] is of the form v1φv2, then we
call such DC variable denial constraint (VDC), otherwise, ϕ is a
constant denial constraint (CDC).

The inverse of predicate P : v1φ1v2 is P : v1φ2v2,with φ2 = φ1.
If P is true, then P is false. The set of implied predicates of P is
Imp(P ) = {Q|Q : v1φ2v2}, where φ2 ∈ Imp(φ1). If P is true,
then ∀Q ∈ Imp(P ), Q is true. The inverse and implication of the
six operators in B is summarized in Table 2.

φ = 6= > < ≥ ≤
φ 6= = ≤ ≥ < >

Imp(φ) =,≥,≤ 6= >,≥, 6= <,≤, 6= ≥ ≤

Table 2: Operator Inverse and Implication.

Semantics. A DC states that all the predicates cannot be true at
the same time, otherwise, we have a violation. Single-tuple con-
straints (such as check constraints), FDs, and CFDs are special
cases of unary and binary denial constraints with equality and in-
equality predicates. Given a database instance I of schema S and a
DC ϕ, if I satisfies ϕ, we write I |= ϕ, and we say that ϕ is a valid
DC. If we have a set of DC Σ, I |= Σ if and only if ∀ϕ ∈ Σ, I |= ϕ.

A set of DCs Σ implies ϕ, i.e., Σ |= ϕ, if for every instance I of
S, if I |= Σ, then I |= ϕ.

In the context of this paper, we are only interested in DCs with
at most two tuples. DCs involving more tuples are less likely in
real life, and incur bigger predicate space to search as shown in
Section 5. The universal quantifier for DCs with at most two tuples
are ∀tα, tβ . We will omit universal quantifiers hereafter.

3.2 Problem Definition
Trivial, Symmetric, and Minimal DC. A DC q(P1 ∧ . . .∧Pn)

is said to be trivial if it is satisfied by any instance. In the sequel,
we only consider nontrivial DCs unless otherwise specified. The
symmetric DC of a DC ϕ1 is a DC ϕ2 by substituting tα with tβ ,
and tβ with tα. If ϕ1 and ϕ2 are symmetric, then ϕ1 |= ϕ2 and
ϕ2 |= ϕ1. A DC ϕ1 is set-minimal, or minimal, if there does not
exist ϕ2, s.t. I |= ϕ1, I |= ϕ2 , and ϕ2.P res ⊂ ϕ1.P res. We use
ϕ.Pres to denote the set of predicates in DC ϕ.

EXAMPLE 4. Consider three additional DCs for Table 1.
c8 :q(tα.SAL = tβ .SAL ∧ tα.SAL > tβ .SAL)
c9 :q(tα.PH = tβ .PH)
c10 :q(tα.ST = tβ .ST ∧tα.SAL > tβ .SAL∧tα.TR < tβ .TR)
c8 is a trivial DC, since there cannot exist two persons that have

the same salary, and one’s salary is greater than the other. If we
remove tuple t7 in Table 1, c9 becomes a valid DC, making c1 no
longer minimal. c10 and c4 are symmetric DCs.

Problem Statement. Given a relational schema R and an in-
stance I , the discovery problem for DCs is to find all valid minimal
DCs that hold on I . Since the number of DCs that hold on a dataset



is usually very big, we also study the problem of ranking DCs with
an objective function described in Section 6.

4. STATIC ANALYSIS OF DCS
Since DCs subsume FDs and CFDs, it is natural to ask whether

we can perform reasoning the same way. An inference system for
DCs enables pruning in a discovery algorithm. Similarly, an impli-
cation test is required to reduce the number of DCs in the output.

4.1 Inference System
Armstrong Axioms are the fundamental building blocks for im-

plication analysis for FDs [1]. We present three symbolic inference
rules for DCs, denoted as I, analogous to such Axioms.
Triviality: ∀Pi, Pj , if Pi ∈ Imp(Pj), then q(Pi ∧ Pj) is a trivial
DC.
Augmentation: If q(P1 ∧ . . . ∧ Pn) is a valid DC, then q(P1 ∧
. . . ∧ Pn ∧Q) is also a valid DC.
Transitivity: If q(P1∧ . . .∧Pn∧Q1) and q(R1∧ . . .∧Rm∧Q2)
are valid DCs, and Q2 ∈ Imp(Q1), then q(P1 ∧ . . . ∧ Pn ∧R1 ∧
. . . ∧Rm) is also a valid DC.

Triviality states that, if a DC has two predicates that cannot be
true at the same time (Pi ∈ Imp(Pj)), then the DC is trivially
satisfied. Augmentation states that, if a DC is valid, adding more
predicates will always result in a valid DC. Transitivity states, that
if there are two DCs and two predicates (one in each DC) that can-
not be false at the same time (Q2 ∈ Imp(Q1)), then merging two
DCs plus removing those two predicates will result in a valid DC.

Inference system I is a syntactic way of checking whether a set
of DCs Σ implies a DC ϕ. It is sound in that if by using I a DC ϕ
can be derived from Σ, i.e., Σ `I ϕ, then Σ implies ϕ, i.e., Σ |=
ϕ. The completeness of I dictates that if Σ |= ϕ, then Σ `I ϕ.
We identify a specific form of DCs, for which I is complete. The
specific form requires that each predicate of a DC is defined on two
tuples and on the same attribute, and that all predicates must have
the same operator θ except one that must have the reverse of θ.

THEOREM 1. The inference system I is sound. It is also com-
plete for VDCs of the form ∀tα, tβ ∈ R, q(P1 ∧ . . . ∧ Pm ∧ Q),
where Pi = tα.Aiθtβ .Ai,∀i ∈ [1,m] and Q = tα.Bθtβ .B with
Ai, B ∈ U.

Formal proof for Theorem 1 is reported in the extended version
of this paper [9]. The completeness result of I for that form of
DCs generalizes the completeness result of Armstrong Axioms for
FDs. In particular, FDs adhere to the form with θ being =. The
partial completeness result for the inference system has no impli-
cation on the completeness of the discovery algorithms described
in Section 5. We will discuss in the experiments how, although not
complete, the inference system I has a huge impact on the pruning
power of the implication test and on the FASTDC algorithm.

4.2 Implication Problem
Implication testing refers to the problem of determining whether

a set of DCs Σ implies another DC ϕ. It has been established that
the complexity of the implication testing problem for DCs is coNP-
Complete [3]. Given the intractability result, we have devised a
linear, sound, but not complete, algorithm for implication testing to
reduce the number of DCs in the discovery algorithm output.

In order to devise an efficient implication testing algorithm, we
define the concept of closure in Definition 1 for a set of predicates
W under a set of DCs Σ. A predicate P is in the closure if adding
P to W would constitute a DC implied by Σ. It is in spirit similar
to the closure of a set of attributes under a set of FDs.

DEFINITION 1. The closure of a set of predicates W, w.r.t. a
set of DCs Σ, is a set of predicates, denoted as CloΣ(W), such that
∀P ∈ CloΣ(W), Σ |=q(W ∧ P ).

Algorithm 1 GET PARTIAL CLOSURE:
Input: Set of DCs Σ, Set of Predicates W
Output: Set of predicates called closure of W under Σ : CloΣ(W)
1: for all P ∈W do
2: CloΣ(W)← CloΣ(W) + Imp(P )
3: CloΣ(W)← CloΣ(W) + Imp(CloΣ(W))
4: for each P , create a list LP of DCs containing P
5: for each ϕ, create a list Lϕ of predicates not yet in the closure
6: for all ϕ ∈ Σ do
7: for all P ∈ ϕ.Pres do
8: LP ← LP + ϕ
9: for all P /∈ CloΣ(W) do

10: for all ϕ ∈ LP do
11: Lϕ ← Lϕ + P
12: create a queue J of DC with all but one predicate in the closure
13: for all ϕ ∈ Σ do
14: if |Lϕ| = 1 then
15: J ← J + ϕ
16: while |J | > 0 do
17: ϕ← J.pop()
18: P ← Lϕ.pop()

19: for all Q ∈ Imp(P ) do
20: for all ϕ ∈ LQ do
21: Lϕ ← Lϕ −Q
22: if |Lϕ| = 1 then
23: J ← J + ϕ
24: CloΣ(W)← CloΣ(W) + Imp(P )
25: CloΣ(W)← CloΣ(W) + Imp(CloΣ(W))
26: return CloΣ(W)

Algorithm 1 calculates the partial closure of W under Σ, whose
proof of correctness is provided in [9]. We initialize CloΣ(W) by
adding every predicate in W and their implied predicates due to
Axiom Triviality (Line 1-2). We add additional predicates that are
implied by CloΣ(W) through basic algebraic transitivity (Line 3).
The closure is enlarged if there exists a DC ϕ in Σ such that all but
one predicates in ϕ are in the closure (Line 15-23). We use two lists
to keep track of exactly when such condition is met (Line 3-11).

EXAMPLE 5. Consider Σ={c1, . . . , c5} and W = {tα.ZIP =
tβ .ZIP, tα.SAL < tβ .SAL}.

The initialization step in Line(1-3) results in CloΣ(W) =
{tα.ZIP = tβ .ZIP, tα.SAL < tβ .SAL, tα.SAL ≤ tβ .SAL}.
As all predicates but tα.ST 6= tβ .ST of c2 are in the clo-
sure, we add the implied predicates of the reverse of tα.ST 6=
tβ .ST to it and CloΣ(W) = {tα.ZIP = tβ .ZIP, tα.SAL <
tβ .SAL, tα.SAL ≤ tβ .SAL, tα.ST = tβ .ST}. As all predi-
cates but tα.TR > tβ .TR of c4 are in the closure (Line 22), we
add the implied predicates of its reverse, CloΣ(W) = {tα.ZIP =
tβ .ZIP, tα.SAL < tβ .SAL, tα.SAL ≤ tβ .SAL, tα.TR ≤
tβ .TR}. No more DCs are in the queue (Line 16).

Since tα.TR ≤ tβ .TR ∈ CloΣ(W), we have Σ |=q(W ∧
tα.TR > tβ .TR), i.e., Σ |= c6.

Algorithm 2 tests whether a DC ϕ is implied by a set of DCs
Σ, by computing the closure of ϕ.Pres in ϕ under Γ, which is Σ
enlarged with symmetric DCs. If there exists a DC φ in Γ, whose
predicates are a subset of the closure, ϕ is implied by Σ. The proof
of soundness of Algorithm 2 is in [9], which also shows a coun-
terexample where ϕ is implied by Σ, but Algorithm 2 fails.

EXAMPLE 6. Consider a database with two numerical
columns, High (H) and Low (L). Consider two DCs c11, c12.



Algorithm 2 IMPLICATION TESTING

Input: Set of DCs Σ, one DC ϕ
Output: A boolean value, indicating whether Σ |= ϕ
1: if ϕ is a trivial DC then
2: return true
3: Γ← Σ
4: for φ ∈ Σ do
5: Γ← Γ + symmetric DC of φ
6: CloΓ(ϕ.Pres) = getClosure(ϕ.Pres,Γ)
7: if ∃φ ∈ Γ, s.t. φ.Pres ⊆ CloΓ(ϕ.Pres) then
8: return true

c11 : ∀tα, (tα.H < tα.L)
c12 : ∀tα, tβ , (tα.H > tβ .H ∧ tβ .L > tα.H)

Algorithm 2 identifies that c11 implies c12. Let Σ = {c11} and
W = c12.P res. Γ = {c11, c13}, where c13: ∀tβ , (tβ .H < tβ .L).
CloΓ(W) = {tα.H > tβ .H, tβ .L > tα.H, tβ .H < tβ .L}, be-
cause tβ .H < tβ .L is implied by {tα.H > tβ .H, tβ .L > tα.H}
through basic algebraic transitivity (Line 3).

Since c13.P res ⊂ CloΓ(W), the implication holds.

5. DCS DISCOVERY ALGORITHM
Algorithm 3 describes our procedure for discovering minimal

DCs. Since a DC is composed of a set of predicates, we build a
predicate space P based on schema R (Line 1). Any subset of P
could be a set of predicates for a DC.

Algorithm 3 FASTDC
Input: One relational instance I , schema R
Output: All minimal DCs Σ
1: P← BUILD PREDICATE SPACE(I, R)
2: EviI ← BUILD EVIDENCE SET(I,P)
3: MC← SEARCH MINIMAL COVERS(EviI , EviI , ∅, >init, ∅)
4: for all X ∈ MC do
5: Σ← Σ+q(X)
6: for all ϕ ∈ Σ do
7: if Σ− ϕ |= ϕ then
8: remove ϕ from Σ

Given P, the space of candidate DCs is of size 2|P|. It is not
feasible to validate each candidate DC directly over I , due to the
quadratic complexity of checking all tuple pairs. For this reason,
we extract evidence from I in a way that enables the reduction of
DCs discovery to a search problem that computes valid minimal
DCs without checking each candidate DC individually.

The evidence is composed of sets of satisfied predicates in P,
one set for every pair of tuples (Line 2). For example, assume
two satisfied predicates for one tuple pair: tα.A = tβ .A and
tα.B = tβ .B. We use the set of satisfied predicates to derive the
valid DCs that do not violate this tuple pair. In the example, two
sample DCs that hold on that tuple pair are q(tα.A 6= tβ .A) and
q(tα.A = tβ .A ∧ tα.B 6= tβ .B). Let EviI be the sets of satisfied
predicates for all pairs of tuples, deriving valid minimal DCs for
I corresponds to finding the minimal sets of predicates that cover
EviI (Line 3)1. For each minimal cover X, we derive a valid min-
imal DC by inverting each predicate in it (Lines 4-5). We remove
implied DCs from Σ with Algorithm 2 (Lines 6-8).

Section 5.1 describes the procedure for building the predicate
space P. Section 5.2 formally defines EviI , gives a theorem that
reduces the problem of discovering all minimal DCs to the problem
of finding all minimal covers forEviI , and presents a procedure for

1For sake of presentation, parameters are described in Section 5.3

building EviI . Section 5.3 describes a search procedure for find-
ing minimal covers forEviI . In order to reduce the execution time,
the search is optimized with a dynamic ordering of predicates and
branch pruning based on the axioms we developed in Section 4. In
order to enable further pruning, Section 5.4 introduces an optimiza-
tion technique that divides the space of DCs and performs DFS on
each subspace. We extend FASTDC in Section 5.5 to discover ap-
proximate DCs and in Section 5.6 to discover DCs with constants.

5.1 Building the Predicate Space
Given a database schema R and an instance I , we build a pred-

icate space P from which DCs can be formed. For each attribute
in the schema, we add two equality predicates (=, 6=) between two
tuples on it. In the same way, for each numerical attribute, we add
order predicates (>,≤, <,≥). For every pair of attributes in R,
they are joinable (comparable) if equality (order) predicates hold
across them, and add cross column predicates accordingly.

Profiling algorithms [11] can be used to detect joinable and com-
parable columns. We consider two columns joinable if they are of
same type and have common values2. Two columns are compara-
ble if they are both of numerical types and the arithmetic means of
two columns are within the same order of magnitude.

EXAMPLE 7. Consider the following Employee table with
three attributes: Employee ID (I), Manager ID (M), and Salary(S).

TID I(String) M(String) S(Double)
t9 A1 A1 50
t10 A2 A1 40
t11 A3 A1 40

We build the following predicate space P for it.
P1 : tα.I = tβ .I P5 : tα.S = tβ .S P9 : tα.S < tβ .S
P2 : tα.I 6= tβ .I P6 : tα.S 6= tβ .S P10 : tα.S ≥ tβ .S
P3 : tα.M = tβ .M P7 : tα.S > tβ .S P11 : tα.I = tα.M
P4 : tα.M 6= tβ .M P8 : tα.S ≤ tβ .S P12 : tα.I 6= tα.M
P13 : tα.I = tβ .M P14 : tα.I 6= tβ .M

5.2 Evidence Set
Before giving formal definitions of EviI , we show an example

of the satisfied predicates for the Employee table Emp above:
EviEmp = {{P2, P3, P5, P8, P10, P12, P14},
{P2, P3, P6, P8, P9, P12, P14}, {P2, P3, P6, P7, P10, P11, P13}}.
Every element in EviEmp has at least one pair of tuples in I such
that every predicate in it is satisfied by that pair of tuples.

DEFINITION 2. Given a pair of tuple 〈tx, ty〉 ∈ I , the sat-
isfied predicate set for 〈tx, ty〉 is SAT (〈tx, ty〉) = {P |P ∈
P, 〈tx, ty〉 |= P}, where P is the predicate space, and 〈tx, ty〉 |= P
means 〈tx, ty〉 satisfies P .

The evidence set of I isEviI = {SAT (〈tx, ty〉)|∀〈tx, ty〉 ∈ I}.
A set of predicates X ⊆ P is a minimal set cover for EviI if
∀E ∈ EviI ,X∩E 6= ∅, and @Y ⊂ X, s.t. ∀E ∈ EviI ,Y∩E 6= ∅.

The minimal set cover for EviI is a set of predicates that inter-
sect with every element in EviI . Theorem 2 transforms the prob-
lem of minimal DCs discovery into the problem of searching for
minimal set covers for EviI .

THEOREM 2. q(X1 ∧ . . . ∧Xn) is a valid minimal DC if and
only if X = {X1, . . . , Xn} is a minimal set cover for EviI .
2We show in the experiments that requiring at least 30% common
values allows to identify joinable columns without introducing a
large number of unuseful predicates. Joinable columns can also be
discovered from query logs, if available.



Proof. Step 1: we prove if X ⊆ P is a cover forEviI , q(X1∧ . . .∧
Xn) is a valid DC. According to the definition, EviI represents all
the pieces of evidence that might violate DCs. For any E ∈ EviI ,
there exists X ∈ X, s.t. X ∈ E; thus X /∈ E. I.e., the presence of
X in q(X1 ∧ . . . ∧Xn) disqualifies E as a possible violation.

Step 2: we prove if q(X1∧. . .∧Xn) is a valid DC, then X ⊆ P is
a cover. According to the definition of valid DC, there does not ex-
ist tuple pair 〈tx, ty〉, s.t. 〈tx, ty〉 satisfies X1, . . . , Xn simultane-
ously. In other words, ∀〈tx, ty〉, ∃Xi, s.t. 〈tx, ty〉 does not satisfy
Xi. Therefore, ∀〈tx, ty〉, ∃Xi, s.t. 〈tx, ty〉 |= Xi, which means
any tuple pair’s satisfied predicate set is covered by {X1, . . . , Xn}.

Step 3: if X ⊆ P is a minimal cover, then the DC is also minimal.
Assume the DC is not minimal, there exists another DC ϕ whose
predicates are a subset of q(X1 ∧ . . . ∧ Xn). According to Step
2, ϕ.Pres is a cover, which is a subset of X = {X1, . . . , Xn}. It
contradicts with the assumption that X ⊆ P is a minimal cover.

Step 4: if the DC is minimal, then the corresponding cover is
also minimal. The proof is similar to Step 3. �

EXAMPLE 8. Consider EviEmp for the table in Example 7.
X1 = {P2} is a minimal cover, thus q(P2), i.e., q(tα.I = tβ .I)

is a valid DC, which states I is a key.
X2 = {P10, P14} is another minimal cover, thus q(P10 ∧ P14),

i.e., q(tα.S < tβ .S ∧ tα.I = tβ .M) is another valid DC, which
states that a manager’s salary cannot be less than her employee’s.

The procedure to compute EviI follows directly from the defi-
nition: for every tuple pair in I , we compute the set of predicates
that tuple pair satisfies, and we add that set into EviI . This oper-
ation is sensitive to the size of the database, with a complexity of
O(|P| × |I|2). However, for every tuple pair, computing the sat-
isfied set of predicates is independent of each other. In our imple-
mentation we use the Grid Scheme strategy, a standard approach to
scale in entity resolution [4]. We partition the data into B blocks,
and define each task as a comparison of tuples from two blocks.
The total number of tasks is B2

2
. Suppose we have M machines,

we need to distribute the tasks evenly to M machines so as to fully
utilize every machine, i.e., we need to ensure B2

2
= w ×M with

w the number of tasks for each machine. Therefore, the number of
blocks B =

√
2wM . In addition, as we need at least two blocks

in memory at any given time, we need to make sure that (2× |I|
B
×

Size of a Tuple) < Memory Limit.

5.3 DFS for Minimal Covers
Algorithm 4 presents the depth-first search (DFS) procedure for

minimal covers for EviI . Ignore Lines (9-10) and Lines (11-12)
for now, as they are described in Section 5.4 and in Section 6.3,
respectively. We denote byEvicurr the set of elements inEviI not
covered so far. Initially Evicurr = EviI . Whenever a predicate P
is added to the cover, we remove from Evicurr the elements that
contain P , i.e., Evinext = {E|E ∈ Ecurr ∧ P /∈ E} (Line 23).
There are two base cases to terminate the search:

(i) there are no more candidate predicates to include in the cover,
but Evicurr 6= ∅ (Lines 14-15); and

(ii) Evicurr = ∅ and the current path is a cover (Line 16). If the
cover is minimal, we add it to the result MC (Lines 17-19).

We speed up the search procedure by two optimizations: dy-
namic ordering of predicates as we descend down the search tree
and branching pruning based on the axioms in Section 4.

Opt1: Dynamic Ordering. Instead of fixing the order of
predicates when descending down the tree, we dynamically or-
der the remaining candidate predicates, denoted as >next, based
on the number of remaining evidence set they cover (Lines 23

Algorithm 4 SEARCH MINIMAL COVERS

Input: 1. Input Evidence set, EviI
2. Evidence set not covered so far, Evicurr
3. The current path in the search tree, X ⊆ P
4. The current partial ordering of the predicates, >curr
5. The DCs discovered so far, Σ

Output: A set of minimal covers for Evi, denoted as MC
1: Branch Pruning
2: P ← X.last // Last Predicate added into the path
3: if ∃Q ∈ X− P , s.t. P ∈ Imp(Q) then
4: return //Triviality pruning
5: if ∃Y ∈ MC, s.t. X ⊇ Y then
6: return //Subset pruning based on MC
7: if ∃Y = {Y1, . . . , Yn} ∈ MC, and ∃i ∈ [1, n],

and ∃Q ∈ Imp(Yi), s.t. Z = Y−i ∪Q and X ⊇ Z then
8: return //Transitive pruning based on MC
9: if ∃ϕ ∈ Σ, s.t. X ⊇ ϕ.Pres then

10: return //Subset pruning based on previous discovered DCs
11: if Inter(ϕ) < t, ∀ϕ of the form q(X ∧W) then
12: return //Pruning based on Inter score
13: Base cases
14: if >curr= ∅ and Evicurr 6= ∅ then
15: return //No DCs in this branch
16: if Evicurr = ∅ then
17: if no subset of size |X| − 1 covers Evicurr then
18: MC← MC + X
19: return //Got a cover
20: Recursive cases
21: for all Predicate P ∈>curr do
22: X← X + P
23: Evinext ← evidence sets in Evicurr not yet covered by P
24: >next← total ordering of {P ′|P >curr P ′} wrt Evinext
25: SEARCH MINIMAL COVERS(EviI , Evinext, X, >next, Σ)
26: X← X− P

-24). Formally, we define the cover of P w.r.t. Evinext as
Cov(P,Evinext) = |{P ∈ E|E ∈ Evinext}|. And we say
that P >next Q if Cov(P,Evinext) > Cov(Q,Evinext), or
Cov(P,Evinext) = Cov(Q,Evinext) and P appears before Q
in the preassigned order in the predicate space. The initial evidence
set EviI is computed as discussed in Section 5.2. To computer
Evinext (Line 21), we scan every element in Evicurr , and we add
in Evinext those elements that do not contain P .

EXAMPLE 9. Consider EviEmp for the table in Ex-
ample 7. We compute the cover for each predicate,
such as Cov(P2, EviEmp) = 3, Cov(P8, EviEmp) = 2,
Cov(P9, EviEmp) = 1, etc. The initial ordering for the predicates
according to EviEmp is >init= P2 > P3 > P6 > P8 > P10 >
P12 > P14 > P5 > P7 > P9 > P11 > P13.

Opt2: Branch Pruning. The purpose of performing dynamic
ordering of candidate predicates is to get covers as early as possible
so that those covers can be used to prune unnecessary branches of
the search tree. We list three pruning strategies.

(i) Lines(2-4) describe the first pruning strategy. This branch
would eventually result in a DC of the form ϕ :q(X− P ∧P ∧W),
where P is the most recent predicate added to this branch and W
other predicates if we traverse this branch. If ∃Q ∈ X− P , s.t.
P ∈ Imp(Q), then ϕ is trivial according to Axiom Triviality.

(ii) Lines(5-6) describe the second branch pruning strategy,
which is based on MC. If Y is in the cover, then q(Y) is a valid
DC. Any branch containing X would result in a DC of the form
q(X ∧W), which is implied by q(Y) based on Axiom Augmenta-
tion, since Y ⊆ X.

(iii) Lines(7-8) describe the third branching pruning strategy,
which is also based on MC. If Y is in the cover, then q(Y−i∧Yi) is



a valid DC. Any branch containing X ⊇ Y−i ∪Q would result in a
DC of the form q(Y−i∧Q∧W). SinceQ ∈ Imp(Yi), by applying
Axiom Transitive on these two DCs, we would get that q(Y−i∧W)
is also a valid DC, which would imply q(Y−i ∧Q ∧W) based on
Axiom Augmentation. Thus this branch can be pruned.

5.4 Dividing the Space of DCs
Instead of searching for all minimal DCs at once, we divide the

space into subspaces, based on whether a DC contains a specific
predicate P1, which can be further divided according to whether a
DC contains another specific predicate P2. We start by defining ev-
idence set modulo a predicate P , i.e.,EviPI , and we give a theorem
that reduces the problem of discovering all minimal DCs to the one
of finding all minimal set covers of EviPI for each P ∈ P.

DEFINITION 3. Given a P ∈ P, the evidence set of I modulo
P is, EviPI = {E − {P}|E ∈ EviI , P ∈ E}.

THEOREM 3. q(X1 ∧ . . . ∧Xn ∧ P ) is a valid minimal DC,
that contains predicate P , if and only if X = {X1, . . . , Xn} is a
minimal set cover for EviPI .

EXAMPLE 10. Consider EviEmp for the table in Example 7,
EviP1

Emp = ∅, EviP13
Emp = {{P2, P3, P6, P7, P10, P11}}. Thus

q(P1) is a valid DC because there is nothing in the cover for
EviP1

Emp, and q(P13 ∧ P10) is a valid DC as {P10} is a cover for
EviP13

Emp. It is evident thatEviPEmp is much smaller thanEviEmp.

However, care must be taken before we start to search for mini-
mal covers for EviPI due to the following two problems.

First, a minimal DC containing a certain predicate P is not nec-
essarily a global minimal DC. For instance, assume that q(P,Q) is
a minimal DC containing P because {Q} is a minimal cover for
EviPI . However, it might not be a minimal DC because it is possi-
ble that q(Q), which is actually smaller than q(P,Q), is also a valid
DC. We call such q(P,Q) a local minimal DC w.r.t. P , and q(Q)
a global minimal DC, or a minimal DC. It is obvious that a global
minimal DC is always a local minimal DC w.r.t. each predicate in
the DC. Our goal is to generate all globally minimal DCs.

Second, assume that q(P,Q) is a global minimal DC. It is an
local minimal DC w.r.t. P and Q, thus would appear in subspaces
EviPI and EviQI . In fact, a minimal DC ϕ would then appear in
|ϕ.Pres| subspaces, causing a large amount of repeated work.

DCs

+R1 −R1

+R2 −R2

+R3 −R3

Figure 2: Taxonomy Tree.

We solve the second problem first, then the solution for the first
problem comes naturally. We divide the DCs space and order all
searches in a way, such that we ensure the output of a locally mini-
mal DC is indeed global minimal, and a previously generated mini-
mal DC will never appear again in latter searches. Consider a pred-
icate space P that has only 3 predicates R1 to R3 as in Figure 2,
which presents a taxonomy of all DCs. In the first level, all DCs can
be divided into DCs containing R1, denoted as +R1, and DCs not
containing R1, denoted as −R1. Since we know how to search for
local minimal DCs containing R1, we only need to further process

DCs not containing R1, which can be divided based on containing
R2 or not, i.e., +R2 and −R2. We will divide −R2 as in Figure 2.
We can enforce searching for DCs not containing Ri by disallow-
ing Ri in the initial ordering of candidate predicates for minimal
cover. Since this is a taxonomy of all DCs, no minimal DCs can be
generated more than once.

We solve the first problem by performing DFS according to the
taxonomy tree in a bottom-up fashion. We start by search for DCs
containing R3, not containing R1, R2. Then we search for DCs,
containing R2, not containing R1, and we verify the resulting DC
is global minimal by checking if the reverse of the minimal cover
is a super set of DCs discovered from EviR3

I . The process goes
on until we reach the root of the taxonomy, thus ensuring that the
results are both globally minimal and complete.

Dividing the space enables more optimization opportunities:
1. Reduction of Number of Searches. If ∃P ∈ P, such that

EviPI = ∅, we identify two scenarios for Q, where DFS for EviQI
can be eliminated.

(i) ∀Q ∈ Imp(P ), if EviPI = ∅, then q(P ) is a valid DC. The
search forEviQI would result in a DC of the form q(Q∧W), where
W represents any other set of predicates. Since Q ∈ Imp(P ),
applying Axiom Transitivity, we would have that q(W) is a valid
DC, which implies q(Q ∧W) based on Axiom Augmentation.

(ii) ∀Q ∈ Imp(P ), since Q ∈ Imp(P ), then Q |= P . It
follows that Q ∧W |= P and therefore q(P ) |=q(Q ∧W) holds.

EXAMPLE 11. Consider EviEmp for the table in Example 7,
sinceEviP1

Emp = ∅ andEviP4
Emp = ∅, then Q = {P1, P2, P3, P4}.

Thus we perform |P| − |Q| = 10 searches instead of |P| = 14.

2. Additional Branch Pruning. Since we perform DFS accord-
ing to the taxonomy tree in a bottom-up fashion, DCs discovered
from previous searches are used to prune branches in current DFS
described by Lines(9-10) of Algorithm 4.

Since Algorithm 4 is an exhaustive search for all minimal covers
for EviI , Algorithm 3 produces all minimal DCs.

THEOREM 4. Algorithm 3 produces all non-trivial minimal
DCs holding on input database I .

Complexity Analysis of FASTDC. The initialization of evi-
dence sets takes O(|P| ∗ n2). The time for each DFS search to
find all minimal covers for EviPI is O((1 + wP ) ∗ KP ), with
wP being the extra effort due to imperfect search of EviPI , and
KP being the number of minimal DCs containing predicate P .
Altogether, our FASTDC algorithm has worst time complexity of
O(|P| ∗ n2 + |P| ∗ (1 + wP ) ∗KP ).

5.5 Approximate DCs: A-FASTDC
Algorithm FASTDC consumes the whole input data set and re-

quires no violations for a DC to be declared valid. In real scenarios,
there are multiple reasons why this request may need to be relaxed:
(1) overfitting: data is dynamic and as more data becomes avail-
able, overfitting constraints on current data set can be problematic;
(2) data errors: while in general learning from unclean data is a
challenge, the common belief is that errors constitute small per-
centage of data, thus discovering constraints that hold for most of
the dataset is a common workaround [8, 15, 17].

We therefore modify the discovery statement as follows: given a
relational schemaR and instance I , the approximate DCs discovery
problem for DCs is to find all valid DCs, where a DC ϕ is valid if
the percentage of violations of ϕ on I , i.e., number of violations of
ϕ on I divided by total number of tuple pairs |I|(|I|− 1), is within
threshold ε. For this new problem, we introduce A-FASTDC.



Different tuple pairs might have the same satisfied predicate set.
For every element E in EviI , we denote by count(E) the num-
ber of tuple pairs 〈tx, ty〉 such that E = SAT (〈tx, ty〉). For
example, count({P2, P3, P6, P8, P9, P12, P14}) = 2 for the ta-
ble in Example 7 since SAT (〈t10, t9〉) = SAT (〈t11, t9〉) =
{P2, P3, P6, P8, P9, P12, P14}.

DEFINITION 4. A set of predicates X ⊆ P is an ε-minimal
cover for EviI if Sum(count(E)) ≤ ε|I|(|I| − 1), where E ∈
EviI ,X ∩ E = ∅, and no subset of X has such property.

Theorem 5 transforms approximate DCs discovery problem into
the problem of searching for ε-minimal covers for EviI .

THEOREM 5. q(X1∧. . .∧Xn) is a valid approximate minimal
DC if and only if X={X1, . . . , Xn} is a ε-minimal cover for EviI .

There are two modifications for Algorithm 4 to search for ε-
minimal covers for EviI : (1) the dynamic ordering of predicates is
based on Cov(P,Evi) =

∑
E∈{E∈Evi,P∈E} count(E); and (2)

the base cases (Lines 12-17) are either when the number of vio-
lations of the corresponding DC drops below ε|I|(|I| − 1), or the
number of violation is still above ε|I|(|I| − 1) but there are no
more candidate predicates to include. Due to space limitations, we
present in [9] the detailed modifications for Algorithm 4 to search
for ε-minimal covers for EviI .

5.6 Constant DCs: C-FASTDC
FASTDC discovers DCs without constant predicates. However,

just like FDs may not hold on the entire dataset, thus CFDs are
more useful, we are also interested in discovering constant DCs
(CDCs). Algorithm 5 describes the procedure for CDCs discovery.
The first step is to build a constant predicate space Q (Lines 1-6)3.
After that, one direct way to discover CDCs is to include Q in the
predicate space P, and follow the same procedure in Section 5.3.
However, the number of constant predicates is linear w.r.t. the num-
ber of constants in the active domain, which is usually very large.
Therefore, we follow the approach of [15] and focus on discover-
ing τ -frequent CDCs. The support for a set of constant predicates
X on I , denoted by sup(X, I), is defined to be the set of tuples
that satisfy all constant predicates in X. A set of predicates is said
to be τ -frequent if |sup(X,I)|

|I| ≥ τ . A CDC ϕ consisting of only
constant predicates is said to be τ -frequent if all strict subsets of
ϕ.Pres are τ -frequent. A CDC ϕ consisting of constant and vari-
able predicates is said to be k-frequent if all subsets of ϕ’s constant
predicates are τ -frequent.

EXAMPLE 12. Consider c3 in Example 1, sup({tα.CT =
‘Denver’}, I) = {t2, t6}, sup({tα.ST 6= ‘CO’}, I) =
{t1, t3, t4, t5, t7, t8}, and sup({c3.P res}, I) = ∅. Therefore, c3
is a τ -frequent CDC, with 2

8
≥ τ .

We follow an “Apriori” approach to discover τ -frequent constant
predicate sets. We first identify frequent constant predicate sets of
length L1 from Q (Lines 7-15). We then generate candidate fre-
quent constant predicate sets of lengthm from lengthm−1 (Lines
22-28), and we scan the database I to get their support (Line 24). If
the support of the candidate c is 0, we have a valid CDC with only
constant predicates (Lines 12-13 and 25-26); if the support of the
candidate c is greater than τ , we call FASTDC to get the variable
DCs (VDCs) that hold on sup(c, I), and we construct CDCs by
combining the τ -frequent constant predicate sets and the variable
predicates of VDCs (Lines 18-21).
3We focus on two tuple CDCs with the same constant predicates
on each tuple, i.e., if tα.Aθc is present in a two tuple CDC, tβ .Aθc
is enforced by the algorithm. Therefore, we only add tα.Aθc to Q.

Algorithm 5 C-FASTDC
Input: Instance I , schema R, minimal frequency requirement τ
Output: Constant DCs Γ
1: Let Q← ∅ be the constant predicate space
2: for all A ∈ R do
3: for all c ∈ ADom(A) do
4: Q← Q + tα.Aθc, where θ ∈ {=, 6=}
5: if A is numerical type then
6: Q← Q + tα.Aθc, where θ ∈ {>,≤, <,≥}
7: for all t ∈ I do
8: if t satisfies Q then
9: sup(Q, I)← sup(Q, I) + t

10: Let L1 be the set of frequent predicates
11: for all Q ∈ Q do
12: if |sup(Q, I)| = 0 then
13: Γ← Γ+q(Q)

14: else if |sup(Q,I)|
|I| ≥ τ then

15: L1 ← L1 + {Q}
16: m← 2
17: while Lm−1 6= ∅ do
18: for all c ∈ Lm−1 do
19: Σ← FASTDC(sup(c, I),R)
20: for all ϕ ∈ Σ do
21: Γ← Γ + φ, φ’s predicates comes from c and ϕ
22: Cm = {c|c = a ∪ b ∧ a ∈ Lm−1 ∧ b ∈

⋃
Lk−1 ∧ b /∈ a}

23: for all c ∈ Cm do
24: scan the database to get the support of c, sup(c, I)
25: if |sup(c, I)| = 0 then
26: Γ← Γ + φ, φ’s predicates consist of predicates in c
27: else if |sup(c,I)||I| ≥ τ then
28: Lm ← Lm + c
29: m← m+ 1

6. RANKING DCS
Though our FASTDC (C-FASTDC) is able to prune trivial, non-

minimal, and implied DCs, the number of DCs returned can still be
too large. To tackle this problem, we propose a scoring function to
rank DCs based on their size and their support from the data. Given
a DC ϕ, we denote by Inter(ϕ) its interestingness score.

We recognize two different dimensions that influence Inter(ϕ):
succinctness and coverage of ϕ, which are both defined on a scale
between 0 and 1. Each of the two scores represents a different yet
important intuitive dimension to rank discovered DCs.

Succinctness is motivated by the Occam’s razor principle. This
principle suggests that among competing hypotheses, the one that
makes fewer assumptions is preferred. It is also recognized that
overfitting occurs when a model is excessively complex [6].

Coverage is also a general principle in data mining to rank re-
sults [2]. They design scoring functions that measure the statistical
significance of the mining targets in the input data.

Given a DC ϕ, we define the interestingness score as a linear
weighted combination of the two dimensions: Inter(ϕ) = a ×
Coverage(ϕ) + (1− a)× Succ(ϕ).

6.1 Succinctness
Minimum description length (MDL), which measures the code

length needed to compress the data [6], is a formalism to realize
the Occam’s razor principle. Inspired by MDL, we measure the
length of a DC Len(ϕ), and we define the succinctness of a DC ϕ,
i.e., Succ(ϕ), as the minimal possible length of a DC divided by
Len(ϕ) thus ensuring the scale of Succ(ϕ) is between 0 and 1.

Succ(ϕ) =
Min({Len(φ)|∀φ})

Len(ϕ)



One simple heuristic for Len(ϕ) is to use the number of pred-
icates in ϕ, i.e., |ϕ.Pres|. Our proposed function computes the
length of a DC with a finer granularity than a simple counting of
the predicates. To compute it, we identify the alphabet from which
DCs are formed as A = {tα, tβ ,U,B, Cons}, where U is the set of
all attributes, B is the set of all operators, and Cons are constants.
The length of ϕ is the number of symbols in A that appear in ϕ:
Len(ϕ) = |{a|a ∈ A, a ∈ ϕ}|. The shortest possible DC is of
length 4, such as c5, c9, and q(tα.SAL ≤ 5000).

EXAMPLE 13. Consider a database schema R with two
columns A,B, with 3 DCs as follows:
c14 :q(tα.A = tβ .A), c15 :q(tα.A = tβ .B),
c16 :q(tα.A = tβ .A ∧ tα.B 6= tβ .B)

Len(c14) = 4 < Len(c15) = 5 < Len(c16) = 6. Succ(c14) = 1,
Succ(c15) = 0.8, and Succ(c16)=0.67. However, if we use |ϕ.Pres|
as Len(ϕ), Len(c14) = 1 < Len(c15) = 1 < Len(c16) = 2, and
Succ(c14)=1, Succ(c15)=1, and Succ(c16)=0.5.

6.2 Coverage
Frequent itemset mining recognizes the importance of measuring

statistical significance of the mining targets [2]. In this case, the
support of an itemset is defined as the proportion of transactions in
the data that contain the itemset. Only if the support of an itemset is
above a threshold, it is considered to be frequent. CFDs discovery
also adopts such principle. A CFD is considered to be interesting
only if their support in the data is above a certain threshold, where
support is in general defined as the percentage of single tuples that
match the constants in the patten tableaux of the CFDs [8, 15].

However, the above statistical significance measures requires the
presence of constants in the mining targets. For example, the fre-
quent itemsets are a set of items, which are constants. In CFDs dis-
covery, a tuple is considered to support a CFD if that tuple matches
the constants in the CFD. Our target DCs may lack constants, and
so do FDs. Therefore, we need a novel measure for statistical sig-
nificance of discovered DCs on I that extends previous approaches.

EXAMPLE 14. Consider c2, which is a FD, in Example 1. If
we look at single tuples, just as the statistical measure for CFDs,
every tuple matches c2 since it does not have constants. However,
it is obvious that the tuple pair 〈t4, t7〉 gives more support than the
tuple pair 〈t2, t6〉 because 〈t4, t7〉 matches the left hand side of c2.

Being a more general form than CFDs, DCs have more kinds of
evidence that we exploit in order to give an accurate measure of the
statistical significance of a DC on I . An evidence of a DCϕ is a pair
of tuples that does not violate ϕ: there exists at least one predicate
in ϕ that is not satisfied by the tuple pair. Depending on the number
of satisfied predicates, different evidences give different support to
the statistical significance score of a DC. The larger the number of
satisfied predicates is in a piece of evidence, the more support it
gives to the interestingness score of ϕ. A pair of tuples satisfying
k predicates is a k-evidence (kE). As we want to give higher score
to high values of k, we need a weight to reflect this intuition in the
scoring function. We introduce w(k) for kE, which is from 0 to 1,
and increases with k. In the best case, the maximum k for a DC ϕ
is equal to |ϕ.Pres| − 1, otherwise the tuple pair violates ϕ.

DEFINITION 5. Given a DC ϕ:
A k-evidence (kE) for ϕ w.r.t. a relational instance I is a tuple

pair 〈tx, ty〉, where k is the number of predicates in ϕ that are
satisfied by 〈tx, ty〉 and k ≤ |ϕ.Pres| − 1.

The weight for a kE (w(k)) for ϕ is w(k) = (k+1)
|ϕ.Pres| .

EXAMPLE 15. Consider c7 in Example 3, which has 2 predi-
cates. There are two types of evidences, i.e., 0E and 1E.
〈t1, t2〉 is a 0E since t1.FN 6= t2.FN and t1.GD = t2.GD.
〈t1, t3〉 is a 1E since t1.FN 6= t3.FN and t1.GD 6= t3.GD.
〈t1, t6〉 is a 1E since t1.FN = t6.FN and t1.GD = t6.GD.

Clearly, 〈t1, t3〉 and 〈t1, t6〉 have higher weight than 〈t1, t2〉.
Given such evidence, we define Coverage(ϕ) as follows:

Coverage(ϕ) =

∑|ϕ.Pres|−1
k=0 |kE| ∗ w(k)
∑|ϕ.Pres|−1
k=0 |kE|

The enumerator ofCoverage(ϕ) counts the number of different
evidences weighted by their respective weights, which is divided by
the total number of evidences. Coverage(ϕ) gives a score between
0 and 1, with higher score indicating higher statistical significance.

EXAMPLE 16. Given 8 tuples in Table 1, we have 8*7=56 ev-
idences. Coverage(c7) = 0.80357, Coverage(c2) = 0.9821. It
can be seen that coverage score is more confident about c2, thus
reflecting our intuitive comparison between c2 and c7 in Section 1.

Coverage for CDC is calculated using the same formula, such as
Coverage(c3) = 1.0.

6.3 Rank-aware Pruning in DFS Tree
Having defined Inter, we can use it to prune branches in the

DFS tree when searching for minimal covers in Algorithm 4. We
can prune any branch in the DFS tree, if we can upper bound the
Inter score of any possible DC resulting from that branch, and the
upper bound is either (i) less than a minimal Inter threshold, or
(ii) less than the minimal Inter score of the Top-k DCs we have
already discovered. We use this pruning in Algorithm 4 (Lines 11-
12), a branch with the current path X will result in a DC ϕ: q(X ∧
W), with X known and W unknown.
Succ score is an anti-monotonic function: adding more predi-

cates increases the length of a DC, thus decreases the Succ of a
DC. Therefore we bound Succ(ϕ) by Succ(ϕ) ≤ Succ(q(X)).
However, as Coverage(ϕ) is not anti-monotonic, we cannot use
q(X) to get an upper bound for it. A direct upper bound, but not
useful bound is 1.0, so we improve it as follows. Each evidence
E or tuple pair is contributing w(k) = (k+1)

|ϕ.Pres| to Coverage(ϕ)

with k being the number of predicates in ϕ that E satisfies. w(k)
can be rewritten as w(k) = 1 − l

|ϕ.Pres| with l being the number
of predicates in ϕ that E does not satisfy. In addition, we know l is
greater than or equal to the number of predicates in X that E does
not satisfy; and we know that |ϕ.Pres| must be less than the |P|

2
.

Therefore, we get an upper bound for w(k) for each evidence. The
average of the upper bounds for all evidences is a valid upper bound
for Coverage(ϕ). However, to calculate this bound, we need to it-
erate over all the evidences, which can be expensive because we
need to do that for every branch in the DFS tree. Therefore, to get
a tighter bound than 1.0, we only upper bound the w(k) for a small
number of evidences4, and for the rest we set w(k) ≤ 1. We show
in the experiments how different combinations of the upper bounds
of Succ(ϕ) and of Coverage(ϕ) affect the results.

7. EXPERIMENTAL STUDY
We experimentally evaluate FASTDC, Inter function, A-

FASTDC, and C-FASTDC. Experiments are performed on a Win7
machine with QuadCore 3.4GHz cpu and 4GB RAM. The scala-
bility experiment runs on a cluster consisting of machines with the
same configuration. We use one synthetic and two real datasets.
4We experimentally identified that 1000 samples improve the upper
bound without affecting execution times.
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Figure 3: FASTDC scalability (a-f), ranking functions w.r.t. Σg (g-j), A-FASTDC scalability (k) and quality (l-o), C-FASTDC scalability (p).

Synthetic. We use the Tax data generator from [7]. Each record
represents an individual’s address and tax information, as in Ta-
ble 1. The address information is populated using real semantic
relationship. Furthermore, salary is synthetic, while tax rates and
tax exemptions (based on salary, state, marital status and number
of children) correspond to real life scenarios.

Real-world. We use two datasets from different Web sources5.
Hospital data is from the US government. There are 17 string

attributes, including Provider # (PN), measure code (MC) and name
(MN), phone (PHO), emergency service (ES) and has 115k tuples.

SP Stock data is extracted from historical S&P 500 Stocks. Each
record is arranged into fields representing Date, Ticker, Open Price,
High, Low, Close, and Volume of the day. There are 123k tuples.

7.1 Scalability Evaluation
We mainly use the Tax dataset to evaluate the running time of

FASTDC by varying the number of tuples |I|, and the number of
predicates |P|. We also report running time for the Hospital and the
SP Stock datasets. We show that our implication testing algorithm,
though incomplete, is able to prune a huge number of implied DCs.

5
http://data.medicare.gov, http://pages.swcp.com/stocks

Algorithms. We implemented FASTDC in Java, and we test
various optimizations techniques. We use FASTDC+M to repre-
sent running FASTDC on a cluster consisting of M machines. We
use FASTDC-DS to denote running FASTDC without dividing the
space of DCs as in Section 5.4. We use FASTDC-DO to denote
running FASTDC without dynamic ordering of predicates in the
search tree as in Section 5.3.

Exp-1: Scalability in |I|. We measure the running time in min-
utes on all 13 attributes, by varying the number of tuples (up to 1
million tuples), as reported in Figure 3a. The size of the predicate
space |P| is 50. The Y axis of Figure 3a is in log scale. We com-
pare the running time of FASTDC and FASTDC+M with number
of blocks B=2M to achieve load balancing. Figure 3a shows a
quadratic trend as the computation is dominated by the tuple pair-
wise comparison for building the evidence set. In addition, Fig-
ure 3a shows that we achieve almost linear improvement w.r.t the
number of machines on a cluster; for example, for 1M tuples, it
took 3257 minutes on 7 machines, but 1228 minutes on 20 ma-
chines. Running FASTDC on a cluster is a viable approach if the
number of tuples is too large to run on a single machine.

Exp-2: Scalability in |P|. We measure the running time in sec-
onds using 10k tuples, by varying the number of predicates through



including different number of attributes in the Tax dataset, as in
Figure 3b. We compare the running time of FASTDC, FASTDC-
DS, and FASTDC-DO. The ordering of adding more attributes is
randomly chosen, and we report the average running time over 20
executions. The Y axes of Figures 3b, 3c and 3d are in log scale.
Figure 3b shows that the running time increases exponentially w.r.t.
the number of predicates. This is not surprising because the num-
ber of minimal DCs, as well as the amount of wasted work, in-
creases exponentially w.r.t. the number of predicates, as shown in
Figures 3c and 3d. The amount of wasted work is measured by the
number of times Line 15 of Algorithm 4 is hit. We estimate the
wasted DFS time as a percentage of the running time by wasted
work / (wasted work + number of minimal DCs), and it is less than
50% for all points of FASTDC in Figure3d. The number of min-
imal DCs discovered is the same for FASTDC, FASTDC-DS, and
FASTDC-DO as optimizations do not alter the discovered DCs.

Hospital has 34 predicates and it took 118 minutes to run on a
single machine using all tuples. Stock has 82 predicates and it took
593 minutes to run on a single machine using all tuples.

Exp-3: Joinable Column Analysis. Figure 3e shows the num-
ber of predicates by varying the % of common values required
to declare joinable two columns. Smaller values lead to a larger
predicate space and higher execution times. Larger values lead to
faster execution but some DCs involving joinable columns may be
missed. The number of predicates gets stable with low percentage
of common values, and with our datasets the quality of the output
is not affected when at least 30% common values are required.

Exp-4: Ranking Function in Pruning. Figure 3f shows the
DFS time taken for the Tax dataset varying the minimum Inter
score required for a DC to be in the output. The threshold has
to exceed 0.6 to have pruning power. The higher the threshold,
the more aggressive the pruning. In addition, a bigger weight for
Succ score (indicated by smaller a in Figure 3f) has more pruning
power. Although in our experiment golden DCs are not dropped by
this pruning, in general it is possible that the upper bound of Inter
for interesting DCs falls under the threshold, thus this pruning may
lead to losing interesting DCs. The other use of ranking function
for pruning is omitted since it has little gain.

Dataset # DCs Before # DCs After % Reduction
Tax 1964 741 61%

Hospital 157 42 73%
SP Stock 829 621 25%

Table 3: # DCs before and after reduction through implication.

Exp-5: Implication Reduction. The number of DCs returned
by FASTDC can be large, and many of them are implied by others.
Table 3 reports the number of DCs we have before and after impli-
cation testing for datasets with 10k tuples. To prevent interesting
DCs from being discarded, we rank them according to their Inter
function. A DC is discarded if it is implied by DCs with higher
Inter scores. It can be seen that our implication testing algorithm,
though incomplete, is able to prune a large amount of implied DCs.

7.2 Qualitative Analysis
Table 4 reports some discovered DCs, with their semantics ex-

plained in English6. We denote by Σg the golden VDCs that have
been designed by domain experts on the datasets. Specifically, Σg
for Tax dataset has 8 DCs; Σg for Hospital is retrieved from [10]
and has 7 DCs; and Σg for SP Stock has 6 DCs. DCs that are
implied by Σg are also golden DCs. We denote by Σs the DCs

6All datasets, as well as their golden and discovered DCs are avail-
able at “http://da.qcri.org/dc/”.

returned by FASTDC. We define G-Precision as the percentage
of DCs in Σs that are implied by Σg , G-Recall as the number of
DCs in Σs that are implied by Σg over the total number of golden
DCs, and G-F-Measure as the harmonic mean of G-Precision and
G-Recall. In order to show the effectiveness of our ranking func-
tion, we use the golden VDCs to evaluate the two dimensions of
Inter function in Exp-6, the performance of A-FASTDC in Exp-
7. We evaluate C-FASTDC in Exp-8. However, domain experts
might not be exhaustive in designing all interesting DCs. In partic-
ular, humans have difficulties designing DCs involving constants.
We show with U -Precision(Σs) the percentage of DCs in Σs that
are verified by experts to be interesting, and we report the result in
Exp-9. All experiments in this section are done on 10k tuples.

Exp-6: Evaluation of Inter score. We report in Figures 3g– 3i
G-Precision, G-Recall, and G-F-Measure for Tax, with Σs being
the Top-k DCs according to Inter by varying the weight a from 0
to 1. Every line is at its peak value when a is between 0.5 and 0.8.
Moreover, Figure 3h shows that Inter score with a = 0.6 for Top-
20 DCs has perfect recall; while it is not the case for using Succ
alone (a = 0), or using Coverage alone (a = 1). This is due to
two reasons. First, Succ might promote shorter DCs that are not
true in general, such as c7 in Example 3. Second, Coveragemight
promote longer DCs that have higher coverage than shorter ones,
however, those shorter DCs might be in Σg; for example, the first
entry in Table 4 has higher coverage than q(tα.AC = tβ .AC ∧
tα.PH = tβ .PH), which is actually in Σg . For Hospital, Inter
and Coverage give the same results as in Figures 3j, which are
better than Succ because golden DCs for Hospital are all FDs with
two predicates, therefore Succ has no effect on the interestingness.
For Stock, all scoring functions give the same results because its
golden DCs are simple DCs, such as q(tα.Low > tα.High).

This experiment shows that both succinctness and coverage are
useful in identifying interesting DCs. We combine both dimen-
sions into Inter with a = 0.5 in our experiments. Interesting DCs
usually have Coverage and Succ greater than 0.5.

Exp-7: A-FASTDC. In this experiment, we test A-FASTDC on
noisy datasets. A noise level of α means that each cell has α prob-
ability of being changed, with 50% chance of being changed to
a new value from the active domain and the other 50% of being
changed to a typo. For a fixed noise level α = 0.001, which will in-
troduce hundreds of violating tuple pairs for golden DCs, Figure 3l
plots the G-Recall for Top-60 DCs varying the approximation level
ε. A-FASTDC discovers an increasing number of correct DCs as
we increase ε, but, as it further increases, G-Recall drops because
when ε is too high, a DC whose predicates are a subset of a cor-
rect DC might get discovered, thus the correct DC will not appear.
For example, the fifth entry in Table 4 is a correct DC; however,
if ε is set too high, q(tα.PN = tβ .PN) would be in the output.
G-Recall for SPStock data is stable and higher than the other two
datasets because most golden DCs for SPStock data are one tuple
DCs, which are easier to discover. Finally, we examine Top-60 DCs
to discover golden DCs, which is larger than Top-20 DCs in clean
datasets. However, since there are thousands of DCs in the output,
our ranking function is still saving a lot of manual verification.

Figure 3m shows that for a fixed approximate level ε= 4× 10−6,
as we increase the amount of noise in the data, the G-Recall for
Top-60 DCs shows a small drop. This is expected because the
nosier gets the data, the harder it is to get correct DCs. However,
A-FASTDC is still able to discover golden DCs.

Figure 3n and 3o show how A-FASTDC performs when the noise
is skewed. We fix 0.002 noise level, and instead of randomly dis-
tributing them over the entire dataset, we distribute them over a cer-
tain region. Figure 3n shows that, as we distribute the noise over



Dataset DC Discovered Semantics
1 Tax q(tα.ST = tβ .ST ∧ tα.SAL < tβ .SAL There cannot exist two persons who live in the same state,

∧tα.TR > tβ .TR) but one person earns less salary and has higher tax rate at the same time.
2 Tax q(tα.CH 6= tβ .CH ∧ tα.STX < tα.CTX There cannot exist two persons with both having CTX higher than STX,

∧tβ .STX < tβ .CTX) but different CH. If a person has CTX, she must have children.
3 Tax q(tα.MS 6= tβ .MS ∧ tα.STX = tβ .STX) There cannot exist two persons with same STX, one person has higher STX than

∧tα.STX > tα.CTX) CTX and they have different MS. If a person has STX, she must be single.
4 Hospital q(tα.MC = tβ .MC ∧ tα.MN 6= tβ .MN) Measure code determines Measure name.
5 Hospital q(tα.PN = tβ .PN ∧ tα.PHO 6= tβ .PHO) Provider number determines Phone number.
6 SP Stock q(tα.Open > tα.High) The open price of any stock should not be greater than its high of the day.
7 SP Stock q(tα.Date = tβ .Date ∧ tα.T icker = tβ .T icker) Ticker and Date is a composite key.
8 Tax q(tα.ST = ‘FL’ ∧ tα.ZIP < 30397) State Florida’s ZIP code cannot be lower than 30397.
9 Tax q(tα.ST = ‘FL’ ∧ tα.ZIP ≥ 35363) State Florida’s ZIP code cannot be higher than 35363.
10 Tax q(tα.MS 6= ‘S’ ∧ tα.STX 6= 0) One has to be single to have any single tax exemption.
11 Hospital q(tα.ES 6= ‘Yes’ ∧ tα.ES 6= ‘No’) The domain value of emergency service is yes or no.

Table 4: Sample DCs discovered in the datasets.

a larger number of columns, the G-Recall drops because noise in
more columns affect the discovery of more golden DCs. Figure 3o
shows G-Recall as we distribute the noise over a certain percentage
of rows; G-Recall is quite stable in this case.

Exp-8: C-FASTDC. Figure 3p reports the running time of C-
FASTDC varying minimal frequent threshold τ from 0.02 to 1.0.
When τ = 1.0, C-FASTDC falls back to FASTDC. The smaller
the τ , the more the frequent constant predicate sets, the bigger the
running time. For the SP Stock dataset, there is no constant predi-
cate set, so it is a straight line. For the Tax data, τ = 0.02 results in
many frequent constant predicate sets. Since it is not reasonable for
experts to design a set of golden CDCs, we only report U-Precision.

FASTDC C-FASTDC
Dataset k=10 k=15 k=20 k=50 k=100 k=150

Tax 1.0 0.93 0.75 1.0 1.0 1.0
Hospital 1.0 0.93 0.7 1.0 1.0 1.0
SP Stock 1.0 1.0 1.0 0 0 0

Tax-Noise 0.5 0.53 0.5 1.0 1.0 1.0
Hosp.-Noise 0.9 0.8 0.7 1.0 1.0 1.0
Stock-Noise 0.9 0.93 0.95 0 0 0

Table 5: U-Precision.
Exp-9: U-Precision. We report in Table 5 the U-Precision for

all datasets using 10k tuples, and the Top-k DCs as Σs. We run
FASTDC and C-FASTDC on clean data, as well as noisy data. For
noisy data, we insert 0.001 noise level, and we report the best result
of A-FASTDC using different approximate levels. For FASTDC on
clean data, Top-10 DCs have U-precision 1.0. In fact in Figure 3g,
Top-10 DCs never achieve perfect G-precision because FASTDC
discovers VDCs that are correct, but not easily designed by hu-
mans, such as the second and third entry in Table 4. For FASTDC
on noisy data, though the results degrade w.r.t. clean data, at least
half of the DCs in Top-20 are correct. For C-FASTDC on either
clean or noisy data, we achieve perfect U-Precision for the Tax and
the Hospital datasets up to hundreds of DCs. SP Stock data has no
CDCs. This is because C-FASTDC is able to discover many busi-
ness rules such as entries 8-10 in Table 4, domain constraints such
as entry 11 in Table 4, and CFDs such as c3 in Example 1.

8. CONCLUSION AND FUTURE WORK
Denial Constraints are a useful language to detect violations and

enforce the correct application semantics. We have presented static
analysis for DCs, including three sound axioms, and a linear im-
plication testing algorithm. We also developed a DCs discovery
algorithm (FASTDC), as well as A-FASTDC and C-FASTDC. In
addition, experiments shown that our interestingness score is ef-
fective in identifying meaningful DCs. In the future, we want to

investigate sampling techniques to alleviate the quadratic complex-
ity of computing the evidence set.
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ABSTRACT
Declarative rules, such as functional dependencies, are
widely used for cleaning data. Several systems take them as
input for detecting errors and computing a “clean” version
of the data. To support domain experts,in specifying these
rules, several tools have been proposed to profile the data
and mine rules. However, existing discovery techniques have
traditionally ignored the time dimension. Recurrent events,
such as persons reported in locations, have a duration in
which they are valid, and this duration should be part of
the rules or the cleaning process would simply fail.

In this work, we study the rule discovery problem for tem-
poral web data. Such a discovery process is challenging be-
cause of the nature of web data; extracted facts are (i) sparse
over time, (ii) reported with delays, and (iii) often reported
with errors over the values because of inaccurate sources or
non robust extractors. We handle these challenges with a
new discovery approach that is more robust to noise. Our
solution uses machine learning methods, such as association
measures and outlier detection, for the discovery of the rules,
together with an aggressive repair of the data in the min-
ing step itself. Our experimental evaluation over real-world
data from Recorded Future, an intelligence company that
monitors over 700K Web sources, shows that temporal rules
improve the quality of the data with an increase of the aver-
age precision in the cleaning process from 0.37 to 0.84, and
a 40% relative increase in the average F-measure.

1. INTRODUCTION
With the increasing availability of web data, we are wit-

nessing the proliferation of businesses engaged in automatic
data extraction from thousands of web sources with the goal
of gleaning useful information and intelligence about people,
companies, countries, products, and organizations [30]. It is
well recognized that the data cannot be used as-is because
of errors that are in the sources themselves [15, 28, 29, 33]
or that arise with automatic extractors [7, 13].
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Figure 1: From top to bottom: real facts, their rep-
resentation on the Web, and the extracted data.

Consider the example depicted on the left hand side of
Figure 1. Obama attended a dinner in Italy, on Nov 12th

2014 at 8 pm; this is a real event and is represented as a tuple
in the relation at the top of the Figure. The information
is correctly reported on a web page from CNN and a web
data extractor identifies that a person (“Obama”) was in
a location (“Italy”) at a certain time; this is an extracted
event (relation at the bottom). However real events can be
reported by multiple sources that may or may not agree on
the details. In fact, another source reports Obama in South
Africa on the same day. As it is unlikely that a person is
reported in two different countries within 30 minutes, such a
contradiction highlights a problem in the data. In this case,
the event was extracted from a social media outlet that did
not have a faithful knowledge about the real event. This
happens in practice and is studied as the problems of truth
discovery [33, 15, 28] or fact-checking [29]. By enforcing a
rule over information from multiple sources, it is possible
to gain understanding about the trustability of the sources
and, ultimately, about the correct value of interest.

Consider another example for releases of products in the
right hand side of Figure 1. The information reported by the
source Times is a real event, but an error in the extractor led
to an incorrect weight, namely 3g, which in fact is a type of
network supported by the phone. Detecting such problems
can help identify faulty extractors [7, 13].

The two above examples highlight that identifying qual-
ity problems enables analysis over the sources, the data val-



ues, and the extractors. These analytics tasks usually rely
on declarative rules (such as key constraints) for detecting
problems in the data. For example, the fact that a product
is always released by a company can be expressed with a
functional dependency (Fd), i.e., product → company. In
the above example, the company releasing the phone can-
not be both Google and Apple. Heuristics exploiting the
redundancy are usually used to determine the correct value
(the truth) [28]. However, there are other errors that can
be identified only through temporal functional dependencies,
which are Fds that restrict the rule on the temporal dimen-
sion [21]. For example, a domain expert may come up with
a rule stating that a person cannot be reported arriving in
two countries at the same time (person → destination in
a 1-hour window), or that the same product cannot have
different weights reported at the release date (product →
weight in a 6-month window).

Coming up with these rules with the correct duration
value for “same time” is not trivial. A conservative choice
for this duration in a rule, such as “within a minute”, leads
to undetected errors in the Obama example. On the con-
trary, a high value for duration, such as “two days”, does
capture the problem, but would mark as errors all the tu-
ples in the example, including the correct ones with Italy
and France. Similar challenges arise for product release, a
time window of one day for the weight would not capture
the problem with 3g. Moreover, durations depend on the en-
tity at hand. For instance, Obama travels more frequently
and faster than most people, so he should have a different
temporal rule with a smaller time window.

Discovering constraints has been well studied in the lit-
erature [32, 1, 23, 8, 19]. However, a recurring assumption
in these existing techniques is that data is either clean or,
at worst, has a small amount of noise. Obviously, such as-
sumptions do not hold for data extracted from the web due
to the compounded effects of noise coming from the sources
and errors made by the extractors. Moreover, even when it
is possible to mine approximate dependencies over such dirty
data, there is no algorithm to discover useful time-windows,
or durations, to identify errors for the different events, e.g.,
a person is not reported traveling to two countries in a 1-
hour window. Without such a time dimension, rules are not
usable, as discussed above.

In this paper, we present Aetas1, our solution to over-
come the above challenges by relying on two basic concepts:
(i) the notion of approximation for the discovery of func-
tional dependencies that hold for most of the data, and
(ii) outlier detection techniques for the discovery of the du-
rations. In a nutshell, we first create a set of approximate
Fds that are valid in the smallest meaningful time inter-
val. The dependencies are then ranked with an association
measure, and validated by human experts. For each vali-
dated rule, we create a distribution of durations for all the
objects in the data, e.g., how much time is observed within
two consecutive destinations for every person, and mine it
to compute the duration that identifies the lowest extreme
values. This duration is then used as the time window for
the rule to identify temporal outliers.

Our contributions are as follows:

1) We formulate the problem of discovering temporal func-
tional dependencies for data cleaning (Section 2), and

1From “Omnia fert aetas”, Time cancels everything.

present techniques to discover approximate Fds based on
statistical properties of the data (Section 3).

2) Given a rule, we mine the duration that lead to identifying
temporal outliers. We tackle the problem of the sparseness
of the data with value imputation, and reduce the noise by
enforcing the rule in the smallest meaningful time bucket
(Section 4). We also mine rules with constants (akin to
conditional functional dependencies) such that specific du-
rations can be used for specific entities.

3) We show over real and synthetic datasets that our tech-
niques for approximate dependencies and duration discovery
outperform alternative approaches in terms of quality. In
particular, our durations lead to improvement in the data
cleaning process compared to Fds, with an increase of the
average precision in the repair of the temporal data from
0.37 to 0.84, and a 40% relative increase in the average
F-measure (Section 5). Moreover, our technique discovers
durations that lead to higher F-measure than the baselines,
including the durations collected from a group of users.

We discuss related work in Section 6, and in Section 7 we
draw some conclusions and list directions for future work.

2. RULE DISCOVERY FOR WEB DATA
CLEANING

We first describe the kind of web data we are dealing
with. We then define the syntax and semantics of temporal
dependencies, give a definition of data cleaning, and define
the problem of the rule discovery for web data cleaning.

From web pages to structured data. We are interested
in event data collected from the Web by monitoring news
media. Examples of such data include GDELT (gdeltpro-
ject.org) and Recorded Future (www.recordedfuture.com).
Given a web page, the organization in charge of the event
database runs extractors to produce structured data for dif-
ferent events. Examples of events include people travel-
ing to destinations, company acquisitions, and occurrences
of armed attacks. Figure 1 exemplifies data extracted
from text in six web pages: three occurrences for event
PersonTravel with person Obama as the only entity, and
three occurrences for ProductRelease with product being the
entity iPhone. In general, an entity may be an instance of
a person, a location, a company, and so on. In the follow-
ing, we assume that entity recognition from the text has
been already performed. In addition to the event type spe-
cific attributes, e.g., company, destination, all events have
a timestamp attribute, such as time and releaseDate. We
assume that all of these attributes may contain errors.

Temporal Functional Dependencies. We focus on a
specific form of temporal functional dependencies similar to
those described in [21]. We assume a total ordering on the
time attribute t, and that there is a mapping f() that lin-
earizes the different time values into integers. For example,
the value r[t] = (h,m,s) could be mapped to seconds via
f(h,m,s) = 3600h + 60m + s. A time interval ∆ is a pair
with a minimum and a maximum value (for examples in
hours), m and M , respectively, with m ≤M .

Given the pair < U, t > with a fixed set U = {A1, . . . , An}
of event type attributes and the time attribute t, a tuple over
< U, t > is a set of < r = {A1 : c1, . . . , An : cn}, t : ct >,
where ci is a constant. A relation I is a finite set of tuples
over < U, t >.



Definition 1. Let X,Y be two subsets of attributes from
U , ∆ a time interval, and π the permutation of rows of I
increasing on the time value. A temporal functional de-
pendency (Tfd) over U is an expression X ∧ ∆ → Y
that is satisfied if for all pairs of tuples rπ, rπ+1 ∈ I, s.t.
rπ+1[t] − rπ[t] ∈ ∆, when rπ[X] = rπ+1 [X], it is the case
that rπ[Y ] = rπ+1 [Y ].

The subsets of attributes X and Y are referred to as left-
hand side (LHS) and right-hand side attributes (RHS), re-
spectively. When referring to values of X and Y attributes,
we shall use the terms reference value and attribute value,
respectively.

Example 1: The rule “a product cannot be released with
two different weights in a time window of a year” defined
over event ProductRelease can be stated as follows: product∧
(0, 1 year) → weight, where ∆ is the pair m = 0 and M =
1 year. In Figure 1, ProductRelease events show conflicting
weight values 3g and 129g on release dates 09/18/2014 and
09/19/2014 for product iPhone. 2

While most of the entities for a given event abide by the
same duration in a rule, some entities may require specific
duration values. For example, in the case of ProductRelease
events, new iPhone models are sometimes released with an
interval of time shorter than a year, while for cars the in-
terval is much longer (e.g., BMW X5 car model is renewed
every 6 years). Thus, in the same spirit of conditional func-
tion dependencies (CFDs) [5], we are also interested in Tfds
that apply on subsets of tuples. We therefore extend the lan-
guage to consider constant selections in the left-hand side,
such as product[“iPhone”]∧ (0, 8 months)→ weight. This is
equivalent to having views for specific entities and applying
the Tfd on the view induced by the selection.

Data Repairing. While Tfds can be used in multiple
applications, such as database design, our focus is on data
quality scenarios. Data repairing is the application we will
use in the following to evaluate the quality of the discovered
dependencies. Given a database instance I of schema R and
a dependency ϕ, if I satisfies ϕ, we write I |= ϕ. If we have
a set of dependencies Σ, I |= Σ if and only if ∀ϕ ∈ Σ, I |= ϕ.
A repair I ′ of an inconsistent instance I is an instance that
satisfies Σ. A repair solution is not unique, as discussed in
the following example.

Example 2: Consider a different instance D for
ProductRelease and the Fd d1 : product → company. Value
errors are reported in bold.

D product company weight releaseDate
t1 : iPhone Apple 137g 10am 6/24/2014
t2 : iPhone Google 129g 3pm 9/18/2014
t3 : iPhone Apple 129g 4pm 9/19/2014

If we check the dependency over the data, we get the
following pairs of violating tuples: (t1,t2),(t2,t3).
Two possible, alternative repairs are R1 −R2, as follows:

R1 product company weight releaseDate
t1 : iPhone Apple 137g 10am 6/24/2014
t2 : iPhone Apple 129g 3pm 9/18/2014
t3 : iPhone Apple 129g 4pm 9/19/2014

R2 product company weight releaseDate
t1 : iPhone Google 137g 10am 6/24/2014
t2 : iPhone Google 129g 3pm 9/18/2014
t3 : iPhone Google 129g 4pm 9/19/2014

Updates (in italic) in R1 and R2 make the new instance
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Figure 2: Architecture of the Aetas system.

valid for d1. An alternative repair strategy deletes tuple t2
in R1 or tuple t1, t3 in R2.

Consider also a Tfd d2: product[“iPhone”] ∧
(0, 8months) → weight. A possible repair for violating
tuples (t1,t2), (t1,t3) is by updating the value of weight for
t1 to 129g, or to delete t1. 2

Since the number of possible repairs is usually large and
possibly infinite, a minimality principle is oftentimes used to
identify desirable repairs for the data cleaning problem [22]:
given a database I and a set of dependencies Σ, compute
a repair Ir of I such that Ir |= Σ (consistency) and their
distance cost(Ir, I) is minimal (accuracy). Depending on
the distance function, the desired repair is the one with the
minimal number of cell updates, or the one with minimal
number of tuple deletions. Computing minimal repairs is
NP-hard to be solved exactly for Fds [4, 24] which led to
several heuristics-based methods [10, 12, 16, 24].

Discovering temporal dependencies. Given a relational
schema R and an instance I, the discovery problem for Tfds
is to find all valid Tfds that hold on I. Since web data is
noisy in nature, we are interested in the approximate version
of the problem, i.e., find all valid Tfds, where a rule r is
valid if its support has a value higher than a given threshold
δ. To solve this problem, we developed Aetas, a system to
discover Tfds from web data.

Figure 2 shows the architecture of the system and the
main steps in our solution. Given a noisy dataset, we first
discover approximate functional dependencies, i.e., tradi-
tional Fds that hold on most of the relation within a given
atomic duration tα. The use of the atomic duration removes
the temporal aspect of the relation so that dependencies can
be discovered purely in terms of record attributes.

Given a set of approximate Fds, we rank them according
to their support to assist the user in their validation. A user
can either reject a suggested approximate Fd, or validate
it as being a simple Fd or a Tfd. For a validated Tfd,
we then discover its corresponding time interval, including
values that only hold for specific entities as we discussed
previously. Since the data is dirty, we cannot just examine
consecutive occurrences for each entity and collect the min-
imum duration. Therefore, we compute the distribution of
the durations and mine it to identify the minimum duration
that would eventually cut-off the outlying values, i.e., data
that is invalid. This minimum duration is then assigned
to M and, together with default m = 0, define ∆ for the
approximate Fd at hand.

Finally, Fds and Tfds are fed to a constraint based data
cleaning system, which takes the rules and the noisy data as
input and outputs a consistent updated dataset.



3. FD DISCOVERY OVER DIRTY DATA
Two main characteristics of web data prevent us from

using traditional dependency discovery algorithms. First,
most of these algorithms assume that the data is clean.
As we work with dirty web data from multiple indepen-
dent sources, this assumption does not hold. There have
been some work to tolerate some dirtiness up to a certain
threshold on the percentage of not conforming tuples [8,
19]. However, dirtiness in real (web) data is so high that
the corresponding threshold leads to the discovery of very
general rules that are not valid in practice. For example,
our test dataset has noise up to 26% wrt the number of tu-
ples (Table 1 in Section 5). A threshold of 26% leads to the
discovery of several key constraints and multiple functional
dependencies that do not hold semantically.

Second, temporal data contains reference values that
change over time, such as Obama with correct values “Italy”
and “France” at two different timestamps. Because of this
temporal nature, traditional Fds do not apply over the re-
lations with extracted data for many events.

We introduce next how we model the data and then how
we tackle the above problems with our approach for discov-
ering approximate Fds.
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Figure 3: A dependency cube: w0 is a 1-day time
bucket, s0 is source CNN, a0 is entity B. Obama,
{Italy, S. Africa, France} are attribute values.

Dependency cube. We start by considering all the pos-
sible dependencies with one attribute in the LHS and one
attribute in the RHS. For each potential dependency X→ Y,
we make the time dimension (attribute t) discrete by creat-
ing time buckets with the size of an atomic time duration.
Given these time buckets, we define a dependency cube over
four data dimensions: data sources S, time buckets W , ref-
erence values X, and attribute values Y. Figure 3 shows a
dependency cube for the Obama example:

- The x axis is divided into homogeneous time buckets wi ∈
W (e.g., 1 hour).

- The z axis reports different reference values x ∈ X (e.g.,
B. Obama, iPhone).

- The y axis reports different sources si ∈ S (e.g., CNN).

- The reported cell values for a certain time bucket, source,
and entity are attributes values y ∈ Y (e.g., Italy, Apple).

The size of each dimension in this cube can be large. For
example, Recorded Future continuously collects data from
more than 0.7 Million web sources. However, due to how
events are reported on the web, the data is very sparse and
the size of the dependency cube is manageable in practice.

For a reference value x ∈ X, the sequence of values of Y
reported by one source over time constitutes a stripe. For

example, in Figure 3, source NYT reports two Y values for
reference value B.Obama in time buckets w2 and w3. For a
reference value x ∈ X, the union of stripes from all sources
constitutes a plate. For a time bucket wi of a given depen-
dency over R, we define the time slice Ri as the list of Y
values for all X values reported within the time bucket wi.

A potential dependency holds for the cube if, for each
plate and for each stripe, it is true that X → Y. If the
dependency holds only for a specific plate for reference value
xi (i.e., a specific entity), then it is a constant dependency
X[xi]→ Y.

Implication discovery. Considering the aforementioned
noise and temporal problems, we devise an algorithm that
works with dirty, temporal data for the discovery of Tfds.
We discover implications by first fixing an atomic time du-
ration tα such that we can mine the dependencies that hold
within a time bucket. We observe that if a Tfd holds for a
certain duration ∆, it also holds for durations ∆′ ≤ ∆. The
best bucket size is the smallest one that contains enough ev-
idence to do the mining. Moreover, the value of the atomic
duration cannot be more fine grained than the time gran-
ularity of the timestamps in the data. In our datasets,
the granularity is up to milliseconds, but the data is too
sparse to mine in such a small granularity, we therefore
use tα = 1 hour. The atomic duration tα is application-
dependent and is an input parameter for the algorithm.

Given a tα value, we partition the data and create time
slices R = {R1, R2, ..., RN}. Given a time slice Ri, we em-
ploy an association rule based method to detect 1-to-1 and
many-to-1 implications. More specifically, we use normal-
ized pointwise mutual information (NPMI) [6], a standard
association measure in collocation extraction, for implica-
tion discovery. In a time slice, NPMI of a pair of reference-
attribute values x ∈ X and y ∈ Y is defined as:

i(x, y) = ln(
P (x, y)

P (x)× P (y)
)/− lnP (x, y)

where P (x, y) is the joint probability of reference value x
and attribute value y, and P (x) is the marginal probability
of reference value x. Intuitively, given a pair of outcomes
x and y that belong to discrete random variables X and Y
(assumed independent), the PMI quantifies the discrepancy
between the probability of their coincidence given their joint
distribution and their individual distributions. Its normal-
ized version, NPMI, can have the following values: if x and
y only occur together i(x, y) = 1.0, if x and y occur indepen-
dently i(x, y) = 0, and -1 if they never co-occur. We use this
score as an indicator of their correlation in the following.

We learn the implication x→ y for a pair of values in the
given time slice. In order to find the X → Y implication,
we need to generalize the NPMI value over all value pairs of
the two attributes. If the implication holds, we expect the
NPMI value of each pair to be positive (i.e., the sign of the
1-to-1 implication) and, overall, i(X,Y ) close to 1.0. In fact,
three factors can decrease NPMI values even in presence of
real implications. First, multiple reference values can have
the same attribute value in a given time slice (i.e., many-
to-1 implication). For example, two persons can be in the
same city at the same time. Second, because of a small
bucket size, time slices may contain few instances about the
same reference values. For example, in a bucket all events
might be about Obama traveling to France. We employ a
decision rule to overcome single reference value by assigning



i(X,Y ) = 1.0 when |X| = 1. Third, dirty data can introduce
different attribute values for the same reference value (i.e.,
1-to-many occurrences), as in the example with Italy and
S. Africa for Obama. As we assume dirtiness in the data,
we need to tolerate this noise. Given these three possible
causes, some value pairs have low NPMI values, thereby
reducing the NPMI value of attributes, i.e., i(X,Y ) < 1.0.
This is a strong signal for the discovery of correlations and
we exploit it in our algorithm.

From implications to dependencies. Given a list of
NPMI values of multiple time slices, our next task is to de-
cide whether the implication X → Y holds on enough time
slices to be considered a dependency. Hence, we aggregate
the expected value of NPMI values over time slices and com-
pute a score. The score is then used to rank the output for
user validation. Aggregation of NPMI values by expected
value is weighted wrt the number of event instances (i.e.,
tuples) in time slices, such that an implication is penalized
if it does not hold over time slices with large numbers of
event instances.

To prune the number of results in the output, we also allow
as input an optional user-defined significance threshold δ. In
this case, we declare an implication to be a dependency if
its aggregated score is higher than the threshold.

Example 3: Consider the case where an event R has in-
stances distributed over a 36 hour period. Given tα =
12 hours, we create three time slices R1, R2 and R3, and
compute their NPMI values to be 0.95, 0.3 and 0.5. Proba-
bilities of event instances belonging to these time slices are
P (R1) = 0.8, P (R2) = 0.15, and P (R3) = 0.05. The ex-
pected NPMI value E = 0.95×0.8+0.3×0.15+0.5×0.05 =
0.83. For δ = 0.7, we assert that the implication X → Y
holds. A value of 0.7 is usually used in practice [17]. 2

Early Termination. If a threshold δ is defined, an implica-
tion can be declared to hold or to be pruned by considering
a smaller number of slices. We thus stop NPMI compu-
tations if the remaining slices will not carry the expected
score below or above the significance threshold δ. Consider
the case when NPMI values of x out of n slices have been
computed. In the best and worst cases, all the remaining
slices can have NPMI values 1 or 0, respectively. If an im-
plication does not hold even in the best case, or holds even in
the worst case, we do not need to compute the NPMI values
of the remaining slices. Otherwise we continue our compu-
tation. Formally, given a total of n slices for the implication
A→ B, we terminate computations at the xth slice with





A 6→ B if δ >∑
j=1:x

ij(A,B)× P (j)+
∑

k=x+1:n

ik(A,B)× P (k)

A→ B if δ ≤ ∑
j=1:x

ij(A,B)× P (j)

where δ is the significance threshold, P (k) is the probability
of an event instance being in the time slice k, and ik(A,B)
is the NPMI value of the kth slice.

Example 4: Consider the scenario of three time slices in
Example 3. After computing the NPMI value of R1 as 0.95,
we can terminate computations for a significance threshold
of δ = 0.7 because the expected value E = 0.95×0.80 = 0.76
is already above δ. 2

Data: A relation R of attributes A, B; atomic time
length tα; (threshold δ)

Result: A score for the dependency
1 npmi = 0, current := 0;
2 Create time buckets R = {R1, ..., Rn} of R with tα;
// Iterate on each slice;

3 foreach R′ ∈ R do
4 current← current+ |R′|;
5 v = 0;

// Decision rule;
6 if |R′.B| = 1 then

// Add an NPMI value of 1.0;
7 v = 1.0;

8 else
9 foreach a ∈ R′.A do

10 foreach b ∈ R′.B do

11 i(a, b) = ln(P (a,b)/(P (a)∗P (b)))
−ln(P (a,b))

;

12 v = v + P (a, b)× i(a, b);
// Add expected value of the slice

13 npmi = npmi+ v × |R
′|
|R| ;

// Termination;
// 1. Dependency will not hold;

14 if δ 6= null ∧ δ > npmi+ |R|−current
|R| then

15 return 0;
// 2. Dependency will hold;

16 if δ 6= null ∧ δ ≤ npmi then
17 return 1;

18 return npmi;

Algorithm 1: Implication detection with NPMI.

Algorithm. We now give a description of our approximate
dependency discovery algorithm. Given two attributes A
and B from an event R, we use Algorithm 1 to compute their
NPMI score, or to find whether a dependency holds over the
two attributes, if a threshold is given. The algorithm takes
as input an atomic duration tα, two attributes A, B from
a relation R, and an optional significance threshold δ. The
algorithm is called twice for each direction, namely A→ B
and B → A. If an implication is found for the attributes,
only one, or both of these dependencies may hold.

The algorithm starts by time bucketing the relation into
smaller relations (Line 2). From Line 3, we find the strength
of the implication within the slice. If the sub-relation con-
tains a single attribute value, the decision rule in Line 2
assigns a NPMI value of 1.0 to the slice. Otherwise, we
compute NPMI values of each (a,b) pair in Line 11. Line 12
adds the NPMI value to the expected value of the slice.

Once NPMI values of all pairs have been computed, the
NPMI value of the slice is added to the expected value of the
whole dependency in Line 13. If δ is defined, we check the
termination conditions in Lines 14 and 16. In Line 14, we
compute the NPMI value for the ideal case where all the re-
maining slices will be 1.0. Similarly, Line 16 checks whether
the expected value is already above the threshold. In both
cases, we stop the computations early if the condition holds
and return 0 or 1 accordingly. If δ is not defined, we return
the NPMI value for the dependency to be used for rank-
ing and user’s consumption. Once the user has selected the
dependencies that are Tfds, we process then for duration
discovery, as described in the next Section.



4. TIME DURATION DISCOVERY
Given an approximate FD X ∧ ∆ → Y with ∆t=(0,tα)

for an event, the goal of duration discovery is to expand the
atomic duration tα to the correct minimum duration M in
∆. In the ideal case, there exists one and only one ∆ such
that no reference value x ∈ X can change its attribute value
y ∈ Y within a time interval (ty, ty + m), where ty is the
reported time of value y.

Time 
w0        w1        w2      w3   

CNN 

Twitter 

NYT 

B. Obama 

Italy    Italy   France 

Italy   S.Africa  Italy 

France France 

(a) Baseline durations

B. Obama 

Italy                  France 

Time 
w0        w1        w2     w3   

Integrated 

(b) Projected durations

Figure 4: Stripes integration for duration discovery.

A naive approach for duration discovery is to take each
stripe of a dependency cube, and find the time it takes for
an attribute value to change from y1 ∈ Y to y2 ∈ Y , i.e.,
ty2 − ty1 . This results in a list of time difference values.
Then, the minimum value among all the time differences
can be chosen as the M in ∆. This approach is shown in
Figure 4(a) for a single plate, where value changes in stripes
are highlighted.

A major assumption in the naive approach is that web
sources correctly report attribute values. When the data
comes from non-authoritative web sources, this assumption
can easily be broken. A more robust approach is to exploit
the evidence coming from multiple sources such that the
accuracy of an attribute value can be “verified”. The idea
is to first repair the data within a time bucket with the
evidence coming from multiple sources. We then compute
durations on a “clean” integrated stripe, as in Figure 4(b).
Below, we first describe how to repair data in the buckets
and then give the full discovery algorithm.

Repair step. Given an approximate FD A→ B, we create
a plate p for each reference value a ∈ A, and the plate is
partitioned into time buckets of size tα. Each bucket wn ∈ p
has a time slice of attribute values Rn reported by sources
where |Rn| ≥ |distinct(Rn)| ≥ 1. A new stripe I is created,
where the results of the integration will be reported. In a
bucket, if there exists a b′ such that mode(Rn) = b′, then
the corresponding wn bucket for I is updated with b′. If
there is no majority, the value in bucket wn−1 is assigned to
wn for I.
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Figure 5: Repair step.

Figure 5 shows a window
repair for three sources. In
the figure, the value Italy
from source Twitter is less
frequent than France, so it
is not in the result. Al-
though our repair approach
uses a simple majority vot-
ing scheme, any repair algo-
rithm can be plugged into
the system, for example by

using truth discovery algo-
rithms [15, 28, 29, 33] or by involving domain experts.

Time durations. Given the integrated plate, we compute
a distribution of time durations between consecutive, dis-
tinct attribute values for every reference value. Figure 4(b)
shows time durations on I, the stripe with the outcome of
the repair step. Even with repaired values in time buckets,
reference values have varying durations for the same tempo-
ral dependency. Two factors impact the observed durations:

- Dirty data. Sources can report conflicting values in two
consecutive buckets that cannot be detected by local repairs.
This problem raises many short durations. For example, the
Twitter stripe in Figure 4(a).

- Reporting frequency. Although a reference value
changes its value in the real world, sources may not report
it. In our dataset, only a small set of entities, such as po-
litical leaders, have their changes reported frequently. This
leads to some durations that are longer than the real time
windows between two occurrences of an event.

As a result of these factors, time durations constitute a
non-uniform distribution D(x, y), with a range of [tα, |W |].
Our goal is to mine a duration that would remove the out-
lying values from this distribution.

Data: A dependency cube C for A→ B, a cut-off
value c with 1 ≤ c ≤ 100

Result: A time duration M
1 Define D(A,B) to be an empty duration list;
2 foreach plate p ∈ C do
3 Define I to be an empty stripe with |I| equals to

the # of buckets in p;
4 foreach non-empty bucket wi ∈ p with time slice Ri

do
5 b′ ←Mode(Ri);
6 if b′ is not null then
7 update bucket wi ∈ I with b′;
8 else
9 update bucket wi ∈ I with value in wi−1;

10 l = 0;
11 for i=0:length(I) do
12 if value(wi) 6= value(wl) then
13 add i− l to D(A,B);
14 l = i;

15 return percentile(D(A,B), c);

Algorithm 2: Duration discovery for a temporal rule.

Algorithm. Taking into account the above factors, we pro-
pose an approach for time duration discovery in Algorithm 2.
A dependency cube C for an approximate functional de-
pendency A → B is given as input as well as a cut-point
1 ≤ c ≤ 100 for the identification of the duration that re-
moves outliers. We use as default value of 10 for the cut-
point, as this is a common value used for trimming of outliers
(e.g., interdecile range). We also show in the experimental
study how this parameter affects the results.

In a nutshell, the algorithm first corrects the erroneous
attribute values reported by the sources for each plate in
an integrated stripe I (Lines 3-10), and then adds the dura-
tions over I to a duration list (Lines 11-15). The output is
the minimum time duration value M that removes outlying
durations for the time dependency A→ B.



The algorithm iterates over each plate (entity) in the cube
(Line 2). For each plate, we create a new, empty integrated
stripe (Line 3). In the time slice for each bucket in the plate,
depending on the source quality, sources can agree or dis-
agree on the attribute value. To alleviate the problem of
sources with poor quality, we employ a repair step (Line 5).
In a simple analysis, if there is a single most frequent value,
this is assigned to the integrated stripe (Line 7). If a ma-
jority cannot be determined, the values are ignored and the
value imputation is done with the previous values in the
strip (from the Occam’s razor principle) (Line 9).

After the repair process, the algorithm works on the inte-
grated stripe I and extracts time durations between differ-
ent consecutive attribute values (Lines 11-16). Parameter
l in Line 11 records the first point in time when the stripe
reports an attribute value. In the following windows, the
source may report the same value, or change it. If the value
changes, the l parameter is used to compute the time differ-
ence between the two different attribute values.
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Figure 6: Duration discovery with percentile plot.

With multiple time durations from multiple integrated
stripes, we use a trimming (truncation) function, namely the
cth percentile, to compute the duration M . The intuition is
that trimming identifies outlying values (trimmed minima),
and we are after the duration that identifies such outliers.
For example, in the probability distribution of time dura-
tions, the 10th percentile specifies the time duration value
at which the probability of the time durations is less than or
equal to 0.1. We report an example of a minimum duration
of six hours (x axis) discovered with the 10th percentile (y
axis) in Figure 6.

Timestamps or Values? It is worth observing that the
algorithm above aligns the timestamps and then compares
values to perform the analysis. An alternative approach is
to align the values, after they have been ordered, and then
perform the counting of the durations. We will show in the
experimental section that an algorithm that relies on values
for alignment performs worse than the one we propose based
on time alignment. In particular, we implemented a variant
of sequence alignment from the bioinformatics domain [26].
Taking all stripes from a plate, we align attribute values
of each pair of stripes. The alignment process creates two
temporary stripes that are the aligned versions of the input
pair; the temporary stripes both report the same value at a
given time, or one of them reports nothing (i.e., reports a
null value) whereas the other reports an attribute value. The
alignment approach mines durations between value changes
only when the change is reported by both stripes.

Conditional Durations. As we mentioned earlier, some
Tfds may only apply to a subset of entities because
some, usually popular, entities have more frequent attribute
changes at smaller time frames. To discover the correspond-
ing durations, we track the duration sequences of a specific
entity and compute its duration by mining M only with
values from their plate. As the minimum duration is com-
puted based on only the sequences that refer to a specific
entity, this entity has to be popular, i.e., there must be at
least some observations to compute a distribution. As it
is common in statistics, we require 30 observations for the
computation of the percentile. Therefore, we compute con-
stant rules only for entities with at least 30 durations in
their plate. For instance, while 24 hours is the minimum
duration that removes outliers for the majority of persons
in our person travel dataset, persons such as Vladimir Putin
or Ban Ki Moon should have smaller minimum durations,
and this is reflected with their constant rules.

5. EXPERIMENTS
In the following, we first study the performance of our

solutions and compare them to baseline alternatives using a
real dataset provided by Recorded Future. We then study
our algorithms in depth with synthetic data.2

We measure the effectiveness of both implication and du-
ration discoveries. We also measure the execution time
needed by the algorithms. Experiments were conducted on
a Linux machine with 24 1.5GHz Intel CPUs and 48GB of
RAM. All algorithms have been implemented in Java with
Heap size set to 12GB.

Algorithms. For the implication discovery, we compare
our proposal (Section 3) to CORDS [20], a state of the art
algorithm for the discovery of approximate dependencies.
We test both methods for time slices, therefore they do not
have to deal with the time dimension. For the duration
discovery, we test the following algorithms:

- Repair-Outliers (RO), our method reported in Section 4
where the durations collection is performed over a unified
view of every plate. These “clean” durations are then used
for mining the minimum duration M that isolates outliers.

- No Repair-Outliers (NR), a variant of our algorithm
where we do not perform repair; we collect all durations
over the stripes to mine M . This method shows the role of
the repair.

- Alignment-Outliers (AL), a variant of sequence align-
ment in genomics [26] (Section 4). This is an alternative
method that trusts values more than time, as the former
are used for alignment.

- No Repair-Probability (NP), an adaptation of the
disagreement decay from the duration discovery algorithm
in [27]. Disagreement decay is the probability that an entity
changes its value within time ∆t. For an increasing ∆t, the
probability of decay 0 ≤ p ≤ 1 also increases. The authors
use a probability distribution D for various ∆t values [27].
We use a probability cut-point δc, such that we select the
smallest ∆t′ that satisfies the condition D(t′) ≥ δc as the
duration for our temporal dependency.

2The annotated real-world data and the program to generate
synthetic data can be downloaded at https://github.com/
Qatar-Computing-Research-Institute/AETAS_Dataset



Event # # Ground Rules Rule Annotated # Annotated %
Atts Rules Coverage Over Data Tuples Errors

Acquisition 3 4 1.00 acquired company → acquirer company 217 26
Company Employees # 2 2 0.50 company → employees number 198 26

Company Meeting 5 6 0.80 company → meeting type 179 17
Company Ticker 3 2 0.67 ticker → company 1,906 4

Credit Rating 4 6 1.00 company → new rank 150 8
Employment Change 7 11 0.86 person → company 186 14
Insider Transaction 22 210 0.95 insider → company 150 0

Natural Disaster 2 1 0.50 location → natural disaster 250 10
Person Travel 6 2 0.67 person → destination 372 21

Political Endorsement 2 1 0.50 endorser → endorsee 199 11
Product Recall 5 12 0.67 product → company 216 5
Voting Result 2 2 1.00 location → winner 215 10

Table 1: Events, correct rules, and annotated rule used in the real data evaluation.

5.1 Real Data
Dataset. We obtained a 3-month snapshot of data ex-
tracted by Recorded Future, a leading web data analytics
company. The dataset has about 188M JSON documents
with a total size of about 3.9 TB. Each JSON document
contains extracted events defined over entities and their at-
tributes. An entity can be an instance of a person, a lo-
cation, a company, and so on. Events have also attributes.
In total, there are 150M unique event instances excluding
meta-events such as co-occurrence.
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Figure 7: Time distribution for events’ timestamp.

The data contains events from circa 15 th to 21 st century.
Figure 7 shows events across years, where each point corre-
sponds to the number of events in a day. Most of the events
occur around Fall 2014, because the data is mostly around
the 3 months covered by the snapshot. Starting from Jan-
uary 2015 onward, the reported events are future forecasts.

Metrics. We crafted ground rules for all events to evaluate
the discovery algorithms. These rules are dependencies that
are semantically correct. We report their number for every
event in Table 1, where we also report as “Coverage” the
ratio of the distinct number of attributes in the set of rules
to the total number of attributes for that event. We then
use this ground truth to evaluate the precision and recall
over the top-k dependencies returned by the algorithms.

In the case of Tfds, crafting also their ground durations is
more challenging since there are rarely clear duration values
that can be set. We argue that it is not correct to compare
the discovered duration value versus an arbitrary manually
set ground truth; different persons may come up with dif-
ferent durations. We also show that a combination of these
arbitrary values does not lead to the best duration value.
Distance between the discovered duration and the real one

can be better measured in a controlled environment with
synthetic data, as we discuss in Section 5.2. We therefore
evaluate the quality of the duration discovery on real data in
a different way. Instead of measuring the distance between
durations, we evaluate the quality of a duration by measur-
ing its effect in a target application. In particular, for a Tfd,
we run it multiple times in the same data cleaning tool with
different durations, and measure the quality of the obtained
repairs. We use BigDansing [22] , a data cleaning system
that can handle Tfds with the repair semantics discussed
in Section 2.

For this validation, we manually created ground truth for
a large sample of the data. We randomly picked 12 event
types and discovered rules over their corresponding instance
datasets. For each selected rule, we sampled 1% of the tu-
ples, making sure that (i) at least 150 tuples comprising 5
different entities were selected, (ii) both popular and rare
entities were selected, and (iii) at most 150 tuples were an-
notated for one single entity. Each tuple has been manually
validated with sources such as Twitter accounts for persons,
LinkedIn official web pages for companies, and stock bro-
kers. Table 1 gives the details about the selected events,
representative rules, and size of the samples.

Given the ground data and the results of the cleaning,
we follow common practices from the data cleaning litera-
ture [3, 10] to evaluate the quality of the obtained repair.
We count as correct detections the updates in the repair that
correctly identify dirty values. This corresponds to measur-
ing the effectiveness of repairs based on delete-semantics,
where tuples with errors are removed. We count as correct
changes the updates in the repair that are equal to the orig-
inal values in the ground truth. Based on these two met-

rics, we can then measure precision P = |changes∩errors|
|changes| ,

which corresponds to correct changes in the repair, recall

R = |changes∩errors|
|errors| , which corresponds to coverage of the

errors, and F-measure F = 2×(P×R)
(P+R)

.

Results. We start with evaluating the discovery of approx-
imate Fds. Table 2 shows the obtained precision and recall
values. We rank the approximate Fds based on their scores
and compute the precision and recall @k= {1,3,5}, where k
is the number of dependencies evaluated after they are or-
dered with decreasing scores. On average, the precision and
recall @k of the NPMI-sorted results is significantly higher
than the CORDS-sorted results. The significance is most
obvious @k = 1. On average, the NPMI scoring approach
clearly yields better results than the baseline. This is not
surprising, since CORDS was designed to discover approx-
imate Fds on relational databases and it is reported to re-



NMPI CORDS
Event k=1 k=3 k=5 k=1 k=3 k=5

Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

Acquisition 1 0.25 0.66 0.5 0.8 1 1 0.25 0.66 0.5 0.6 0.75
Company Employees # 1 1 0.5 1 0.5 1 0 0 0.5 1 0.5 1

Company Meeting 1 0.14 1 0.42 1 0.7 1 0.14 0.66 0.28 0.6 0.42
Company Ticker 1 0.5 0.33 0.5 0.4 1 0 0 0 0 0.2 0.5

Credit Rating 1 0.16 1 0.5 1 0.83 1 0.16 1 0.5 1 0.83
Employment Change 0 0 0.66 0.18 0.6 0.27 0 0 0.33 0.09 0.4 0.18
Insider Transaction 1 0 1.0 0.01 1.0 0.02 0 0 0 0.66 0.01 0.02

Natural Disaster 1 1 0.5 1 0.5 1 1 1 0.5 1 0.5 1
Person Travel 0 0 0.33 0.5 0.4 1 0 0 0.33 0.5 0.4 1

Political Endorsement 1 1 0.5 1 0.5 1 0 0 0.5 1 0.5 1
Product Recall 0 0 0.66 0.17 0.8 0.33 0 0 0.66 0.17 0.8 0.33
Voting Result 1 0.5 1 1 1 1 1 0.5 1 1 1 1

Avg 0.75 0.38 0.68 0.57 0.71 0.76 0.42 0.17 0.57 0.50 0.62 0.67

Table 2: Precision/Recall of approximate FD discovery for sample events over 3 months of data.

quire a sample of size between 1k and 2k pairs [20]. Such
amounts of data are not always available when the data is
chunked into time buckets.

We analyze next how different duration values for the
same rule impact the quality of the repairs. In Figure 8(a),
the event is Acquisition. Since a company is usually acquired
only once, the considered rule is a Fd as it is demonstrated
by the improvement in the quality of the repair for both pre-
cision and recall when the duration exceeds 3600 days (10
years). The explanation is that for smaller values, the rules
cannot detect errors. As expected, the results in terms of
detection (delete semantics) are much better than the ones
that consider the modification of problematic values (update
semantics). In particular, there is not enough redundancy
in the data to find the correct update for the repair. In Fig-
ure 8(b), the event reports the number of employees for a
company. As this information changes over time, different
durations lead to different quality results in the repair. In-
tuitively, if the time is small, precision is favored over recall,
and the other way around with large values. This is the
behavior we observed for all events with temporal charac-
terization. Also in this case, the detection has much better
performance than the metric considering also the values of
the updates. Finally, Figure 8(c) reports a case where there
is a clear point in which precision falls to low values when
the duration increases. In this case, the duration is too large
and covers several changes of employment for a person, thus
several correct values are detected as problematic.

In Table 3, we report the discovered minimum duration M
and the cleaning quality results with the Repair-Outliers
(RO) and No Repair-Probability (NP) approaches. We
compare them against (i) the results obtained using a Fd,
(ii) the average of the durations suggested by three domain
experts, (iii) the best duration value for the rule, selected
with the previous study (as in Figure 8). The first three
rules do not depend on time since they have only one cor-
rect reference value in our dataset. Hence, the Fds perform
best for this case. The duration discovery algorithm was not
able to find a duration that is large enough to make the Tfd
perform better. This is because our dataset mainly contains
events that happened within three months and the discov-
ery approach subsequently suffers from the limited timespan
when identifying these larger durations. Interestingly, values
for the remaining events change over time. In these cases,
the durations discovered with our RO approach always lead

Event Entity Conditional Global
M F M F

Company Emp # Wal-Mart 24 0.82 24 0.82
Company Emp # Tesco 27 1.0 24 1.0
Company Meet. Val. Pharm. Int. 217 0.68 336 0.68
Company Meet. Wal-Mart 45 0.57 336 0.57
Credit Rating Tysons Foods 53 1.0 48 1.0
Credit Rating NY Method. Hosp. 72 0.66 48 0.0
Emp. Change Sean Moriarty 3168 1.0 24 1.0
Emp. Change Rodney Reid 12 1.0 24 1.0

Natural Disaster Argentina 45 0.57 24 0.57
Natural Disaster England 7 0.67 24 0.6

Person Travel C. Ronaldo 24 0.71 48 0.69
Person Travel Lady Gaga 26 0.73 48 0.69

Pol. Endorsement Ron Paul 96 0.52 48 0.54
Pol. Endorsement Sarah Palin 20.5 0.75 48 0.75

Product Recall vehicle 108 0.76 177 0.76
Product Recall cars 32 1.0 177 0.89
Voting Result Afghanistan 24 0.76 24 0.76
Voting Result United States 6 0.33 24 0.86

Table 4: Comparison of F-measure results for con-
ditional and global TFDs.

to better a F-measure value than the Fds and the alterna-
tive approach NP. Moreover, in several cases we are able to
achieve the same precision and recall of the best duration
from the previous study. The other Tfd approaches NR
and AL performed similarly to RO on these datasets with
failures in some cases. For example AL discovers a dura-
tion of 0 for Voting Result, while NR fails with the events
with higher noise rate, such as Company Employees #. We
shall elaborate on the differences of the Tfd approaches in
more detail in the next subsection. Finally, the average of
the durations collected from the three domain experts show
poor results in terms of F-measure, with the exception of
the Person Travel case. This confirms that manually craft-
ing the correct durations for data cleaning is a hard problem
to be tackled top-down; a bottom-up approach that mines
the data leads to more useful results.

While the minimum durations from Table 3 can be applied
for all the entities, we report in Table 4 minimum duration
values for popular entities over all events. In our approach,
the specific minimum duration for each entity can be com-
puted before the aggregation of the stripes. For popular
entities, these values can lead to better cleaning results. For
example, while the discovered minimum duration for Per-
son Travel is 48 hours (Table 3), conditional rules for pop-
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Figure 8: Cleaning results with different durations.

Event TFD Semantic (RO) TFD Semantic (NP) FD semantic Humans Best possible F
M P R F M P R F P R F M F M P R F

Acquisition 48 1.0 0.08 0.16 840 0.92 0.21 0.34 0.96 0.46 0.62 - - - 0.96 0.46 0.62
Company ticker 24 0.43 0.25 0.31 1 0.69 0.14 0.23 0.96 1.0 0.98 - - - 0.96 1.0 0.98

Insider transaction 24 1.0 1.0 1.0 264 1.0 1.0 1.0 1.0 1.0 1.0 - - - 1.0 1.0 1.0

Company Employees # 24 0.74 0.17 0.27 1344 0.37 0.17 0.23 0.24 0.19 0.22 1016 0.23 48 0.73 0.20 0.31
Company Meet. 336 0.94 0.5 0.65 5k 0.4 0.54 0.46 0.38 0.53 0.44 4560 0.46 720 0.88 0.53 0.67
Credit Rating 48 0.6 0.75 0.67 72 0.56 0.75 0.64 0.18 0.66 0.29 4680 0.55 24 0.69 0.75 0.72

Employment Change 24 1.0 0.88 0.94 14k 0.39 0.73 0.51 0.37 0.8 0.51 12k 0.5 ≤720 1 0.88 0.94
Natural Disaster 24 0.8 0.5 0.62 29 0.8 0.5 0.62 0.51 0.91 0.65 255 0.86 [168:500] 0.93 0.78 0.86

Person Travel 48 0.61 0.82 0.7 72 0.59 0.84 0.69 0.42 0.93 0.58 36 0.73 24 0.92 0.85 0.88
Political Endorsement 48 1.0 0.59 0.74 216 0.85 0.65 0.73 0.52 0.88 0.65 1200 0.68 [24:70] 1.0 0.59 0.74

Product Recall 177 0.9 0.9 0.9 7,033 0.41 0.9 0.56 0.38 0.9 0.53 352 0.9 [100:400] 0.9 0.9 0.9
Voting Result 24 1.0 0.6 0.75 816 0.79 0.71 0.75 0.31 0.9 0.59 4440 0.57 720 0.83 0.75 0.79

Table 3: Precision and recall of the error detection based on duration discovery approaches (M in hours).

ular entities yield higher F-measure than the unconditional
Tfds. Interestingly, there is a case where the conditional
Tfd performs worse that the non-conditional one. Since in
the US there can be multiple elections in different states in
the same day, the algorithm mines a very low duration of 6
hours. This suggests that Voting Result extractors can be
revised to consider American states, instead of one country.
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Figure 9: Study of the input parameters averaged
over 9 temporal events: (a) Execution time and F-
measure for the top-5 rules, (b) Precision, Recall,
and F-measure of the repair for RO.

Parameters. In the above experiments the early termina-
tion threshold δ and the cut-off point c for trimming and
duration discovery were set to 0.7 and 10%, respectively.
We report in Figure 9(a) how different values for δ affect
the F-measure of the top-5 dependencies discovered with
our method. We observe that aggressive pruning leads to
faster execution, but to a loss in the quality of the results.
However, an early termination with δ=0.7 reduces the exe-
cution from 52 to 6 seconds and preserves the quality.

Figure 9(b) shows that the discovery algorithm behaves
as expected with respect to the cut-off parameter c: low
cut-off points lead to high precision and higher values lead
to higher recall. This property allows the user to tune the
discovery for their target application requirements. Interest-
ingly, increasing values for c show similar behavior for both
RO and NP, and the default value of c = 10 is close to the
max F-measure value for both methods.

Execution times. Aetas’s runtime is dominated by the
time needed for reading the data from a database. For the
largest dataset, CompanyTicker with more than one million
tuples, and without early termination, Aetas took a total
time of 53 seconds from which 52 seconds were spent to iden-
tify the implications and 1 second to discover the minimum
duration for a chosen implication. With early termination,
the process takes less than 2 seconds. The dependency cube
is also easy to maintain in memory as we handle one cube
per Fd at a time and its size is bound by the number of
tuples. Also, when imputing missing timestamps, we do
not materialize their values in the stripe, and we implicitly
maintain the time sequence for a non changing value.

5.2 Synthetic Data
The goal of the experiments with synthetic data is to an-

alyze how the discovery algorithms perform wrt different
properties of the data.
Dataset. In each scenario, we generate S sources with in-
formation over events for O objects for T timestamps. The
generation of the values follows a Tfd with a given Mg.
Each tuple for a source has an attribute for the entity (ref-
erence value), an attribute value for the Tfd, and a times-
tamp. For example, for Tfd name ∧ ∆ → position with
∆=[0, 2] would generate tuples such as (Jay, worker, 1),
(Jay, worker, 2), (Jay, manager, 3), (Jay, manager, 4),
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Figure 10: Ratio of the mined duration M wrt the golden duration Mg with different kinds of errors.

(Jay, manager, 5), (Jay, manager, 7), and (Jay, clerk, 8).
For each timestamp and entity, a source has a probability
Pr of not reporting the current value in a tuple, a probabil-
ity Ph of changing the value (with the current duration up
to a given maximum value), a probability Pe of reporting
a wrong value, and a probability Pt of reporting a wrong
timestamp. We run the different discovery algorithms on
the union of the data from all sources. All experiments have
been carried out for 1000 reference values and the probabil-
ity of changing the value Ph was set to 0.2.
Metrics. In this controlled environment, we know the prop-
erties of our generative model, such as the golden values for
Mg. We can thus measure the quality of the mining as the
ratio of the discovered duration M to the input duration Mg.
A ratio of 1 shows that the method has correctly mined M .
Results. To evaluate the influence of errors and sparseness
in the data, we created different scenarios by varying differ-
ent parameters. We first tested each type of error, namely
missing values, wrong values, and wrong timestamps in iso-
lation, i.e., we varied the probability of the error at hand
from 0 to 0.6 and fixed the others probabilities to zero. We
had 12 experiments for each error type by varying (i) the
number of reporting sources from 2 to 5, and (ii) Mg to 7,
12, 17. The maximum duration (the time an event holds)
was fixed at Mg + 5. From these experiments, we collected
12 M/Mg ratios, and took their median. We then tested the
role of sources and skewed error rates for our method. In
this experiment, we considered 1, 4, 7, and 10 sources, all of
them with Pr=0.1 and Pt=0.2, and three cases. In case 1,
the first source has Pe=0.1, and at each step we add three
new sources with Pe values 0.1, 0.3, and 0.5. Similarly, in
case 2 (resp. 3), the first source has Pe=0.2 (resp. 0.3), and
at each step we add three sources with Pe values 0.2, 0.4,
and 0.6 (0.3, 0.5, and 0.7 resp.).

Figure 10 shows the overall results. We see that RO per-
forms better than the baselines with all error types. In Fig-
ure 10(a), it is easy to see that both RO and NP are robust
to missing values, AL performs poorly because it cannot
align stripes when values do not match, and the absence of
integration leads to several missing values for NR. With er-
rors in the values (Figure 10(b)) RO is the only one able
to perform well with high percentages of noise, while the
other methods experience a big drop in performance. In Fig-
ure 10(c)), we see that RO is robust to errors in the times-
tamps and computes better durations that the others (NP
drops in performance at 0.3). Finally, Figure 10(d) shows
that increasing the number of sources leads to improvement

in the mining. The combination of missing values, errors in
the timestamps, and very erroneous sources make the prob-
lem more challenging. In particular, a useful duration is
discovered starting with seven sources in all cases.

6. RELATED WORK
Our work is related to two main areas, namely, depen-

dency discovery and temporal data management.
In the context of constraints discovery, Fds attracted the

most attention. TANE is a representative for the schema-
driven approach to discovery [19], while FASTFD is an
instance-driven approach [32]. Recently, DFD has also been
proposed with improvements in performance [1]. While all
these methods are proven to be valid over clean data, few
solutions have been proposed for discovery over noisy data.
An extension in this direction is the discovery of approxi-
mate Fds that hold for a subset of a relation with respect
to a given threshold [23]. A similar extension has been pro-
posed to mine approximate Tfds [11]. The major drawback
of approximate Fds on noisy data is that from a certain
threshold of noise on, such as 26% in our real world data
scenario, the results of the discovery approach will mix up
useful approximate Fds with actual non-dependent columns.

Another aspect of discovering constraints is to mea-
sure their importance according to a scoring function.
CORDS [20], which we use as baseline for approximate Fds
discovery, uses statistical correlations for each column pair
to score possible Fds. In conditional functional dependen-
cies (Cfds) discovery, other measures have been proposed,
including support, which is defined as the percentage of the
tuples in the data that match the pattern tableaux (the con-
stants) and χ2 test [8, 14]. Song et al. introduced the con-
cept of differential dependencies [31] by extending Fds with
differential functions, which are dependencies that change
over time. They also mine dependencies, but they have fo-
cused on identifying dependencies on clean data only.

Integration and cleaning with temporal data [2, 9, 25, 27]
is also of interest. The related approaches can benefit from
our algorithms. The Prawn integration system [2] can use
our Tfds to detect errors, while the record-linkage systems
for temporal data can exploit our repair-based duration dis-
covery for their mining of temporal behavior. In fact, their
goal is to identify records that describe the same entity over
time and understanding how long a value should hold is
critical for their algorithms. In particular, we adapted the
disagreement decay discovery algorithm from [27] to our set-
ting and indeed it can be applied for minimum duration dis-



covery. From the experimental study, it is clear that our
algorithm does better because of the improved robustness
wrt the noise in the data. Notice that, differently from [27],
noisy data cannot be clustered with good results. We there-
fore decided to go directly to the tuple-pair comparisons in
the cleaning step, and this aggressive cleaning is supported
by the experimental results with low execution times and
good results in terms of quality. Another application for
our rules is truth discovery [15, 28, 29, 33].

7. CONCLUSION
We presented Aetas, a system for the discovery of ap-

proximate temporal functional dependencies. At the core of
the system are two modules that exploit machine learning
techniques to identify approximate dependencies and their
durations from noisy web data. As we have shown in the ex-
perimental study, traditional Fds lead to poor results when
used on a temporal dataset in a data cleaning system. On
the contrary, temporal dependencies can improve the qual-
ity of the data; our system is able to discover Tfds with
minimal interactions with the users and with better results
than alternative methods.

As a future direction, we plan to mine Tfds that iden-
tify large extreme values over the duration distributions,
i.e., outlying durations that are too long for a certain event.
For example, in many countries politicians have a maximum
number of mandates for a certain position. We also plan to
extend our duration discovery algorithm with more sophis-
ticated methods for temporal outlier detection [18].
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Abstract—We present RUDIK, a system for the discovery of
declarative rules over knowledge-bases (KBs). RUDIK discovers
rules that express positive relationships between entities, such
as “if two persons have the same parent, they are siblings”,
and negative rules, i.e., patterns that identify contradictions in
the data, such as “if two persons are married, one cannot be
the child of the other”. While the former class infers new facts
in the KB, the latter class is crucial for other tasks, such as
detecting erroneous triples in data cleaning, or the creation of
negative examples to bootstrap learning algorithms. The system is
designed to: (i) enlarge the expressive power of the rule language
to obtain complex rules and wide coverage of the facts in
the KB, (ii) discover approximate rules (soft constraints) to be
robust to errors and incompleteness in the KB, (iii) use disk-
based algorithms, effectively enabling rule mining in commodity
machines. In contrast with traditional ranking of all rules based
on a measure of support, we propose an approach to identify the
subset of useful rules to be exposed to the user. We model the
mining process as an incremental graph exploration problem and
prove that our search strategy has guarantees on the optimality of
the results. We have conducted extensive experiments using real-
world KBs to show that RUDIK outperforms previous proposals
in terms of efficiency and that it discovers more effective rules
for the application at hand.

I. INTRODUCTION

Building large RDF knowledge-bases (KBs) is a popular
trend in information extraction. KBs store information in the
form of triples, where a predicate, expresses a binary relation
between a subject and an object. KB triples, called facts, store
information about real-world entities and their relationships,
such as “Michelle Obama is married to Barack Obama”.
Significant effort has been put on KBs creation in the last
10 years in the research community (DBPedia [3], FreeBase
[4], Wikidata [24], DeepDive [19], Yago [20]) as well as in
the industry (e.g., Google [10], Wal-Mart [9]).

Unfortunately, due to their creation process, KBs are
usually erroneous and incomplete. KBs are bootstrapped by
extracting information from sources with minimal or no human
intervention. This leads to two main problems. First, false facts
are propagated from the sources to the KBs, or introduced
by the extractors [10]. Second, usually KBs do not limit the
information of interest with a schema and let users add facts
defined on new predicates by simply inserting new triples.
Since closed world assumption (CWA) does no longer hold in
KBs [10], [13], we cannot assume that a missing fact is false,
but we rather label it as unknown (open world assumption).

As a consequence, the amount of errors and incompleteness
in KBs can be significant, with up to 30% errors for facts

derived from the Web [1], [21]. Since KBs are large, e.g.,
WIKIDATA has more than 1B facts and 300M entities, checking
all triples to find errors or to add new facts cannot be done
manually. A natural approach to assist curators is to discover
declarative rules that can be executed over the KB to improve
the quality of the data [2], [5], [13]. We target the discovery
of two types of rules: (i) positive rules to enrich the KB with
new facts and thus increase its coverage, (ii) negative rules to
spot logical inconsistencies and identify erroneous triples.

Example 1: Consider a KB with information about parent and
child relationships. A positive rule is the following:

r1 : parent(b, a)ñ child(a, b)

stating that if a person a is parent of person b, then b is child
of a. A negative rule has similar form, but different semantics.
For example (DOB stands for Date Of Birth),

r2 : DOB(a, v0)^ DOB(b, vi)^ v0 ą vi ^ child(a, b)ñ K

states that person b cannot be child of a if a was born after b.
By executing the rule as a query over child facts, we identify
erroneous triples.

In order to be executed over a KB, or plugged into an
existing inference system [17], rules must be manually crafted,
a task that can be difficult for domain experts without a CS
background. Also, the rule creation process is usually very
expensive, as large KB can have rules in the thousands [22].
A rule discovery system is therefore a crucial asset to help the
users in data curation. However, three main challenges arise
when discovering positive and negative rules from KBs.

Data Quality. While traditional rule mining techniques assume
that data is either clean or has a negligible amount of errors [6],
KBs can present errors and are incomplete.

Open World Assumption. Other approaches rely on the
presence of positive and negative examples [8], [16], but KBs
contain only positive statements, and, without CWA, there is
no immediate solution to derive counter examples.

Volume. Existing approaches for rule discovery assume that
data fit into main memory [2], [13], [5], [12]. Given the large
and increasing size of KBs, these approaches focus on a simple
rule language to minimize the size of the search space.

We present RUDIK (Rule Discovery in Knowledge Bases),
a novel system for the discovery of rules over KBs that
addresses these challenges. RUDIK is the first system designed
to discover both positive and negative rules over noisy and
incomplete KBs. By relying on disk based algorithms, RUDIK



can handle a larger search space and discover rules with a
richer language that allows value comparisons. This increase
in the expressive power enables a larger number of patterns to
be expressed in the rules, and therefore a larger number of new
facts and errors can be identified with high accuracy. These
results are achieved by exploiting the following contributions.

1. Problem Definition. We formally define the problem of
robust rule discovery over erroneous and incomplete KBs. The
input of the problem are two sets of positive and negative
examples for every predicate. In contrast to the traditional
ranking of a large set of rules based on a measure of
support [8], [13], [18], our problem definition aims at the
identification of a subset of approximate rules, i.e., rules that
do not necessarily hold over all the examples, since data errors
and incompleteness are in the nature of KBs. The solution
is then the smallest set of rules that cover the majority of
input positive examples, and as few input negative examples
as possible (Section III).

2. Example Generation. Positive and negative examples
for a target predicate are crucial to our approach as they
determine the ultimate quality of the rules. However, crafting
a large number of negative examples is a tedious exercise that
requires manual work. We present an algorithm for example
generation that is aware of missing data and inconsistencies
in the KB. Our generated examples lead to better rules than
examples obtained with alternative approaches (Section IV).

3. Rule Discovery Algorithm. We give a log(k)-
approximation algorithm for the rule discovery problem, where
k is the maximum number of input positive examples covered
by a single rule. We discover rules by judiciously using the
memory. The algorithm incrementally materializes the KB as
a graph, and discovers rules by navigating only the paths that
potentially lead to the best rules. By materializing only the
portion of the KB that is needed for the promising rules,
the disk-access is minimized and the low memory footprint
enables the mining with a richer rule language (Section V).

We experimentally test the performance of RUDIK on
three popular and widely used KBs. We show that our system
delivers accurate rules, with a relative increase in average
precision by 45% both in the positive and in the negative
settings w.r.t. state-of-the-art systems. Also, differently from
other proposals, RUDIK performs consistently well with KBs
of all sizes on a regular laptop. Finally, we demonstrate
how discovered negative rules provide Machine Learning
algorithms with training examples of quality comparable to
examples manually crafted by humans (Section VI).

II. PRELIMINARIES

We focus on discovering rules from RDF KBs. An RDF
KB is a database that represents information through RDF
triples xs, p, oy, where a subject (s) is connected to an ob-
ject (o) via a predicate (p). Triples are often called facts.
For example, the fact that Scott Eastwood is the child
of Clint Eastwood could be represented through the triple
xClint Eastwood, child, Scott Eastwoody. RDF KB triples
respect three constraints: (i) triple subjects are always entities,
i.e., concepts from the real world; (ii) triple objects can be
either entities or literals, i.e., primitive types such as numbers,
dates, and strings; (iii) triple predicates specify real-world
relationships between subjects and objects.

Differently from relational databases, KBs usually do not
have a schema that defines allowed instances, and new pred-
icates can be added by inserting triples. This model allows
great flexibility, but the likelihood of introducing errors is
higher than traditional schema-guided databases. While KBs
can include T-Box facts to define classes, domain/co-domain
types for predicates, and relationships among classes to check
integrity, in most KBs – including the ones used in our
experiments – such information is missing. Hence our focus
is on the A-Box facts that describe instance data.

A. Language

Our goal is to automatically discover first-order logical
formulas in KBs. More specifically, we target the discovery of
Horn Rules with universally quantified variables only. A Horn
Rule is a disjunction of atoms with at most one unnegated
atom. In the implication form, they have the following format:

A1 ^A2 ^ ¨ ¨ ¨ ^An ñ B

where A1^A2^¨ ¨ ¨^An is the body of the rule (a conjunction
of atoms) and B is the head of the rule (a single atom).
However, it is logically equivalent to rewrite the atom in the
head of the rule in its negated form in the body to emphasize
contradictions:

A1 ^A2 ^ ¨ ¨ ¨ ^An ^ B ñ K

We therefore distinguish between positive rules, which gener-
ate new facts (e.g., r1 in Example 1), and negative rules (e.g.,
r2 in Example 1), which identify incorrect facts, similarly to
denial constraints for relational data [6]. An atom is a predicate
connecting two variables, two entities, or an entity and a
variable. For simplicity, we write an atom with the notation
rel(a, b), where rel is a KB predicate and a, b are either
variables or entities. Given a rule r, we define rbody and rhead
as the body and the head of the rule, respectively, and refer to
the variables in the head of the rule as the target variables.

We remark that we also discover rules with a body atom
in its negated form in the head. The result is a formula
that generates negative facts. For example, negative rule r2
is obtained by rewriting in the body the atom notChild in
the following rule:

r12 : DOB(a, v0)^DOB(b, vi)^v0 ą vi ñ notChild(a, b)

As shown in the negative rule, we allow literal comparisons
in our rules. A literal comparison is a special atom rel(a, b),
where rel P tă,ď,‰,ą,ěu, and a and b can only be
assigned to literal values except if rel is equal to ‰, i.e.,
we allow inequality comparisons for entities.

Given a KB kb and an atom A “ rel(a, b) where a and b
are two entities, we say that A holds over kb iff xa,rel, by P
kb. Given an atom A “ rel(a, b) with at least one variable,
we say that A can be instantiated over kb if there exists at least
one entity from kb for each variable in A s.t. if we substitute all
variables in A with these entities, A holds over kb. Transitively,
we say that rbody can be instantiated over kb if every atom
(with entities) in rbody can be instantiated and every literal
comparison is logically true.

As in other approaches [13], [5], we want to avoid Carte-
sian products in our rules and therefore define a rule valid



iff every variable in it appears at least twice. Target variables
already appear once in the head of the rule, but each non target
variable must be involved in a join or in a comparison.

B. Rule Coverage

Given a pair of entities px, yq from a KB kb and a Horn
Rule r, we say that rbody covers px, yq if px, yq |ù rbody . In
other words, given a rule r : rbody ñ r(a, b), rbody covers a
pair of entities px, yq P kb iff we can substitute a with x, b with
y, and the rest of the body can be instantiated over kb. Given
a set of pair of entities E “ tpx1, y1q, px2, y2q, ¨ ¨ ¨ , pxn, ynqu
and a rule r, we denote by CrpEq the coverage of rbody over
E as the set of elements in E covered by rbody: CrpEq “
tpx, yq P E|px, yq |ù rbodyu.

Given the body rbody of a rule r, we denote by r˚body
the unbounded body of r. The unbounded body of a rule is
obtained by keeping only atoms that contain a target variable
and substituting such atoms with new atoms where the target
variable is paired with a new unique variable. As an example,
given rbody “ rel1(a, v0) ^ rel2(v0, b) where a and b
are the target variables, r˚body “ rel1(a, vi)^rel2(vii, b).
While in rbody the target variables are bounded to be connected
by variable v0, in r˚body they are unbounded. Given a set
of pair of entities E “ tpx1, y1q, px2, y2q, ¨ ¨ ¨ , pxn, ynqu and
a rule r, we denote by UrpEq the unbounded coverage of
r˚body over E as the set of elements in E covered by r˚body:
UrpEq “ tpx, yq P E|px, yq |ù r˚bodyu. Note that, given a set
E, CrpEq Ď UrpEq.

Example 2: We denote with E the set of all possible pairs
of entities in kb. The coverage of r2 of Example 1 over E
pCrpEqq is the set of all pairs of entities px, yq P kb s.t. both
x and y have the DOB information and x is born after y. The
unbounded coverage of r over E pUrpEqq is the set of all pairs
of entities px, yq s.t. both x and y have the DOB information,
no matter what the relation between the two birth dates is.

The unbounded coverage is essential to distinguish between
missing and inconsistent information: if for a pair of entities
px, yq the DOB is missing for either x or y, we cannot say
whether x was born before or after y. But if both x and y have
the DOB and x is born before y, we can state that r2 does not
cover px, yq. As KBs are incomplete, we must discriminate
between missing and conflicting information. We extend the
definition of coverage and unbounded coverage to a set of rules
R “ tr1, r2, ¨ ¨ ¨ , rnu as the union of individual coverages:

CRpEq “
ď

rPR

CrpEq URpEq “
ď

rPR

UrpEq

III. RULE DISCOVERY FOR NOISY KBS

For the sake of simplicity, we define the discovery problem
for a single target predicate given as input. To obtain all rules
for a given KB, we compute rules for every predicate in it. We
characterize a predicate with two sets of pairs of entities. The
generation set G contains examples for the target predicate,
while the validation set V contains counter examples for the
same. Consider the discovery of positive rules for the child
predicate; G contains true pairs of parents and children and V
contains pairs of people who are not in a child relation. If we
want to identify errors (negative rules), the sets of examples

are the same, but they switch role. To discover negative rules
for child, G contains pairs of people not in a child relation
and V contains pairs of entities respecting the child relation.

We formalize next the exact discovery problem. In the
following definitions, we assume for the sake of simplicity
that all possible valid rules and the sets of examples have been
already generated, we detail in the rest of the paper how they
are efficiently obtained from the KB.

Definition 1: Given a KB kb, two sets of pairs of entities G
and V from kb with GXV “ H, and all the valid Horn Rules
R for kb, a solution for the exact discovery problem is a subset
R1 of R s.t.:

argmin
R1

psizepR1q|pCR1pGq “ Gq ^ pCR1pV q X V “ Hqq

The exact solution is the minimal set of rules that covers
all pairs in G and none of the pairs in V . It minimizes the
number of rules in the output (sizepR1q) to avoid overfitting
rules covering only one pair, as such rules have no impact when
applied on the KB. In fact, given a pair of entities px, yq, there
is always an overfitting rule whose body covers only px, yq by
assigning target variables to x and y as shown next.

Example 3: Consider the discovery of positive rules for the
predicate couple between two persons using as example the
Obama family. A positive example is (Michelle, Barack) and
a negative example is their daughters (Malia, Natasha). Given
three rules:

r3 : livesIn(a, v0)^ livesIn(b, v0)ñ couple(a, b)

r4 : hasChild(a, vi)^ hasChild(b, vi)ñ couple(a, b)

r5 : hasChild(Michelle,Malia)^ hasChild(Barack,Malia)

ñ couple(Michelle, Barack)

Rule r3 states that two persons are a couple if they live in
the same place, while rule r4 states that they are a couple
if they have a child in common. Assuming the information
livesIn(x,y) and hasChild(x,y) are in the KB, both
rules r3 and r4 cover the positive example. Rule r4 is an exact
solution, as it does not cover the negative example, while this
is not true for r3, as also the daughters live in the same place.
Rule r5 explicitly mentions entity values (constants) in its head
and body. It is also an exact solution, but it applies only for
the given positive example.

If any of the hasChild relationships between the parents
and the daughters is missing in G, the exact discovery would
find only r5 as a solution. This highlights that the exact
discovery is not robust to data problems in KBs. Even if a
valid rule exists semantically, missing triples or errors for the
examples in G and V can lead to faulty coverage. In the worst
case, every rule in the exact solution would cover only one
example in G, i.e., a set of overfitting rules with no effect
when applied on the KB.

A. Weight Function

Given errors and missing information in both G and V ,
we drop the requirement of exactly covering the sets with the
rules. In other words, we mine rules that hold for most of
the data (soft-constraints), as we want to be robust w.r.t. noise
and incompleteness. However, coverage is a strong indicator of



quality: good rules should cover several examples in G, while
covering elements in V can be an indication of incorrect rules.
We model this idea in a weight associated with every rule.

Definition 2: Given a KB kb, two sets of pair of entities G
and V from kb with G X V “ H, and a Horn Rule r, the
weight of r is defined as follow:

wprq “ α ¨ p1´
| CrpGq |

| G |
q ` β ¨ p

| CrpV q |

| UrpV q |
q (1)

with α, β P r0, 1s and α` β “ 1, thus wprq P r0, 1s.

The weight captures the quality of a rule w.r.t. G and
V : the better the rule, the lower the weight – a perfect
rule covering all generation elements of G and none of the
validation elements in V has a weight of 0. The weight is
made of two components normalized by parameters α and β.
The first component captures the coverage over the generation
set G – the ratio between the coverage of r over G and G itself.
The second component quantifies the coverage of r over V .
The coverage over V is divided by the unbounded coverage
of r over V , instead of the total elements in V , because some
elements in V might not have the predicates stated in rbody .
Intuitively, we restrict V with unbounded coverage to validate
on “qualifying” examples.

Parameters α and β give relevance to each component. A
high β steers the discovery towards rules with high precision
by penalizing the ones that cover negative examples, while a
high α champions the recall by favoring rules covering more
generation examples.

Example 4: Consider again rule r2 of Example 1 and two sets
of pairs of entities G and V from a KB kb. The first component
of wr is computed as 1 minus the number of pairs px, yq in
G where x is born after y divided by the number of elements
in G. The second component is the ratio between number of
pairs px, yq in V where x is born after y and number of pairs
px, yq in V where the birth date for both x and y is known in
kb, i.e., examples with missing birth dates are not in Ur2pV q.

Definition 3: Given a set of rules R, the weight for R is:

wpRq “ α ¨ p1´
| CRpGq |

| G |
q ` β ¨ p

| CRpV q |

| URpV q |
q

Weights enable the modeling of the presence of errors in
KBs. Consider the case of negative rule discovery, where V
contains positive examples from the KB. We report in the
experimental evaluation several negative rules with significant
coverage over V , which corresponds to errors in the KB.
The weight is important also for plugging rules into existing
inference systems for KBs. For example, weighted rules can be
interpreted as soft constraints for probabilistic reasoning [17].

B. Problem Definition

We can now state the approximate version of the problem.

Definition 4: Given a KB kb, two sets of pair of entities G
and V from kb with G X V “ H, all the valid Horn Rules
R for kb, and a w weight function for R, a solution for the
robust discovery problem is a subset R1 of R such that:

argmin
R1

pwpR1q|CR1pGq “ Gq

The robust version of the discovery problem aims to
identify rules that cover all elements in G and as few as
possible elements in V . Since we do not want overfitting rules,
we do not generate in R rules having constants in both target
variables, thus avoiding any rule that covers only one example.

We can map this problem to the weighted set cover prob-
lem, which is proven to be NP–complete [7]. The reduction
follows immediately from the following mapping: the set of
elements (universe) corresponds to the generation examples
in G, the input sets are identified by the rules defined in R
(where each rule covers a subset of G), the non-negative weight
function w : r Ñ IR is wprq in Definition 2, and the cost of
R is defined to be its total weight, according to Definition 3.

IV. RULE AND EXAMPLE GENERATION

In this Section we describe how to generate the universe
of all possible rules. We start by assuming that the positive
and the negative examples are given, and then show how they
can be computed. However, our approach is independent of
how G and V are generated: they could be manually crafted
by domain experts, with significant additional manual effort.

We detail the discovery of positive rules having true facts
in G and false facts in V . In the dual problem of negative rule
discovery, our approach remains unchanged, we just switch the
roles of G and V . The generation set G is formed out of false
facts, while the validation set V is built from true facts.

A. Rule Generation

In the universe of all possible rules R, each rule must cover
one or more examples from the generation set G. Thus the
universe of all possible rules is generated by inspecting the
elements of G alone. We translate a KB kb into a directed
graph: entities and literals are the nodes, and there is a directed
edge from node a to node b for each triple xa, rel, by P kb.
Edges are labelled with the relation rel that connects subject
to object. Figure 1 shows four triples.

child
parent

birthDate birthDate

Clint
Eastwood

Scott
Eastwood

May 31,
1930

March 21,
1986

Fig. 1. Graph example for four triples from DBpedia.

The body of a rule can be seen as a path in the graph. In
Figure 1, the body child(a, b)^parent(b, a) corresponds
to the path Clint Eastwood Ñ Scott Eastwood Ñ Clint
Eastwood. As defined in Section II-A, a valid body contains
target variables a and b at least once, every other variable at
least twice, and atoms are transitively connected. If we allow
navigation of edges independently of the edge direction, we
can translate bodies of valid rules to valid paths on the graph.
Given a pair of entities px, yq, a valid body corresponds to a
valid path p on the graph such that: (i) p starts at the node
x; (ii) p covers y at least once; (iii) p ends in x, in y, or
in a different node that has been already visited. Given the
body of a rule rbody , rbody covers a pair of entities px, yq
iff there exists a valid path on the graph that corresponds to
rbody . This implies that for a pair of entities px, yq, we can
generate bodies of all possible valid rules by computing all



valid paths starting at x with a standard BFS. The key point
is the ability to navigate each edge in any direction by turning
the original directed graph into an undirected one. However,
we need to keep track of the original direction of the edges.
This is essential when translating paths to rule bodies. In fact,
an edge directed from a to b produces the atom rel(a, b),
while b to a produces rel(b, a).

Since every node can be traversed multiple times, for two
entities x and y there might exist infinite valid paths starting
from x. This is avoided with a maxPathLen parameter that
determines the maximum number of edges in the path, i.e.,
the maximum number of atoms allowed in the corresponding
body of the rule. We show the impact of this parameter in
Section VI.

We now describe the two main steps in our generation of
the universe of all possible rules for G.

1. Create Paths. Given a pair of entities px, yq, we retrieve
from the KB all nodes at a distance smaller than maxPathLen
from x or y, along with their edges. The retrieval is done
recursively: we maintain a queue of entities, and for each entity
in the queue we execute a SPARQL query against the KB to
get all entities (and edges) at distance 1 from the current entity
– we call these queries single hop queries. At the n-th step,
we add the new found entities to the queue iff they are at a
distance less than (maxPathLen ´ n) from x or y and they
have not been visited before. The queue is initialized with x
and y. Given the graph for every px, yq, we then compute all
valid paths starting from every x.

2. Evaluate Paths. Computing paths for every example in G
implies also computing the coverage over G for each rule. The
coverage of a rule r is the number of elements in G for which
there exists a path corresponding to rbody . Once the universe
of all possible rules has been generated (along with coverages
over G), computing coverage and unbounded coverage over
V requires only the execution of two SPARQL queries against
the KB for each rule in the universe.

Since one of our goals is to increase the expressive power
of discovered rules, we generate different atom types:

Literal comparison. We want predicate atoms with compar-
isons beyond equalities. To discover such atoms, the graph
representation must contain edges that connect literals with
one (or more) symbol from tă,ď,‰,ą,ěu. As an example,
Figure 1 would contain an edge ‘ă’ from node “March 31,
1930” to node “March 21, 1986”. Unfortunately, the original
KB does not contain this kind of information explicitly, and
materializing such edges among all literals is infeasible.

However, in our algorithm we discover paths for a pair of
entities from G in isolation. The size of the graph resulting for
a pair of entities is orders of magnitude smaller than the KB,
thus we can afford to compare all literal pairwise comparisons
within a single example graph. Besides equality comparisons,
we add ‘ą’,‘ě’,‘ă’,‘ď’ relationships between numbers and
dates, and ‰ between all literals. These new relationships
are treated as normal atoms (edges): x ě y is equivalent to
rel(x, y), where rel is equal to ě.

Not equal variables. The “not equal” operator introduced for
literals is useful for entities as well. Consider the rule:

bornIn(a, x)^ x ‰ b^ president(a, b)ñ K

It states that if a person a is born in a country that is different
from b, then a cannot be the president of b. One way to
consider inequalities among entities is to add edges among
all pairs of entities in the graph. However, this strategy is
inefficient and would lead to many meaningless rules. To limit
the search space while aiming at meaningful rules, we use the
rdf:type triples associated to entities. We add an inequality
edge in the input example graph only between pairs of entities
of the same type (as in the example above).

Constants. Finally, we allow the discovery of rules with
constant selections. Suppose that for the above president rule,
all examples in G are people born in “U.S.A.”, and there is at
least one country for which this rule is not valid. According
to our problem statement, the right rule is therefore:

bornIn(a, x)^ x ‰ U.S.A. ñ  president(a,U.S.A.)

To discover such atoms, we promote a variable v in a given
rule r to an entity e iff for every px, yq P G covered by r, v
can always be instantiated with the same value e.

B. Input Example Generation

Given a KB kb and a predicate rel P kb, we automatically
build a generation set G and a validation set V as follows.
G consists of positive examples for the target predicate rel,
i.e., all pairs of entities px, yq such that xx, rel, yy P kb. V
consists of counter (negative) examples for the target predicate.
These are more complicated to generate because of the open
world assumption in KBs. Differently from classic databases,
we cannot assume that what is not stated in a KB is false
(closed world assumption), thus everything that is not stated
is unknown. However, since the likelihood of two randomly
selected entities being a positive example is extremely low,
one simple way of creating false facts is to randomly select
pairs from the Cartesian product of the entities [16]. While this
process gives negative examples with a very high precision,
only a very small fraction of these entity pairs are semantically
related. This semantic aspect has effects in the applications that
use the generated negative examples. In fact, unrelated entities
have less meaningful paths than semantically related entities
and this is reflected in lower quality in the experimental results.

A semantic connection is guaranteed for positive examples
by definition, since pairs in G are always connected at least
by the target predicate. To generate negative examples that are
likely to be correct (true false facts) and that are semantically
related, we mine the facts to identify the entities that are
more likely to be complete, i.e., entities for which the KB
contains full information. This process is done exploiting and
extending the popular notion of Local-Closed World Assump-
tion (LCWA) [13]. LCWA states that if a KB contains one or
more object values for a given subject and predicate, then it
contains all possible values. For example, if a KB contains
one or more children of Clint Eastwood, then it contains all
his children. This is always true for functional predicates (e.g.,
capital), while it might not hold for non-functional ones
(e.g., child).

We generate negative examples taking the union of entities
satisfying the LCWA. For a predicate rel, a negative example
is a pair px, yq where either x is the subject of one or more



triples xx, rel, y1y with y ‰ y1, or y is the object of one or more
triples xx1, rel, yy with x ‰ x1. For example, if rel “ child,
a negative example is a pair px, yq s.t. x has some children
in the KB who are not y, or y is the child of someone who
is not x. The LCWA guarantees that, since at least another
child exists for x, px, yq cannot be in such relation and we
can safely use the pair as a counter-example. In addition, to
obtain examples that are semantically related, it is enough to
add the constraint that every example is made from a pair of
entities that are connected via a predicate different from the
target predicate. In other words, given a KB kb and a target
predicate rel, px, yq is a negative example if xx, rel1, yy P kb,
with rel1 ‰ rel.

Example 5: A negative example px, yq for the target predicate
child has the following characteristics: (i) x and y are not
connected by a child predicate; (ii) either x has one or
more children (different from y) or y has one or more parents
(different from x); (iii) x and y are connected by a predicate
that is different from child (e.g., colleague).

To enhance the quality of the input examples and avoid
cases of mixed types, we require that for every example pair
px, yq, either in G or V , all the x occurrences have the same
type, same for the y values.

V. DISCOVERY ALGORITHM

We introduce a greedy approach to solve the approximate
discovery problem (Section III-B). Since the number of pos-
sible rules can be very large, we introduce an algorithm that
generates only promising rules from the KB, while preserving
the same quality guaranteed by the exhaustive generation.

A. Marginal Weight for a Greedy Algorithm

Our goal is to discover a set of rules to produce a weighted
set cover for the given examples. We therefore follow the
intuition behind the greedy algorithm for weighted set cover by
defining a marginal weight for rules that are not yet included
in the solution [7].

Definition 5: Given a set of rules R and a rule r such that
r R R, the marginal weight of r w.r.t. R is defined as:

wmprq “ wpRY truq ´ wpRq

The marginal weight quantifies the weight increase by
adding r to an existing set of rules. Since the problem aims
at minimizing the total weight, we never add a rule to the
solution if its marginal weight is greater than or equal to 0.

If all rules have been generated, the algorithm for greedy
rule selection is quite straightforward: given a generation set
G, a validation set V , and the universe of all possible rules R,
pick at each iteration the rule r with minimum marginal weight
and add it to the solution R1. The algorithm stops when one
of the following termination conditions is met: 1) R is empty
– all the rules have been included in the solution; 2) R1 covers
all elements of G; 3) the minimum marginal weight is greater
than or equal to 0, i.e., among the remaining rules in R, none
of them has a negative marginal weight.

The greedy solution guarantees a log(k) approximation
to the optimal solution [7], where k is the largest number of
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Fig. 2. Two positive examples.

elements covered in G by a rule in R. If the optimal solution is
made of rules that cover disjoint sets over G, then the greedy
solution coincides with the optimal one.

B. A˚ Graph Traversal

The greedy algorithm for weighted set cover assumes that
the universe of rules R has been generated. To generate R, we
need to traverse all valid paths from a node x to a node y, for
every pair px, yq P G. But do we need all possible paths for
every example?

Example 6: Consider the mining of positive rules for the
target predicate spouse. The generation set G includes two
examples g1 and g2 shown as graphs in Figure 2. Assume
for simplicity that all rules in the universe have the same
coverage and unbounded coverage over the validation set V .
One candidate rule is r : child(x, v0)^ child(y, v0)ñ
spouse(x, y), stating that entities x and y with a common
child are married. In the graph, r covers both g1 and g2. Since
all rules have the same coverage and unbounded coverage over
V , there is no need to generate any other rule. In fact, any other
candidate rule will not cover new elements in G, therefore their
marginal weights will be greater than or equal to 0. Thus the
creation and navigation of edges livesIn in g1, worksAt
in g2, and partner in g2 is not needed.

Based on the above observation, we avoid the generation of
the entire universe R, but rather consider at each iteration the
most promising path on the graph as in the A˚ graph traversal
algorithm [14]. For each example px, yq P G, we start the
navigation from x. We keep a queue of not valid rules, and at
each iteration we consider the rule with the minimum marginal
weight, which corresponds to paths in the example graphs. We
expand the rule by following the edges, and we add the new
founded rules to the queue of not valid rules. Unlike A˚, we do
not stop when a rule (path) reaches the node y (i.e., becomes
valid). Whenever a rule becomes valid, we add the rule to the
solution and we do not expand it any further. The algorithm
keeps looking for plausible paths until one of the termination
conditions of the greedy cover algorithm is met.

A crucial point in A˚ is the definition of the estimation
cost. To guarantee the solution to be optimal, the estimation
must be admissible [14], i.e., the estimated cost must be less
than or equal to the actual cost. In our setting, given a rule
that is not yet valid and needs to be expanded, we define an
admissible estimation of the marginal weight.

Definition 6: Given a rule r : A1 ^ A2 ¨ ¨ ¨An ñ B, we
say that a rule r1 is an expansion of r iff r1 has the form
A1 ^A2 ¨ ¨ ¨An ^An`1 ñ B.

In the graph traversal, expanding r means traversing one
further edge on the path defined by rbody . To guarantee the
optimality condition, the estimated marginal weight for a rule
r that is not valid must be less than or equal to the actual



Algorithm 1: RUDIK Rule Discovery.
input : G – generation set
input : V – validation set
input : maxPathLen – maximum rule body length
output: Ropt – union of rules in the solution

1 Ropt ÐH;
2 Nf Ð tx|px, yq P Gu;
3 Qr Ð expandFrontierspNf q;
4 r Ð argmin

rPQr

pw˚mprqq;

5 repeat
6 Qr Ð Qrztru;
7 if isValidprq then
8 Ropt Ð Ropt Y tru;

9 else
// rules expansion

10 if lengthprbodyq ă maxPathLen then
11 Nf Ð frontiersprq;
12 Qr Ð Qr Y expandFrontierspNf q;

13 r Ð argmin
rPQr

pw˚mprqq;

14 until Qr “ H_ CRoptpGq “ G_ w˚mprq ě 0;
15 return Ropt

weight of any valid rule that is generated by expanding r.
Given a rule and some expansions of it, we can derive the
following.

Lemma 1: Given a rule r and a set of pair of entities E, then
for each r1 expansion of r, Cr1pEq Ď CrpEq and Ur1pEq Ď
UrpEq.

The above Lemma states that the coverage and unbounded
coverage of an expansion r1 of r are contained in the cover-
age and unbounded coverage of r, respectively, and directly
derives from the augmentation inference rule for functional
dependencies. The only positive contribution to marginal
weights is given by |CRYtrupV q|. |CRYtrupV q| is equivalent to
|CRpV q|` |CrpV qzCRpV q|, thus if we set |CrpV qzCRpV q| “
0 for any r that is not valid, we guarantee an admissible
estimation of the marginal weight. We estimate the coverage
over the validation set to be 0 for any rule that can be further
expanded, since expanding it may bring the coverage to 0.

Definition 7: Given a not valid rule r and a set of rules R,
we define the estimated marginal weight of r as:

w˚mprq “ ´α¨
|CrpGqzCRpGq|

|G|
`β¨p

|CRpV q|

|URYtrupV q|
´
|CRpV q|

|URpV q|
q

The estimated marginal weight for a valid rule is equal to
the actual marginal weight (Definition 5). Valid rules are not
considered for expansion, therefore we do not need to estimate
their weights since we know the actual ones. Given Lemma 1,
we can see that w˚mprq ď w˚mpr

1q, for any r1 expansion of r.
Thus our marginal weight estimation is admissible.

We are ready to introduce Algorithm 1, which shows
the modified set cover procedure, including the A˚-like rule
generation. For a rule r, we call frontier nodes, Nf prq,
the last visited nodes in the paths that correspond to rbody
from every example graph covered by r. Expanding a rule
r implies navigating a single edge from any frontier node.
In the algorithm, the set of frontier nodes is initialized with

starting nodes x, for every px, yq P G (Line 2). The algorithm
maintains a queue of rules Qr, from which it chooses at
each iteration the rule with minimum estimated weight. The
function expandFrontiers retrieves all nodes (along with
edges) at distance 1 from frontier nodes and returns the set of
all rules generated by this one hop expansion. Qr is therefore
initialized with all rules of length 1 starting at x (Line 3). In
the main loop, the algorithm checks if the current best rule r
is valid or not. If r is valid, it is added to the output and it
is not expanded (Line 8). If r is not valid, it is expanded iff
the length of its body is less than maxPathLen (Line 10).
The termination conditions and the last part of the algorithm
are the same of the greedy set-cover algorithm, except that the
output may not cover all input examples in G.

To analyze the complexity of Algorithm 1, we assume that
each query has a constant cost (linear scan over an index).
Each iteration in Algorithm 1 corresponds to the discovery of
a rule (valid or invalid), and for each rule we count how many
examples from G such a rule covers. The total number of
iterations is at most the total number of rules. The worst case
is a complete graph where for each predicate p in the KB and
for each pair of nodes px, yq, there exists a labelled edge with
p that connects x with y. In this case, the number of distinct
paths of length L ď maxPathLen between any two nodes
of G is |P |L, where |P | is the number of predicates in the
KB. The asymptotic complexity of Algorithm 1 is therefore
Op|G| ˚ |P |Lq, where G is the generation set, and P is the
set of predicates in the KB. In reality, most pairs in KBs are
connected by very few predicates (1 to 2), thus |P | is small.
This is reflected by low execution times for the algorithm in
the experiments.

The simultaneous rule generation and selection of Algo-
rithm 1 brings multiple benefits. First, we do not generate the
entire graph for every example in G. Nodes and edges are
generated on demand, whenever the algorithm requires their
navigation (Line 12). Rather than materializing the entire graph
and then traversing it, our solution gradually materializes parts
of the graph whenever they are needed for navigation (Lines 3
and 12). Second, the weight estimation prunes unpromising
rules. If a rule does not cover new elements in G and does not
unbounded cover new elements in V , then it is pruned.

VI. EXPERIMENTS

We implemented the above techniques in RUDIK, our
system for Rule Discovery in Knowledge Bases (https://github.
com/stefano-ortona/rudik). We carried out an experimental
evaluation of our approach and grouped the results in four
categories: (i) demonstrating the quality of our output for
positive and negative rules; (ii) comparing our method with
the state-of-the-art systems; (iii) showing the applicability of
rule discovery to create representative training data to learning
algorithms; (iv) testing the role of the parameters in the system.

Settings. Experiments were run on a desktop with a quad-
core i5 CPU at 2.80GHz and 16GB RAM. We used OpenLink
Virtuoso, optimized for 8GB RAM, with its SPARQL query
endpoint on the same machine. Weight parameters were set to
α “ 0.3 and β “ 0.7 for positive rules, and to α “ 0.4 and
β “ 0.6 for negative rules. We set the maximum number of
atoms admissible in the body of a rule (maxPathLen) to 3.
We discuss the role of these parameters in Section VI-D.



TABLE I. DATASET CHARACTERISTICS.
KB Version Size #Triples #Predicates

DBPEDIA 3.7 10.06GB 68,364,605 1,424
YAGO 3 3.0.2 7.82GB 88,360,244 74
WIKIDATA 20160229 12.32GB 272,129,814 4,108

Evaluation Metrics. We evaluated the effectiveness in
discovering both positive and negative rules. For every KB,
we first ordered predicates according to descending popularity
(i.e., number of triples having that predicate). We then picked
the top 3 predicates for which we knew there existed at least
one meaningful rule, and other 2 top predicates for which we
did not know whether meaningful rules existed or not.

The evaluation of the discovered rules has been done
according to the best practice for rule evaluation [13]. If a rule
was clearly semantically correct, we marked all its results over
triples as true. If a rule correctness was unknown, we randomly
sampled 30 triples either among the new facts (for positive
rules) or among the errors (for negative rules), and manually
checked them. The precision of a rule is then computed as the
ratio of correct assertions out of all assertions. While we man-
ually annotated only popular predicates, we executed RUDIK
on all predicates in DBPEDIA and verified that results are
consistent even with non popular predicates. Source code and
test results, including annotated examples and discovered rules,
are available online at https://github.com/stefano-ortona/rudik.

A. Quality of Rule Discovery in RUDIK

The first experiment evaluated the accuracy of discovered
rules over three KBs: DBPEDIA, YAGO, and WIKIDATA.
Table I shows their characteristics. Over the three KBs, the
selected predicates cover 0.2% to 0.4% of the total triples,
0.2% to 8% of the total predicates, 3% to 7% of the total
entities, with 8% to 14% entity overlap among the predicates.

Size is important, as loading a KB entirely in memory
requires to either use large amount of memory [5], [12], or
to shrink it by eliminating the literals [13]. Given the small
memory footprint of our algorithm, we can mine rules with
commodity HW resources and retain the literals, which are
crucial for obtaining expressive rules. While RUDIK takes as
input a target predicate at a time, it can discover rules over the
entire KB by applying the same procedure on every predicate
in it. We discuss next results for subsets of predicates because
the manual annotation of the identified new facts and errors is
a very expensive process. However, when RUDIK is executed
on all the predicates of a KB, results are consistent in terms of
number of discovered rules and execution times. For example,
for 600 predicates in DBPEDIA we mined about 3000 positive
rules, with at most 26 rules for a predicate, and 4000 negative
rules, with at most 32 rules for a predicate.

Positive Rules RUDIK. We evaluate the precision for the
positive discovered rules on the top 5 predicates for each KB.
The number of new induced facts varies significantly from
rule to rule. To avoid the overall precision to be dominated by
such rules, we first compute the precision for each rule, and

TABLE II. RUDIK POSITIVE RULES ACCURACY.
KB Avg. Avg. Precision over # Labeled

RunTime Predicates with Rules (All) Triples
DBPEDIA 35min 87.86% (63.99%) 139
YAGO 3 59min 79.17% (62.86%) 150

WIKIDATA 141min 85.71% (73.33%) 180

then average values over all induced rules. Table II reports
precision values, along with predicates average running time,
and the number of manually annotated triples. We distinguish
predicates for which we knew there existed at least one correct
rule (in bold), and all predicates (in brackets).

As precision varies across different KBs and facts, we
report the value for every predicate. For DBPEDIA: aca-
demicAdvisor (100%), child (58%), spouse (97%), founder
(no valid rules), successor (68%). YAGO: hasChild (50%),
influences (35%), isLeaderOf (70%), isMarriedTo (100%),
exports (83%). WIKIDATA: spouse (100%), child (76%), paint-
ingCreator (60%), academicAdvisor (100%), subsidiary (67%).
Average precision values are brought down by few predicates,
such as founder, where meaningful positive rules probably
do not exist at all. Our experience show that it suffices to read
the rules to recognize that they are semantically wrong and
should be discarded, e.g., a human immediately sees that it is
not possible to derive a founder from the KB’s predicates.

The running time is influenced by the size of the KB. The
more edges we have on average for a node (entity), the more
alternative paths we test while traversing the graph. Another
relevant aspect is the target predicate involved. Some entities
have a large number of outgoing and incoming edges, e.g.,
entity “United States” in WIKIDATA has more than 600K.
When the generation set includes such entities, the navigation
of the graph is slower. Parameter maxPathLen also impacts
the running time. The longer the rule, the bigger is the search
space, as we discuss in Section VI-D.

TABLE III. RUDIK NEGATIVE RULES ACCURACY.
KB Avg. Run Time # Pot. Errors Precision

DBPEDIA 19min 499 (84) 92.38%
YAGO 3 10min 2,237 (90) 90.61%

WIKIDATA 65min 1,776 (105) 73.99%

Negative Rules RUDIK. We evaluate discovered negative
rules as the percentage of correct errors identified for the
top 5 predicates in each KB. Table III shows, for each
KB, the total number of potential erroneous triples found
with the discovered rules, whereas the precision is computed
as the percentage of actual errors among potential errors.
Numbers in brackets show the number of triples manually
annotated to obtain the precision. At the predicate level, the
results are the following. DBPEDIA: academicAdvisor (29%),
child (90%), spouse (87%), founder (95%), ceremonialCounty
(100%). YAGO: hasChild (82%), isMarriedTo (97%), created
(100%), hasAcademicAdvisor (100%), wroteMusicFor (43%).
WIKIDATA: spouse (78%), child (82%), founder (100%), cre-
ator (48%), oathGiven (100%).

Negative rules have better accuracy than positive ones when
considering all predicates. This is due to the fact that negative
rules exist more often than positive rules. While quality of
the rules is good, especially on the more noisy KBs, we
also discover rules that are supported by the large majority
of the data, but do not hold semantically. For example, we
identify the rule that two people with same gender cannot be
married both in YAGO and WIKIDATA. Such rule has a 94%
precision in YAGO and 57% in WIKIDATA. Differently from
positive rules, literals play a key role in negative rules. In
fact, several correct negative rules rely on temporal aspects in
which something cannot happen before/after something else.



TABLE IV. AMIE DATASET CHARACTERISTICS.
KB Size #Triples #Predicates #rdf:type

DBPEDIA 551M 7M 10,342 22.2M
YAGO 2 48M 948.3K 38 77.9M

Temporal information is usually expressed through dates and
years, which are represented as literal values in KBs.

Discovering negative rules is faster than discovering pos-
itive rules because of the different nature of the examples
covered by validation queries. Whenever we identify a can-
didate rule, we execute the body of the rule against the KB
with a SPARQL query to compute its coverage over the
validation set. These queries are faster for negative rules since
the validation set only contains entities directly connected by
the target predicate, whereas in the positive case the validation
set corresponds to counter examples that do not have this
property and are more expensive to evaluate.

For non popular predicates, the system found rules with
quality comparable to the popular predicates. For example,
it discovers the valid negative rule routeStart(x, a) ^
routeEnd(x, b) ñ notMeetingRoad(a, b) for pred-
icate meetingRoad with just 114 facts in DBPE-
DIA, and the valid positive rule highestState(a, x) ^
municipality(b, x) ñ highestRegion(a, b) for
predicate highestRegion with just 36 facts.

B. Comparative Evaluation

We compared our methods against AMIE [13], a state-of-
the-art positive rule discovery system for KBs. AMIE assumes
that the given KB fits into memory and discovers positive rules
for every predicate. It then outputs all rules that exceed a given
threshold and ranks them according to a coverage function.

Given its in-memory implementation, AMIE went out of
memory for the KBs of Table I on our machine. Thus, we used
the modified versions of YAGO and DBPEDIA from the AMIE
paper [13], which are devoid of literals and rdf:type facts.
Removing literals and rdf:type triples drastically reduce the
size of the KB. Since our approach needs type information (for
the generation of G and V and for the discovery of inequality
atoms), we run AMIE on its original datasets, while for our
algorithm we used the AMIE dataset plus rdf:type triples.
Last column of Table IV reports the number of triples added
to the original AMIE dataset.

Positive Rules Comparison. For this experiment we ran
RUDIK as follows: we first list all the predicates in the
KB that connect a subject to an object. We then computed
for both subject and object the most popular rdf:type
that is not super class of any other most popular type. We
finally ran our approach sequentially on every predicate, with

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 50000	 100000	 150000	 200000	 250000	

Pr
ec
is
io
n	

#	New	Facts	

RuDiK	

AMIE	

11 Rules

Manually Annotated Sample Size: 920

Fig. 3. Accuracy for new facts identified by executing rules in descending
AMIE’s score on YAGO 2 (no literals).

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 5000	 10000	 15000	 20000	 25000	 30000	 35000	 40000	

Pr
ec
is
io
n	

#	New	Facts	

RuDiK	
AMIE	

Manually Annotated Sample Size: 934

Fig. 4. Accuracy for new facts identified by executing rules in descending
score on DBPEDIA (no literals).

maxPathLen “ 2 (AMIE default setting). AMIE discovers 75
output rules in YAGO, and 6090 in DBPEDIA. We followed
their experimental setting and picked the first 30 best rules
according to their score. We then picked the rules produced
by our approach on the same head predicate of the 30 best
rules output of AMIE.

Figures 3 and 4 report the results on YAGO and DBPEDIA,
respectively. We plot the total cumulative number of new
unique facts (x-axis) versus the aggregated precision (y-axis)
when incrementally including in the solution the rules accord-
ing to their descending (AMIE’s) score. Rules from AMIE
produce more predictions, but with significant lower accuracy
in both KBs. This is because many good rules are preceded
by meaningless ones in the ranking, and it is not clear how to
set a proper k to get the best ones. In RUDIK, instead of the
conventional ranking mechanism, we use a scoring function
that discovers only inherently meaningful rules with enough
support. As a consequence, RUDIK outputs just 11 rules for
8 target predicates on the entire YAGO – for the remaining
predicates RUDIK does not find any rule with enough support.
If we limit the output of AMIE to the best 11 rules in YAGO
(same output as our approach), its final accuracy is still 29%
below our approach, with just 10K more predictions.

Negative Rules Comparison. While AMIE has not been
designed to discover negative rules, we created a baseline
solution on top of it. First, we created a set of negative exam-
ples (Section IV-B) for each predicate in the top-5. For each
example, we added a new fact to the KB by connecting the two
entities with the negation of the predicate. For example, we
added a notSpouse predicate connecting each pair of people
who are not married according to our generation technique. We
then ran AMIE on these new predicates.

Table V shows that RUDIK outperforms AMIE in both
cases with an absolute precision gain of almost 20% (41-49%
relative). The drop in quality for RUDIK w.r.t. the results in
Section VI-A is because of the KBs without literals. Numbers
in brackets show the number of triples manually annotated.

TABLE V. NEGATIVE RULES VS AMIE.
AMIE RUDIK (no literals)

KB # Errors Precision # Errors Precision
DBPEDIA 457 (157) 38.85% 148 (73) 57.76%
YAGO 2 633 (100) 48.81% 550 (35) 68.73%

Running Time. On our machine, AMIE could finish the
computation on YAGO 2, while for other KBs it got stuck
after some time. For these cases, we stopped the computation
if there were no changes in the output for more than 2 hours.
Running times for AMIE are different from [13], where it was
run on a 48GB RAM server.



TABLE VI. TOTAL RUN TIME COMPARISON.
KB #Predicates AMIE RUDIK Types

YAGO 2 20 30s 18m,15s 12s
YAGO 2s 26 (38) ą 8h 47m,10s 11s

DBPEDIA 2.0 904 (10342) ą 10h 7h,12m 77s
DBPEDIA 3.8 237 (649) ą 15h 8h,10m 37s

WIKIDATA 118 (430) ą 25h 8h,2m 11s
YAGO 3 72 - 2h,35m 128s

Table VI reports the running time on different KBs. The
first five KBs are AMIE modified versions, while YAGO 3
includes literals and rdf:type. The second column shows
the total number of predicates for which AMIE produced at
least one rule before getting stuck, while in brackets we report
the total number of predicates in the KB. The third and fourth
columns report the total running time of the two approaches.
Despite being disk-based, RUDIK successfully completes the
task faster than AMIE in all cases, except for YAGO 2. This
is because of the very small size of this KB, which fits in
memory. However, when we deal with complete KBs (YAGO
3), the KB could not even be loaded due to out of memory
errors. The last column reports the running time to compute
rdf:type information for all predicates.

Other Systems. In [2], the system mines rules that are less
general than our approach; on YAGO 2, it discovers 2K new
facts with a precision lower than 70%, while our rule on YAGO
2 already produces more than 4K facts with a 100% precision.
Another system [5] implements AMIE algorithm with a focus
on scalability and the output is the same as AMIE. We did not
compare with Inductive Logic Programming systems [8], [23],
as these are already significantly outperformed by AMIE both
in accuracy and running time.

C. Machine Learning Application

The goal of this experiment is to test RUDIK’s ability
in providing valid training examples to ML models. We
chose DeepDive [19], a framework for information extraction.
DeepDive extracts entities and relations from text articles via
distant supervision. The key idea in distant supervision is to
use an external source of information (e.g., a KB) to provide
training examples for a supervised algorithm. For example,
DeepDive can extract mentions of married couples from text
documents. In this scenario, it uses a KB to label pairs of
married couples that can be found in DBPEDIA as true positive
example. As KBs provide facts, in DeepDive the burden of
creating negative examples is left to the user. We compare
the output of DeepDive upon its spouse example trained with
different sets of negative examples over two datasets.
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Figure 5 shows DeepDive accuracy plot with 1K input
documents. The plot shows the fraction of correct positive

predictions over total predictions (y-axis), for each output
probability value (x-axis). The ideal execution, marked by the
dotted blue line, would predict all facts with a probability of
1 and zero facts with an output probability of 0. The best
algorithm deflects the least from the blue dotted line, and
this distance is our evaluation metric. RUDIK is the output
of DeepDive using our discovered rules to generate negative
examples on DBPEDIA. OnlyPos uses only positive exam-
ples from DBPEDIA, Manual uses positive examples from
DBPEDIA and manually defined rules to generate negative ex-
amples, while ManualSampl uses a sample of the manually
generated negative examples in size equal to positive examples.
OnlyPos and Manual do not provide valid training, as the
former has only positive examples and labels everything as
true, while the latter has many more negative examples than
positive ones and labels everything as false. ManualSampl
is the winner, while our approach suffers from the absence
of data to mine: over the input 1K articles, there are only 20
positive examples from DBPEDIA. The lack of evidence in
the training data also explains the missing points for RUDIK,
with no prediction in the probability range 25-45%.
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Fig. 6. DeepDive executions with different training examples – 1M articles.

When we extend the input to 1M articles, things change
drastically (Figure 6). All approaches except OnlyPos suc-
cessfully drive the training, with the examples provided with
RUDIK leading to the best result. This is because of the quality
of the negative examples: our rules generate representative
examples that are correct (thanks to the LCWA), semantically
related (thanks to the constraint on the predicate connecting
them), and have the number of negative examples in the same
order of magnitude of the positive ones. The correct and
rich examples enable DeepDive to identify discriminatory
features between positive and negative labels. The output
of ManualSampl and RUDIK are very similar, meaning
that we can use our approach to simulate user behavior and
automatically produce negative examples.

D. Internal Evaluation

We outline the impact of individual components in RUDIK.
Full results are reported in the technical report online at http:
//www.eurecom.fr/publication/5321.

KB Noise Impact. In terms of quality of the KBs, the per-
centages of erroneous triples identified by our rules are 0.23%
for WIKIDATA, 0.26% for DBPEDIA, and 0.6% for YAGO. To
study the impact of errors in the KB, we first manually removed
errors from the top five predicates in DBPEDIA to obtain clean
positive and negative examples. We collected such rules and
consider them the best possible output. We then gradually
introduced errors by switching positive and negative examples
between their sets. Figure 7 shows the accuracy degradation
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averaged over predicates (y-axis) from 0% errors to 100% (x-
axis). As expected, the accuracy decreases with the amount
of errors. RUDIK is robust enough to deliver mostly correct
rules until 40% of errors, while after that accuracy starts to
drop significantly. An interesting point is that even with 90% of
errors, RUDIK is still able to isolate the 10% of good examples
to mine at least one valid rule.

LCWA. We study the effect of the LCWA assumption for the
generation of negative examples. Given a predicate p, we tested
three generation strategies: RUDIK strategy (Section IV-B),
Random (randomly select k pairs px, yq from the Cartesian
product s.t. triple xx, p, yy R kb), and LCWA (RUDIK strategy
but x and y do not have to be connected by a predicate
different from p). Table VII reports quality results for the
discovered rules. Random and LCWA show similar behavior,
with a slightly better precision than RUDIK. This is because
by randomly picking examples from the Cartesian product
of subject and object, the likelihood of getting entities from
different time periods is very high, and negative rules pivoting
on time constraints are usually correct. Instead, by forcing x
and y to be connected with different predicate, we generate
semantically related examples that lead to more rules. Rules
such as parent(a, b)ñ notSpouse(a, b) are not gener-
ated with random strategies, since the likelihood of picking two
people that are in a parent relation is very low. The RUDIK
strategy enables the discovery of more types of rules, and not
only rules involving time constraints.

TABLE VII. IMPACT OF EXAMPLES GENERATION ON DBPEDIA.
Strategy # Potential Errors Precision
Random 247 95.95%
LCWA 263 95.82%

RUDIK 499 92.38%

Effect of Literals. Table VIII reports the output precision
obtained by enabling and disabling the use of literal compar-
isons in RUDIK. Including literal values has a considerable
impact on accuracy, both for positive and negative rules. Neg-
ative rules without literals find less than half potential errors
(numbers in brackets) with lower precision. For predicate
founder, RUDIK discovers 79 potential errors with a 95%
precision with literal rules, while none are detected by using
rules without literals. Interestingly, including literals reduces
also the running time. This is due to the pruning effect of the
A˚ search, literals enable the early discovery of good rules.

Rule Length Impact. The maxPathLen parameter fixes
the maximum number of atoms in the body of a rule. Low

TABLE VIII. IMPACT OF LITERALS ON DBPEDIA.
With Literals Without Literals

Rules Run Time Precision Run Time Precision
Pos. „35min 63.99% „54min 60.49%
Neg. „19min 92.38% (499) „25min 84.85% (235)

values may exclude from the search space meaningful rules,
while high values exponentially increase the search space and
consequently the running time. With maxPathLen “ 2, there
is a significant improvement in running time, but meaningful
rules are lost and precision drop to 49% for positive rules and
90% for negative ones. In particular, we lose rules with literals
comparison, as these require at least three atoms in the body.
At the other side of the spectrum, with maxPathLen “ 4
the search space explodes and RUDIK could not finish the
computation within 24 hours for any predicate. We measured
the accuracy of rules discovered in 24 hours of computa-
tion and the results are comparable to those computed with
maxPathLen “ 3, with a small increase in precision for
positive rules and a small drop for negative ones. Rules with
length 4 are more complex to understand, and when executed
over the KB they often return an empty result because of their
higher selectivity. We therefore set maxPathLen “ 3 as a
compromise between efficiency and accuracy.

Weight Parameters. For positive rules, the best assignment
is α “ 0.3 and β “ 0.7, while for negative rules is α “ 0.4
and β “ 0.6. Since discovering correct positive rules is more
challenging than negative ones, favoring precision over recall
gives the best accuracy, while for negative rules we can be
more recall oriented. In both positive and negative settings, the
variation in performance for α P r0.1, 0.9s is limited (ď 12%),
showing the robustness of the set cover problem formulation.
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Fig. 8. A˚ Pruning Runtime Improvement.

Search. We quantify the benefit of the A˚ algorithm on the
running time. Figure 8 shows the running time, for each
predicate, of the A˚ algorithm (light-colored bars) against a
modified version that first generates the universe of all possible
rules, and then applies the greedy set cover algorithm on such
a universe (dark-colored bars). The last two predicates refer to
the y-axis labels on the right hand side, as they have higher
running times. In the figure, (P) indicates positive rules and
(N) negative ones. The A˚ strategy shows an average 50%
improvement in running times as it avoids the generation of
unpromising paths and the loading of the corresponding RDF
instances from disk. When there exist rules that cover many
examples from the generation set (e.g., successor (P),
founder (P)), the algorithm identifies such rules rather
early, thus pruning several unpromising paths. In such cases
the running time improvement is above 70%.

Set Cover. Our set cover problem formulation leads to a
concise set of rules in the output, which is preferable to the
large set of rules obtained with a ranking based solution.
Oftentimes correct rules are not among the top-10 ranked,
and we found cases where meaningful rules are below the
100th position. For example, the only valid negative rule for



the predicate founder, which states that a person born after
the company was founded cannot be its founder, figures at
a rank of 127 when emitted by the ranking-based version of
RUDIK, whereas it is included in the compact set discovered
by the standard variant of RUDIK.

VII. RELATED WORK

A significant body of work has addressed the problem of
discovering constraints over relational data, e.g., [6]. However,
these techniques cannot be applied to KBs because of the
schema-less nature of RDF data and the OWA. Traditional
approaches rely on the assumption that data is either clean or
has a negligible amount of errors, which is not the case with
KBs, and, even when the algorithms are designed to tolerate
errors [1], [15], a direct application of relational database tech-
niques on RDF KBs requires the prohibitive materialization
of all possible predicate combinations into relational tables.
Recently, theoretical foundations of Functional Dependencies
on Graphs have been laid [11]. However, their language covers
only a portion of our negative rules and does not include
general literal comparisons.

Rule mining approaches designed for positive rule dis-
covery in RDF KBs load the entire KB into memory prior
to the graph traversal step [13], [5]. This is a limitation for
their applicability over large KBs, and neither of these two
approaches consider value comparison. In contrast to them,
RUDIK load in memory a small fraction of the KB. This
makes it scalable and the low memory footprint enables a
bigger search space with rules that have literal comparisons.
Finally, association rules can be mined to recommend new
facts [2], but such rules are made of constants only and are
therefore less general than the rules generated by RUDIK.

ILP systems such as WARMR [8], Sherlock [18], and
ALEPH1 are designed to work under the CWA and require the
definition of positive and negative error-free examples. It has
been showed how this assumption does not hold in KBs and
that AMIE outperforms this kind of systems [13]. Detection of
semantic errors in KBs has also been tackled with approaches
that are orthogonal to negative rules. For example, discovering
domain and range restrictions [23], or identifying outliers after
grouping subjects by type [25]. Finally, the output of our rules
can be modeled as the result of a link prediction problem over
the KB [10]. However, we focus on logical rules for their
benefits as “white boxes”, including the possibility of doing
static analysis, execution optimization, and interpretability.

VIII. CONCLUSION

We presented RUDIK, a rule discovery system that mines
both positive and negative rules on noisy and incomplete
KBs. Positive rules identify new valid facts for the KB, while
negative rules identify errors. We experimentally showed that
our approach generates concise sets of meaningful rules with
high precision, is scalable, and can work with exisisting KBs.

Open questions are related to the interactive discovery of
the rules, if and how it is possible to drastically reduce the
runtime of the discovery without compromising the quality of
the rules. Another interesting direction is to discover more

1https://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

expressive rules that exploit temporal information through
smarter analysis of literals [1], e.g., “if two person have age
difference greater than 100 years, then they cannot be married”.
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Chapter 3

Data repairing with declarative
rules

In this part of the thesis, I present my work on the development of scalable and accurate

algorithms for data repairing. The starting point of this line of work is based on the core idea

of designing algorithms that can consume as many user specifications as possible. In fact,

identifying errors and their possible repair updates is very hard in general and any external

information is valuable. Based on this idea, I have explored four orthogonal directions: the

use of expressive rule languages [28, 48], the combination of heterogeneous specifications [48]

and external resources [30], and the involvement of the users in an interactive cleaning process

where rule discovery and data repairing are interleaved [52, 30].

Resources and grants: These activities involved a number of students and collaborators.

The data repairing work on denial constraints [28] involved my time as well as that of an intern

at QCRI under my co-supervision. The general cleaning framework [48] involved my time

in a collaboration with University of Basilicata and Antwerp University (one PhD student

and two academics). The work exploiting knowledge bases and crowdsourcing [30] was led by

Ph.D. students visiting QCRI under my co-supervision, and in collaboration with colleagues

within the Data Analytics group at QCRI. For the interactive cleaning [52], the work was

led by a Ph.D. student under my co-supervision and in collaboration with other institutions.

Most of the funding for these activities came from the national Qatar funding body and a

1-year private ASURE Research Grant during the time I spent in Arizona at ASU.

• Holistic data cleaning. A rule-based data cleaning system takes as input a noisy

dataset, a collection of rules expressed in the supported specification language for such

dataset, and produces a new version of the dataset that satisfies the rules. Algorithms

have been proposed to do repairing based on rules defined by different integrity con-

straints (ICs) [39, 38, 18, 15, 46, 40, 67]. These algorithms try to find a consistent

database that satisfies the given ICs with a minimum cost, e.g., with minimal changes
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to the original datasets [36, 95, 65, 74, 107, 19, 16].

It has been shown that, in general, all languages are useful to capture different errors,

and that coupling different methods, such as the combination of IC-based repair with

lookup approaches [45], leads to better quality in the repair. However, previously pro-

posed data repairing algorithms focus on fixing violations that belong to each class of

constraints in isolation, e.g., FD violation repairs. These techniques miss the oppor-

tunity of considering the interaction among different classes of constraints violations.

This problem motivated us to study methods to correct violations for different types of

constrains with desirable repairs in a unified algorithm [28]. To this end, we adopted

rules expressed as denial constraints (DCs), as they are able to cover existing hetero-

geneous formalisms. Given a set of DCs and a database to be cleaned, our approach

starts by compiling the violations over the instance in a unified representation based

on a hypergraph, so that, by analyzing their interaction, it is possible to identify the

cells that are more likely to be wrong. Once we have identified what are the cells that

are most likely to change, we process their violations to get information about how to

repair them. In the last step, heterogeneous requirements from different constraints are

holistically combined in order to fix the violations.

We verified experimentally the effectiveness and scalability of the algorithm, which

outperforms state of the art solutions in all scenarios. What we also found in follow up

work is that the hypergraph representation and the proposed repair algorithm can also

handle rules expressed as procedural code, as long as their output violations as sets of

cells and repair conditions over cell combinations [64]. This showed that the technical

contributions of this work go beyond DCs as input specifications.

• The LLUNATIC DataCleaning Framework. While the ICs are mandatory specifi-

cations for data repair, it is known that the repair algorithm alone cannot always ensure

the accuracy of data cleaning needed in several real world applications [46, 3]. In order

to improve the accuracy, I have explored several directions. The first one is a framework

that can model as input the declarative rules together with other specifications that ex-

press confidence and preferences among values and possible repairs [45, 48, 44, 43, 100].

The vision of the framework is to be as general as possible, thus allowing different rule

languages (including denial constraints with equalities only), different strategies to use

the constraints to modify the noisy data (master data, tuple-certainty, value-accuracy,

freshness and currency), and even the set of restrictions that are imposed on the target

repaired instance to limit the search space in the process, such as different definitions

of (cost-based) repair minimality, the use of certain fixes, and the adoption of sampling

techniques.

To achieve such an ambitious goal, our work starts in the definition of a novel semantics

for the data-repairing problem. We formalize the process of cleaning an instance as the

process of upgrading its quality, regardless of the specific notions of value preference

adopted in a given scenario. This enables users to plug-in their preference strategies for
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a given scenario into the semantics (e.g., currency). With a clear semantics defined, we

then introduce the notion of a minimal solution and develop algorithms to compute it,

based on a parallel-chase procedure. Finally, as a plug-in for the chase algorithm, we

define the notion of a cost manager that selects which repairs should be kept and which

ones should be discarded. The cost manager abstracts and generalizes popular solu-

tion selection strategies, including similarity-based cost, set-minimality, set-cardinality

minimality, certain regions, and sampling.

In our experiments, we show that the chase engine at the core of the system enable us

to scale the cleaning process to databases with millions of tuples, a considerable ad-

vancement in scalability wrt previous main memory implementations1. Our experience

with this engine also led us into the design of a benchmark for chase algorithms [13],

that has ultimately been released as an open source environment2.

• KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowd-

sourcing. A clear source of evidence to steer the cleaning process based on rules is

reference master data [46, 106, 60], i.e., data that is considered curated and therefore

trusted. In this context, we studied how to exploit emerging resources expressed as

knowledge bases (KBs), both the ones that are general-purpose, such as Yago3) and

DBpedia4), and the ones that are developed within enterprises or in domain-specific

community (e.g., RxNorm5). Here the major question is how to increase the accuracy

of data cleaning methods by exploiting external information that is incomplete and not

available in tabular form. In fact, matching (noisy) tables to KBs is a hard problem. On

one hand, tables may lack reliable, comprehensible labels, thus requiring the matching

to be executed on the data values. This may lead to ambiguity; more than one mapping

may be possible. Moreover, tables usually contain errors that may trigger problems

such as erroneous matching. On the other hand, while in some domains it is reasonable

to assume curated KBs, those are usually incomplete (OWA). This makes the matching

to the noisy tables even harder and the cleaning process not obvious. In the case of

failing to find a match, it is not clear whether the database values are erroneous or the

KB does not cover these values.

To solve these problems, we exploit a second resource: crowdsourcing marketplaces,

such as Amazon Mechanical Turk6 and Figure Eight7. While access to one domain ex-

pert may be limited and expensive, crowdsourcing to a population of users familiar with

the topic has been proven to be a viable alternative solution. Human involvement is our

1http://db.unibas.it/projects/llunatic/
2https://dbunibas.github.io/chasebench/
3https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/

yago-naga/yago/. While we found errors in Yago [80], it indeed has a “confirmed accuracy of 95%”,
which we found high enough to help in cleaning several datasets in practice.

4https://wiki.dbpedia.org/
5https://www.nlm.nih.gov/research/umls/rxnorm/
6https://www.mturk.com/
7formerly CrowdFlower, https://www.figure-eight.com/
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proposal to validate matchings and to verify data when the KBs do not have enough

coverage. Effectively involving the crowd requires dealing with traditional crowdsourc-

ing issues such as forming easy-to-answer questions for the new data cleaning tasks and

optimizing the order of issuing questions to reduce monetary cost.

These ideas are deployed in a knowledge base and crowd powered data cleaning system

that, given a table, a KB, and a crowd, interprets table semantics to align it with the

KB, identifies correct and incorrect data, and generates top-k possible repairs for in-

correct data [30]. At the core of the solution there is a new class of matching patterns

between tables and graph KBs, which explain table semantics by using the (semanti-

cally rich) predicates in the graphs. Each matching pattern is a directed graph, where

a node represents a type of a column and a directed edge represents a binary relation-

ship between two columns. Our rank-join algorithm discovers matching patterns that

are then validated via crowdsourcing. To minimize the number of questions, we use

a scheduling algorithm to maximize the uncertainty reduction of candidate patterns.

Finally, given a matching pattern, we annotate data as (i) correct data validated by the

KB; (ii) correct data jointly validated by the KB and the crowd; and (iii) erroneous data

jointly identified by the KB and the crowd. For the erroneous data we also generate

top-k possible repairs from the evidence in the KB. Experiments show that our system

can be applied to various datasets and KBs to effectively annotates data.

• Interactive and Deterministic Data Cleaning. While the mining approaches in-

troduced in the first part of the thesis have proven to be useful in practice, they still have

limitations that make them hard to use in settings with noisy datasets. In fact, despite

the many results in this area, discovering specification from noisy data is challenging

for multiple reasons. (1) In the bootstrapping step, several input parameters strongly

impact the final output, but are very hard to set upfront. Examples of such parameters

include the percentage of tolerance to noise to discover approximate rules, or the way to

select constants to be considered for rule discovery. These parameters are rarely known

apriori, but tuning them with a trial-and-error approach is infeasible, given the large

number of possible value combinations and the long execution times for the mining, as

discussed next. (2) Complexity comes from both the size of the schema and the size

of the data, with an exponential dependency on the number of attributes, as all their

combinations must be tested [27]. Moreover, if the language supports complex pairwise

rules, such as denial constraints or de-duplication rules, the complexity is quadratic

over the number of tuples. (3) Finally, the number of discovered specifications that

hold over the data is usually large, especially when constants and approximate rules,

often needed in practice, are allowed. When tolerance to noise in the data is required,

semantically valid rules are mixed with incorrect rules because of noisy values in the

data. This problem is alleviated by pruning mechanisms and ranking, but ultimately it

leads to a large amount of time spent by the data engineer and the domain expert to

identify the valid rules among the thousands that approximately hold on the data.
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To alleviate these problems, several approaches have been proposed for the interactive

definition of cleaning specifications. More precisely, methods reason about user-provided

updated values to learn transformation specifications [87, 54, 108, 92, 8, 1]. These algo-

rithms focus on string manipulation and reformatting at the text level for one attribute.

In a similar interaction, several proposals have exploited data examples for specific tasks

such as discovering queries [22, 115, 91, 114, 5, 20], schema matchings [112, 85], schema

mappings [6, 51, 21], or parameters for entity resolution [104, 103]. Successful commer-

cialization of related research projects also demonstrate that data engineers successfully

engage with this kind of interfaces [96, 61].

Rule definition by example is therefore one of the most promising directions for cleaning,

as it places the human at the center of the data preparation process. As most meth-

ods discovering transformations focus on specification involving one attribute only, we

wanted to design a system to interactively discover with the user rules that can span

over multiple attributes.

Our answer to this challenge is a cleaning system that does not rely on the existence

of a set of predefined data quality rules. On the contrary, it takes as input a single

user update and guesses a set of possible single tuple constant CFD (presented as

deterministic SQL update queries), which that can be used to repair the data. The main

technical challenge addressed in this work is the identification of the rule that fixes the

largest number of errors in the data with a constraint on the number of interactions with

the human. In other words, what are the right questions to ask to the users in order

to minimize the manual cost to go from the single update to the most general (correct)

rule? We formalize this problem as a search in a lattice-shaped space. We navigate the

lattice by interacting with users to gradually validate the set of possible rules. To speed

up the search, we go beyond the traditional one-hop based traverse algorithms (e.g.,

BFS or DFS) and design novel multi-hop search algorithms. Experiments show that

the system effectively steer the users towards correct and general rules that are useful

for data cleaning.
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Abstract—Data cleaning is an important problem and data
quality rules are the most promising way to face it with a
declarative approach. Previous work has focused on specific
formalisms, such as functional dependencies (FDs), conditional
functional dependencies (CFDs), and matching dependencies
(MDs), and those have always been studied in isolation. Moreover,
such techniques are usually applied in a pipeline or interleaved.

In this work we tackle the problem in a novel, unified
framework. First, we let users specify quality rules using denial
constraints with ad-hoc predicates. This language subsumes
existing formalisms and can express rules involving numerical
values, with predicates such as “greater than” and “less than”.
More importantly, we exploit the interaction of the heteroge-
neous constraints by encoding them in a conflict hypergraph.
Such holistic view of the conflicts is the starting point for a
novel definition of repair context which allows us to compute
automatically repairs of better quality w.r.t. previous approaches
in the literature. Experimental results on real datasets show that
the holistic approach outperforms previous algorithms in terms
of quality and efficiency of the repair.

I. INTRODUCTION

It is well recognized that business and scientific data are
growing exponentially and that they have become a first-class
asset for any institution. However, the quality of such data is
compromised by sources of noise that are hard to remove in the
data life-cycle: imprecision of extractors in computer-assisted
data acquisition may lead to missing values, heterogeneity
in formats in data integration from multiple sources may
introduce duplicate records, and human errors in data entry can
violate declared integrity constraints. These issues compromise
querying and analysis tasks, with possible damage in billions
of dollars [9]. Given the value of clean data for any operation,
the ability to improve their quality is a key requirement for
effective data management.

Data cleaning refers to the process of detecting and cor-
recting errors in data. Various types of data quality rules
have been proposed for this goal and great efforts have been
made to improve the effectiveness and efficiency of their
cleaning algorithms (e.g., [4], [8], [21], [18], [13]). Currently
existing techniques are used in isolation. One naive way to
enforce all would be to cascade them in a pipeline where
different algorithms are used as black boxes to be executed
sequentially or in an interleaved way. This approach minimizes
the complexity of the problem as it does not consider the

? Work done while interning at QCRI.

interaction between different types of rules. However, this
simplification can compromise the quality in the final repair
due to the lack of end-to-end quality enforcement mechanism
as we show in this paper.

Example 1.1: Consider the GlobalEmployees table (G for
short) in Figure 1. Every tuple specifies an employee in a
company with her id (GID), name (FN, LN), role, city, area
code (AC), state (ST), and salary (SAL). We consider only two
rules for now. The first is a functional dependency (FD) stating
that the city values determine the values for the state attribute.
We can see that cells in t4 and t6 present a violation for this
FD: they have the same value for the city, but different states.
We highlight the set S1 of four cells involved in the violation
in the figure. The second rule states that among employees
having the same role, salaries in NYC should be higher. In this
case cells in t5 and t6 are violating the rule, since employee
Lee (in NYC) is earning less than White (in SJ). The set S2

of six cells involved in the violation between Lee and White
is also highlighted.

The two rules detect that at least one value in each set of
cells is wrong, but taken individually they offer no knowledge
of which cells are the erroneous ones. �

Fig. 1: Local (L) and Global (G) relations for employees data.

Previously proposed data repairing algorithms focus on re-
pairing violations that belong to each class of constraints in
isolation, e.g., FD violation repairs [6]. These techniques miss
the opportunity of considering the interaction among different
classes of constraints violations. For the example above, a



desirable repair would update the city attribute for t6 with
a new value, thus only one change in the database would fix
the two violations. On the contrary, existing methods would
repair the FD by changing one cell in S1, with an equal chance
to pick any of the four by being oblivious to violations in
other rules. In particular, most algorithms would change the
state value for t6 to NY or the state for t4 to AZ. Similarly,
rule based approaches, when dealing with application-specific
constraints such as the salary constraint above, would change
the salaries of t5 or t6 in order to satisfy the constraints. None
of these choices would fix the mistake for city in t6, on the
contrary, they would add noise to the existing correct data.

This problem motivates the study of novel methods to
correct violations for different types of constrains with de-
sirable repairs, where desirability depends on a cost model
such as minimizing the number of changes, the number of
invented values, or the distance between the value in the
original instance and the repair. To this end, we need quality
rules that are able to cover existing heterogeneous formalisms
and techniques to holistically solve them, while keeping the
process automatic and efficient.

Since the focus of this paper is the holistic repair of a set of
integrity constraints more general than existing proposals, we
introduce a model that accepts as input Denial Constraints
(DCs), a declarative specification of the quality rules which
generalizes and enlarge the current class of constraints for
cleaning data. Cleaning algorithms for DCs have been pro-
posed before [4], [20], but they are limited in scope, as they
repair numeric values only, generality, only a subclass of DCs
is supported, and in the cost model, as they aim at minimizing
the distance between original database and repair only. On the
contrary, we can repair any value involved in the constraints,
we do not have limits on the allowed DCs, and we support
multiple quality metrics (including cardinality minimality).

Example 1.2: The two rules described above can be ex-
pressed with the following DCs:

c1 : ¬(G(g, f, n, r, c, a, s), G(g′, f ′, n′, r′, c′, a′, s′),
(c = c′), (s 6= s′))

c2 : ¬(G(g, f, n, r, c, a, s), G(g′, f ′, n′, r′, c′, a′, s′),
(r = r′), (c = “NY C”), (c′ 6= “NY C”), (s′ > s))

The DC in c1 corresponds to the FD: G.CITY → G.ST and
has the usual semantics: if two tuples have the same value for
city, they must have the same value for state, otherwise there
is a violation. The DC in c2 states that every time there are
two employees with the same rank, one in NYC and one in a
different city, there is a violation if the salary of the second
is greater than the salary of the first. �

Given a set of DCs and a database to be cleaned, our
approach starts by compiling the rules into data violations
over the instance, so that, by analyzing their interaction, it is
possible to identify the cells that are more likely to be wrong.
In the example, t6[CITY ] is involved in both violations,
so it is the candidate cell for the repair. Once we have
identified what are the cells that are most likely to change,
we process their violations to get information about how

to repair them. In the last step, heterogeneous requirements
from different constraints are holistically combined in order to
fix the violations. In the case of t6[CITY ], both constraints
are satisfied by changing its value to a string different from
“NYC”, so we update the cell with a new value.

A. Contributions

We propose a method for the automatic repair of dirty data,
by exploiting the evidence collected with the holistic view of
the violations:

• We introduce a compilation mechanism to project denial
constraints on the current instance and capture the inter-
action among constraints as overlaps of the violations on
the data instance. We compile violations into a Conflict
Hypergraph (CH) which generalizes the one previously
used in FD repairing [18] and is the first proposal to
treat quality rules with different semantics and numerical
operators in a unified artifact.

• We present a novel holistic repairing algorithm that
repair all violations together w.r.t. one unified objective
function. The algorithm is independent of the actual cost
model and we present heuristics aiming at cardinality and
distance minimality.

• We handle different repair semantics by using a novel
concept of Repair Context (RC): a set of expressions
abstracting the relationship among attribute values and
the heterogeneous requirements to repair them. The RC
minimizes the number of cells to be looked at, while
guaranteeing soundness.

We verify experimentally the effectiveness and scalability of
the algorithm. In order to compare with previous approaches,
we use both real-life and synthetic datasets. We show that the
proposed solution outperforms state of the art algorithms in all
scenarios. We also verify that the algorithms scale well with
the size of the dataset and the number of quality rules.

B. Outline

We discuss related work in Section II, introduce preliminary
definitions in Section III, and give an overview of the solution
in Section IV. Technical details of the repair algorithms are
discussed in Section V. System optimizations are discussed
in Section VI, while experiments are reported in Section VII.
Finally, conclusions and future work are discussed in Section
VIII.

II. RELATED WORK

In industry, major database vendors have their own products
for data quality management, e.g., IBM InfoSphere Quali-
tyStage, SAP BusinessObjects, Oracle Enterprise Data Qual-
ity, and Google Refine. These systems typically use simple,
low-level ETL procedural steps [3]. On the other hand, in
academia, researchers are investigating declarative, constraint-
based rules [4], [5], [13], [8], [11], [12], [21], [18], which
allow users to detect and repair complicated patterns in the



data. However, a unified approach to data cleaning that com-
bines evidence from heterogeneous rules is still missing and
it is the subject of this work.

Interleaved application of FDs and MDs has been studied
before [13] and some works (e.g., [6], [5], [8]) compute sets of
cells that are connected by violations from different FDs. This
connected component is usually called “equivalence class”
and it is a special case of the notion of repair context that
we introduce next. Another work [18] exploits the interaction
among FDs by using a hypergraph. In our proposal we extend
the use of hypergraphs to denial constraints, thus significantly
generalizing the original proposal. Moreover, we simplify it,
by considering only current violations, thus avoiding a large
number of hyperedges that they compute in order to execute
the repair process with a single iteration. In fact, by using
multiple iterations we can be more general and compute
interactions of rules happening in more than two steps.

In this work we compute repairs with a large class of
operators in the quality rules: =, 6=, <, >, ≤, ≥, ≈ (similarity).
Most of the previous approaches [6], [8] were dealing only
with equality, and can be seen as special cases of our work.
Exceptions are [4], [20], where the authors propose algorithms
to repair numerical attributes for denial constraints. In our
work we extend their results in three important aspects: (i)
we treat both strings and numeric values together, thus not
restricting updates to numeric values only; (ii) we do not
limit the input constraints to local denial constrains; and
(iii) we allow multiple quality metrics (including cardinality
minimality), while still minimizing the distance between the
numeric values in the original and the repaired instances. We
show in the experimental study that our algorithms provide
repairs of better quality, even for the quality metric in [4].

In general, denial constraints can be extracted from ex-
isting business rules with human intervention. Moreover, a
source of constraints with numeric values from enterprise
databases is data mining [2]. Inferred rules always have a
confidence, which clearly points to data quality problems in
the instances. For example, a confidence of 98.5% for a rule
“discountedPrice<unitPrice” implies that 1.5% of the records
require some cleaning.

III. PRELIMINARIES

A. Background

Consider database schema of the form S = (U,R,B), where
U is a set of database domains, R is a set of database predicates
or relations, and B is a set of finite built-in predicates. In this
paper, B = {=, <,>, 6=,≤,≈}. For an instance I of S, and
an attribute A ∈ U, and a tuple t, we denote by Dom(A) the
domain of attribute A. We denote by t[A] or I(t[A]) the value
of the cell of tuple t under attribute A.

In this work we support the subset of integrity con-
straints identified by denial constraints (DCs) over relational
databases. Denial constraints are first-order formulae of the
form ϕ : ∀x¬(R1(x1)∧ . . .∧Rn(xn)∧P1 ∧ . . .∧Pm), where
Ri ∈ R is a relation atom, and x = ∪xi, and each Pi of
the form v1θc, or v1θv2, where v1, v2 ∈ x, c is a constant,

and θ ∈ B. Similarity predicate ≈ is positive when the edit
distance between two strings is above a user-defined threshold
δ.

Single-tuple constraints (such as SQL CHECK constraints),
Functional Dependencies, Matching Dependencies, and Con-
ditional Functional Dependencies are special cases of unary
and binary denial constraints with equality and similarity
predicates.

Given a database instance I of schema S and a DC ϕ, if I
satisfies ϕ, we write I |= ϕ. If we have a set of DC Σ, I |= Σ
if and only if ∀ϕ ∈ Σ, I |= ϕ. A repair I ′ of an inconsistent
instance I is an instance that satisfies Σ and has the same
set of tuple identifiers in I . Attribute values of tuples in I
and I ′ can be different and, for infinite domains of attributes
in R, there is an infinite number of possible repairs. Similar
to [5], [18], we represent the infinite space of repairs as a finite
set of instances with fresh attribute values. In a repair, each
fresh value FV for attribute A can be replaced with a value
from Dom(A) \ Doma(A), where Doma(A) is the domain
of the values for A which satisfy at least a predicate for each
denial constraints involving FV . In other words, fresh values
are values of the domain for the actual attributes which do not
satisfy any of the predicates defined over them.

Notice that our setting does not rely on restrictions such
as local constraints [20] or certain regions [14]: it is possible
that a repair for a denial constraint triggers a new violation
for another constraint. In order to enforce termination of the
cleaning algorithm fresh values are introduced in the repair.
More details are discussed in the following sections.

B. Problem Definition

Since the number of possible repairs is usually very large
and possibly infinite, it is important to define a criterion to
identify desirable ones. In fact, we aim at solving the following
data cleaning problem: given as input a database I and a
set of denial constraints Σ, we compute a repair Ir of I
such that Ir |= Σ (consistency) and their distance cost(Ir,
I) is minimum (accuracy). A popular cost function from the
literature [6], [8] is the following:

∑

t∈I,t′∈Ir,A∈AR

disA(I(t[A]), I(t′[A]))

where t′ is the repair for tuple t and disA(I(t[A]), I(t′[A]))
is a distance between their values for attribute A (an exact
match returns 0)1. There exist many similarity measurements
for structured values (such as strings) and our setting does
not depend on a particular approach, while for numeric values
we rely on the squared Euclidian distance (i.e., the sum of
the square of differences). We call this measure of the quality
the Distance Cost. It has been shown that finding a repair of
minimal cost is NP-complete even for FDs only [6]. Moreover,

1We omit the confidence in the accuracy of attribute A for tuple t because it
is not available in many practical settings. While our algorithms can support
confidence, for simplicity we will consider the cells with confidence value
equals to one in the rest of the paper, as confidence does not add specific
value to our solution.



minimizing the above function for DCs and numerical values
only it is known to be a MaxSNP-hard problem [4].

Interestingly, if we rely on a binary distance between
values (0 if they are equal, 1 otherwise), the above cost
function corresponds to aiming at computing the repair with
the minimal number of changes. The problem of computing
such cardinality-minimal repairs is known to be NP-hard to
be solved exactly, even in the case with FDs only [18]. We
call this quality measure Cardinality-Minimality Cost.

Given the intractability of the problems, our goal is to
compute nearly-optimal repairs. We rely on two directions to
achieve it: approximation holistic algorithms to identify cells
that need to be changed, and local exact algorithms within the
cells identified by our notion of Repair Context. We detail our
solutions in the following sections.

IV. SOLUTION OVERVIEW

In this Section, we first present our system architecture, and
we explain two data structures: the conflict hypergraph (CH)
to encode constraint violations and the repair context (RC) to
encode violation repairs.

Fig. 2: Architecture of the system.

A. System Architecture

The overall system architecture is depicted in Figure 2. Our
system takes as input a relational database (Data) and a set of
denial constraints (DCs), which express the data quality rules
that have to be enforced over the input database.

Example 4.1: Consider the LocalEmployee table (L for
short) in Figure 1. Every tuple represents information stored
for an employee of the company in one specific location:
employee local id (LID), name (FN, LN), rank (RNK), number
of days off (DO), number of years in the company (Y), city
(CT), manager id (MID), and salary (SAL). LocalEmployee
table and GlobalEmployee table constitute the input database.
We introduce a third DC:
c3 : ¬(L(l, f, n, r, d, y, c,m, s), L(l′, f ′, n′, r′, d′, y′, c′,m′, s′),

G(g∗, f∗, n∗, r∗, c∗, a∗, s∗), (l 6= l′), (l = m′),
(f ≈ f∗), (n ≈ n∗), (c = c∗), (r∗ 6= “M”))

The constraint states that a manager in the local database L
cannot be listed with a status different from “M” in the global
database G. The rule shows how different relations, similarity
predicate, and self-joins can be used together. �

The DCs Parser provides rules for detecting violations
(through the Detect module) and rules for fixing the violations
to be executed by the LookUp module as we explain in the
following example.

Example 4.2: Given the database in Figure 1, the DCs
Parser processes constraint c3 and provides the Detect module
the rule to identify a violation spanning ten cells over tuples
t1, t2, and t3 as highlighted. Since every cell of this group
is a possible error, DCs Parser dictates the LookUp module
how to fix the violation if any of the ten cells is considered
to be incorrect. For instance, the violation is repaired if “Paul
Smith” is not the manager of “Mark White” in L (represented
by the repair expression (l 6= m′)), if the employee in L does
not match the one in G because of a different city (c 6= c∗),
or if the role for the employee in G is updated to manager
(r∗ = M ). �

We described how each DC is parsed so that violations and
fixes for that DC can be obtained. However, our goal is to
consider violations from all DCs together and generate fixes
holistically. For this goal we introduce two data structures: the
Conflict Hypergraph (CH), which encodes all violations into a
common graph structure, and the Repair Context (RC), which
encodes all necessary information of how to fix violations
holistically. The Detect module is responsible for building the
CH that is then fed into the LookUp module, which in turn
is responsible for building the RC. The RC is finally passed
to a Determination procedure to generate updates. Depending
on the content of the RC, we have two Determination cores,
i.e., Value Frequency Map (VFP) and Quadratic Programming
(QP). The updates to the database are applied, and the process
is restarted until the database is clean (i.e., empty CH), or a
termination condition is met.

B. Violations Representation: Conflict Hypergraph

We represent the violations detected by the Detect module in
a graph, where the nodes are the violating cells and the edges
link cells involved in the same violation. As an edge can cover
more than two nodes, we use a Conflict Hypergraph (CH)
[18]. This is an undirected hypergraph with a set of nodes
P representing the cells and a set of annotated hyperedges
E representing the relationships among cells violating a con-
straint. More precisely, a hyperedge (c; p1, . . . , pn) is a set of
violating cells such that one of them must change to repair the
constraint, and contains: (a) the constraint c, which induced the
conflict on the cells; (b) the list of nodes p1, . . . , pn involved
in the conflict.

Example 4.3: Consider Relation R in Figure 3a and the
following constraints (expressed as FDs and CFDs for read-
ability): ϕ1 : A → C, ϕ2 : B → C, and ϕ3 : R[D = 5] →
R[C = 5]. CH is built as in Figure 3b: ϕ1 has 1 violation e1;
ϕ2 has 2 violations e2, e3; ϕ3 has 1 violation e4.

�
The CH represents the current state of the data w.r.t.

the constraints. We rely on this representation to analyze
the interactions among violations on the actual database. A
hyperedge contains only violating cells: in order to repair it,
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Fig. 3: CH Example.

at least one of its cells must get a new value. Interestingly, we
can derive a repair expression for each of the cell involved in
a violation, that is, for each variable involved in a predicate
of the DC. Given a DC d : ∀x¬(P1 ∧ . . . ∧ Pm) and a set of
violating cells (hyperedge) for it V = {v1, . . . , vn}, for each
vi ∈ V there is at least one alternative repair expression of
the form viψt, where t is a constant or a connected cell in V .
This leads to the following property of hyperedges.

Lemma 4.4: All the repairs for hyperedge e have at most
cardinality n with n ≤ m, where m is the size of the biggest
chain of connected variables among its repair expressions. �
Proof Sketch. We start with the case with one predicate only in
the DC d. If it involves a constant, then the repair expression
contains only one cell and its size coincides with the size of
the hyperedge. If it is a predicate involving another cell, then at
least one of them is going to change in the repair. We consider
now the case with more than a predicate in d. In this case,
as the predicates allowed are binary, there may be a chain of
connected variables of size m in the repair expressions: when
a value is changed for a cell, it may triggers changes in the
connected ones. Therefore, in the worst case, to repair them
m changes are needed. �

The Lemma states an upper bound for the number of
changes that are needed to fix a hyperedge. More importantly,
it highlights that in most cases one change suffices as we show
in the following example.

Example 4.5: In c3 the biggest chain of variables in the
repair expressions comes from l = l′ (from the first predicate)
and l 6= m′ (from the second predicate). This means that,
to repair violations for c3, at most three changes are needed.
Notice that only one change is needed for most of the cells
involved in a violation. �

A naı̈ve approach to the problem is to compute the repair
by fixing the hyperedges one after the other in isolation.
This would lead to a valid repair, but, if there are interacting
violations, it would certainly change more cells than the repair
with minimal cost. As our goal is to minimize changes in the
repair, we can rely on hyperedges for identifying cells that
are very likely to be changed. The intuition here is that, in
the spirit of [18], by using algorithms such as the Minimum
Vertex Cover (MVC), we can identify at the global level what
are the minimum number of violating cells to be changed in

order to compute a repair.2 For instance, a possible MVC for
the CH in Figure 3b identifies t2[C] and t4[C].

After detecting all violations in the current database and
building the CH, the next step is to generate fixes taking into
account the interaction among violations. In order to facilitate
a holistic repair, we rely on another data structure, which is
discussed next.

C. Fixing Violation Holistically: Repair Context

We start from cells that MVC identifies as likely to be
changed, and incrementally identify other cells that are in-
volved in the current repair. We call the starting cells and the
newly identified ones frontier. We call repair expressions the
list of constant assignments and constraints among the frontier.
The frontier and the repair expressions form a Repair Context
(RC). We elaborate RC using the following example.

Example 4.6: Consider the database and CH in Example
4.3. Suppose we have t2[C] and t4[C] from the MVC as
starting points. We start from t2[C], which is involved in 3
hyperedges. Consider e1: given t2[C] to change, the expression
t2[C] = t1[C] must be satisfied to solve it, thus bringing t1[C]
into frontier. Cell t1[C] is not involved in other hyperedges,
so we stop. Similarly, t2[C] = t3[C] must be satisfied to
resolve e2 and t3[C] is brought into the frontier. For e3,
t2[C] = t4[C] is the expression to satisfy, however, t4[C]
is involved also in e4. We examine e4 given t4[C] and we
get another expression t4[C] = 5. The resulting RC consists
of frontier: t1[C], t2[C], t3[C], t4[C], and repair expressions:
t2[C] = t1[C], t2[C] = t3[C], t2[C] = t4[C], t4[C] = 5.

Notice that by starting from t4[C] the same repair is
obtained and the frontier contains only four cells instead of
ten in the connected component of the hypergraph. �

An RC is built from a starting cell c with violations from
DCs D with a recursive algorithm (detailed in the next section)
and has two properties: (i) there is no cell in its frontier that
is not (possibly transitively) connected to c by a predicate in
the repair expression of at least a d ∈ D, (ii) every cell that
is (possibly transitively) connected to c by a predicate in the
repair expression of at least a d ∈ D is in its frontier. In
other terms, RC contains exactly the information required by
a repair algorithm to make an informed, holistic decision.

Lemma 4.7: The Repair Context contains the sufficient and
necessary information to repair all the cells in its frontier. �
Proof Sketch. We start with the necessity. By definition, the RC
contains the union of the repair expressions over the cells in
the frontier. If it is possible to find an assignment that satisfies
the repair expressions, all the violations are solved. It is evident
that, if we remove one expression, then it is not guaranteed
that all violations can be satisfied. The repair expressions are
sufficient because of the repair semantics of the DCs. As the
frontier contains all the connected cells, any other cell from
V would add an expression that is not needed to repair the
violation for d and would require to change a cell that is not
needed for the repair. �

2In order to keep the execution time acceptable an approximate algorithm
is used to compute the MVC.



We can now state the following result regarding the RC:
Proposition 4.8: An RC always has a repair of cardinality

n with n ≤ u, where u is the size of its frontier. �
Proof Sketch. From Lemmas 4.7 and 4.4 it can be derived that
(i) it is always possible to find a repair for RC, and (ii) in the
worst case the repair has the size of the union of the chains
of the connected variables in its repair expressions. �

In practice, the number of cells in a DC is much smaller
than the number of cells in the respective hyperedges. For
t6[CITY ], the size of the RC is one, while there are nine
cells in the two hyperedges for c1 and c2.

Given the discussion above, for each cell in the MVC we
exploit its violations with the LookUp module to get the RC.
Once all the expressions are collected, a Determination step
takes as input the RC and computes the valid assignments for
the cells involved in it. In this step, we rely on a function
to minimize the cost of changing strings (VFM) and on
an external Quadratic Programming (QP) tool in order to
efficiently solve the system of inequalities that may arise when
numeric values are involved. The assignments computed in this
step become the updates to the original database in order to fix
the violations. The following example illustrates the use of QP,
while LookUp and Determination processes will be detailed
in the next section.

Example 4.9: Consider again the L relation in Figure 1.
Two DCs are defined to check the number of extra days off
assigned to each employee:

c4 : ¬(L(l, f, n, r, d, y, c,m, s), (r = “A”), (d < 3)
c5 : ¬(L(l, f, n, r, d, y, c,m, s), (y > 4), (d < 4))

In order to minimize the change, the QP formulation of the
problem for t1[DO] is (x − 2)2 with constraints x ≥ 3 and
x ≥ 4. Value 4 is returned by QP and assigned to t1[DO]. �

The holistic reconciliation provided by the RC has several
advantages: the cells connected in the RC form a subset of
the connected components of the graph and this leads to better
efficiency in the computation and better memory management.
Moreover, the holistic choice done in the RC minimizes the
number of changes for the same cell; instead of trying different
possible repairs, an informed choice is made by considering
all the constraints on the connected cells. We will see how
this leads to better repairs w.r.t. previous approaches.

V. COMPUTING THE REPAIRS

In this Section we give the details of our algorithms. We
start by presenting the iterative algorithm that coordinates the
detect and repair processes. We then detail the technical solu-
tions we built for DETECT, LOOKUP, and DETERMINATION.

A. Iterative Algorithm

Given a database and a set of DCs, we rely on Algorithm 1.
It starts by computing violations, the CH, and the MVC over
it. These steps bootstrap the outer loop (lines 5–26), which is
repeated until the current database is clean (lines 19–22) or a
termination condition is met (lines 23–26). Cells in the MVC
are ranked in order to favor those involved in more violations

Algorithm 1 Holistic Repair

Input: Database data, Denial Constraints dcs
Output: Repair data

1: Compute violations, conflict hypergraph, MVC.
2: Let processedCells be a set of cells in the database that

have already been processed.
3: sizeBefore ← 0
4: sizeAfter ← 0
5: repeat
6: sizeBefore ← processedCell.size()
7: mvc ← Re-order the vertices in MVC in a priority

queue according to the number of hyperedges
8: while mvc is not empty do
9: cell ← Get one cell from mvc

10: rc ← Initialize a new repair context for that cell
11: edges ← Get all hyperedges for that cell
12: while edges is not empty do
13: edge ← Get an edge from edges
14: LOOKUP(cell, edge, rc)
15: end while
16: assignments ← DETERMINATION(cell, exps)
17: data.update(assignments)
18: end while
19: reset the graph: re-build hyperedges, get new MVC
20: if graph has no edges then
21: return data
22: end if
23: tempCells ← graph.getAllCellsInAllEdges()
24: processedCells ← processedCells ∪ tempCells
25: sizeAfter ← processedCell.size()
26: until sizeBefore ≤ sizeAfter
27: return data.PostProcess(tempCells,MV C)

and are repaired in the inner loop (lines 8–18). In this loop,
the RC for the cell is created with the LOOKUP procedure.
When the RC is completed, the DETERMINATION step assigns
the values to the cells that have a constant assignments in the
repair expressions (e.g., t1[A] = 5). Cells that do not have
assignments with constants (e.g., t1[A] 6= 1), keep their value
and their repair is delayed to the next outer loop iteration. If
the updates lead to a new database without violations, then it
can be returned as a repair, otherwise the outer loop is executed
again. If no new cells have been involved w.r.t. the previous
loop, then the termination condition is triggered and the cells
without assignments are updated with new fresh values in the
post processing final step.

The outer loop has a key role in the repair. In fact, it is
possible that an assignment computed in the determination
step solves a violation, but raises a new one with values that
were not involved in the original CH. This new violation is
identified at the end of the inner loop and a new version of the
CH is created. This CH has new cells involved in violations
and therefore the termination condition is not met.

Before returning the repair, a post-processing step updates



all the cells in the last MVC (computed at line 19) to fresh
values. This guarantees the consistency of the repair and no
new violations can be triggered. Pushing to the very last the
assignment of a fresh value forces the outer loop to try to find
a repair with constants until the termination condition is met,
as we illustrate in the following example.

Example 5.1: Consider again only rules c1 and c2 in the
running example. After the first inner loop iteration, the RC
contains an assignment t6[CITY] 6= “NY C”, which is not
enforced by the determination step and therefore the database
does not change. The HC is created again (line 19) and it still
has violations for c1 and c2. The cells involved in the two
violations go into tempCells and sizeAfter is set to 9. A new
outer loop iteration sets sizeBefore to 9, the inner loop does
not change the data, and it gets again the same graph at line
19. As sizeBefore = sizeAfter, it exits the outer loop and the
post processing assigns t6[CITY] = “FV ”. �

Proposition 5.2: For every set of DCs, if the determination
step is polynomial, then Holistic Repair is a polynomial
time algorithm for the data cleaning problem. �
Proof sketch. It is easy to see that the output of the algorithm
is a repair for an input database D with DCs dcs. In the outer
loop we change cells to constants that satisfy the violations and
in the post process we resolve violations that were not fixable
with a constant by introducing fresh values. As fresh values
do not match any predicate, the process eventually terminates
and returns a repair which does not violate the DCs anymore.

The vertex cover problem is an NP-complete problem and
there are standard approaches to find approximate solutions.
We use a greedy algorithm with factor k approximation, where
k is the maximum number of cells in a hyperedge of the HC.
Our experimental studies show that a k approximation of the
MVC lead to better results w.r.t. alternative ways to identify
the seed cells for the algorithm. The complexity of the greedy
algorithm is linear in the number of edges. In the worst case,
the number of iterations of the outer loop is bounded by the
number of constraints in dc plus one: it is possible to design
a set of DCs that trigger a new violation at each repair, plus
one extra iteration to verify the termination condition. The
complexity of the algorithm is bounded by the polynomial
time for the detection step: three atoms in the DC need a
cubic number of comparisons in order to check all the possible
triplets of tuples in the database. In practice, the number of
tuples is orders of magnitude bigger than the number of DCs
and therefore the size of the data dominates the complexity
O(|data|c|dcs|), where c is the largest number of atoms in a
rule of dcs. The complexity of the inner loop depends on the
number of edges in the CH and on the complexity of LOOKUP
and DETERMINATION that we discuss next. �

Though Algorithm 1 is sound, it is not optimal, as it is
illustrated in the following example.

Example 5.3: Consider again Example 4.3. We showed a
repair with four changes obtained with our algorithm, but there
exists a cardinality minimal repair with only three changes:
t1[C] = 3, t2[C] = 3, t4[D] = NV . �
We now describe the functions to generate and manipulate the

predicate in dcs = 6= > >= < <= ≈t

predicate in repair exps 6= = <= < >= > 6=t

TABLE I: Table of conversion of the predicates in a DC for
their repair. Predicate 6=t states that the distance between two
strings must be greater than t.

building blocks of our approach.

B. DETECT: Identifying Violations

Identifying violations is straightforward: every valid assign-
ment for the denial constraint is tested, if all the atoms for an
assignment are satisfied, then there is a violation.

However, the detection step is the most expensive operation
in the approach as the complexity is polynomial with the
number of atoms in the DC as the exponent. For example,
in the case of simple pairwise comparisons (such as in FDs),
the complexity is quadratic in the number of tuples, and it
is cubic for constraints such as c3 in Example 4.1. This is
also exacerbated by the case of similarity comparisons, when,
instead of equality check, there is the need to compute edit
distances between strings, which is an expensive operation.

In order to improve the execution time on large relations,
optimization techniques for matching records [10] are used.
In particular, the blocking method partitions the relations into
blocks based on discriminating attributes (or blocking keys),
such that only tuples in the same block are compared.

C. LOOKUP: Building the Repair Context

Given a hyperedge e = {c; p1, . . . , pn} and a cell p =
ti[Aj ] ∈ P , the repair expression r for p may involve other
cells that need to be taken into account when assigning a value
to p. In particular, given e and p, we can define a rule for the
generation of repair expressions.

As p ∈ Aφ(c), then it is required that r : pφcc, where φc is
the predicate converted as described in Table I. Variable c can
be a constant or another cell. For denial constraints, we defined
a function DC.Repair(e,c), based on the above rule, which
automatically generates a repair expression for a hyperedge e
and a cell c. We first show an example of its output when
constants are involved in the predicate and then we discuss
the case with variables.

Example 5.4: Consider the constraint c2 from the example
in Figure 1. We show below two examples of repair expres-
sions for it.

DC.Repair((c2; t5[ROLE], t5[CITY], t5[SAL], . . . , t6[SAL]),
t5[ROLE]) = {t5[ROLE] 6= “E”}

DC.Repair((c2; t5[ROLE], t5[CITY], t5[SAL], . . . , t6[SAL]),
t6[SAL]) = {t6[SAL] ≥ 80}

In the first repair expression the new value for t5[ROLE]
must be different from “E” to solve the violation. The re-
pair expression does not state that its new value should be
different from the active domain of ROLE (i.e., t5[ROLE] 6=
{“E”,“S”,“M”}), because in the next iteration of the outer
loop it is possible that another repair expression imposes



t5[ROLE] to be equal to a constant already in the active domain
(e.g., a MD used for entity resolution). If there is no other
expression suggesting values for t5[ROLE], in a following step
the termination condition will be reached and the post-process
will assign a fresh value to t5[ROLE]. �

Given a cell to be repaired, every time another variable is
involved in a predicate, at least another cell is involved in the
determination of its new value. As these cells must be taken
into account, we also collect their expressions, thus possibly
triggering the inclusion of new cells. We call LOOKUP the
recursive exploration of the cells involved in a decision.

Algorithm 2 LOOKUP

Input: Cell cell, Hyperedge edge, Repair Context rc
Output: updated rc

1: exps ← Denial.repair(edge, cell)
2: frontier ← exps.getFrontier()
3: for all cell ∈ frontier do
4: edges ← cell.getEdges()
5: for all edge ∈ edges do
6: exps ← exps ∪ LOOKUP(cell,edge,rc).getExps()
7: end for
8: end for
9: rc.update(exps)

Algorithm 2 describes how, given a cell c and a hyperedge
e, LOOKUP processes recursively in order to move from a
single repair expression for c to a Repair Context.

Proposition 5.5: For every set of DCs and cell c, LOOKUP
always terminates in linear time and returns a Repair Context
for c. �
Proof sketch. The correctness of the RC follows from the
traversal of the entire graph. Cycles are avoided as in the
expressions the algorithm keeps track of previously visited
nodes. As it is a Depth-first search, its complexity is linear in
the size of graph and is O(2V − 1), where V is the largest
number of connected cells in an RC. �

Example 5.6: Consider the constraint c3 from the example
in Figure 1 and the DC:

c6 : ¬(G(g, f, n, r, c, a, s), (r = “V ”), (s < 200))

That is, a vice-president cannot earn less than 200. Given
t3[ROLE] as input, LOOKUP processes the two edges over it
and collects the repair expressions t3[ROLE] 6= “V ” from c6
and t3[ROLE] = “M” from c3. �

D. DETERMINATION: Finding Valid Assignments

Given the set of repair expressions collected in the RC,
the DETERMINATION function returns an assignment for the
frontier in the RC. The process for the determination is
depicted in Algorithm 3: Given an RC and a starting cell,
we first choose a (maximal) subset of the repair expressions
that is satisfiable, then we compute the value for the cells in
the frontier aiming at minimizing the cost function, and update
the database accordingly later.

Algorithm 3 DETERMINATION

Input: Cell cell, Repair Context rc
Output: Assignments assigns

1: exps ← rc.getExps()
2: if exps contain >,<,>=, <= then
3: QP ← computeSatisfiable(exps)
4: assigns ← QP.getAssigments()
5: else
6: V FM ← computeSatisfiable(exps)
7: assigns ← V FM.getAssigments()
8: end if
9: return assigns

In Algorithm 3, we have two determination procedures. One
is Value Frequency Map (VFM), which deals with string typed
expressions. The other is quadratic programming (QP), which
deals with numerical typed expressions3.

1) Function computeSatisfiable: Given the current set of
expressions in the context, this function identifies the subset
of expressions that are solvable.

Some edges may be needed to be removed from the RC to
make it solvable. First, a satisfiability test verifies if the repair
expressions are in contradiction. If the set is not satisfiable,
the repair expressions coming from the hyperedge with the
smallest number of cells are removed. If the set of expressions
is now satisfiable, the removed hyperedge is pushed to the
outer loop in the main algorithm for repair. Otherwise, the
original set minus the next hyperedge is tested. The process
of excluding hyperedges is then repeated for pairs, triples, and
so on, until a satisfiable set of expressions is identified. In the
worst case, the function is exponential in the number of edges
in the current repair context. The following example illustrates
how the function works.

Example 5.7: Consider the example in Figure 1 and two
new DCs:

c7 : ¬(L(l, f, n, r, d, y, c,m, s), (r = “B”), (d > 4))
c8 : ¬(L(l, f, n, r, d, y, c,m, s), (y > 7), (d < 6))

That is, an employee after 8 years should have at least 6
extra days off, and an employee of rank “B” cannot have
more than 4 days. Given t2[DO] as input by the MVC,
LOOKUP processes the two edges over it and collects the
repair expressions t2[DO] ≤ 4 from c7 and t2[DO] ≥ 6 from
c8. The satisfiability test fails (x ≤ 4 ∧ x ≥ 6) and the
computeSatisfiable function starts removing expressions from
the RC, in order to maximize the set of satisfiable constraints.
In this case, it removes c7 from the RC and sets t2[DO] = 6
to satisfy c8. Violation for c7 is pushed to the outer loop, and,
as in the new MVC there are no new cells involved, the post
processing step updates t2[RNK] to a fresh value. �

2) Function getAssignments: After getting the maximum
number of solvable expressions, the following step aims at
computing an optimal repair according to the cost model at

3We assume all numerical values to be integer for simplicity



hand. We therefore distinguish between string typed expres-
sions and numerical typed expressions for both cost models:
cardinality minimality and distance minimality

String Cardinality Minimality. In this case we want to
minimize the number of cells to change. For string type,
expressions consist only of = and 6=, thus we create a mapping
from each candidate value to the occurrence frequency (VFM).
The value with biggest frequency count will be chosen.

Example 5.8: Consider a schema R(A,B) with 5 tu-
ples t1 = R(a, b), t2 = R(a, b), t3 = R(a, cde), t4 =
R(a, cdf), t5 = R(a, cdg). R has an FD : A → B.
Suppose now we have an RC with set of expressions t1[B] =
t2[B] = t3[B] = t4[B] = t5[B]. VFM is created with
b → 2, cde → 1, cdf → 1, cdg → 1. So value b is chosen.
�

String Distance Minimality. In this case we want to
minimize the string edit distance. Thus we need a different
VFM, which maps from each candidate value to the edit
distance if this value were to be chosen.

Example 5.9: Consider the same database as Example 5.8.
String cardinality minimality is not necessarily string distance
minimality. Now VFM is created as follows: b → 12, cde →
10, cdf → 10, cdg → 10. So any of cde, cdf, cdg can be
chosen. �

Numerical Distance Minimality. In this case we want to
minimize the squared distance. QP is our determination core.
In particular, we need to solve the following objective function:
for each cell with value v involved in a predicate of the DC,
a variable x is added to the function with (x − v)2. The
expressions in the RC are transformed into constraints for the
problem by using the same variable of the function. As the
objective function given as a quadratic has a positive definite
matrix, the quadratic program is efficiently solvable [19].

Example 5.10: Consider a schema R(A,B,C) with a tuple
t1 = R(0, 3, 2) and the two repair expressions: r1 : R[A] <
R[B] and r2 : R[B] < R[C]. To find valid assignments, we
want to minimize the quadratic objective function (x− 0)2 +
(y−3)2+(z−2)2 with two linear constraints x < y and y < z,
where x, y, z will be new values for t1[A], t1[B], t1[C]. We
get solution x = 1, y = 2, z = 3 with the value of objective
function being 3. �

Numerical Cardinality Minimality. In this case we want
(i) to minimize the number of changed cells, and (ii) to
minimize the distance for those changing cells. In order
to achieve cardinality minimality for numerical values, we
gradually increase the number of cells that can be changed
until QP becomes solvable. For those variables we decide
not to change, we add constraint to enforce it to be equal to
original values. It can be seen that this process is exponential
in the number of cells in the RC.

Example 5.11: Consider the same database as in Example
5.10.Numerical distance minimality is not necessary numerical
cardinality minimum. It can be easily spotted that x = 0, y =
1, z = 2 whose squared distance is 4 only has one change,
while x = 1, y = 2, z = 3 whose squared is 3 has three
changes. �

VI. OPTIMIZATIONS AND EXTENSIONS

In this section, we briefly discuss two optimization tech-
niques adopted in our system, followed by two possible exten-
sions that may be of interest to certain application scenarios.

Detection Optimization. Violation detection for DCs
checks every possible grounding of predicates in denial con-
straints. Thus improving the execution times for violation
detection implies reducing the number of groundings to be
checked. We face the issue by verifying predicates in a order
based on their selectivity. Before enumerating all grounding
combinations, predicates with constants are applied first to rule
out impossible groundings. Then, if there is an equality pred-
icate without constants, the database is partitioned according
to two attributes in the equality predicate, so that grounding
from two different partitions need not to be checked. Consider
for example c3. The predicate (r∗ 6= ‘M ′) is applied first to
rule out grounding with attribute r∗ equals M . Then predicate
(l = m′) is chosen to partition the database, so groundings
with values of attributes l and m′ not being in the same
partition will not be checked.

Hypergraph Compression. The conflict hypergraph pro-
vides a violation representation mechanism, such that all
information necessary for repairing can be collected by the
LOOKUP module. Thus, the size of the hypergraph has an
impact on the execution time of the algorithm. We therefore
reduce the number of hyperedges without compromising the
repair context by removing redundant edges. Consider for
example a table T (A,B) with 3 tuples t1 = (a1, b1), t2 =
(a1, b2), t3 = (a1, b3) and an FD: A → B; it has three
hyperedges and three expressions in the repair context, i.e.,
t1[B] = t2[B], t1[B] = t3[B], t2[B] = t3[B]. However, only
two of them are necessary, because the expression for the third
hyperedge can be deduced from the first two.

Custom Repair Strategy. The default repair strategy can
easily be personalized with a user interface for the LOOKUP
module. For example, if a user wants to enforce the increase
of the salary for the NYC employee in rule c2, she just
needs to select the s variable in the rule. An alternative
representation of the rule can be provided by sampling
the rule with an instance on the actual data, for example
¬(G(386,Mark, Lee,E,NY C, 552, AZ, 75), G(Mark,
White, E, SJ, 639, CA, 80), (80 > 75)), and the user high-
lights the value to be changed in order to repair the violation.

We have shown how repair expressions can be obtained
automatically for DCs. In general, the Repair function can be
provided for any new kind of constraints that is plugged to
the system. In case the function is not provided, the system
would only detect violating cells with the Detect module. The
iterative algorithm will try to fix the violation with repair
expressions from other interacting constraints or, if it is not
possible, it will delay its repair until the post-processing step.

Manual Determination. In certain applications, users may
want to manually assign values to dirty cells. In general, if a
user wants to verify the value proposed by the system for a
repair, and eventually change it, she needs to analyze what are



the cells involved in a violation. In this scenario, the RC can
expose exactly the cells that need to be evaluated by the user
in the manual determination. Even more importantly, the RC
contains all the information (such as constants assignments
and expressions over variables) that lead to the repair. In the
same fashion, fresh values added in the post processing step
can be exposed to the user with their RC for examination and
manual determination.

VII. EXPERIMENTAL STUDY

The techniques have been implemented as part of the
NADEEF data cleaning project at QCRI4 and we now present
experiments to show their performance. We used real-world
and synthetic data to evaluate our solution compared to
state-of-the-art approaches in terms of both effectiveness and
scalability.

A. Experimental Settings

Datasets. In order to compare our solution to other ap-
proaches we selected three datasets.

The first one, HOSP, is from US Department of Health &
Human Services [1]. HOSP has 100K tuples with 19 attributes
and we designed 9 FDs for it. The second one, CLIENT [4],
has 100K tuples, 6 attributes over 2 relations, and 2 DCs
involving numerical values. The third one, EMP, contains
synthetic data and follows the structure of the running example
depicted in Figure 1. We generated up to 100K tuples for
the 17 attributes over 2 relations. The DCs are c1, . . . , c6 as
presented in the paper.

Errors in the datasets have been produced by introducing
noise with a certain rate, that is, the ratio of the number of
dirty cells to the total number of cells in the dataset. An error
rate e% indicates that for each cell, there is a e% probability
we are going to change that cell. In particular, we update the
cells containing strings by randomly picking a character in the
string, and change it to “X”, while cells with numerical values
are updated with randomly changing a value from an interval.5

Algorithms. The techniques presented in the paper have
been implemented in Java. As our holistic Algorithm 1 is
modular with respect to the cost function that the user wants
to minimize, we implemented the two semantics discussed
in Section V-D. In particular we tested the getAssigment
function both for cardinality minimality (RC-C) and for the
minimization of the distance (RC-D).

We implemented also the following algorithms in Java: the
FD repair algorithms from [5] (Sample), [6] (Greedy), [18]
(VC) for HOSP; and the DC repair algorithm from [4] (MWSC)
for CLIENT. As there is no available algorithm able to repair
all the DCs in EMP, we compare our approach against a
sequence of applications of other algorithms (Sequence). In
particular, we ran a combination of three algorithms: Greedy
for DCs c1, MWSC for c2, c4, c5, c6, and a simple, ad-hoc
algorithm to repair c3 as it is not supported by any of the
existing algorithms. In particular, for c3 we implemented a

4http://da.qcri.org/NADEEF/
5Datasets can be downloaded at http://da.qcri.org/hc/data.zip

simplified version of our Algorithm 1, without MVC and
with violations fixed one after the other without looking at
their interactions. As there are six alternative orderings, we
executed all of them for each test and picked the results from
the combination with the best performance. For ≈t we used
string edit distance with t = 3: two strings were considered
similar if the minimum number of single-character insertions,
deletions and substitutions needed to convert a string into the
other was smaller than 4.

Metrics. We measure performance with different metrics,
depending on the constraints involved in the scenario and on
the cost model at hand. The number of changes in the repair is
the most natural measure for cardinality minimality, while we
use the cost function in Section III-B to measure the distance
between the original instance and its repair. Moreover, as the
ground truth for these datasets is available, to get a better
insight about repair quality we measured also precision (P ,
corrected changes in the repair), recall (R, coverage of the
errors introduced with e%), and F-measure (F = 2 × (P ×
R) (P +R)). Finally, we measure the execution times needed
to obtain a repair.

As in [5], we count as correct changes the values in the
repair that coincide with the values in the ground truth, but
we count as a fraction (0.5) the number of partially correct
changes: changes in the repair which fix dirty values, but their
updates do not reflect the values in the ground truth. It is
evident that fresh values will always be part of the partially
correct changes.

All experiments were conducted on a Win7 machine with a
3.4GHz Intel CPU and 4GB of RAM. Gurobi Optimizer 5.0
has been used as the external QP tool [16] and all computations
were executed in memory. Each experiment was run 6 times,
and the results for the best execution are reported. We decided
to pick the best results instead of the average in order to favor
Sample, which is based on a sampling of the possible repairs
and has no guarantee that the best repair is computed first.

B. Experimental Results

We start by discussing repair quality and scalability for each
dataset. Depending on the constraints in the dataset, we were
able to use at least two alternative approaches. We then show
how the algorithms can handle a large number of constraints
holistically. Finally, we show the impact of the MVC on our
repairs.

Exp-1: FDs only. In the first set of experiments we show
that the holistic approach has benefits even when the con-
straints are all of the same kind, in this case FDs. As in this
example all the alternative approaches consider some kind of
cardinality minimality as a goal, we ran our algorithm with the
getAssigment function set for cardinality minimality (RC-C).

Figures 4(a-c) report results on the quality of the repairs
generated for the HOSP data with four systems. Our system
clearly outperforms all alternatives in every quality measure.
This verifies that holistic repairs are more accurate than alter-
native fixes. The low values for the F-measure are expected:
even if the precision is very high (about 0.9 for our approach



(a) HOSP # of changes (b) HOSP F-measure (c) HOSP % errors (d) HOSP Exec. time

(e) CLIENT # of changes (f) CLIENT Distance (g) CLIENT % errors (h) CLIENT Exec. time

(i) EMP # of changes (j) EMP Distance (k) EMP % errors (l) EMP Exec. time

Fig. 4: Experimental results for the data cleaning problem.

on 5% error rate), recall is always low because many randomly
introduced error cannot be detected. Consider for example
R(A,B), with an FD: A → B, and two tuples R(1,2), R(1,3).
An error introduced for a value in A does not trigger a
violation, as there is not match in the left hand side of the
FD, thus the erroneous value cannot be repaired.

Figure 4(c) shows the number of cells changed to repair
input instances (of size 10K tuples) with increasing amounts of
errors. The number of errors increases when e% increases for
all approaches; however, RC-C benefits of the holism among
the violations and is less sensitive to this parameter.

Execution times are reported in Figure 4(d), we set a timeout
of 10 minutes and do not report executions over this limit. We
can notice that our solution competes with the fastest algorithm
and scales nicely up to large databases. We can also notice that
VC does not scale to large instances due to the large size of
their hypergraph, while our optimizations effectively reduces
the number of hyperedges in RC-C.

Exp-2: DCs with numerical values. In the experiment for
CLIENT data, we compare our solution against the state-of-the-
art for the repair of DCs with numerical values (MWSC) [4].
As MWSC aims at minimizing the distance in the repair, we
ran the two versions of our algorithm (RC-C and RC-D).

Figures 4(e-f) show that RC-C and RC-D provide more
precise repairs, both in terms of number of changes and

distance, respectively. As in Exp-1, the holistic approach
shows significant improvements over the state-of-the-art even
with constraints of the same kind only, especially in terms
of cardinality minimality. This can be observed also with
data with increasing amount of errors in Figures 4(g). Notice
that RC-C and RC-D have very similar performances for this
example. This is due to the fact that the dataset was designed
for MWSC, which supports only local DCs. For this special
class the cardinality minimization heuristic is not needed in
order to obtain minimality. However, Figure 4(g) shows that
the overhead in execution time for RC-C is really small and the
execution times for our algorithms is comparable to MWSC.

Exp-3: Heterogeneous DCs. In the experiments for the
EMP dataset, we compare RC-C and RC-D against Sequence.
In this dataset we have more complex DCs and, as expected,
Figures 4(i) and 4(k) show that RC-C performs best in terms
of cardinality minimality. Figure 4(j) reports that both RC-
C and RC-D perform significantly better than Sequence in
terms of Distance cost. We observe that all approaches had low
precision in this experiment: this is expected when numerical
values are involved, as it is very difficult for an algorithm
to repair a violation with exactly the correct value. Imagine
an example with value x violating x > 200 and an original,
correct value equals to 250; in order to minimize the distance
from the input, value x is assigned 201 and there is a



significant distance w.r.t. the true value.
Execution times in Figure 4(l) show that the three algorithms

have the same time performances. This is not surprising, as
they share the detection of the violations which is by far the
most expensive operation due to the presence of a constraint
with three atoms (c3). The cubic complexity for the detection
of the violations clearly dominates the computation. Tech-
niques to improve the performances for the detection problem
are out of the scope of this work and are currently under
study in the context of parallel computation on distributed
infrastructures [17].

(a) HOSP # of DCs (b) MVC vs Order (log. scale)

Fig. 5: Results varying the number of constraints and the
ordering criteria in Algorithm 1.

Exp-4: Number of Rules. In order to test the scalability
of our approach w.r.t. the number of constraints, we generated
DCs for the HOSP dataset and tested the performance of the
system. New rules have been generated as follows: randomly
take one FD c from the original constraints for HOSP, one
of its tuples t from the ground truth, and create a CFD c′,
such that all the attributes in c must coincide with the values
in t (e.g., c′ : Hosp[Provider#=10018] → Hosp[Hospital=“C.
E. FOUNDATION”]). We then generated an instance of 5k
tuples with 5% error rate and computed a repair for every
new set of DCs. For each execution, we increased the number
of constraints as input. The results in Figure 5a verifies that
the execution times increase linearly with the number of
constraints.

Exp-5: MVC contribution. In order to show the benefits of
MVC on the quality of repair, we compared the use of MVC
to identify conflicting cells versus a simple ordering based
on the number of violations a cell is involved (Order). For
the experiment we used datasets with 10k tuples, 5% error
rate and RC-C. Results are reported in Figure 5b. For the
hospital dataset the number of changes is almost the double
with the simple ordering (3382 vs 1833), while the difference
is smaller for the other two experiments because they show
fewer interactions between violations.

VIII. CONCLUSIONS AND FUTURE WORK

Existing systems for data quality handle several formalisms
for quality rules, but do not combine heterogeneous rules
neither in the detection nor in their repair process. In this work
we have shown that our approach to holistic repair improves
the quality of the cleaned database w.r.t. the same database
treated with a combination of existing techniques.

Datasets used in the experimental evaluation fit in the main
memory, but, in case of larger databases, it may be needed
to put the hypergraph in secondary memory and revise the
algorithms to make scale in the new setting. This is a technical
extension of our work that will be subject of future studies.
Another subject worth of future study is how to automatically
derive denial constraints from data, similarly to what has been
done for other quality rules [7], [15], since experts designed
constraints are not always readily available.

Finally, Repair Context can encode any constraint defined
over constants and variables, thus opening a prospective be-
yond binary predicates. We believe that by enabling mathe-
matical expressions and aggregates in the constraints we can
make a step forward the goal of bridging the gap between the
procedural business rules, used in the enterprise settings, and
the declarative constraints studied in the research community.
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ABSTRACT
Data-cleaning (or data-repairing) is considered a crucial problem in
many database-related tasks. It consists in making a database con-
sistent with respect to a set of given constraints. In recent years,
repairing methods have been proposed for several classes of con-
straints. However, these methods rely on ad hoc decisions and tend
to hard-code the strategy to repair conflicting values. As a conse-
quence, there is currently no general algorithm to solve database
repairing problems that involve different kinds of constraints and
different strategies to select preferred values. In this paper we de-
velop a uniform framework to solve this problem. We propose a
new semantics for repairs, and a chase-based algorithm to compute
minimal solutions. We implemented the framework in a DBMS-
based prototype, and we report experimental results that confirm
its good scalability and superior quality in computing repairs.

1. INTRODUCTION
In the constraint-based approach to data quality, a database is

said to be dirty if it contains inconsistencies with respect to some
set of constraints. The data-cleaning (or data-repairing) process
consists in removing these inconsistencies in order to clean the
database. It represents a crucial activity in many real-life infor-
mation systems as unclean data often incurs economic loss and er-
roneous decisions [15].

Data cleaning is a long-standing research issue in the database
community. Focusing on recent years, many interesting proposals
have been put forward, all with the goal of handling the many facets
of the data-cleaning process.

– A plenitude of constraint languages has been devised to cap-
ture various aspects of dirty data as inconsistencies of constraints.
These constraint languages range from standard database depen-
dency languages such as functional dependencies and inclusion de-
pendencies [1], to conditional functional dependencies [16] and
conditional inclusion dependencies [15], to matching dependencies
[14] and editing-rules [18], among others. Each of these languages
allows to capture different forms of dirtiness in data.

– Various repairing strategies have been proposed for these con-
straint languages. One of the distinguishing features of these strate-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 9
Copyright 2013 VLDB Endowment 2150-8097/13/07... $ 10.00.

gies is how they use the constraints to modify the dirty data by
changing values into “preferred ” values. Preferred values can be
found from, e.g., master data [24], tuple-certainty and value-accura-
cy [19], freshness and currency [17], just to name a few.
– Repairing strategies also differ in the kind of repairs that they
compute. Since the computation of all possible repairs is infeasi-
ble in practice, conditions are imposed on the computed repairs to
restrict the search space. These conditions include, e.g., various
notions of (cost-based) minimality [7, 8, 10] and certain fixes [18].
Alternatively, sampling techniques are put in place to randomly se-
lect repairs [7].

It is thus safe to say that there is already a good arsenal of ap-
proaches and techniques for data cleaning at our disposal. In this
paper, we want to capitalize on this wealth of knowledge about the
subject, and investigate the following foundational problem: what
happens to the data administrator facing a complex data-cleaning
problem that requires to bring together several of the techniques
discussed above? This problem is illustrated in the following ex-
ample.

Example 1: Consider the database shown in Fig. 1 consisting of
customer data (CUSTOMERS), with their addresses and credit-card
numbers, and medical treatments paid by insurance plans (TREAT-
MENTS). We refer to these two tables as the target database to be
cleaned. As is common in corporate information systems [24], an
additional master-data table is available; this table contains highly-
curated records whose values have high accuracy and are assumed
to be clean. In our approach, master data is referred to as the source
database, since it is a source of reliable clean data.

CUSTOMERS
SSN NAME PHONE CONF STR CITY CC#

t1 111 M. White 408-3334 0.8 Red Ave. NY 112321
t2 222 L. Lennon 122-1876 0.9 NULL SF 781658
t3 222 L. Lennon 000-0000 0.0 Fry Dr. SF 784659

TREATMENTS
SSN SALARY INSUR. TREAT DATE

t4 111 10K Abx Dental 10/1/2011
t5 111 25K Abx Cholest. 8/12/2012
t6 222 30K Med Eye surg. 6/10/2012

MASTER DATA (Source Table)
SSN NAME PHONE STR CITY

tm 222 F. Lennon 122-1876 Sky Dr. SF

Figure 1: Customers, Treatments and Master Data.
We first illustrate the problem of specifying a set of constraints

under which the target database is regarded to be clean, as follows:
(a1) Standard functional dependencies (FD): d1 = (SSN,NAME
→ PHONE) and d2 = (SSN,NAME → CC#) on table CUS-
TOMERS. The pair of tuples {t2, t3} in the target database violates
both d1 and d2; the database is thus dirty.



(a2) A conditional FD (CFD): d3 = (INSUR[Abx] → TREAT
[Dental]) on table TREATMENTS, expressing that insurance com-
pany ‘Abx’ only offers dental treatments (‘Dental’). Tuple t5 vio-
lates d3, adding more dirtiness to the target database.

(a3) A master-data based editing rule (eR), d4, stating that when-
ever a tuple t in CUSTOMERS agrees on the SSN and PHONE at-
tributes with some master-data tuple tm, then the tuple t must take
its NAME, STR, CITY attribute values from tm. Tuple t2 does not
adhere to this rule.

(a4) An inter-table CFD d5 between TREATMENTS and CUSTOME-
RS, stating that the insurance company ‘Abx’ only accepts cus-
tomers who reside in San Francisco (SF). Tuple pairs {t1, t4} and
tuples {t1, t5} violate this constraint.

With the dirty target database at hand, we are faced with the
problem of repairing it. The main problem is to identify and select
“preferred values” as modifications to repair the data.

(b1) Consider FD d1. To repair the target database one may want to
equate t2[PHONE] and t3[PHONE]. The FD does not tell, however,
to which phone number these attribute values should be repaired:
‘122-1876’ or ‘000-0000’, or even a completely different value. As
it happens in this kind of problems, we assume that the PHONE
attribute values in the CUSTOMERS table come with a confidence
(Conf.) value. If we assume that one prefers values with higher
confidence, we can repair t3[PHONE] by changing it to ‘122-1876’.

(b2) Similarly, when working with the TREATMENTS table, we
may use dates of treatments to infer the currency of other attributes.
If the target database is required to store the most recent value for
the salary by FD d6 = (SSN → SALARY), this may lead us to
repair the obsolete salary value ‘10K’ in t4 with the more recent
(and preferred) value ‘25K’ in t5.

(b3) Notice that we don’t always have a clear policy to choose pre-
ferred values. For example, when repairing t2[CC#] and t3[CC#]
for FD d2, there is no information available to resolve the conflict.
This means that the best we can do is to “mark” the conflict, and
then, perhaps, ask for user-interaction in order to solve it.

Another crucial aspect that complicates matters is the interac-
tion between dependencies: repairing them in different orders may
generate different repairs.

(c1) Consider dependencies d1 and d4. As discussed above, we
can use d1 to repair tuples t2, t3 such that both have phone-number
‘122-1876’; then, since t2 and t3 agree with the master-data tuple
tm, we can use d4 to fix names, streets and cities, to obtain: (222,
F. Lennon, 122-1876, Sky Dr., SF, 781658), for t2, and (222, F.
Lennon, 122-1876, Sky Dr., SF, 784659), for t3. However, if, on
the contrary, we apply d4 first, only t2 can be repaired as before;
then, since t2 and t3 do not share the same name anymore, d1 has
no violations. We thus get a different result, of inferior quality.

A first, striking observation about our example is that, despite
many studies on the subject, there is currently no way to handle
this kind of scenarios. This is due to several strong limitations of
the known techniques.

Problem 1: Missing Semantics First, although repairing strate-
gies exist for each of the individual classes of constraints discussed
at items (a1), (a2) and (a3), there is currently no formal seman-
tics for their combination. In fact, the interactions shown in (c1)
require a uniform treatment of the repairing process and a clear
definition of what is a repair. Aside from the generic notion of a

repair as an updated database that satisfies the constraints, it is not
possible to say what represents a “good” repair in this case.
Problem 2: Missing Repair Algorithms Since there is no se-
mantics, we have no algorithms at our disposal to compute repairs.
Notice that combining the repairing algorithms available for each
of the constraints in isolation does not really help, since repairing
a constraint of one type may break one of a different type. Also,
current algorithms tend to hard-code the way in which preferred
values are used for the purpose of repairing the database. As a
consequence, there is no way to incorporate the different strategies
illustrated in (b1) and (b2) into existing repairing algorithms in a
principled way.

Problem 3: Main-Memory Implementations and Scalability
Third, even if we were able to devise a reasonable semantics for
this kind of scenarios, we would still face a paramount problem,
i.e., computing solutions in a scalable way despite the high com-
plexity of the problem. Computing repairs requires to explore a
space of solutions of exponential size wrt the size of the database.
In fact, previous proposals have mainly adopted main-memory im-
plementations to speed-up the computation, with a rather limited
scalability (in the order of the tens of thousands of tuples).
Contributions The main contribution of this paper consists in
developing a uniform framework for data-cleaning problems that
solves the issues discussed above. More specifically:

(i) We introduce a language to specify constraints based on equal-
ity generating dependencies (egds) [4] that generalizes many of the
constraints used in the literature. This standardizes the way to ex-
press dependencies, and extends them to express inter-table con-
straints, with several benefits in terms of scalability, as discussed in
our experiments.

(ii) The core contribution of the paper consists in the definition
of a novel semantics for the data-cleaning problem. The definition
of such a semantics is far from trivial, since our goal is to formal-
ize the process of cleaning an instance as the process of upgrading
its quality, regardless of the specific notions of value preference
adopted in a given scenario. Our semantics builds on two main
concepts. First, we show that seeing repairs simply as cell updates
is not sufficient. On the contrary, we introduce the new notion of a
cell group, that is essentially a “partial repair with lineage”; then,
we formalize the notion of an upgrade by introducing a very general
notion of a partial order over cell groups; the partial order nicely
abstracts all of the most typical strategies to decide when a value
should be preferred to another, including master data, certainty, ac-
curacy, freshness and currency. In the paper, we show how users
can easily plug-in their preference strategies for a given scenario
into the semantics. Finally, by introducing a new category of val-
ues, called lluns, we are able to complete the lattice of instances
induced by the partial order, and to provide a natural hook for in-
corporating user feedbacks into the process.

(iii) We introduce the notion of a minimal solution and develop al-
gorithms to compute minimal solutions, based on a parallel-chase
procedure. The definition of the chase is far from trivial, since
our goal is to guarantee both generality and proper scalability. To
start, we chase violations not at tuple level, but at equivalence-
class level [8]. This allows us to introduce a notion of a cost
manager as a plug-in for the chase algorithm that selects which
repairs should be kept and which ones should be discarded. The
cost manager abstracts and generalizes all of the popular solution-
selection strategies, including similarity-based cost, set-minimality,
set-cardinality minimality, certain regions, sampling, among oth-
ers. In Example 1, our semantics generates minimal solutions as



DEPENDENCY LANGUAGE REPAIR STRATEGY VALUE PREFERENCE SOLUTION SELECTION
System FDs CFDs ERs Int.T.CFDs RHS LHS Confid. Currency Master Cost Certain Card.Min Sampling

[8]
√ √ √ √ √

[10]
√ √ √ √ √ √ √

[23]
√ √ √ √ √

[18]
√ √ √ √

[7]
√ √ √ √ √

LLUNATIC
√ √ √ √ √ √ √ √ √ √ √ √ √

ext. dependencies chase proced. partial order cost manager

Table 1: Feature Comparison.

the ones in Figures 2 and 3, where Li values represent lluns (con-
fidence values have been omitted); notice that other minimal solu-
tions exist for this example. Cost managers allow users to differen-
tiate between these two solutions, which have completely different
costs in terms of chase computation, and ultimately to fine-tune the
tradeoff between quality and scalability of the repair process.

CUSTOMERS
SSN NAME PHONE STR CITY CC#

t1 111 M. White 408-3334 Red Ave. SF 112321
t2 222 F. Lennon 122-1876 Sky Dr. SF L0
t3 222 F. Lennon 122-1876 Sky Dr. SF L0

TREATMENTS
SSN SALARY INSUR. TREAT DATE

t4 111 25K Abx Dental 10/1/2011
t5 111 25K Abx Dental 8/12/2012
t6 222 30K Med Eye surg. 6/10/2012

Figure 2: Repaired Instance #1.

CUSTOMERS
SSN NAME PHONE STR CITY CC#

t1 L1 M. White 408-3334 Red Ave. NY 112321
t2 L2 L. Lennon 122-1876 NULL SF 781658
t3 222 L. Lennon 000-0000 Fly Dr. SF 784659

TREATMENTS
SSN SALARY INSUR. TREAT DATE

t4 111 25K Abx Dental 10/1/2011
t5 111 25K L3 Choles. 8/12/2012
t6 222 30K Med Eye surg. 6/10/2012

Figure 3: Repaired Instance #2.
(iv) We develop an implementation of the chase engine, called
LLUNATIC. To the best of our knowledge, LLUNATIC is the first
system that runs over the DBMS to compute repairs. We devote
special care in implementing our parallel chase – which may gen-
erate large trees of repairs – in a scalable way. A key ingredient
of our solution is the development of an ad-hoc representation sys-
tems for solutions, called delta relations. In our experiments, we
show that the chase engine scales to databases with millions of tu-
ples, a considerable advancement in scalability wrt previous main-
memory implementations.

We believe that these contributions make a significant advance-
ment with respect to the state-of-the-art. To start, our proposal
generalizes many previous approaches. Table 1 summarizes the
features of LLUNATIC with respect to some of these approaches.
LLUNATIC is the first proposal to achieve such a level of general-
ity. Even more important, this work sheds some light on the crucial
aspect of data-cleaning problems, namely the trade-offs between
the quality of solutions and the complexity of repairing algorithms.
This allows us to select data-repairing algorithms with good scal-
ability and superior quality with respect to previous proposals, as
our experiments show.
Organization of the Paper The preliminaries are in Section 2.
In Sections 3, 4, and 5 we introduce the key components of the
semantics of a cleaning scenario, which is defined in Section 6. The
chase algorithm is described in Sections 7 and 8. Our experiments
are reported in Section 9. Related work is described in Section 10.

2. PRELIMINARIES
We start by presenting some background notions and introducing

the constraint language used in the paper.
A schema S is a finite set {R1, . . . , Rk} of relation symbols,

with each Ri having a fixed arity ni ≥ 0. Let CONSTS be a count-
ably infinite domain of constant values, typically denoted by low-
ercase letters a, b, c, . . . . Let NULLS be a countably infinite set of
labeled nulls, distinct from CONSTS. An instance I = (I1, . . . , Ik)
of S consists of finite relations Ii ⊂ (CONSTS∪ NULLS)ni , for i ∈
[1, k]. Let R be a relation symbol in S with attributes A1, . . . , An

and I an instance of R. A tuple is an element of I and we denote
by t.Ai the value of tuple t in attribute Ai. Furthermore, we al-
ways assume the presence of unique tuple identifiers for tuples in
an instance. That is, ttid denotes the tuple with id “tid ” in I . Given
two disjoint schemas, S and T , if I is an instance of S and J is an
instance of T , then the pair 〈I , J 〉 is an instance of 〈S, T 〉.

A relational atom over T is a formula of the form R(x) with
R ∈ T and x is a tuple of (not necessarily distinct) variables.
Traditionally, an equality generating dependency (egd) over T is
a formula of the form ∀x(φ(x) → xi = xj) where φ(x) is a
conjunction of relational atoms over T and xi and xj occur in x.

To express data-cleaning contraints, we rely on a specific form
of egd. More specifically, besides relation atoms, we also consider
equation atoms of the form t1 = t2, where t1, t2 are either con-
stants in CONSTS or variables, and allow for both source and target
atoms in the premise. In our approach, a cleaning egd is then a
formula of the form ∀x(φ(x) → t1 = t2) where φ(x) is a con-
junction of relational and equation atoms over 〈S, T 〉, and t1 = t2
is of the form xi = c or xi = xj , for some variables xi, xj in x
and constant c ∈ CONSTS. Furthermore, at most one variable in the
conclusion of an egd can appear in the premise as part of a relation
atom over S. The latter condition is to ensure that the egd specifies
a constraint on the target database rather than on the fixed source
database. With an abuse of notation, in the following we shall often
refer to these cleaning egds simply as egds.

Egds for our running example are expressed as follows:
e1.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p′, s′, c′, cc′)→ p = p′

e2.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p′, s′, c′, cc′)→ cc = cc′

e3. Treat(ssn, s, ins, tr, d), ins = ‘Abx’→ tr = ‘Dental’
e4.Cust(ssn, n, p, s, c, cc),MD(ssn, n′, p, s′, c′)→ n = n′

e5.Cust(ssn, n, p, s, c, cc),MD(ssn, n′, p, s′, c′)→ s = s′

e6.Cust(ssn, n, p, s, c, cc),MD(ssn, n′, p, s′, c′)→ c = c′

e7.Cust(ssn, n, p, str , c, cc), Treat(ssn, sal , ins, tr, d),
ins = ‘Abx’→ c = ‘SF’

e8. Treat(ssn, s, ins, tr, d), Treat(ssn, s′, ins′, tr′, d′)→ s = s′

An immediate observation is that constants in egds can be avoi-
ded altogether, by encoding them in additional tables in the source
database. Consider dependency e3 in our example in which two
constants appear: ‘Abx’ in attribute INSUR and ‘Dental’ in at-
tribute TREAT. We extend S with an additional binary source table,
denoted by CSTe3 with attributes INSUR and TREAT, correspond-
ing to the “constant” attributes in e3. Furthermore, we instantiate
CSTe3 with the single tuple te3 : (Abx,Dental). Given this, e3 can



be expressed as an egd without constants, as follows:

e′3. Treat(ssn, s, ins, tr, d),Cste3(ins, tr′)→ tr = tr′

In general, S can be extended with such constants tables, one for
each CFD, and their source tables contain tuples for the constants
used to define the CFD. In other words, these tables coincide with
the pattern tableaux associated with the CFDs [16]. Of course, one
needs to provide a proper semantics of egds such that whenever
such constant tables are present, egds have the same semantics as
CFDs. We give such semantics later in the paper.

Further extensions of egds with, e.g., built-in predicates, match-
ing functions and negated atoms, are needed to encode matching
dependencies and constraints for numerical attributes [20, 9]. We
do not consider them in this paper for simplicity of exposition.

3. CLEANING SCENARIOS AND LLUNS
Our uniform framework for data repairing is centered around

the concept of a cleaning scenario. A cleaning scenario consists
essentially of a source schema S, a target schema T , and a set
of constraints Σ. Here, S and T represent the two databases in-
volved in the repairing process (see Example 1): (i) S, the source
database, provides clean and reliable information as input for the
repairing process (like, for example, master data). We assume
that source databases cannot be changed and consist of constants
from CONSTS only; (ii) T , the target database, corresponds to the
database that is dirty relative to Σ, and that needs to be repaired.
The target database may contain constants from CONSTS and null
values from NULLS. Such null values indicate missing or unknown
values. However, we also allow the target database to contain a
third class of values, called lluns (pronounced “loons”), which we
introduce next.

Recall from Example 1 that t2 and t3 form a violation for the
dependency e2 (stating that customers with equal ssns and names
should have equal credit-card numbers), and that the target database
could be repaired by equating t2.CC# = t3.CC#. However, as dis-
cussed before, no information is available as to which value should
be taken in the repair. In such case, we repair the target database
(for e2) by changing t2.CC# and t3.CC# into the llun L0, that is
to indicate that we need to introduce a new value for the credit-card
number that may be either 781658 or 784659, or some other pre-
ferred value. In this case, such value is currently unknown and we
mark it so that it might be resolved later on into a constant, e.g., by
asking for user input.

We denote by LLUNS = {L1, L2, . . .} an infinite set of sym-
bols, called lluns, distinct from CONSTS and NULLS. Lluns can
be regarded as the opposite of nulls since lluns carry “more infor-
mation” than constants. In our approach, they play two important
roles: (i) they allow us to complete the lattice induced by our par-
tial orders, as it will be discussed in the next section; (ii) they pro-
vide a clean way to record inconsistencies in the data that require
the intervention of users to be resolved.

With this in mind, given an instance J of T , along with an in-
stance I of S, the goal is to compute a repair of J , i.e., a set of
updates to J such that the resulting instance satisfies the constraints
in Σ.

Early works about database repairing [3, 21] followed an ap-
proach that relied on tuple-insertions and tuple-deletions. Since
tuple-deletions may bring to unnecessary loss of information, the
recent literature has concentrated on tuple updates, instead. Roughly
speaking, we may say that the semantics adopted in these works are
centered around three main ideas. First, a repair is seen as a set of
changes to the cells of the database (each cell being an attribute of
a tuple). Second, the logic to repair conflicting values is hardcoded

into the semantics. Third, cost functions are used to (heuristically)
compare different repairs and choose the “good” ones.

In the following sections, we develop a new semantics for clean-
ing scenarios that departs from this standard in three significant
ways. Our first intuition is that, in order to generalize the semantics
to larger classes of constraints and different ways to pick-up pre-
ferred values, it is not sufficient to reason about single-cell updates.
On the contrary, we need to introduce a notion of “repairs with a
lineage”, called cell groups, in the sense that: (a) we keep track
of cells that need to be repaired together; (b) we keep track of the
provenance of their values, especially if they come from the source
database.

A second, key idea, is that the strategy to select preferred values
and repair conflicts should be factored-out of the actual repairing
algorithm. Our solution to do that is to introduce a notion of a
partial order over cell groups. The partial order plays a central role
in our semantics, since it allows us to identify when a repair is an
actual “upgrade” of the original database.

Finally, we introduce a principled way to check when a repaired
instance satisfies the constraints, and to compare repairs with one
another. This is based on an extension to data cleaning of the notion
of instance homomorphism [12] that is typically used to compare
the relative information content of database instances.

The next sections are devoted to these notions.

4. CELL GROUPS AND REPAIRS
Given instance 〈I , J 〉 of 〈S, T 〉, we represent the set of changes

made to repair the target database J in terms of cell groups. As
the name suggests, cell groups are groups of cells, i.e., locations
in a database specified by tuple/attribute pairs ttid.Ai. For exam-
ple, t2.CC# and t3.CC# are two cells in the CUSTOMERS table.
Observe the following:

(a) As our example shows, to repair inconsistencies, different cells
are often changed together, i.e., they are either changed all at the
same time or not changed at all. For example, t2.CC# and t3.CC#
are both modified to the same llun value in Figure 2. Cell groups
thus need to specify a set of target cells, called occurrences of the
group, and a value to update them.

(b) In addition, in some cases the target cells to repair receive their
value from the source database; consider Example 1 and depen-
dency e5. When repairing t2, cell t2.STREET gets the value ‘Sky
Dr.’ from cell tm.STREET. Since source cells contain highly reli-
able information, it is important to keep track of the relationships
among changes to target cells and values in the source. To do this,
a cell group c has a set of associated source cells carrying prove-
nance information about the repair in terms of cells of the source
database. We call these source cells the justifications for c, since
they provide lineage information for the change we make to the tar-
get cells in c, i.e., to its occurrences. Occurrences and justifications
need to be kept separate since we can only update target cells, while
source cells are immutable.

(c) Cell groups provide an elegant way of describing repairs. In-
deed, in order to specify a repair it suffices to provide the original
target database together with the set of cell groups to modify. In
other words, cell groups can be seen as partial repairs with lineage.

These observations are captured by the following definitions:

Definition 1 [CELL GROUP] A cell group g over an instance 〈I , J 〉
of 〈S, T 〉 is a triple 〈v → C, by Cs〉 where: (i) v is a value in
CONSTS ∪ NULLS ∪ LLUNS; (ii) C is a finite set of cells of the
target instance, J , called the occurrences of g, denoted by occ(g);



(iii) Cs is a finite set of cells of the source instance, I , called the
justifications of g, denoted by just(g).

A cell group g = 〈v → C, by Cs〉 can be read as “change the
target cells in C to value v, justified by the source cells in Cs”. We
define a repair to an instance 〈I , J 〉 as a set of cell groups.

Definition 2 [REPAIR] A repair Rep = {g0, . . . , gk} for instances
〈I , J 〉 is a (possibly empty) finite set of cell groups over 〈I , J 〉,
such that each cell of J occurs in at most one cell group gi.

That is, each cell in J is either unchanged in a repair or it is
modified in a unique way as described by the cell group to which it
belongs. We denote by gRep(c) the cell-group of cell c according to
Rep.

Example 2: In our example, consider the repair Rep1, consisting
of the following cell groups referred to as g1, . . . , g7:

Rep1 = { g1 : 〈L0(781658, 784659)→ {t2.CC#, t3.CC#}, by ∅〉
g2 : 〈F.Lennon→ {t2.NAME, t3.NAME}, by {tm.NAME}〉
g3 : 〈122-1876→ {t2.PHN, t3.PHN}, by ∅〉
g4 : 〈Sky Dr.→ {t2.STR, t3.STR}, by {tm.STR}〉
g5 : 〈Dental→ {t5.TREAT}, by {tc3 .TREAT}〉
g6 : 〈SF→ {t1.CITY}, by {tc7 .CITY}〉}
g7 : 〈25K→ {t4.SALARY, t5.SALARY}, by ∅〉}

Cell group g1 fixes credit-card numbers for dependency e2; it
has empty justifications because no source relation is involved in
e2. On the contrary, cell groups g2 and g4 repair tuples t2, t3 for
dependencies e4, e5; justifications for these groups contain the re-
spective cells in the master-data tuple tm. Similarly, for cell groups
g5, g6; here tc3 , tc7 are the tuples in the CSTe3 , CSTe7 tables, en-
coding the constants in the original CFDs.

When applied to the original database in Figure 1, repair Rep1

yields the repaired instance shown in Figure 2. Clearly, other re-
pairs are possible. For example, to resolve e3 one may consider
changing the value of the cell t5.INSURANCE into a new llun value
L1, i.e., an unknown value that improves ‘Abx’. The following re-
pair, Rep2, follows the same approach to satisfy all dependencies,
and yields the repaired instance shown in Figure 3:

Rep2 = {g7, 〈L1 → {t1.SSN}, by ∅〉, 〈L2 → {t2.SSN}, by ∅〉
〈L3 → {t5.INSURANCE}, by ∅〉}

Note that J itself can be seen as the empty repair, Rep∅.

Given 〈I, J〉, we say that a repair is complete if each cell of J
occurs in a cell group in Rep, i.e., all cells in J are covered by the
repair. We may assume, without loss of generality, that a repair is
always complete. Indeed, a repair Rep can be easily completed into
a complete repair Rep′, as follows:
(i) initially, we let Rep′ = Rep;
(ii) for each cell c of J that is not changed by Rep, if val(c) ∈
CONSTS, then we add to Rep′ the cell group 〈val(c)→ {c}, by ∅〉;
(iii) for each cell c of J that is not changed by Rep, if val(c) ∈
NULLS, then we add to Rep′ the cell group of c with value val(c),
occurrences consisting of all cells of J in which val(c) occurs and
empty justifications.

From now on, we always assume a repair to be complete, and we
blur the distinction between a repair Rep and the instance Rep(J )
obtained by applying Rep to J .

5. THE PARTIAL ORDER
We are now ready to introduce another crucial ingredient of our

framework: the partial order. The partial order is the core element
of the semantics of our repairs and, as already mentioned, is used
to indicate preferred upgrades to the target database. We want users

to be able to specify different partial orders for different repairing
problems in a simple manner. To do this, the user only has to spec-
ify for each attribute in the target schema when two values are pre-
ferred over each other. This is done by specifying an assignment Π
of so-called ordering attributes to T . As we will see shortly, such
an assignment automatically induces a partial order on cell groups.

A Hierarchy of Information Content. In order to define our
partial order, let us first introduce a simple hierarchy between the
three kinds of values that appear in a database, namely nulls, con-
stants, and lluns. More specifically, given two values v1, v2 ∈
NULLS ∪ CONSTS ∪ LLUNS, we say that v2 is more informative
than v1, in symbols v1 � v2 if v1 and v2 are of different types, and
one of the following holds: (i) v1 ∈ NULLS, i.e., the first value is a
null value; or (ii) v2 ∈ LLUN, i.e., the second value is a llun.

User-Specified preferred values. We say that an attribute A of T
has ordered values if its domain DA is a partially ordered set. To
specify which values should be preferred during the repair, users
may associate with each attribute Ai of T a partially ordered set
PAi = 〈D,≤〉. The poset PAi associated with attribute Ai may
be the empty poset, or its domain DAi if Ai has ordered values, or
the domain of a different attribute DAj that has ordered values. In
the latter case, we call Aj the ordering attribute for Ai. Intuitively,
PAi specifies the order of preference for values in the cells of Ai.
An assignment of ordering attributes to attributes in T is denoted
by Π. For reasons that become clear shortly, Π is referred to as the
partial order specification.

In our example, the DATE attribute in the TREATMENTS table,
and the confidence column, CONF, in the CUSTOMERS table have
ordered values (to simplify the treatment, we consider CONF as
an attribute of the table). For these attributes, we choose the cor-
responding domain as the associated poset (i.e., we opt to pre-
fer more recent dates and higher confidences). Other attributes,
like the PHONE attribute in the CUSTOMERS table, have unordered
values; we choose CONF as the ordering attribute for PHONE (a
phone number will be preferred if its corresponding confidence
value is higher). Notice that there may be attributes, like SALARY
in TREATMENTS, that have ordered values; however, the natural
ordering of values does not reflect our notion of a preferred value.
To model the correct notion of preference, we use DATE as the
ordering attribute for SALARY (we prefer most recent salaries). Fi-
nally, attributes like SSN will have an empty associated poset, i.e.,
all constant values are equally preferred. Below is a summary of
the assignment Π of ordering attributes in our example (attributes
not listed have an empty poset):

Π =





PCUSTOMERS.CONF = DCUSTOMERS.CONF

PTREATMENTS.DATE = DTREATMENTS.DATE

PCUSTOMERS.PHONE = DCUSTOMERS.CONF

PTREATMENTS.SALARY = DTREATMENTS.DATE

PCUSTOMERS.SSN = ∅





Partial order on cell values. Given an assignment Π, we can de-
fine a corresponding partial order �Π

J for the values of cells of the
target instance J as follows. For any pair of values v1, v2 we say
that v1 �Π

J v2 iff one of the following holds:

(i) either v1 = v2 or v1�v2, i.e., the values are equal or the second
one is more informative than the first;

(ii) v1 appears in cell t1.A1, v2 in cell t2.A2 in J , and both are
constants in CONSTS; then, assume the ordering attributes for A1

and A2, called A′1, A′2 have the same poset, i.e., PA′
1

= PA′
2
; call

v′1, v
′
2 the values of cells t1.A′1, t2.A′2. Then, v1 �Π

J v2 iff v1 = v2

or v′1 < v′2 according to PA′
1

= PA′
2
.



We also consider values of the source instance I . In our ap-
proach, source values are immutable, and all equally preferable.
So, we assume that the partial order �I over values in I is based
on rule (i) only. We call�Π

〈I ,J〉 the partial order over values of cells
in 〈I , J 〉 obtained by the union of �Π

J and �I , with the additional
rule that values of source cells are always preferable to values of
target cells, i.e., for each target cell t.At and source cell t′.As, it
is always the case that val(t.At) �Π

〈I ,J〉 val(t′.As). In fact, we
always give preference to values from the source, like master-data
or constant values in dependencies.

Given the partial order �Π
〈I ,J〉, in the following we want to be

able to compute upper bounds for cell values. To do this, we use
lluns. Indeed, for any set C of cells we denote by lub�Π

〈I ,J〉
(C) the

value that is (i) either the least upper bound for values of all cells in
C according to �Π

〈I ,J〉, if it exists; (ii) a new value Ni not in J , if
all cells in C have null values; (iii) a new llun value Lj otherwise.

Partial order on cells groups. The partial order �Π
〈I ,J〉 over cell

values induces a partial order on the cell groups of 〈I , J 〉. Before
we turn to the definition, we want to exclude from the comparison
cell groups that correspond to unjustified ways of changing the tar-
get. In order to do this, we say that a cell group g has a valid value
if one of the following conditions holds. Consider the value vallub
that is the least upper bound of values in occ(g)∪ just(g) according
to �Π

〈I ,J〉, i.e., vallub = lub�Π
〈I ,J〉

(just(g) ∪ occ(g)). Then, either

val(g) = vallub , i.e., the cell group takes the value of the least up-
per bound, or vallub�val(g), i.e., the cell group takes an even more
informative value.

Given cell groups g and g′ with valid values, we say that g �Π g
′

iff (i) occ(g) ⊆ occ(g′) and just(g) ⊆ just(g′), and (ii) either
val(g) and val(g′) are values of the same type (null, constant, or
llun), or val(g) � val(g′). In essence, we say that a cell group g′

can only be preferred over a cell group g according to the partial
order, if a containment property is satisfied, and the value of g′ is at
least as informative as the value of g. If the containment property
is not satisfied for g and g′ then these cell groups are incompa-
rable relative to the partial order. Indeed, cell groups that change
unrelated groups of cells represent incomparable ways to modify a
target instance.

Example 3: Consider a simple relation R(A,B), with three de-
pendencies: (i) an FD A → B, and two CFDs: (ii) A[a] →
B[x], A[a] → B[y]. Notice that the two CFDs clearly contra-
dict each other. Assume R contains two tuples: t1 : R(a, 1), t2 :
R(a, 2), and that PA is A itself. Following is a set of ordered cell
groups:

〈1→ {t1.B}, by ∅〉 �Π

〈2→ {t1.B, t2.B}, by ∅〉 �Π

〈x→ {t1.B, t2.B}, by {tc1.x}〉 �Π

〈L→ {t1.B, t2.B}, by {tc1.x, tc2.y}〉

Partial order on repairs. Given an instance 〈I , J 〉, a partial order
�Π over cell groups in 〈I , J 〉, and two complete repairs, Rep, Rep′,
we say that Rep′ upgrades Rep, denoted by Rep �Π Rep′, if for
each group g ∈ Rep there exists a group g′ ∈ Rep′ such that g �Π

g′. If Rep �Π Rep′ and the converse does not hold, then we write
Rep ≺Π Rep′. A repair Rep′ is thus preferable to Rep whenever
Rep �Π Rep′. This is where the real strength of the partial order
lies: it provides a uniform way of incorporating information on
preferred repairs.

Proposition 1: Given an assignment Π of ordering attributes to
attributes in T , the corresponding partial order�Π

〈I ,J〉 over values

of cells in 〈I , J 〉 induces a partial order �Π over the cell groups
and repairs of 〈I , J 〉. In fact, �Π is semi-join lattice.

Notice that, besides the standard rules above, users may specify
additional custom rules to plug-in other value-selection strategies
and refine the lattice of cell groups. As an example, a frequency
rule may state that the lub of cell groups g and g′ with constant
values c1 and c2 and empty justifications should take as value c1
(c2, resp.) if |occ(g1)| > |occ(g2)| (|occ(g2)| > |occ(g1)|, resp.).

6. SEMANTICS
With the partial order specification Π in place, we now define a

cleaning scenario as a quadruple CS = {〈S, T 〉,Σ,Π}. Given a
cleaning scenario and an instance 〈I , J 〉, we address the problem
of defining a solution for CS over 〈I , J 〉. Intuitively, a solution is
a repair for 〈I , J 〉 that satisfies the set Σ of egds and is an upgrade
of the original target instance J relative to �Π. We next formalize
these notions.

Consider an instance 〈I,Rep(J)〉 and a set Σ of constraints.
Usually, Rep(J) is called a solution if 〈I,Rep(J)〉 satisfies Σ us-
ing the standard semantics of first-order logic. Since we want to
—rather ambitiously— ensure that there is always a solution we
need to revise this semantics. In contrast, previous proposals often
fail to return a repair or are stuck in an endless loop during repair-
ing, as is illustrated next.

Consider dependency e3 from Example 1. Suppose that a con-
tradictory dependency e′′3 .Treat(ssn, s, ins, tr, d), ins = ‘Abx′

→ tr = ‘Cholest.′ is specified. In addition, assume that only modi-
fications to the TREAT attribute-values are allowed. Clearly, there is
no repair made of constants that can satisfy both dependencies [16].
However, one may consider of changing ‘Dental’ and ‘Cholest.’ to
a llun L that improves both original values. In essence, the llun has
the role of indicating to the user that the constraints are contradic-
tory. In our setting, we want to regard this repair as a solution of a
conflicting cleaning scenario.

Consider an egd e : ∀xφ(x̄)→ x = x′. First, recall that, in the
standard semantics, 〈I,Rep(J)〉 satisfies e if for any homomor-
phism h that maps the variables x̄ into values of 〈I,Rep(J)〉 such
that φ(h(x̄)) is true, then also h(x) = h(x′) must be true. We want
this to hold in our semantics as well. However, we want more. That
is, we allow h(x) 6= h(x′) as long as the cell group corresponding
to h(x) is an upgrade to the cell groups corresponding to h(x′), or
vice versa.

To make this precise, we need to extend h to a mapping from
variables to cell groups. Since h associates values to variables,
it also associates with each variable xi ∈ x̄ a set of cells from
〈I,Rep(J)〉, called cellsh(xi), one for each occurrence of xi and
all with the same value, h(xi). We use these to define the cell group
of xi according to h, as follows.

Given a formula φ(x), a repair Rep, an homomorphism h of
φ(x̄) into 〈I,Rep(J)〉, and a variable xi ∈ x̄, the cell group of xi
according to h is defined as gh(xi) = 〈h(xi)→ C, by Cs〉 where C
(resp. Cs) is the union of all occurrences (resp. justifications) of cell
groups gRep(ci) in Rep, for each cell ci ∈ cellsh(xi). In addition,
Cs contains all cells in cellsh(xi) that belong to the source I .

We are now ready to introduce our extended notion of satisfac-
tion, namely satisfaction after repairs:

Definition 3 [SATISFACTION AFTER REPAIRS] Given an egd e :
∀x φ(x)→ x = x′, an instance 〈I, J〉, and a repair Rep, we say
that 〈I,Rep(J)〉 satisfies after repairs e wrt the partial order�Π if,
whenever there is an homomorphism h of φ(x) into 〈I,Rep(J)〉,
then (i) either the value of h(x) and h(x′) are equal, or (ii) it is
the case that gh(x) �Π gh(x′) or gh(x′) �Π gh(x).



We can now find a repair that satisfies the conflicting egds e3

and e′′3 above. Given a tuple t in the target, consider Rep that
repairs t.TREAT with L, and justifies the change with both cells
in the source corresponding to constants ‘Dental’ and ‘Cholest.’.
Now, despite the fact that L is not equal to any of the constants in
the dependencies, both dependencies are satisfied after repairs by
Rep(J).

Definition 4 [SOLUTION] Given a cleaning scenario CS = {〈S, T 〉,
Σ,Π} and instance 〈I , J 〉 a solution for CS over 〈I , J 〉 is a re-
pair Rep such that: (i) J �Π Rep, i.e., Rep upgrades J ; and (ii)
〈I,Rep(J)〉 satisfies after repairs Σ wrt �Π.

An important property of cleaning scenarios is that every input
instance has a solution, albeit a solution that is not necessarily min-
imal and is rather uninformative.

Theorem 2: Given a scenario CS = {〈S, T 〉,Σ,Π} and an input
instance 〈I , J 〉, there always exists a solution for CS and 〈I , J 〉.
Proof: Indeed, there is always a solution corresponding to the re-
pair that changes all cells of J to a single llun L, and justifies it by
all cells in I , i.e., Reptrivial = 〈L→ cells(J), by cells(I)〉. 2

Among all possible repairs, we are interested in those that mini-
mally upgrade the dirty instance.

Definition 5 [MINIMAL SOLUTION] A minimal solution for a clean-
ing scenario is any solution Rep that is minimal wrt ≺Π, i.e., such
that there exists no other solution Rep′ such that Rep′ ≺Π Rep.

The repair Rep1 in Example 2 is a minimal solution for the sce-
nario in Example 1: it is an upgrade of J , it satisfies the dependen-
cies, and by undoing any of its changes violations arise. Minimal
solutions are not unique. Indeed, also repair Rep2 in Example 2
is a minimal solution. As an example of a non-minimal solution,
one can add to Rep2 the cell group 〈L4 → {t2.NAME}, by ∅〉.
The resulting repair Rep3 is still a solution but not a minimal one
(Rep2 ≺Π Rep3). Consider now repair Rep4, obtained by adding
a cell group 〈111111 → {t2. CC#}, by ∅〉 to Rep2. In this case,
Rep4 is not a solution because the last cell group is totally unjusti-
fied wrt the partial order, and therefore it is not true that Rep4(J)
is an upgrade of the original target instance.

An important property is that two repairs can be efficiently com-
pared wrt to the partial order. We assume here that the partial order
of two values v �Π

〈I ,J〉 v
′ can be checked in constant time.

Theorem 3: Given two solutions Rep,Rep′ for a scenario CS over
instance 〈I , J 〉, one can check Rep �Π Rep′ inO(n+kmlog(m))
time, where n is the number of cells in J , k is the maximum number
of cell groups in Rep, Rep′, and m is the maximum size of a cell
group in Rep, Rep′.

Given a cleaning scenario CS and an instance 〈I , J 〉, the data
repairing problem consists of computing all minimal solutions for
CS over 〈I , J 〉. We provide a chase-based algorithm for the data
repairing problem in the next section.

What are Lluns, in the End? The role and the importance of lluns
should now be apparent. While lluns are nothing more than sym-
bols from a distinguished set, like constants and nulls, their use in
conjunction with cell groups makes them a powerful addition to the
semantics. Not only they allow us to complete the lattice of cell-
groups and repairs, but, when appearing inside cell-groups, they
also provide important lineage information to support users in the
delicate task of resolving conflicts. Consider again Example 3 in
Section 5. The cell group 〈L→ {t1.B, t2.B}, by {tc1.x, tc2.y}〉 is
a clear indication that it was not possible to fully resolve the con-
flicts, and therefore user interventions are needed to complete the

repair. In addition, the cell-group provides complete information
about the conflict, both in terms of which target cells – and there-
fore which original values – where involved, and also in terms of
source values that justify the change.

7. COMPUTING SOLUTIONS
In order to generate solutions for cleaning scenarios, we resort

to a variant of the traditional chase procedure for egds [12]. How-
ever, our chase is a significant departure from the standard one, for
several reasons: (i) during the chase, we shall make extensive use
of the partial order, �Π; (ii) to generate all possible solutions, a
dependency may be chased both forward, to satisfy its conclusion,
or backward, to falsify its premise; this, in turn, means that the
we need to consider a disjunctive chase, which generates a tree of
alternative repairs; (iii) finally, and most important, we shall not
consider violations at the tuple level, as it is common [12], but at
the higher level of equivalence classes.

To explain this latter difference, consider a simple functional de-
pendency A → B over relation R(A,B,C), with tuples t1 =
R(1, 2, x), t2 = R(1, 2, y), t3 = R(1, 4, z), t4 = R(2, 5, w),
t5 = R(2, 5, v). It is highly inefficient to analyze the violations of
this FD at the tuple level; in fact, eventually, theB value of t1, t2, t3
will all become equal, and therefore one may prefer grouping and
fixing them together. In the literature [8, 15] this has been for-
malized by means of equivalence classes. We want to introduce a
similar concept into our chase algorithm. Given the higher general-
ity of our dependency language, we need a number of preliminary
definitions.

Preliminary Notions Recall that, given an homomorphism h of a
formula φ(x̄) into 〈I,Rep(J)〉, we denote by gh(x) the cell group
associated by h with variable x. We first introduce the notions of
witness and witness variable for a dependency e. Intuitively, the
witness variables are those variables upon which the satisfiability of
the dependency premise depends; these are all variables that have
more than one occurrence in the premise, i.e., they are involved in
a join or in a selection.

Definition 6 [WITNESS] Let e : ∀x (φ(x)→ x = x′) be an egd. A
witness variable for e is a variable x ∈ x̄ that has multiple occur-
rences in φ(x̄). For an homomorphism h of φ(x̄) into 〈I,Rep(J)〉,
we call a witness, wh for e and h, the vector of values h(x̄w) for
the witness variables x̄w of e.

Consider, for example, dependency e8 in Example 1 (we omit
some of the variables for the sake of conciseness): e8. Treat(ssn, s,
. . .), Treat(ssn, s′, . . .)→ s = s′. Assume that the target instance
TREATMENTS contains tuples t4 = (ssn : 222, salary : 10K, . . .),
t5 = (ssn : 222, salary : 25K, . . .). We have an homomorphism
h that maps the first atom of e8 into t4, and the second one into
t5. In this case, the witness variable, i.e., the variable that imposes
the constraint that the two tuples have the same SSN, is ssn, and its
value is 222.

Definition 7 [EQUIVALENCE CLASS] Given a repair Rep, and an
egd e : ∀x (φ(x) → x = x′), let x̄w ⊆ x̄ be the witness variables
of e. An equivalence class for Rep and e, H, is a set of homomor-
phisms of φ(x̄) into 〈I,Rep(J)〉 such that all hi ∈ H have equal
witness values hi(x̄w).

Notice that equivalence classes induce classes of tuples in a nat-
ural way. In our example above, the tuples are partitioned into two
equivalence classes, as follows: ec1 = {t1, t2, t3} (with witness 1)
and ec2 = {t4, t5} (with witness 2).

To identify a violation, we look for different values in the con-
clusion of e. To see an example, consider the equivalence class



ec1 (witness 1), composed of the three tuples {t1, t2, t3}: to iden-
tify the violation, we notice that they have two different values for
the B attribute, 2 and 4, respectively. To formalize this, we intro-
duce the set of witness groups, w-groupsH, and conclusion groups,
c-groupsH, for H and e, as the set of cell groups associated by
any homomorphism h ∈ H with the witness variables, x̄w, and the
conclusion variables, x, x′, respectively:

w-groupsH =
⋃

h∈H,xw∈x̄w
gh(xw)

c-groupsH =
⋃

h∈H gh(x) ∪⋃
h∈H gh(x′)

We say that an equivalence class for Rep and e generates a vi-
olation if it has at least two conclusion groups with different val-
ues and such that there is no ordering among them, i.e, there ex-
ist g1, g2 ∈ c-groupsH such that val(g1) 6= val(g2) and neither
g1�Πg2 nor g2�Πg1. In this case, we say that e is applicable to
〈I,Rep(J)〉 withH.

The Chase We are now ready to define the notion of a chase step.
Our goal is to define the chase in such a way that it is as general
as possible, but at the same time it allows to plug-in optimizations
to tame the exponential complexity. In order to do this, we intro-
duce the crucial notion of a repair strategy for an equivalence class,
which provides the hook to introduce the notion of a cost manager
in the next section.

A repair strategy rsH for H is a mapping from the set of con-
clusion cell-groups, c-groupsH of Rep and H, into the set {f , b}
(where f stands for “forward”, and b for “backward”). We call the
forward groups, forw-grsH , of rsH the set of groups gi such that
rsH(gi) = f , and the backward groups, back-grsH , those such
that rsH(gi) = b.

For each backward group g ∈ back-grsH and for each target
cell ci ∈ g, we assume that the repair strategy rsH also identifies
(whenever this exists) one of the witness cells in w-groupsH to be
backward-repaired. This cell, denoted by w-cellrsH(ci), must be
such that:

(i) it belongs to the same tuple as ci;

(ii) the corresponding cell group gi according to Rep has a constant
value, i.e., val(gi) ∈ CONSTS;

(iii) the corresponding cell group gi has empty justifications, i.e.,
just(gi) = ∅.

Observe that we do not chase backward in two cases: first, when
cells contain nulls or lluns; in fact, nulls and lluns are essentially
placeholders, and there is no need to replace a placeholder by an-
other one, since this is does not represent an upgrade of the repair;
second, when cell values have a justification from the source; since
we use the source to model high-reliability data, we consider it un-
acceptable to disrupt a value coming from the source in favor of a
llun.

Each chase step is defined based on a specific repair strategy.

Definition 8 [CHASE STEP] Given a cleaning scenario CS = {S,
T ,Σ,Π}, and a complete repair Rep of J , let e : ∀x (φ(x)→ x =
x′) be an egd in Σ, applicable to 〈I,Rep(J)〉 with H. For each
repair strategy rsH, a chase step generates a new repair ReprsH
defined as follows:

(i) to start, we initialize ReprsH = Rep

(ii) then, we replace all forward groups by their least upper bound:

ReprsH = ReprsH − forw-grsH ∪ lub�Π (forw-grsH)

(iii) finally, we add the backward repairs, i.e, for each backward
group g ∈ back-grsH , and cell ci ∈ occ(g), we replace gi = gRep(

w-cellrsH(ci)) by the cell group g′i that is an immediate successor
of gi according to �Π as follows:

ReprsH = ReprsH − {gi} ∪ {g
′
i}

Note that such a successor always exists. Indeed, g′i = 〈Li →
occ(gi), by ∅〉, where Li is a new LLUN value, is a successor of gi.

Given Rep, each repair strategy rsiH for H generates a different
step, ReprsiH

. We simultaneously consider all these chase steps, in
parallel, and write Rep→e,H Reprs0H

,Reprs1H
. . . ,ReprsnH

.

Consider again dependency e8 in Example 1, and the equiva-
lence class associated with witness ssn = 222. The cell groups
for the conclusion cells are: g = 〈10K → {t4.SALARY}, by ∅〉
and g′ = 〈25K → {t5.SALARY}, by ∅〉. Notice that the two
cell groups are incomparable, and therefore we have a violation.
The chase procedure generates three different repairs for the viola-
tion: (a) the forward repair is: Repf,f = 〈25K → {t4.SALARY,
t5.SALARY}, by ∅〉 (25K is more recent than 10K as a salary, and
therefore it is preferred); as you can see, the least upper bound is
constructed in such a way that it contains the union of occurrences
and the union of justifications of the two conflicting groups; (b) the
first backward repair, which changes the first occurrence of the wit-
ness variable ssn to a llun L1: Repb,f = 〈L1 → {t4.SSN}, by ∅〉;
(c) the second backward repair, changing the second occurrence of
ssn to L2: Repf,b = 〈L2 → {t5.SSN}, by ∅〉.
Definition 9 [CHASE TREE] Given a cleaning scenario CS = {S,
T ,Σ,Π}, a chase of 〈I , J 〉 with Σ is a tree whose root is 〈I , J 〉,
i.e., the empty repair, and for each node Rep, the children of Rep
are the repairs Rep0,Rep1, . . . ,Repn such that, for some e ∈ Σ
and some H, it is the case that Rep →e,H Rep0,Rep1, . . . ,Repn.
The leaves are repairs Rep` such that there is no dependency appli-
cable to 〈I,Rep`(J)〉 with some equivalence class H. Any leaf in
the chase tree is called a result of the chase of 〈I , J 〉 with Σ.

Note that, as usual, the chase procedure is sensitive to the order
of application of the dependencies. Different orders of applica-
tion of the dependencies may lead to different chase sequences and
therefore to different results.

We next show that the chase procedure always generates solu-
tions, i.e., it is sound, and it terminates after a finite number of
steps. Furthermore, all minimal solutions can be obtained in this
way, i.e., the chase is complete for minimal solutions.

Theorem 4: Given a cleaning scenario CS = {S, T ,Σ,Π} and
an instance 〈I , J 〉, the chase of 〈I , J 〉 with Σ (i) terminates; (ii)
it generates a finite set of results, each of which is a solution for CS
over 〈I , J 〉; and (iii) it generates all minimal solutions.

Complexity It is well-known [5] that a database can have an expo-
nential number of solutions, even for a cleaning scenario with a sin-
gle FD and when no backward chase steps are allowed. In general,
it is readily verified that a cleaning scenario can have at most an
exponential number of solutions. When considering the disjunctive
chase procedure, as outlined above, one can verify that each solu-
tion is computed in a number of steps that is polynomial in the size
of the data. For this, it suffices to observe that one can associate an
integer-valued function f on repairs such that f(Rep) < f(Rep′)
whenever Rep→e,H Rep′ during the chase. Intuitively, f depends
on the number of llun values and sizes of cell groups in the repairs.
Since both the number of lluns and size of cell groups is bounded by
the input instance, we may infer that f cannot be increased further
after polynomially many steps, i.e., when a solution is obtained.

In contrast, computing all solutions by means of the chase takes
exponential time in the size of instance. Indeed, given the polyno-
mial size of each branch in the chase tree, as argued above, and the



fact that the branching factor is polynomially bounded by the input,
the overall chase tree is exponential in size. We discuss techniques
to handle this high complexity in the next section.

8. A SCALABLE CHASE
The chase procedure defined in the previous section provides an

elegant operational semantics for cleaning scenarios. However, as
argued above, computing all solutions has very high complexity,
which makes the chase often impractical. In this section, we in-
troduce a number of techniques that improve the scalability of the
chase, namely: a central component of our framework, the cost
manager, and a representation systems for chase trees, called delta
databases.

8.1 Introducing the Cost Manager
Chasing at the equivalence-class level is more efficient than chas-

ing at the tuple level, but by itself it does not reduce the total
number of solutions, and ultimately the complexity of the whole
chase process. In fact, previous proposals have chosen many differ-
ent and often ad-hoc ways to reduce the complexity by discarding
some of the solutions in favor of others. Among these we men-
tion various notions of minimality of the repairs [3, 8, 7], certain
regions [18], and sampling [7]. We propose to incorporate these
pruning methods into the chase process in a more principled and
user-customizable way by introducing a component, called the cost
manager.

Definition 10 [COST MANAGER] Given a cleaning scenario, CS
and instance 〈I , J 〉, a cost manager for CS and 〈I , J 〉 is a predicate
CM over repair strategies to be used during the chase. For each
repair strategy rsH for equivalence classH, it may either accept it
(CM(rsH) = true), or refuse it (CM(rsH) = false).

During the chase, we shall systematically make use of the cost
manager. Whenever we need to chase an equivalence class, we only
generate repairs corresponding to repair strategies accepted by the
cost manager. The standard cost manager is the one that accepts
all repair strategies, and may be used for very small scenarios. As
an alternative, our implementation offers a rich library of cost man-
agers. Among these, we mention the following, that have been used
in experiments:
– a maximum size cost manager (SN): it accepts repair strategies as
long as the number of leaves in the chase tree (i.e., the repairs pro-
duced so far) are less than N ; as soon as the size of the chase tree
exceedsN , it accepts only the first one of them, and rejects the rest;
as a specific case, the S1 cost manager only considers one order of
application of the dependencies, and ignores other permutations;
– a frequency cost manager (FR): in order to repair equivalence
class H for dependency e, FR adopts the following rules; it relies
on the frequency of values appearing in conclusion cells, and on
a similarity measure for values (based on the Levenshtein distance
for strings); then: (i) it rejects repair strategies that backward-chase
cells with the most frequent conclusion value; (ii) for every other
conclusion cell, if its value is similar (distance below a fixed thresh-
old) to the most frequent one, the cell is forward-chased; otherwise,
it is backward chased; this is typically used with a frequency rule
in the partial order of cell-groups;
– a forward-only cost manager (FO): it accepts forward-only repair
strategies, and rejects those that perform backward repairs.

Notice that combinations of these strategies are possible, to ob-
tain, e.g., a FR-S5 or a FR-S1-FO cost manager. The FR-S5 re-
lies on value frequencies and, in addition, it considers five different
permutations of the dependencies, and for each of them will com-
pute one repair. Alternative cost managers may implement different

pruning strategies, to incorporate the notion of a certain region, and
refute all steps in which changes are made to attributes of the target
that are considered to be “fixed”, i.e., reliable, or perform different
forms of sampling. In the following, we shall always assume that a
cost manager has been selected in order to perform the chase.

8.2 Delta Databases
Even with cost managers in place, the parallel nature of our chase

algorithm imposes to store a possibly large tree of repairs. A naive
approach in which new copies of the whole database are created
whenever we need to generate a new node in the tree, is clearly in-
efficient. To solve this problem, we introduce an ad-hoc represen-
tation system for nodes in our chase trees, called delta databases.
Delta databases are a formalism to store a finite set of worlds into a
single relational database. Intuitively, they allow to store “deltas”,
i.e., modifications to the original database, rather than entire in-
stances as is done in the naive approach.

Delta relations rely on an attribute-level storage system, inspired
by U-relations [2], modified to efficiently store cell groups and
chase sequences. More specifically, (i) each column in the orig-
inal database is stored in a separate delta relation, to be able to
record cell-level changes; (ii) chase steps are identified by a func-
tion with a prefix property, such that the id of the father of n is a
prefix of the encoding of n; this allows to quickly reconstruct the
state of the database at any given step, using fast SQL queries; (iii)
additional tables are used to store cell groups, i.e., occurrences and
justifications.

More formally, we introduce a function stepId() that associates a
string id with each chase step, i.e., with each node in the chase tree,
and has the prefix property such that, stepId(father(n)) is a prefix
of stepId(n), for each n. For this, we use the function that assigns
the id r to the root, r.0, r.1, . . ., r.n to its children, and so on.

Definition 11 [DELTA DATABASE] Given a target database schema
R = {R1, . . . , Rk}, a delta database forR contains the following
tables: (i) a delta table Ri Aj with attributes (tid, stepId, value),
for each Ri and each attribute Aj of Ri; (ii) a table occurrences,
with schema (stepId, value, tid, table, attr); (iii) a table justifica-
tions, with schema (stepId, value, tid, table, attr).

During the chase, we store the whole chase tree into the delta
database. We do not perform updates, which are slow, but exe-
cute inserts instead. Whenever, at step s, a cell tid.A in table R
is changed to value v, we store a new tuple in the delta table R A
with value (tid, stepId, v). Using this representation, it is possible
to store trees of hundreds of nodes quite efficiently. In addition, it
is relatively easy to find violations using SQL (the actual queries
are omitted for space reasons).

In the next section we show how the combination of our ad-
vanced chase procedure and its implementation under the form of
delta databases scale to large repairing problems with millions of
tuples and large chase trees.

9. EXPERIMENTS
The proposed algorithms have been implemented in a working

prototype of the LLUNATIC system, written in Java. In this sec-
tion, we consider several cleaning scenarios, of different nature
and sizes, and study both the quality of the repairs computed by
our system, and the scalability of the chase algorithm. We show
that our algorithm produce repairs of better quality with respect to
other systems in the literature, and at the same time scales to large
databases. All experiments have been executed on a Intel i7 ma-
chine with 2.6Ghz processor and 8GB of RAM under Linux. The
DBMS was PostgreSQL 9.2.
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Figure 4: Experimental results for HOSPITAL and CUSTOMERS.

Datasets and Scenarios. We selected two scenarios. (i) The first
one, HOSPITAL, is based on a dataset from US Department of
Health & Human Services (http://www.medicare.gov/hospitalcompare/).
The database contains a single table with 100K tuples and 19 at-
tributes, over which we specified 9 functional dependencies. (ii)
The second one, CUSTOMERS, corresponds to our running exam-
ple in Figure 1. The database schema contains 3 tables with 16
attributes, plus 2 additional tables encoding constants in CFDs. De-
pendencies are the ones in Section 1. We synthetically generated up
to 1M tuples for the 2 target relations, with a proportion of 40% in
the CUSTOMERS table, and 60% in TREATMENTS; the master-data
table contains 20% of the tuples present in CUSTOMERS. We con-
sider master-data tuples outside the total, as they cannot be modi-
fied. For this scenario, we defined the partial order as discussed in
Section 5.

It is worth noting that these scenarios somehow represent oppo-
site extremes of the spectrum of data-repairing problems. In fact,
the HOSPITAL scenario contains functional dependencies only, and
therefore is quite standard in terms of constraints; however, it can
be considered a worst-case in terms of scalability, since all data are
stored as a single, non-normalized table, with many attributes and
lots of redundancy; over this single table, the 9 dependencies inter-
act in various ways, and there is no partial-order information that
can be used to ameliorate the cleaning process.

On the contrary, the CUSTOMERS scenario contains a complex
mix of dependencies; this increased complexity of the constraints
is compensated by the fact that data is stored as two normalized ta-
bles, with no redundancy, and clear preference strategies are given
for some of the attributes.

Errors. In order to test our algorithms with different levels of
noise, we introduced errors in the two datasets. Part of these er-
rors were generated by a random-noise generator. However, in or-
der to be as close as possible to real scenarios, in the HOSPITAL
dataset we also used a different source of noise. We asked workers

from Mechanical Turk (MT) (https://www.mturk.com/mturk/) to per-
form data entry for a random sample of tuples from the original
database. Workers were shown the original tuple under the form
of a jpeg image, and needed to manually copy values into a form.
We used different groups of workers with different approval rates;
approval rates measure the quality of a worker in terms of the per-
centage of previous jobs positively evaluated within MT. Approval
rates varied between 50% and 99%; for these, we observed a per-
centage of wrong values between 5% and 1%. These errors were
then complemented with those generated by the random noise gen-
erator.

For both datasets, we generated dirty copies with a number of
noisy cells ranging from 1% to 5% of the total. Changes to the
original values were done only for attributes involved in dependen-
cies, in order to maximize the probability of generating detectable
violations.

Algorithms. We tested LLUNATIC with several cost managers cho-
sen among those presented in Section 8. We chose variants of
the LLUNATIC-FR-SN cost manager – the frequency cost-manager
that generates up to N solutions – with N = 1, 10, 50, and the
LLUNATIC-FR-S1-FO, the forward-only variant of LLUNATIC-FR-
S1. We do not report results obtained by the standard cost manager,
as it only can be used with small instances due to its high comput-
ing times.

In order to compare our system to previous approaches, we tested
also the following FD repair algorithms from the literature, imple-
mented as separate systems: (a) Mimimum Cost [8] (MIN. COST);
(b) Vertex Cover [23] (VERTEX COVER); (c) Repair Sampling [7]
(SAMPLING), for which, for each experiment, we took 500 samples,
as done in the original paper.

Notice that these systems support a smaller class of constraints
wrt to the ones expressible with cleaning egds (essentially FDs
and, in some cases, CFDs). Several of the constraints in the CUS-
TOMERS scenario are outside of this class, and therefore cannot



handled by these algorithms. We therefore performed the compari-
son on the HOSPITAL scenario only.

Quality Metrics. We used precision-recall metrics. More specif-
ically, for each clean database, we generated the set Cp of pertur-
bated cells. Then, we run each algorithm to generate a set of re-
paired cells, Cr , and computed precision (P ), recall (R), and F-
measure (F = 2× (P ×R)/(P +R)) of Cr wrt Cp. Since several
of the algorithms may introduce variables as repairs – like our lluns
– we calculated two different metrics.

The first one is the one adopted in [7], which we call Metric 0.5:
(i) for each cell c ∈ Cr repaired to the original value in Cp, the
score was 1; (ii) for each cell c ∈ Cr changed into a value different
from the one in Cp, the score was 0; (iii) for each cell c ∈ Cr
repaired to a variable value, if the cell was also in Cp, the score
was 0.5. In essence, a llun or a variable is counted as a partially
correct change. This gives an estimate of precision and recall when
variables are considered as a partial match.

Since our scenarios may require a consistent number of vari-
ables, due to the need for backward repairs, and this metric dis-
favors variables, we also adopt a different metric, which counts all
correctly identified cells. In this metric, called Metric 1.0, item
(iii) above becomes: for each cell c ∈ Cr repaired to a variable
value, if the cell was also in Cp, the score was 1.

Whenever an algorithm returned more than one repair for a data-
base, we calculated P, R, and F for each repair; in the graphs, we
report the maximum, minimum, and average values.

Quality Figure 4 shows quality and scalability results. We start by
showing that LLUNATIC produces repairs of significantly higher
quality with respect to those produced by previous algorithms. We
ran LLUNATIC with the cost managers listed above, and the three
competing algorithms on samples of the HOSPITAL dataset with in-
creasing size (5k to 25k tuples) and increasing percentage of errors
(1% to 5%). We do not report values for the LLUNATIC-FR-S50
cost manager, since they differ for less than one percentage point
from those of LLUNATIC-FR-S10.

The maximum F-measure for Metric 1 is in Figure 4.(a); for the
two algorithms that return more than one solution, the minimum
and average F-measures are reported in Figure 4.(b). The maxi-
mum F-measure for Metric 0.5 is in Figure 4.(c). Quality results
for algorithms MIN. COST, VERTEX COVER, and REP. SAMPLING are
consistent with those reported in [7], which also conducted a com-
parison of these three algorithms on scenarios in which left and
right-hand-side repairs were necessary.

It is not surprising that the F-measure in these cases is quite low.
Consider, in fact, a relation R(A,B) with FD A → B and a tuple
R(a, 1); suppose the first cell is changed to introduce an error, so
that the tuple becomes R(x, 1). There are many cases in which
this error is not fixed by repairing algorithms. This happens, in
fact, whenever the new tuple, R(x, 1), does not get involved in
any conflict, and therefore the error goes undetected. In addition,
even if a violation is raised, an algorithm may choose to repair the
right-hand side of the dependency, thus missing the correct repair.
Finally, even when a left-hand-side repair is correctly identified,
algorithms have no clue about the right value for the A attribute,
and may do little more than introducing a variable – a llun in our
case – to fix the violation. All of these cases contribute to lower
precision and recall.

The superior quality achieved by LLUNATIC variants can be ex-
plained by first noticing that algorithms capable of repairing both
right and left-hand sides of dependencies obtained better results
than those that only perform forward repairs. Besides LLUNATIC,
the only other algorithm capable of backward repairs is SAMPLING.

However, this algorithm picks up repairs in a random way. On the
contrary, LLUNATIC’s chase algorithm explores the space of solu-
tions is a more systematic way, and this explains its improvements
in quality.

Figures 4.(d) reports results for the CUSTOMERS scenario. Re-
call that LLUNATIC is the first system that is able to handle such
kind of scenarios with complex constraints. We notice that quality
results are better than those on HOSPITAL; this is a consequence of
the clear user-specified preference rules.

Scalability The trade-offs between quality and scalability are shown
in Figures 4.(e) and 4.(f). Figure 4.(e) compares execution times
for the various algorithms on the HOSPITAL scenario up to 100K
tuples, with 1% perturbation. Recall that LLUNATIC is the first
DBMS-based implementation of a data repairing algorithm. There-
fore, our implementation is somehow disfavored in this compar-
ison. To see this, consider that, when producing repairs, main-
memory algorithms may aggressively use hash-based data struc-
tures to speed-up the computation of repairs, at the cost of using
more memory. Using the DBMS, our algorithm is constrained to
use SQL for accessing and repairing data; to see how this changes
the cost of a repair, consider that even updating a single cell (a very
quick operation when performed in main memory) when using the
DBMS requires to perform an UPDATE, and therefore a SELECT
to locate the right tuple.

Nevertheless, the LLUNATIC-FR-S1 cost manager scales nicely
and had better performances than some of the main memory im-
plementations. We may therefore say that graphs (c) and (e) in
Figure 4 give us a concrete perception of the trade-offs between
complexity and accuracy, and allow us to say that the LLUNATIC-
FR-S1 is the best compromise for the HOSPITAL scenario. Other
algorithms do not allow to fine tune this trade-off. To see an ex-
ample, consider the REP. SAMPLING algorithm: we noticed that
taking 1000 samples instead of 500 doubles execution times, but it
does not produce significant improvements in quality.

Figure 4.(f) clearly shows the benefits that come with a DBMS
implementation wrt main-memory ones, namely the possibility of
scaling up to very large databases. While previous works [8, 7]
have reported results up to a few thousand tuples, we were able to
investigate the performance of the system on databases of millions
of tuples. The figure shows that LLUNATIC scales in both scenar-
ios to large databases. For the HOSPITAL scenario we replicated
the original dataset ten times with 1% errors. In these cases, exe-
cution times in the order of the hours for millions of tuples can be
considered as a remarkable result, since no system had been able
to achieve them before on problems of such exponential complex-
ity. It is interesting to note that performances were significantly
better on the CUSTOMERS scenario. This is not surprising: as we
discussed above, the CUSTOMERS database contains non redun-
dant, normalize tables. In fact, this clearly shows the benefit of a
constraint language that allows to express inter-table cleaning con-
straints.

It is also worth noting that storing chase trees as delta databases
is crucial in order to achieve such a level of scalability. Without
such a representation system times would be orders of magnitude
higher.

10. RELATED WORK
Several classes of constraints have been proposed to character-

ize and improve the quality of data (see [13, 15] for surveys). Most
relevant to this paper are the (semi-)automated repairing algorithms
for these constraints [7, 8, 10, 18, 19, 23]. These methods differ in
the constraints that they admit, e.g., FDs [7, 8], CFDs [10, 23], in-



clusion dependencies [8], and editing rules [18], and the underlying
techniques used to improve their effectiveness and efficiency, e.g.,
statistical inference [10], measures of the reliability of the data [8,
18], and user interaction [10, 25].

All of these methods work for a specific class of constraints only,
with the exception of [19, 9]. These works explore the interac-
tion among different kinds of dependencies, but they do not have a
unified formal semantics with a definition of solution, neither the
generality of our partial order to model preferences.

In industrial settings, most data quality related tasks are executed
with ETL tools (e.g, Talend, and Informatica PowerCenter). These
systems are employed for data transformations and have low-level
modules for specific data quality tasks, such as verification of ad-
dresses and phone numbers. More complex operations are also par-
tially available, but lack the support for constraints.

We do allow for forward and backward chasing. Similarly, [10,
23, 7] resolve violations by changing values for attributes in both
the premise and conclusion of constraints. They do, however, only
support a limited class of constraints. Previous works [23, 7] have
used variables in order to repair the left-hand side of dependencies.
With respect to variables, our lluns are a more sophisticated tool.
In our approach, the full power of lluns is achieved in conjunction
with cell-groups: for each llun, the corresponding cell group pro-
vides complete provenance data for the llun, both in terms of target
and source cells. Therefore, it represents an ideal support for user
intervention, when the value of the llun must be resolved to some
constant. In fact, lluns and cell-groups can be seen as a novel rep-
resentation system [22] for solutions, that stands in between of the
naive tables of data exchange, and of the more expressive c-tables,
trying to strike a balance between complexity and expressibility.

An approach similar to ours has been proposed in [6], with re-
spect to a different cleaning problem. The authors concentrate
on scenarios with matching dependencies and matching functions,
where the main goal is to merge together values based on attribute
similarities, and develop a chase-based algorithm. They show that,
under proper assumptions, matching functions provide a partial or-
der over database values, and that the partial order can be lifted
to database instances and repairs. A key component of their ap-
proach is the availability of matching functions that are essentially
total, i.e., they are able to merge any two comparable values. In
fact, the problem they deal with can be seen as an instance of the
entity-resolution problem. In this paper, we deal with the different
problem of data-repairing under a large class of data-cleaning con-
straints, and have a more ambitious goal, i.e., to embed different
forms of value preference into a general semantics for the cleaning
process. Our main intuition is that the notion of a partial order is an
effective way to let users specify value preferences, and to incorpo-
rate them into the semantics in a principled way. In order to do this,
we have shown that reasoning on the ordering of values – as in [6]
– or on the ordering of single cells is not enough. On the contrary,
it is necessary to devise a more sophisticated notion of a partial
order for cell-groups, i.e., groups of cells that need to be repaired
together and for which lineage information is maintained. Also, we
do not make strong assumptions about the possibility of resolving
all conflicts among values in the database, and therefore introduce
lluns as a third category of values besides nulls and constants.

A comparison of the features supported by existing methods and
our repairing method is given in Table 1. We believe that this work
makes a concrete step forward towards the goal of developing a
uniform formalism for data cleaning, and may stimulate further re-
search on this subject. With a similar spirit, [11] has developed
a unifying view of previous approaches by abstracting different
classes of constraints with respect to a different problem, that of

query answering over inconsistent data.
Our framework can be seen as an extension of the data exchange

setting [12]. With respect to the standard chase algorithms for egds,
our chase always terminates and never fails, by leveraging the par-
tial order. We are not aware of any extension of the data exchange
setting that allows the introduction of special values (like lluns) to
avoid failing chase computations. In fact, we are currently extend-
ing our formalism to accommodate for mapping and cleaning sce-
narios, in such a way to maintain the results from the data exchange
literature and enlarge them to data repairing.
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ABSTRACT
Classical approaches to clean data have relied on using in-
tegrity constraints, statistics, or machine learning. These
approaches are known to be limited in the cleaning accu-
racy, which can usually be improved by consulting master
data and involving experts to resolve ambiguity. The advent
of knowledge bases (kbs), both general-purpose and within
enterprises, and crowdsourcing marketplaces are providing
yet more opportunities to achieve higher accuracy at a larger
scale. We propose Katara, a knowledge base and crowd
powered data cleaning system that, given a table, a kb, and
a crowd, interprets table semantics to align it with the kb,
identifies correct and incorrect data, and generates top-k
possible repairs for incorrect data. Experiments show that
Katara can be applied to various datasets and kbs, and
can efficiently annotate data and suggest possible repairs.

1. INTRODUCTION
A plethora of data cleaning approaches that are based on

integrity constraints [2,7,9,20,36], statistics [30], or machine
learning [43], have been proposed in the past. Unfortunately,
despite their applicability and generality, they are best-effort
approaches that cannot ensure the accuracy of the repaired
data. Due to their very nature, these methods do not have
enough evidence to precisely identify and update the errors.
For example, consider the table of soccer players in Fig. 1
and a functional dependency B → C, which states that
B (country) uniquely determines C (capital). This would
identify a problem for the four values in tuple t1 and t3 over
the attributes B and C. A repair algorithm would have to
guess which value to change so as to “clean” the data.

To increase the accuracy of such methods, a natural ap-
proach is to use external information in tabular master
data [19] and domain experts [19,35,40,44]. However, these
resources may be scarce and are usually expensive to em-
ploy. Fortunately, we are witnessing an increased availabil-
ity of both general purpose knowledge bases (kbs) such as

∗Work partially done while interning/working at QCRI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Al B C D E F G
bt1 Rossi Italy Rome Verona Italian Proto 1.78
bt2 Klate S. Africa Pretoria Pirates Afrikaans P. Eliz. 1.69
bt3 Pirlo Italy Madrid Juve Italian Flero 1.77

Figure 1: A table T for soccer players

Yago [21], DBpedia [31], and Freebase, as well as special-
purpose kbs such as RxNorm1. There is also a sustained
effort in the industry to build kbs [14]. These kbs are usu-
ally well curated and cover a large portion of the data at
hand. In addition, while access to an expert may be limited
and expensive, crowdsourcing has been proven to be a viable
and cost-effective alternative solution.

Challenges. Effectively exploring kbs and crowd in data
cleaning raises several new challenges.

(i) Matching (dirty) tables to kbs is a hard problem. Tables
may lack reliable, comprehensible labels, thus requiring the
matching to be executed on the data values. This may lead
to ambiguity; more than one mapping may be possible. For
example, Rome could be either city, capital, or club in the
kb. Moreover, tables usually contain errors. This would
trigger problems such as erroneous matching, which will add
uncertainty to or even mislead the matching process.

(ii) kbs are usually incomplete in terms of the coverage of
values in the table, making it hard to find correct table pat-
terns and associate kb values. Since we consider data that
could be dirty, it is often unclear, in the case of failing to
find a match, whether the database values are erroneous or
the kb does not cover these values.

(iii) Human involvement is needed to validate matchings and
to verify data when the kbs do not have enough coverage.
Effectively involving the crowd requires dealing with tradi-
tional crowdsourcing issues such as forming easy-to-answer
questions for the new data cleaning tasks and optimizing the
order of issuing questions to reduce monetary cost.

Despite several approaches for understanding tables with
kbs [13,28,39], to the best of our knowledge, they do not ex-
plicitly assume the presence of dirty data. Moreover, previ-
ous work exploiting reference information for repair has only
considered full matches between the tables and the master
data [19]. On the contrary, with kbs, partial matches are
common due to the incompleteness of the reference.

To this end, we present Katara, the first data cleaning
system that leverages prevalent trustworthy kbs and crowd-
sourcing for data cleaning. Given a dirty table and a kb,

1
https://www.nlm.nih.gov/research/umls/rxnorm/
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A (person)

B (country) C (Capital)

D (football 
club)

E (language)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (city)

hasClub

(a) A table pattern ϕs

A (Rossi)

B (Italy) C (Rome)

D (Verona)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Proto)

hasClub

(b) t1: kb validated

A (Klate)

B (S. Africa) C (Pretoria)

D (Pirates)

E (Afrikaans)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (P. Eliz.)

hasClub

(c) t2: kb & crowd validated

A (Pirlo)

B (Italy) C (Madrid)

D (Juve)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Flero)

hasClub

(d) t3: erroneous tuple

Figure 2: Sample solution overview

Katara first discovers table patterns to map the table to an
RDF graph obtained from the kb. For instance, consider
the table of soccer players in Fig. 1 and the kb Yago. Our
table patterns state that the types for columns A, B, and
C in the kb are person, country, and capital, respectively,
and that two relationships between these columns hold, i.e.,
A is related to B via nationality and B is related to C via
hasCapital. With table patterns, Katara can annotate tu-
ples as being either correct or incorrect by interleaving kbs

and crowdsourcing. For incorrect tuples, Katara will ex-
tract top-k mappings from the kb as possible repairs. In
addition, a by-product of Katara is that data annotated
by the crowd as being valid, and which is not found in the
kb, provides new facts to enrich the kb. Katara actively
and efficiently involve human experts when automatic ap-
proaches cannot capture or face ambiguity, for example, to
involve humans to validate patterns discovered, and to in-
volve humans to select from the top-k possible repairs.

Contributions. We built Katara for annotating and re-
pairing data using kbs and crowd, with the following con-
tributions.

1. Table pattern definition and discovery. We propose a
new class of table patterns to explain table semantics
using kbs (Section 3). Each table pattern is a directed
graph, where a node represents a type of a column
and a directed edge represents a binary relationship
between two columns. We present a new rank-join
based algorithm to efficiently discover table patterns
with high scores. (Section 4).

2. Table pattern validation via crowdsourcing. We devise
an efficient algorithm to validate the best table pat-
tern via crowdsourcing (Section 5). To minimize the
number of questions, we use an entropy-based schedul-
ing algorithm to maximize the uncertainty reduction
of candidate table patterns.

3. Data annotation. Given a table pattern, we annotate
data with different categories (Section 6): (i) correct
data validated by the kb; (ii) correct data jointly val-
idated by the kb and the crowd; and (iii) erroneous
data jointly identified by the kb and the crowd. We
also devise an efficient algorithm to generate top-k pos-
sible repairs for those erroneous data identified in (iii).

4. We conducted extensive experiments to demonstrate
the effectiveness and efficiency of Katara using real-
world datasets and kbs (Section 7).

2. AN OVERVIEW OF Katara

Katara consists of three modules (see Fig. 9 in Ap-
pendix): pattern discovery, pattern validation, and data
annotation. The pattern discovery module discovers table
patterns between a table and a kb. The pattern validation

module uses crowdsourcing to select one table pattern. Us-
ing the selected table pattern, the data annotation module
interacts with the kb and the crowd to annotate data. It
also generates possible repairs for erroneous tuples. More-
over, new facts verified by crowd will be used to enrich kbs.

Example 1: Consider a table T for soccer players (Fig. 1).
T has opaque values for the attributes’ labels, thus its se-
mantics is completely unknown. We assume that we have
access to a kb K (e.g., Yago) containing information related
to T . Katara works in the following steps.

(1) Pattern discovery. Katara first discovers table patterns
that contain the types of the columns and the relationships
between them. A table pattern is represented as a labelled
graph (Fig. 2(a)) where a node represents an attribute and
its associated type, e.g., “C (capital)” means that the type of
attribute C in kb K is capital. A directed edge between two
nodes represents the relationship between two attributes,
e.g., “B hasCapital C” means that the relationship from B
to C in K is hasCapital. A column could have multiple can-
didate types, e.g., C could also be of type city. However,
knowing that the relationship from B to C is hasCapital
indicates that capital is a better choice. Since kbs are of-
ten incomplete, the discovered patterns may not cover all
attributes of a table, e.g., attribute G of table T is not cap-
tured by the pattern in Fig. 2(a).

(2) Pattern validation. Consider a case where pattern dis-
covery finds two similar patterns: the one in Fig. 2(a),
and its variant with type location for column C. To se-
lect the best table pattern, we send the crowd the question
“Which type (capital or location) is more accurate for val-
ues (Rome,Pretoria and Madrid)?”. Crowd answers will help
choose the right pattern.

(3) Data annotation. Given the pattern in Fig. 2(a),
Katara annotates a tuple with the following three labels:

(i) Validated by the kb. By mapping tuple t1 in table T
to K, Katara finds a full match, shown in Fig. 2(b)
indicating that Rossi (resp. Italy) is in K as a person
(resp. country), and the relationship from Rossi to Italy
is nationality. Similarly, all other values in t1 w.r.t.
attributes A-F are found in K. We consider t1 to be
correct w.r.t. the pattern in Fig. 2(a) and only to
attributes A-F .

(ii) Jointly validated by the kb and the crowd. Consider t2
about Klate, whose explanation is depicted in Fig. 2(c).
In K, Katara finds that S. Africa is a country, and
Pretoria is a capital. However, the relationship from
S. Africa to Pretoria is missing. A positive answer from
the crowd to the question “Does S. Africa hasCapital
Pretoria?” completes the missing mapping. We con-
sider t2 correct and generate a new fact “S. Africa
hasCapital Pretoria”.
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(iii) Erroneous tuple. For tuple t3, there is also no link from
Italy to Madrid in K (Fig. 2(d)). A negative answer
from the crowd to the question “Does Italy hasCapital
Madrid?” confirms that there is an error in t3, At this
point, however, we cannot decide which value in t3
is wrong, Italy or Madrid. Katara will then extract
related evidences from K, such as Italy hasCapital Rome
and Spain hasCapital Madrid, and use these evidences
to generate a set of possible repairs for this tuple. 2

The pattern discovery module can be used to select the
more relevant kb for a given dataset. If the module cannot
find patterns for a table and a kb, Katara will terminate.

3. PRELIMINARIES

3.1 Knowledge Bases
We consider knowledge bases (kbs) as RDF-based data

consisting of resources, whose schema is defined using the
Resource Description Framework Schema (RDFS). A re-
source is a unique identifier for a real-word entity. For
instance, Rossi, the soccer player, and Rossi, the motorcy-
cle racer, are two different resources. Resources are rep-
resented using URIs (Uniform Resource Identifiers) in Yago
and DBPedia, and mids (machine-generated ids) in Freebase.
A literal is a string, date, or number, e.g., 1.78. A prop-
erty (a.k.a. relationship) is a binary predicate that repre-
sents a relationship between two resources or between a re-
source and a literal. We denote the property between re-
source x and resource (or literal) y by P (x, y). For instance,
locatedIn(Milan, Italy) indicates that Milan is in Italy.

An RDFS ontology distinguishes between classes and in-
stances. A class is a resource that represents a set of objects,
e.g., the class of countries. A resource that is a member of a
class is called an instance of that class. The type relationship
associates an instance to a class e.g., type(Italy) = country.

A more specific class c can be specified as a subclass of a
more general class d by using the statement subclassOf(c, d).
This means that all instances of c are also instances of d,
e.g., subclassOf(capital, location). Similarly, a property P1

can be a sub-property of a property P2 by the statement
subpropertyOf(P1, P2). Moreover, we assume that the prop-
erty between an entity and its readable name is labeled with
“label”, according to the RDFS schema.

Note that an RDF ontology naturally covers the case of a
kb without a class hierarchy such as IMDB. Also, a more ex-
pressive languages, such as OWL (Web Ontology Language),
can offer more reasoning opportunities at a higher computa-
tional cost. However, kbs in industry [14] as well as popular
ones, such as Yago, Freebase, and DBpedia, use RDFS.

3.2 Table Patterns
Consider a table T with attributes denoted by Ai. There

are two basic semantic annotations on a relational table.

(1) Type of an attribute Ai. The type of an attribute is an
annotation that represents the class of attribute values in Ai.
For example, the type of attribute B in Fig. 1 is country.

(2) Relationship from attribute Ai to attribute Aj . The
relationship between two attributes is an annotation that rep-
resents how Ai and Aj are related through a directed binary
relationship. Ai is called the subject of the relationship, and
Aj is called the object of the relationship. For example, the
relationship from attribute B to C in Fig. 1 is hasCapital.

Table pattern. A table pattern (pattern for short) ϕ of a
table T is a labelled directed graph G(V,E) with nodes V
and edges E. Each node u ∈ V corresponds to an attribute
in T , possibly typed, and each edge (u, v) ∈ E from u to
v has a label P , denoting the relationship between two at-
tributes that u and v represent. For a pattern ϕ, we denote
by ϕu a node u in ϕ, ϕ(u,v) an edge in ϕ, ϕV all nodes in ϕ,
and ϕE all edges in ϕ.

We assume that a table pattern is a connected graph.
When there exist multiple disconnected patterns, i.e., two
table patterns that do not share any common node, we treat
them independently. Hence, in the following, we focus on
discussing the case of a single table pattern.

Semantics. A tuple t of T matches a table pattern ϕ con-
taining m nodes {v1, . . . , vm} w.r.t. a kb K, denoted by
t |= ϕ, if there exist m distinct attributes {A1, . . . , Am} in
T and m resources {x1, . . . , xm} in K such that:

1. there is a one-to-one mapping from Ai (and xi) to vi
for i ∈ [1,m];

2. t[Ai] ≈ xi and either type(xi) = type(vi) or
subclassOf(type(xi), type(vi));

3. for each edge (vi, vj) in ϕE with property P , there
exists a property P ′ for the corresponding resources xi

and xj in K such that P ′ = P or subpropertyOf(P ′, P ).

Intuitively, if t matches ϕ, each corresponding attribute
value of t maps to a resource r in K under a domain-specific
similarity function (≈), and r is a (sub-)type of the type
given in ϕ (conditions 1 and 2). Moreover, for each property
P in a pattern, the property between the two corresponding
resources must be P or its sub-properties (condition 3).

Example 2: Consider tuple t1 in Fig. 1 and pattern ϕs in
Fig. 2(a). Tuple t1 matches ϕs, as in Fig. 2(b), since for each
attribute value (e.g., t1[A] = Rossi and t1[B] = Italy) there is
a resource in K that has a similar value with corresponding
type (person for Rossi and country for Italy) for conditions 1
and 2, and the property nationality holds from Rossi to Italy
in K (condition 3). Similarly, conditions 1–3 hold for other
attribute values in t1. Hence, t1 |= ϕs. 2

We say that a tuple t of T partially matches a table pattern
ϕ w.r.t. K, if at least one of condition 2 and condition 3
holds.

Example 3: Consider t2 in Fig. 1 and ϕs in Fig. 2(a).
We say that t2 partially matches ϕs, since the property
hasCapital from t2[B] = S. Africa to t2[C] = Pretoria does
not exist in K, i.e., condition 3 does not hold. 2

Given a table T , a kb K, and a pattern ϕ, Fig. 3 shows
how Katara works on T .

(1) Attributes covered by K. Attributes A–F in Fig. 1 are
covered by the pattern in Fig. 2(a). We consider two cases
for the tuples.

(a) Fully covered by K. We annotate such tuples as se-
mantically correct relative to ϕ and K (Fig. 2(b)).

(b) Partially covered by K. We use crowdsourcing to ver-
ify whether the non-covered data is caused by the
incompleteness of K (Fig. 2(c)) or by actual errors
(Fig. 2(d)).

(2) Attributes not covered by K. Attribute G in Fig. 1 is not
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KB

(2) Attributes not 
covered by KB(1) Attributes covered by KB

(a) Fully covered by KB

(b) Partially covered by KB correct
errors

A table pattern P

A Table

Column 1 ... ... ... ... Column i Column i+1 ... Column j

Figure 3: Coverage of a table pattern

covered by the pattern in Fig. 2(a). In this case, Katara
cannot annotate G due to the missing information in K.

For non-covered attributes, we could ask the crowd open-
ended questions, such as“What are the possible relationships
between Rossi and 1.78?”. While approaches have been pro-
posed for open-ended questions to the crowd [38], we leave
the problem of extending the structure of the kbs to future
work, as discussed in Section 9.

4. TABLE PATTERN DISCOVERY
We first describe candidate types and candidate relation-

ships generation (Section 4.1). We then discuss the scoring
to rank table patterns (Section 4.2). We also present a rank-
join algorithm to efficiently compute top-k table patterns
(Section 4.3) from the candidate types and relationships.

4.1 Candidate Type/Relationship Discovery
We focus on cleaning tabular data for which the schema

is either unavailable or unusable. This is especially true
for most Web tables and in many enterprise settings where
cryptic naming conventions are used. Thus, for table-kb
mapping, we use a more general instance based approach
that does not require the availability of meaningful column
labels. For each column Ai of table T and for each value
t[Ai] of a tuple t, we map this value to several resources in
the kb K whose type can then be extracted. To this end, we
issue the following SPARQL query which returns the types
and supertypes of entities whose label (i.e., value) is t[Ai].

Qtypes select ?ci
where {?xi rdfs:label t[Ai],

?xi rdfs:type/rdfs:subClassOf∗ ?ci}
Similarly, the relationship between two values t[Ai] and

t[Aj ] from a kb K can be retrieved via the two following
SPARQL queries.

Q1
rels select ?Pij

where {?xi rdfs:label t[Ai], ?xj rdfs:label t[Aj ],
?xi ?Pij/rdfs:subPropertyOf∗ ?xj}

Q2
rels select ?Pij

where {?xi rdfs:label t[Ai],
?xi ?Pij/rdfs:subPropertyOf∗ t[Aj ]}

Query Q1
rels retrieves relationships where the second at-

tribute is a resource in kbs and Q2
rels retrieves relationships

where the second attribute is a literal value, i.e., untyped.

Example 4: In Fig. 1, both Italy and Rome are stored as
resources in K, thus their relationship hasCapital would be
discovered by Q1

rels; while numerical values such as 1.78 are
stored as literals in the kbs, thus the relationship between
Rossi and 1.78 would be discovered by query Q2

rels. 2

In addition, for two values t[Ai] and t[Aj ], we consider
them as an ordered pair, thus in total four queries are issued.

Ranking Candidates. We use a normalized version of tf-
idf (term frequency-inverse document frequency) [29] to rank

the candidate types of a column Ai. We simply consider each
cell t[Ai],∀t ∈ T , as a query term, and each candidate type
Ti as a document whose terms are the entities of Ti in K.
The tf-idf score of assigning Ti as the type for Ai is the sum
of all tf-idf scores of all cells in Ai:

tf-idf(Ti, Ai) =
∑

t∈T
tf-idf(Ti, t[Ai])

where tf-idf(Ti, t[Ai]) = tf(Ti, t[Ai]) · idf(Ti, t[Ai]).
The term frequency tf(Ti, t[Ai]) measures how frequently

t[Ai] appears in document Ti. Since every type has a differ-
ent number of entities, the term frequency is normalized by
the total number of entities of a type.

tf(Ti, t[Ai]) =

{
0 if t[Ai] is not of Type Ti

1
log (Number of Entities of Type Ti)

otherwise

For example, consider a column with a single cell Italy
that has both type Country and type Place. Since there is
a smaller number of entities of type Country than that of
Place, Country is more likely to be the type of that column.

The inverse document frequency idf(Ti, t[Ai]) measures
how important t[Ai] is. Under local completeness assump-
tion of kbs [15], if the kb knows about one possible type of
t[Ai], the kb should have all possible types of t[Ai]. Thus,
we define idf(Ti, t[Ai]) as follows:

idf(Ti, t[Ai]) =

{
0 if t[Ai] has no type

log Number of Types in K
Number of Types of t[Ai]

otherwise

Intuitively, the less the number of types t[Ai] has, the more
contribution t[Ai] makes. For example, consider a column
that has two cells “Apple” and “Microsoft”. Both have Type
Company, however, “Apple” has also Type Fruit. Therefore,
“Microsoft” being of Type Company says more about the
column being of Type Company than “Apple” says about
the column being of Type Company.

The tf-idf scores of all candidate types for Ai are normal-
ized to [0, 1] by dividing them by the largest tf-idf score of the
candidate type for Ai. The tf-idf score tf-idf(Pij , Ai, Aj) of
candidate relationship Pij assigned to column pairs Ai and
Aj are defined similarly.

4.2 Scoring Model for Table Patterns
A table pattern contains types of attributes and properties

between attributes. The space of all candidate patterns is
very large (up to the Cartesian product of all possible types
and relationships), making it expensive for human verifica-
tion. Since not all candidate patterns make sense in prac-
tice, we need a meaningful scoring function to rank them
and consider only the top-k ones for human validation.

A naive scoring model for a candidate table pattern ϕ,
consisting of type Ti for column Ai and relationship Pij for
column pair Ai and Aj , is to simply add up all tf-idf scores
of the candidate types and relationships in ϕ:

naiveScore(ϕ) = Σm
i=0tf-idf(Ti, Ai) + Σijtf-idf(Pij , Ai, Aj)

However, columns are not independent of each other. The
choice of the type for a column Ai affects the choice of the
relationship for column pair Ai and Aj , and vice versa.

Example 5: Consider the two columns B and C in Fig. 1.
B has candidate types economy, country, and state, C has
candidate types city and capital, and B and C have a candi-
date relationship hasCapital. Intuitively, country as a candi-
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Algorithm 1 PDiscovery

Input: a table T , a KB K, and a number k.
Output: top-k table patterns based on their scores
1: types(Ai)← get a ranked list of candidate types for Ai

2: properties(Ai, Aj) ← get a ranked list of candidate relation-
ships for Ai and Aj

3: Let P be the top-k table patterns, initialized empty
4: for all Ti ∈ types(Ai), and Pij ∈ properties(Ai, Aj) in de-

scending order of tf-idf scores do
5: if |P| > k and TypePruning(Ti) then
6: continue
7: generate all table patterns P ′ involving Ti or Pij

8: compute the score for each table pattern P in P ′
9: update P using P ′

10: compute the upper bound score B of all unseen patterns,
and let ϕk ∈ P be the table pattern with lowest score

11: halt when score(ϕk) > B
12: return P

date type for column B is more compatible with hasCapital
than economy since capitals are associated with countries,
not economies. In addition, capital is also more compatible
with hasCapital than city since not all cities are capitals. 2

Based on the above observation, to quantify the“compati-
bility” between a type T and relationship P , where T serves
as the type for the resources appearing as subjects of the
relationship P , we introduce a coherence score subSC(T, P ).
Similarly, to quantify the “compatibility” between a type
T and relationship P , where T serves as the type for the
entities appearing as objects of the relationship P , we in-
troduce a coherence scores objSC(T, P ). subSC(T, P ) (resp.
objSC(T, P )) measures how likely an entity of Type T ap-
pears as a subject (resp. object) of the relationship P .

We use pointwise mutual information (PMI) [10] as a
proxy for computing subSC(T, P ) and objSC(T, P ). We use
the following notations: ENT(T ) - the set of entities in K
of type T , subENT(P ) - the set of entities in K that ap-
pear in the subject of P , objENT(P ) - the set of entities
in K that appear in the object of P , and N - the total
number of entities in K. We then consider the following

probabilities: Pr(T ) = |ENT(T )|
N , the probability of an entity

belonging to T , Prsub(P ) = |subENT(P )|
N , the probability of an

entity appearing in the subject of P , Probj(P ) = |objENT(P )|
N ,

the probability of an entity appearing in the object of P ,

Prsub(P ∩ T ) = |ENT(T )∩subENT(P )|
N , the probability of an en-

tity belonging to type T and appearing in the subject of P ,

and Probj(P ∩ T ) = |ENT(T )∩objENT(P )|
N , the probability of an

entity belonging to type T and appearing in the object of
P . Finally, we can define PMIsub(T, P ):

PMIsub(T, P ) = log
Prsub(P ∩ T )

Prsub(P )Pr(T )

The PMI can be normalized into [−1, 1] as follows [3]:

NPMIsub(T, P ) =
PMIsub(T, P )

−Prsub(P ∩ T )

To ensure that the coherence score is in [0, 1], we define
the subject semantic coherence of T for P as

subSC(T, P ) =
NPMIsub(T, P ) + 1

2
The object semantic coherence of T for P can be defined

similarly.

Example 6: Below are sample coherence scores computed
from Yago.

Algorithm 2 TypePruning

Input: current top-k table patterns P, candidate type Ti.
Output: a boolean value, true/false means Ti can/cannot be

pruned
1: curMinCohSum(Ai) ← minimum sum of all coherence scores

involving column Ai in current top-k P
2: maxCohSum(Ai, Ti)← maximum sum of all coherence scores

if the type of column Ai is Ti

3: if maxCohSum(Ai, Ti) < curMinCohSum(Ai) then
4: return true
5: else
6: return false

subSC(economy, hasCapital) = 0.84
subSC(country, hasCapital) = 0.86
objSC(city, hasCapital) = 0.69
objSC(capital, hasCapital) = 0.83

These scores reflect our intuition in Example 5: country is
more suitable than economy to act as a type for the subject
resources of hasCapital; and capital is more suitable than city
to act as a type for the object resources of hasCapital. 2

We now define the score of a pattern ϕ as follows:

score(ϕ) = Σm
i=0tf-idf(Ti, Ai) + Σijtf-idf(Pij , Ai, Aj)

+Σij(subSC(Ti, Pij) + objSC(Tj , Pij))

4.3 Top-k Table Pattern Generation
Given the scoring model of table patterns, we describe how

to retrieve the top-k table patterns with the highest scores
without having to enumerate all candidates. We formulate
this as a rank-join problem [22]: given a set of sorted lists
and join conditions of those lists, the rank-join algorithm
produces the top-k join results based on some score function
for early termination without consuming all the inputs.

Algorithm. The algorithm, referred as PDiscovery, is
given in Algorithm 1. Given a table T , a kb K, and a
number k, it produces top-k table patterns. To start, each
input list, i.e., candidate types for a column, and candi-
date relationships for a column pair, is ordered according
to the respective tf-idf scores (lines 1-2). When two candi-
date types (resp. relationships) have the same tf-idf scores,
the more discriminative type (resp. relationship) is ranked
higher, i.e., the one with less number of instances in K.

Two lists are joined if they agree on one column, e.g.,
the list of candidate types for Ai is joined with the list of
candidate relationships for Ai and Aj . A join result is a can-
didate pattern ϕ, and the scoring function is score(ϕ). The
rank-join algorithm scans the ranked input lists in descend-
ing order of their tf-idf scores (lines 3-4), table patterns are
generated incrementally as we move down the input lists.
Table patterns that cannot be used to produce top-k pat-
terns will be pruned (lines 5-6). For each join result, i.e.,
each table pattern ϕ, the score score(ϕ) is computed (lines 7-
8). We also maintain an upper bound B of the scores of all
unseen join results, i.e., table patterns (line 10). Since each
list is ranked, B can be computed by adding up the sup-
port scores of the current positions in the ranked lists, plus
the maximum coherence scores a candidate relationship can
have with any types. We terminate the join process if either
we have exhaustively scanned every input list, or we have
obtained top-k table patterns and the score of the kth table
pattern is greater than or equal to B (line 11).

Lines 5-6 in Algorithm 1 check whether a candidate type
Ti for column Ai can be pruned without generating ta-
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ble patterns involving Ti by calling Algorithm 2. The in-
tuition behind type pruning (Algorithm 2) is that a can-
didate type Ti is useful if it is more coherent with any
relationship Pix than previously examined types for Ai.
We first calculate the current minimum sum of coherence
scores involving column Ai in the current top-k patterns,
i.e., curMinCohSum(Ai) (line 1). We then calculate the
maximum possible sum of coherence scores involving type
Ti, i.e., maxCohSum(Ai, Ti) (line 2). Ti can be pruned if
maxCohSum(Ai, Ti) < curMinCohSum(Ai) since any table
pattern having Ti as the type for Ai will have a lower score
than the scores of the current top-k patterns (lines 3-6).

Example 7: Consider the rank-join graph in Fig. 4
(k = 2) for a table with just two columns B and
C as in Fig. 1. The tf-idf scores for each candi-
date type and relationship are shown in the parenthe-
ses. The top-2 table patterns ϕ1, ϕ2 are shown on the
top. score(ϕ1) = sup(country, B) + sup(capital, C) +
sup(hasCapital, B,C) + 5 × (subSC(country, hasCapital) +
objSC(capital, hasCapital)) = 1.0 + 0.9 + 0.9 + 0.86 + 0.83 =
4.49. Similarly, we have score(ϕ2) = 4.47.

Suppose we are currently examining type state for column
B. We do not need to generate table patterns involving state
since the maximum coherence between state and hasCapital
or isLocatedIn is less than the the current minimum coher-
ence score between type of column B and relationship be-
tween B and C in the current top-2 patterns.

Suppose we are examining type whole for column C, and
we have reached type state for B and hasCapital for rela-
tionship B,C. The bound score for all unseen patterns is
B = 0.7 + 0.5 + 0.9 + 0.86 + 0.83 = 3.78, where 0.7, 0.9 and
0.5 are the tf-idf scores for state, whole and hasCapital re-
spectively, and 0.86 (resp. 0.83) is the maximum coherence
score between any type in types(B) (resp. types(C)) and
any relationship in properties(B,C). Since B is smaller than
score(ϕ2) = 4.47, we terminate the rank join process. 2

Correctness. Algorithm 1 is guaranteed to produce the
top-k table patterns since we keep the current top-k patterns
in P, and we terminate when we are sure that it will not
produce any new table pattern with a higher score. In the
worst case, we still have to exhaustively go through all the
ranked lists to produce the top-k table patterns. However,
in most cases the top ranked table patterns involve only
candidate types/relationships with high tf-idf scores, which
are at the top of the lists.

Computing coherence scores for a type and a relation-
ship is an expensive operation that requires set intersection.
Therefore, for a given K, we compute offline the coherence
score for every type and every relationship. For each rela-
tionship, we also keep the maximum coherence score it can
achieve with any type, to efficiently compute the bound B.

5. PATTERN VALIDATION VIA CROWD
We now study how to use the crowd to validate the discov-

ered table patterns. Specifically, given a set P of candidate
patterns, a table T , a kb K, and a crowdsourcing frame-
work, we need to identify the most appropriate pattern for
T w.r.t. K, with the objective of minimizing the number of
crowdsourcing questions. We assume that the crowd work-
ers are experts in the semantics of the reference kbs, i.e.,
they can verify if values in the tables fit into the kbs.

economy(1.0)
country(1.0)
location(1.0)

state(0.7)
…

   type (B)
locatedIn(1.0)

hasCapital(0.9)

 relationship (B, C)
City(1.0)

Capital(0.9)
whole(0.5)
artifact(0.1)
Person(0.1)

…

  type (C)

      1: B (country), C (capital), hasCapital (B, C)
2: B (economy), C (city), hasCapital (B, C)

'
'

Figure 4: Encoding top-k as a rank-join

5.1 Creating Questions for the Crowd
A naive approach to generate crowdsourcing questions is

to express each candidate table pattern as a whole in a single
question to the crowd who would then select the best one.
However, table pattern graphs can be hard for crowd users to
understand (e.g., Fig. 2(a)). Also, crowd workers are known
to be good at answering simple questions [41]. A practical
solution is to decompose table patterns into simple tasks:
(1) type validation, i.e., to validate the type of a column
in the table pattern; and (2) binary relationship validation,
i.e., to validate the relationship between two columns.

Column type validation. Given a set of candidate types
candT(Ai) for column Ai, one type Ti ∈ candT(Ai) needs
to be selected. We formulate the following question to the
crowd about the type of a column: What is the most accurate
type of the highlighted column?; along with kt randomly cho-
sen tuples from T and all candidate types from candT(Ai).
A sample question is given as follows.

Q1 :What is the most accurate type of the highlighted column?

(A, B , C, D, E, F , ...)

(Rossi, Italy , Rome, Verona, Italian, Proto, ...)

(Pirlo, Italy , Madrid, Juve, Italian, Flero
”

...)

© country © economy
© state © none of the above

After q questions are answered by the crowd workers, the
type with the highest support from the workers is chosen.

Crowd workers, even if experts in the reference kb, are
prone to mistakes when t[Ai] in tuple t is ambiguous, i.e.,
t[Ai] belongs to multiple types in candT(Ai). However, this
is mitigated by two observations: (i) it is unlikely that all
values are ambiguous and (ii) the probability of providing
only ambiguous values diminishes quickly with respect to
the number of values. Consider two types T1 and T2 in
candT(Ai), the probability that randomly selected entities

belong to both types is p = |ENT (T1)∩ENT (T2)|
|ENT (T1)∪ENT (T2)| . After q

questions are answered, the probability that all q · kt values
are ambiguous is pq·kt . Suppose p = 0.8, a very high for two
types in K, and five questions are asked with each question
containing five tuples, i.e., q = 5, kt = 5, the probability
pq·kt becomes as low as 0.0038.

For each question, we also expose some contextual at-
tribute values that help workers better understand the ques-
tion. For example, we expose the values for A,C,D,E in
question Q1 when validating the type of B. If the the num-
ber of attributes is small, we show them all; otherwise, we
use off-the-shelf technology to identify attributes that are
related to the ones in the question [23]. To mitigate the risk
of workers making mistakes, each question is asked three
times, and the majority answer is taken. Indeed, our empir-
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ical study in Section 7.2 shows that five questions are enough
to pick the correct type in all the datasets we experimented.

Relationship validation. We validate the relationship for
column pairs in a similar fashion, with an example below.

Q2 :What is the most accurate relationship for

highlighted columns (A, B, C , D, E, F , ...)

(Rossi, Italy, Rome , Verona, Italian, Proto, ...)

(Pirlo, Italy, Madrid , Juve, Italian, Flero, ...)

© B hasCapital C © C locatedIn B © none of the above

Candidate types and candidate relationships are stored
as URIs in kbs; thus not directly consumable by the
crowd workers. For example, the type capital is stored as
http://yago-knowledge.org/resource/wordnet capital 10851850,
and the relationship hasCapital is stored as http://yago-

knowledge.org/resource/hasCapital. We look up type and
relationship descriptions, e.g., capital and hasCapital, by
querying the kb for the labels of the corresponding URIs.
If no label exists, we process the URI itself by removing the
text before the last slash and punctuation symbols.

5.2 Question Scheduling
We now turn our attention to how to minimize the total

number of questions to obtain the correct table pattern by
scheduling which column and relationship to validate first.

Note that once a type (resp. relationship) is validated, we
can prune from P all table patterns that have a different type
(resp. relationship) for that column (resp. column pair).
Therefore, a natural choice is to choose those columns (resp.
column pairs) with the maximum uncertainty reduction [45].

Consider ϕ as a variable, which takes values from P =
{ϕ1, ϕ2, . . . , ϕk}. We translate the score associated with
each table pattern to a probability by normalizing the

scores, i.e., Pr(ϕ = ϕi) = score(ϕi)
Σϕj∈Pscore(ϕj)

. Our transla-

tion from scores to probabilities follows the general frame-
work of interpreting scores in [25]. Specifically, our trans-
lation is rank-stable, i.e., for two patterns ϕ1 and ϕ2, if
score(ϕ1) > score(ϕ2), then Pr(ϕ = ϕ1) > Pr(ϕ = ϕ2).

We define the uncertainty of ϕ w.r.t. P as the entropy.

HP(ϕ) = −Σϕi∈PPr(ϕ = ϕi) log2 Pr(ϕ = ϕi)

Example 8: Consider an input list of five table patterns
P = {ϕ1, . . . , ϕ5} as follows with the normalized probability
of each table pattern shown in the last column.

type (B) type (C) P (B,C) score prob
ϕ1 country capital hasCapital 2.8 0.35
ϕ2 economy capital hasCapital 2 0.25
ϕ3 country city locatedIn 2 0.25
ϕ4 country capital locatedIn 0.8 0.1
ϕ5 state capital hasCapital 0.4 0.05

2

We use variables vAi and vAiAj to denote the type of the
column Ai and the relationship between Ai and Aj respec-
tively. The set of all variables is denoted as V . In Exam-
ple 8, V = {vB , vC , vBC}, vB ∈ {country, economy, state},
vC ∈ {capital, city} and vBC ∈ {hasCapital, isLocatedIn}.
The probability of an assignment of a variable v to a is ob-
tained by aggregating the probability of those table patterns
that have that assignment for v. For example, Pr(vB =
country) = Pr(ϕ1) +Pr(ϕ3) +Pr(ϕ4) = 0.35 + 0.25 + 0.1 =
0.7, Pr(vB = economy) = 0.25, and Pr(vB = state) = 0.05.

After validating a variable v to have value a, we remove

Algorithm 3 PatternValidation

Input: a set of table patterns P
Output: one table pattern ϕ ∈ P
1: Pre be the remaining table patterns, initialized P
2: initialize all variables V , representing column or column pairs,

and calculate their probability distributions.
3: while |Pre| > 1 do
4: Ebest ← 0
5: vbest ← null
6: for all v ∈ V do
7: compute the entropy H(v).
8: if H(v) > Ebest then
9: vbest ← v

10: Ebest ← H(v)
11: validate the variable v, suppose the result is a, let Pv=a

to be the set of table patterns with v = a
12: Pre = Pv=a

13: normalize the probability distribution of patterns in Pre.
14: return the only table pattern ϕ in Pre

from P those patterns that have different assignment for
v. The remaining patterns are denoted as Pv=a. Sup-
pose column B is validated to be of type country, then
PvB=country = {ϕ1, ϕ3, ϕ4}. Since we do not know what value
a variable can take, we measure the expected reduction of
uncertainty of variable ϕ after validating variable v, formally
defined as:

E(∆H(ϕ))(v) = ΣaPr(v = a)HPv=a(ϕ)−HP(ϕ)

In each iteration, we choose the variable v (column
or column pair) with the maximum uncertainty reduc-
tion, i.e., E(∆H(ϕ))(v). Each iteration has a complex-
ity of O(|V ||P|2) because we need to examine all |V | vari-
ables, each variable could take |P| values, and calculating
HPv=a(ϕ) for each value also takes O(|P|) time. The follow-
ing theorem simplifies the calculation for E(∆H(v)) with a
complexity of O(|V ||P|).

Theorem 1. The expected uncertainty reduction after
validating a column (column pair) v is the same as the
entropy of the variable. E(∆H(ϕ))(v) = H(v), where
H(v) = −ΣaPr(v = a) log2 Pr(v = a).

The proof of Theorem 1 can be found in Appendix A.
Algorithm 3 describes the overall procedure for pattern val-
idation. At each iteration: (1) we choose the best variable
vbest to validate next based on the expected reduction of
uncertainty of ϕ (lines 4-10); (2) we remove from Pre those
table patterns that have a different assignment for variable
v than the validated value a (lines 11-12); and (3) we renor-
malize the probability distribution of the remaining table
patterns in Pre (line 13). We terminate when we are left
with only one table pattern (line 3).

Example 9: To validate the five patterns in Example 8,
we first calculate the entropy of every variable. H(vB) =
−0.7 log2 0.7− 0.25log20.25− 0.05log20.05 = 1.07, H(vC) =
0.81, and H(vBC) = 0.93. Thus column B is validated first,
say the answer is country. The remaining set of table pat-
terns, and their normalized probabilities are:

type (B) type (C) P (B,C) prob
ϕ1 country capital hasCapital 0.5
ϕ3 country city locatedIn 0.35
ϕ4 country capital locatedIn 0.15

Now Pre = {ϕ1, ϕ3, ϕ4}. The new entropies are: H(vB) =
0, H(vC) = 0.93 and H(vBC) = 1. Therefore, column pair
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A (Pirlo)

B (Italy) C (Rome)

D (Juve)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Flero)

hasClub

(a) Possible repair G1

A (Xabi 
Alonso)

B (Spain) C (Madrid)

D (Real 
Madrid)

E (Spanish)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Tolosa)

hasClub

(b) Possible repair G2

Figure 5: Sample instance graphs

B,C is chosen, say the answer is hasCapital. We are now left
with only one pattern ϕ1, thus we return it. 2

In Example 9, we do not need to validate vC following our
scheduling strategy. Furthermore, after validating certain
variables, other variables may become less uncertain, thus
requiring a smaller number of questions to validate.

6. DATA ANNOTATION
In this section, we describe how Katara annotates data

(Section 6.1). We also discuss how to generate possible re-
pairs for identified errors (Section 6.2).

6.1 Annotating Data
Katara annotates tuples as correct data validated by kbs,

correct data jointly validated by kbs and the crowd, or data
errors detected by the crowd, using the following two steps.

Step 1: Validation by kbs. For each tuple t and pattern ϕ,
Katara issues a SPARQL query to check whether t is fully
covered by a kb K. If it is fully covered, Katara annotates
it as a correct tuple validated by kb (case (i)). Otherwise,
it goes to step 2.

Step 2: Validation by kbs and Crowd. For each node (i.e.,
type) and edge (i.e., relationship) that is missing from K,
Katara asks the crowd whether the relationship holds be-
tween the given two values. If the crowd says yes, Katara
annotates it as a correct tuple, jointly validated by kb and
crowd (case (ii)). Otherwise, it is certain that there exist
errors in this tuple (case (iii)).

Example 10: Consider tuple t2 (resp. t3) in Fig. 1 and the
table pattern in Fig. 2(a). The information about whether
Pretoria (resp. Madrid) is a capital of S. Africa (resp. Italy)
is not in kb. To verify this information, we issue a boolean
question Qt2 (resp. Qt3) to the crowd as:

Qt2 :Does S. Africa hasCapital Pretoria?
© Yes © No

Qt3 :Does Italy hasCapital Madrid?
© Yes © No

In such case, the crowd will answer yes (resp. no) to
question Qt2 (resp. Qt3). 2

Knowledge base enrichment. Note that, in step 2, for
each affirmative answer from the crowd (e.g., Qt2 above), a
new fact that is not in the current kb is created. Katara
collects such facts and uses them to enrich the kb.

6.2 Generating Top-k Possible Repairs
We start by introducing two notions that are necessary to

explain our approach for generating possible repairs.

Instance graphs. Given a kb K and a pattern G(V,E),
an instance graph GI(VI , EI) is a graph with nodes VI and

Algorithm 4 Top-k repairs

Input: a tuple t, a table pattern ϕ, and inverted lists L
Output: top-k repairs for t
1: Gt = ∅
2: for each attribute A in ϕ do
3: Gt = Gt ∪ L(A, t[A])
4: for each G in Gt do
5: compute cost(t, ϕ,G)
6: return top-k repairs in Gt with least cost values

edges EI , such that (i) each node vi ∈ VI is a resource in K;
(ii) each edge ei ∈ EI is a property in K; (iii) there is a one-
to-one correspondence f from each node v ∈ V to a node
vi ∈ VI , i.e., f(v) = vi; and (iv) for each edge (u, v) ∈ E,
there is an edge (f(u), f(v)) ∈ EI with the same property.
Intuitively, an instance graph is an instantiation of a pattern
in a given kb.

Example 11: Figures 5(a) and 5(b) are two instance graphs
of the table pattern of Fig. 2(a) in Yago for two players. 2

Repair cost. Given an instance graph G, a tuple t, and a
table pattern ϕ, the repair cost of aligning t to G w.r.t. ϕ,

denoted by cost(t, ϕ,G) =
n∑

i=1

ci, is the cost of changing

values in t to align it with G, where ci is the cost of the i-th
change and n the number of changes in t. Intuitively, the less
a repair cost is, the closer the updated tuple is to the original
tuple, hence more likely to be correct. By default, we set
ci = 1. The cost can also be weighted with confidences on
data values [18]. In such case, the higher the confidence
value is, the more costly the change is.

Example 12: Consider tuple t3 in Fig. 1, the table pattern
ϕs in Fig. 2(a), and two instance graphs G1 and G2 in Fig. 5.
The repair cost to update t3 to G1 is 1, i.e., cost(t3, ϕs, G1)
= 1, by updating t3[C] from Madrid to Rome. Similarly, the
repair cost from t3 to G2 is 5, i.e., cost(t3, ϕs, G2) = 5. 2

Note that the possible repairs are ranked based on repair
cost in ascending order. We provide top-k possible repairs
and we leave it to the users (or crowd) to pick the most
appropriate repair. In the following, we describe algorithms
to generate top-k repairs for each identified erroneous tuple.

Given a kb K and a pattern ϕ, we compute all instance
graphs G in K w.r.t. ϕ. For each tuple t, a naive solution is
to compute the distance between t and each graph G in G.
The k graphs with smallest repair cost are returned as top-k
possible repairs. Unfortunately, this is too slow in practice.

A natural way to improve the naive solution for top-k
possible repair generation is to retrieve only instance graphs
that can possibly be repairs, i.e., the instance graphs whose
values have an overlap with a given erroneous tuple. We
leverage inverted lists to achieve this goal.

Inverted lists. Each inverted list is a mapping from a key to
a posting list. A key is a pair (A, a) where A is an attribute
and a is a constant value. A posting list is a set G of graph
instances, where each G ∈ G has value a on attribute A.

For example, an inverted list w.r.t. G1 in Fig. 5(a) is as:

country, Italy → G1

Algorithm. The optimized algorithm for a tuple t is given
in Algorithm 4. All possible repairs are initialized (line 1)
and instantiated by using inverted lists (lines 2-3). For each
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possible repair, its repair cost w.r.t. t is computed (lines 4-
5), and top-k repairs are returned (line 6).

Example 13: Consider t3 in Fig. 1 and pattern ϕs in
Fig. 2(a). The inverted lists retrieved are given below.

A, Pirlo → G1 X D, Juve → G1 X
B, Italy → G1 X E, Italian → G1 X
C, Madrid → G2 X F, Flero → G1 X

It is easy to see that the occurrences of instance graphs
G1 and G2 are 5 and 1, respectively. In other words, the
cost of repairing t3 w.r.t. G1 is 6 − 5 = 1 and w.r.t. G2 is
6− 1 = 5. Hence, the top-1 possible repair for t3 is G1. 2

The practicability of possible repairs of Katara depends
on the coverage of kbs, while existing automatic data re-
pairing techniques usually require certain redundancy in the
data to perform well. Katara and existing techniques com-
plement each other, as demonstrated in Section 7.4.

7. EXPERIMENTAL STUDY
We evaluated Katara using real-life data along four di-

mensions: (i) the effectiveness and efficiency of table pattern
discovery (Section 7.1); (ii) the efficiency of pattern valida-
tion via the expert crowd (Section 7.2); (iii) the effectiveness
and efficiency of data annotation (Section 7.3); and (iv) the
effectiveness of possible repairs (Section 7.4).

Knowledge bases. We used Yago [21] and DBpedia [27] as
the underlying kbs. Both were transformed to Jena format
(jena.apache.org/) with LARQ (a combination of ARQ
and Lucene) support for string similarity. We set the thresh-
old to 0.7 in Lucene to check whether two strings match.

Datasets. We used three datasets: WikiTables and
WebTables contains tables from the Web2 with relatively
small numbers of tuples and columns, and RelationalTables
contains tables with larger numbers of tuples and columns.
• WikiTables contains 28 tables from Wikipedia pages. The
average number of tuples is 32.
• WebTables contains 30 tables from Web pages. The aver-
age number of tuples is 67.
• RelationalTables has three tables: Person has personal in-
formation joined on the attribute country from two sources:
a biographic table extracted from wikipedia [32], and a coun-
try table obtained from a wikipedia page3 resulting in 316K
tuples. Soccer has 1625 tuples about soccer players and their
clubs scraped from the Web4. University has 1357 tuples
about US universities with their addresses5.

All the tables were manually annotated using types and re-
lationships in Yago as well as DBPedia, which we considered
as the ground truth. Table 1 shows the number of columns
that have types, and the number of column pairs that have
relationships, using Yago and DBPedia, respectively.

All experiments were conducted on Win 7 with an Intel i7
CPU@3.4Ghz, 20GB of memory, and an SSD 500GB hard
disk. All algorithms were implemented in JAVA.

2
http://www.it.iitb.ac.in/~sunita/wwt/

3
http://tinyurl.com/qhhty3p

4
www.premierleague.com/en-gb.html, www.legaseriea.it/en/,

www.premierleague.com/en-gb.html
5
ope.ed.gov/accreditation/GetDownLoadFile.aspx

Yago DBPedia
#-type #-relationship #-type #-relationship

WikiTables 54 15 57 18
WebTables 71 33 73 35
RelationalTables 14 7 14 16

Table 1: Datasets and kbs characteristics

7.1 Pattern Discovery
Algorithms. We compared four discovery algorithms.

(i) RankJoin - our proposed approach (Section 4).

(ii) Support - a baseline approach that ranks the candidate
types and relationships solely on their support scores, i.e.,
the number of tuples that are of the candidate’s types and
relationships.

(iii) MaxLike [39] - infers the type of a column and the rela-
tionship between a column pair separately using maximum
likelihood estimation.

(iv) PGM [28] - infers the type of a column, the relationship
between column pairs, and the entities of cells by building a
probabilistic graphic model to make holistic decisions.

Evaluation Metrics. A type (relationship) gets a score of
1 if it matches the ground truth, and a partial score 1

s+1

if it is the super type (relationship) of the ground truth,
where s is the number of steps in the hierarchy to reach the
ground truth. For example, a label Film for a column, whose
actual type is IndianFilm, will get a score of 0.5, since Film
is the immediate super type of IndianFilm, i.e., s = 1. The
precision P of a pattern ϕ is defined as the sum of scores
for all types and relationships in ϕ over the total number of
types and relationships in ϕ. The recall R of a pattern ϕ is
defined as the sum of scores for all types and relationships
in ϕ over the total number of types and relationships in the
ground truth.

Effectiveness. Table 2 shows the precision and recall of
the top pattern chosen by four pattern discovery algorithms
for three datasets using Yago and DBPedia. We first dis-
cuss Yago. (1) Support has the lowest precision and re-
call in all scenarios, since it selects the types/relationships
that cover the most number of tuples, which are usually
the general types, such as Thing or Object. (2) MaxLike
uses maximum likelihood estimation to select the best
type/relationship that maximizes the probability of val-
ues given the type/relationship. It performs better than
Support, but still chooses types and relationships inde-
pendently. (3) PGM is a supervised learning approach
that requires training and tuning of a number of weights.
PGM shows mixed effectiveness results: it performs better
than MaxLike on WebTables, but worse on WikiTables and
RelationalTables. (4) RankJoin achieves the highest preci-
sion and recall due to its tf-idf style ranking, as well as for
considering the coherence between types and relationships.
For example, consider a table with two columns actors and
films that have a relationship actedIn. If most of the val-
ues in the films column also happen to be books, MaxLike
will use books as the type, since there are fewer instances of
books than films in Yago. However, RankJoin would cor-
rectly identify films as the type, since it is more coherent
with actedIn than books.

The result from DBPedia, also shown in Table 2, confirms
that RankJoin performs best among the four methods. No-
tice that the precision and recall of all methods are consis-
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Support MaxLike PGM RankJoin

P R P R P R P R
WikiTables .54 .59 .62 .68 .60 .67 .78 .86
WebTables .65 .64 .63 .62 .77 .77 .86 .84
RelationalTables .51 .51 .71 .71 .53 .53 .77 .77

Yago

P R P R P R P R
WikiTables .56 .70 .71 .89 .61 .77 .71 .89
WebTables .65 .69 .80 .84 .76 .80 .82 .87
RelationalTables .64 .67 .81 .86 .74 .77 .81 .86

DBPedia

Table 2: Pattern discovery precision and recall
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Figure 6: Top-k F-measure (WebTables)

tently better using DBPedia than Yago. This is because the
number of types in DBPedia (865) is much smaller than that
of Yago (374K), hence, the number of candidate types for a
column using DBPedia is much smaller, causing less stress
for all algorithms to rank them.

To further verify the effectiveness of our ranking function,
we report the F-measure F of the top-k patterns chosen by
every algorithm. The F value of the top-k patterns is de-
fined as the best value of F from one of the top-k patterns.
Figure 6 shows F values of the top-k patterns varying k on
WebTables. RankJoin converges faster than other methods
on Yago, while all methods converge quickly on DBPedia due
to its small number of types. Top-k F-measure results for the
other two datasets show similar behavior, and are reported
in Appendix B.

Efficiency. Table 3 shows the running time in seconds
for all datasets. We ran each test 5 times and report
the average time. We separate the discussion of Person
from RelationalTables due to its large number of tuples.
For Person, we implemented a distributed version of can-
didate types/relationships generation by distributing the
316K tuples over 30 machines, and all candidates are col-
lected into one machine to complete the pattern discovery.
Support, MaxLike, and RankJoin have similar performance
in all datasets, because their most expensive operation is
the disk I/Os for kbs lookups in generating candidate types
and relationships, which is linear w.r.t. the number of tu-
ples. PGM is the most expensive due to the message passing
algorithms used for the inference of probabilistic graphical
model. PGM takes hours on tables with around 1K tuples,
and cannot finish within one day for Person.

7.2 Pattern Validation
Given the top-k patterns from the pattern discovery, we

need to identify the most appropriate one. We validated
the patterns of all datasets using an expert crowd with 10
students. Each question contains five tuples, i.e., kt = 5.

We first evaluated the effect of the number of ques-
tions used to validate each variable, which is a type or a

Support MaxLike PGM RankJoin

WikiTables 153 155 286 153
WebTables 160 177 1105 162
RelationalTables/Person 130 140 13842 127
Person 252 258 N.A. 257

Yago

WikiTables 50 54 90 51
WebTables 103 104 189 107
RelationalTables/Person 400 574 11047 409
Person 368 431 N.A. 410

DBPedia

Table 3: Pattern discovery efficiency (seconds)
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Figure 7: Pattern validation P/R (WebTables)

Yago DBPedia
MUVF AVI MUVF AVI

WikiTables 64 79 88 102
WebTables 81 105 90 118
RelationalTables 24 28 28 36

Table 4: #-variables to validate

relationship, on the quality of the chosen pattern. We mea-
sure the precision and recall of the final chosen validation
w.r.t. the ground truth in the same way as in Section 7.1.
Figure 7 shows the average precision and recall of the val-
idated pattern of WebTables while varying the number of
questions q per variable. It can be seen that, even with
q = 1, the precision and recall of the validated pattern is
already high. In addition, the precision and recall converge
quickly, with q = 5 on Yago, and q = 3 on DBPedia. Pattern
validation results on WikiTables and RelationalTables show a
similar behavior, and are reported in Appendix C.

To evaluate the savings in crowd pattern validation that
are achieved by our scheduling algorithm, we compared
our method (denoted MUVF, short for most-uncertain-
variable-first) with a baseline algorithm (denoted AVI for
all-variables-independent) that validates every variable in-
dependently. For each dataset, we compared the number of
variables needed to be validated until there is only one table
pattern left. Table 4 shows that MUVF performs consistently
better than AVI in terms of the number of variables to vali-
date, because MUVF may spare validating certain variables
due to scheduling, i.e., some variables become certain after
validating some other variables.

The validated table patterns of RelationalTables for both
Yago and DBPedia are depicted in Fig. 10 in the Appendix.
All validated patterns are also used in the following experi-
mental study.

7.3 Data Annotation
Given the table patterns obtained from Section 7.2, data

values are annotated w.r.t. types and relationships in the
validated table patterns, using kbs and the crowd. The
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type relationship

kb crowd error kb crowd error
WikiTables 0.60 0.39 0.01 0.56 0.42 0.02
WebTables 0.69 0.28 0.03 0.56 0.39 0.05
RelationalTables 0.83 0.17 0 0.89 0.11 0

Yago

kb crowd error kb crowd error
WikiTables 0.73 0.25 0.02 0.60 0.36 0.04
WebTables 0.74 0.24 0.02 0.56 0.39 0.05
RelationalTables 0.90 0.10 0 0.91 0.09 0

DBPedia

Table 5: Data annotation by kbs and crowd
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Figure 8: Top-k repair F-measure (RelationalTables)

result of data annotation is shown in Table 5. Note that
Katara annotates data in three categories (cf. Section 6.1):
when kb has coverage for a value, the value is said to be vali-
dated by the kb (kb column in Table 5), when the kb has no
coverage, the value is either validated by the crowd (crowd
column in Table 5), or the value is erroneous (error column in
Table 5). Table 5 shows the breakdown of the percentage of
values in each category. Data values validated by the crowd
can be used to enrich the kbs. For example, a column in one
of the table in WebTables is discovered to be the type state

capitals in the United States. Surprisingly, there are
only five instances of that type in Yago6, we can add the
rest of 45 state capitals using values from the table to en-
rich Yago. Note that the percentage of kb validated data is
much higher for RelationalTables than it is for WikiTables and
WebTables. This is because data in RelationalTables is more
redundant (e.g., Italy appears in many tuples in Person ta-
ble), when a value is validated by the crowd, it will be added
to the kb, thus future occurrences of the same value will be
automatically validated by the kb.

7.4 Effectiveness of Possible Repairs
In these experiments, we evaluate the effectiveness of our

possible repairs generation by (1) varying the number k of
possible repairs; and (2) comparing with other state of the
art automatic data cleaning techniques.

Metrics. We use standard precision, recall, and F-measure
for the evaluation, which are defined as follows.

precision = (#-corrected changed values)/(#-all changes)
recall = (#-corrected changed values)/(#-all errors)
F-measure= 2× (precision× recall)/(precision + recall)

For comparison with automatic data cleaning approaches,
we used an equivalence-class [2] (i.e., EQ) based ap-
proach provided by an open-source data cleaning tool
NADEEF [12], and a ML-based approach SCARE [43].
When Katara provides nonempty top-k possible repairs for
a tuple, we count it as correct if the ground truth falls in

6
http://tinyurl.com/q65yrba

Katara (Yago) Katara (DBPedia) EQ SCARE

P R P R P R P R
Person 1.0 0.80 1.0 0.94 1.0 0.96 0.78 0.48
Soccer N.A. 0.97 0.29 0.66 0.29 0.66 0.37
University 0.95 0.74 1.0 0.18 0.63 0.04 0.85 0.21

Table 6: Data repairing precision and recall
(RelationalTables)

the possible repairs, otherwise we count it as an incorrect
repair.

Since the average number of tuples in WikiTables and
WebTables is 32 and 67, respectively, both datasets are
not suitable since both EQ and SCARE require reason-
able data redundancy to compute repairs. Hence, we use
RelationalTables for comparison. We learn from Table 5 that
tables in RelationalTables are clean, and thus are treated as
ground truth. Thus, for each table in RelationalTables, we
injected 10% random errors into columns that are covered by
the patterns to obtain a corresponding dirty instance, that
is, each tuple has a 10% chance of being modified to contain
errors. Moreover, in order to set up a fair comparison, we
used FDs for EQ that cover the same columns as the crowd
validated table patterns (see Appendix D). SCARE requires
that some columns to be correct. To enable SCARE to run,
we only injected errors to the right hand side attributes of
the FDs, and treated the left hand side attributes as correct
attributes (a.k.a. reliable attributes in [43]).

Effectiveness of k. We first examined the effect of using top-
k repairs in terms of F-measure. The results for both Yago
and DBPedia are shown in Fig. 8. The result for soccer using
Yago is missing since the discovered table pattern does not
contain any relationship (cf. Fig. 10 in Appendix). Thus,
Katara cannot be used to compute possible repairs w.r.t.
Yago. We can see the F-measure stabilizes at k = 1 using
Yago, and stabilizes at k = 3 using DBPedia. The result tells
us that in general the correct repairs fall into the top ones,
which justifies our ranking of possible repairs. Next, we
report the precision and recall of possible repairs generated
by Katara, fixing k = 3.

Results of RelationalTables. The precision/recall of Katara,
EQ and SCARE on RelationalTables, are reported in Table 6.
The result shows that Katara always has a high precision
in cases where kbs have enough coverage of the input data.
It also indicates that if Katara can provide top-k repairs,
it has a good chance that the ground truth will fall in them.
The recall of Katara depends on the coverage of the kbs

of the input dataset. For example, DBPedia has a lot of
information for Person, but relatively less for Soccer and
University. Yago cannot be used to repair Soccer because it
does not have relationships for Soccer.

Both EQ and SCARE have precision that is generally lower
than Katara, because EQ targets at computing a consistent
database with the minimum number of changes, which are
not necessarily the correct changes, and the result of SCARE
depends on many factors, such as the quality of the training
data in terms of its redundancy, and a threshold ML param-
eter that is hard to set precisely. The recall for both EQ and
SCARE is highly dependent on data redundancy, because
they both require repetition of data to either detect errors.

Results of WikiTables and WebTables. Table 7 shows the re-
sult of data repairing for WikiTables and WebTables. Both
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Katara (Yago) Katara (DBPedia) EQ SCARE

P R P R P/R P/R
WikiTables 1.0 0.11 1.0 0.30 N.A.
WebTables 1.0 0.40 1.0 0.46 N.A.

Table 7: Data repairing precision and recall
(WikiTables and WebTables)

EQ and SCARE are not applicable on WikiTables and
WebTables, because there is almost no redundancy in them.
Since there is no ground truth available for WikiTables and
WebTables, we manually examine the top-3 possible repairs
returned by Katara. As we can see, Katara achieves high
precision on WikiTables and WebTables as well. In total,
Katara fixed 60 errors out of 204 errors, which is 29%. In
fact, most of remaining errors in these tables are null values
whose ground truth values are not covered by given kbs.

Summary. It can be seen that Katara complements existing
automatic repairing techniques: (1) EQ and SCARE cannot
be applied to WebTables and WikiTables since there is not
enough redundancy, while Katara can, given kbs and the
crowd; (2) Katara cannot be applied when there is no cov-
erage in the kbs, such as the case of Soccer with Yago; and
(3) when both Katara and automatic techniques can be
applied, Katara usually achieves higher precision due to
its use of kbs and experts, while automatic techniques usu-
ally make heuristic changes. The recall of Katara depends
on the coverage of the kbs, while the recall of automatic
techniques depends on the level of redundancy in the data.

8. RELATED WORK
The traditional problems of matching relational tables and

aligning ontologies have been largely studied in the database
community. A matching approach where the user is also
aware of the target schema has been recently proposed [34].
Given a source and a target single relation, the user popu-
lates the empty target relation with samples of the desired
output until a unique mapping is identified by the system. A
recent approach that looks for isomorphisms between ontolo-
gies is PARIS [37], which exploits the rich information in the
ontologies in a holistic approach to the alignment. Unfor-
tunately, our source is a relational table and our target is a
non-empty labeled graph, which make these proposals hard
to apply directly. On one hand, the first approach requires
to project all the entities and relationships in the target kb
as binary relations, which leads to a number of target rela-
tions to test that is quadratic w.r.t. the number of entities,
and only few instances in the target would match with the
source data. On the other hand, the second approach re-
quires to test all the possible relationships among attributes
in the source relation, as it does not come with this infor-
mation; in the general case there are 2n combinations of n
attributes to evaluate. However, our approach can be used
to alleviate this problem, since efficiently discovering top-k
relationships and types over the source table is handled by
Katara.

Another line of related work is known as Web tables se-
mantics understanding, which identifies the type of a column
and the relationship between two columns w.r.t. a given
kb, for the purpose of serving Web tables to search applica-
tions [13, 28, 39]. Our pattern discovery module shares the
same goal. Compared with the state of the art [28, 39], our
rank join algorithm shows superiority in both effectiveness

and efficiency, as demonstrated in the experiments.
Several attempts have been made to do repairing based

on integrity constraints (ICs) [1, 9, 11, 17, 20]; they try to
find a consistent database that satisfies given ICs in a mini-
mum cost. It is known that the above heuristic solutions do
not ensure the accuracy of data repairing [19]. To improve
the accuracy of data repairing, experts have been involved
as first-class citizen of data cleaning systems [19, 35, 44],
high quality reference data has been leveraged [19, 24, 42],
and confidence values have been placed by the users [18].
Katara differs from them in that (1) we do not require ex-
perts to give high quality data quality rules as input; and
(2) we do not involve experts to guide repairs. Instead, we
explore this opportunity from crowdsourcing, which is ap-
propriate for general pay-as-you-go service.

Numerous studies have attempted to discover data qual-
ity rules, e.g., for CFDs [6] and for DCs [8]. Automatically
discovered rules are error-prone, thus cannot be directly fed
into data cleaning systems without verification by domain
experts. However, and as noted earlier, they can exploit the
output of Katara, as rules are easier to discover from clean
samples of the data [8].

Another line of work studies the problem of combining
ontological reasoning with databases [5, 33]. Although their
operation could also be used to enforce data validation, our
work differs in that we do not assume knowledge over the
constraints defined on the ontology. Moreover, constraints
are usually expressed with FO logic fragments that restrict
the expressive power to enable polynomial complexity in the
query answering. Since we limit our queries to instance-
checking over RDFS, we do not face these complexity issues.

One concern with regards to the applicability of Katara
is the accuracy and coverage of the kbs and the quality
of crowdsourcing: neither the kbs nor the crowdsourcing
is ensured to be completely accurate. There are several ef-
forts that aim at improving the quality and coverage of both
kbs [14–16] and crowdsourcing [4, 26]. With more accurate
and big kbs, Katara can discover the semantics of more
long tail tables, and further alleviate the involvement of ex-
perts. A full discussion of the above topics lies beyond the
scope of this work. Nevertheless, kbs and experts are usu-
ally more reliable than the data at hand, thus can be treated
as relatively trusted resources to pivot on.

9. CONCLUSION AND FUTURE WORK
We proposed Katara, the first end-to-end system that

bridges knowledge bases and crowdsourcing for high quality
data cleaning. Katara first establishes the correspondence
between the possibly dirty database and the available kbs

by discovering and validating the table patterns. Then each
tuple in the database is verified using a table pattern against
a kb with possible crowd involvement when the kb lacks
coverage. Experimental results have demonstrated both the
effectiveness and efficiency of Katara.

One important future work is to cold-start Katara when
there is no available kbs to cover the data, i.e., bootstrap-
ping and extending the kbs at the intensional level by so-
liciting structural knowledge from the crowd. It would be
also interesting to assess the effects of using multiple kbs

together to repair one dataset. Another line of work is to
extend our current definition of tables patterns, such as a
person column A1 is related to a country column A2 via two
relationships: A1 wasBornIn city, and city isLocatedIn A2.
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APPENDIX
A. PROOF OF THEOREM 1

The expected uncertainty reduction is computed as the
difference between the current entropy and the expected one.

E(∆H(ϕ))(v) = −HP (ϕ) +
∑

a Pr(v = a)Hϕi∈Pv=a (ϕi)

The uncertainty of the conditional distribution of patterns
given v = a, Hϕi∈Pv=a(ϕi) can be computed as follows:

Hϕi∈Pv=a (ϕi)

=
∑

ϕi∈Pv=a

Pr(ϕi)∑
ϕi∈Pv=a

Pr(ϕi)
log2

Pr(ϕi)∑
ϕi∈Pv=a

Pr(ϕi)
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Figure 10: Validated table patterns

However,
∑

ϕi∈Pv=a
Pr(ϕi) is exactly Pr(v = a). Thus,

we can replace for Hϕi∈Pv=a(ϕi).

E(∆H(ϕ))(v)

= −HP (ϕ) +
∑

a Pr(v = a)
∑

ϕi∈Pv=a

Pr(ϕi)
Pr(v=a)

log2
Pr(ϕi)
Pr(v=a)

= −HP (ϕ)+
∑

a

∑
ϕi∈Pv=a

Pr(ϕi)(log2 Pr(ϕi)−log2 Pr(v = a))

= −HP (ϕ) +
∑

a

∑
ϕi∈Pv=a

Pr(ϕi) log2 Pr(ϕi)

−∑
a

∑
Pv=a

Pr(ϕi) log2 Pr(v = a)

The first double summation is exactly the summation over
all the current patterns, ordering them by the value of v.
Thus, we have the following:

E(∆H(ϕ))(v)

= −HP (ϕ) +
∑

Pr(ϕ) log2 Pr(ϕ)

−∑
a log2 Pr(v = a)

∑
ϕi∈Pv=a

Pr(ϕi)

= −HP (ϕ) + HP (ϕ)−∑
a log2 Pr(v = a)× Pr(v = a)

= −∑
a Pr(v = a) log2 Pr(v = a)

= H(v)

The above result proves Theorem 1.

B. TOP-K PATTERNS ANALYSIS
Figure 11 shows the F-measure of the top-k patterns vary-

ing k on WikiTables and RelationalTables. It tells us that
RankJoin converges much quicker than other methods on
Yago, while all methods converge quickly on DBPedia due to
its small number of types.

C. PATTERN VALIDATION
Figure 12 shows the quality of the validated pattern, vary-

ing the number of questions per variable q, on WikiTables
and RelationalTables. Notice that RelationalTables only re-
quire one question per variable to achieve 1.0 precision and
recall. This is because RelationalTables are less ambiguous
compared with WikiTables and WebTables. Experts can cor-
rectly validate every variable with only one question.
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Figure 11: Top-k F-measure
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D. DATA REPAIRING
We use the following FDs for algorithm EQ, referring to

Fig. 10.

(1) Person, we used A→ B,C,D.

(2) Soccer, we used C → A,B, A→ E, and D → A.

(3) University, we used A→ B,C and C → B.
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ABSTRACT
We present Falcon, an interactive, deterministic, and
declarative data cleaning system, which uses SQL update
queries as the language to repair data. Falcon does not
rely on the existence of a set of pre-defined data quality
rules. On the contrary, it encourages users to explore the
data, identify possible problems, and make updates to fix
them. Bootstrapped by one user update, Falcon guesses a
set of possible sql update queries that can be used to repair
the data. The main technical challenge addressed in this
paper consists in finding a set of sql update queries that is
minimal in size and at the same time fixes the largest num-
ber of errors in the data. We formalize this problem as a
search in a lattice-shaped space. To guarantee that the cho-
sen updates are semantically correct, Falcon navigates the
lattice by interacting with users to gradually validate the
set of sql update queries. Besides using traditional one-hop
based traverse algorithms (e.g., BFS or DFS), we describe
novel multi-hop search algorithms such that Falcon can
dive over the lattice and conduct the search efficiently. Our
novel search strategy is coupled with a number of optimiza-
tion techniques to further prune the search space and effi-
ciently maintain the lattice. We have conducted extensive
experiments using both real-world and synthetic datasets to
show that Falcon can effectively communicate with users
in data repairing.

1. INTRODUCTION
High quality data is important to all businesses, and data

cleaning is an important but tedious step. In fact, removing
errors in order to get high quality data takes most of data
analysts’ time [31], and some studies predict a shortage of
people with the skills and the know-how for these tasks [33].
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Date Molecule Laboratory Quantity
t1 11 Nov C16H16Cl Austin 200
t2 12 Nov statinÑC22H28F Austin 200
t3 12 Nov C24H75S6 N.Y.Ñ New York 1000Ñ100
t4 12 Nov statin Boston 200
t5 13 Nov statin Austin 200
t6 15 Nov C17H20N Dubai 150

Table 1: Dataset Tdrug with drug tests.

Consequently, the number and variety of users who are
getting close to the data for data quality tasks are destined
to increase, and we cannot assume that only IT staff and
data scientists are in charge of the data cleaning process.

The above requirement poses new and interesting re-
search challenges. Indeed, a large body of the research
has been conducted on rule-based data repairing, which
consists of using integrity constraints to identify data er-
rors [11,12,17,25,40], and automated algorithms to enforce
these constraints over the data [7, 22, 23, 32, 43]. However,
in the evolving scenario of data cleaning, these approaches
show a serious limitation. Specifically, they assume that
data quality rules are declared upfront by domain experts
who understand the data and write logical formulas or pro-
cedural code. Despite many promising results, these systems
have failed short in terms of adoption in industrial tools.

We address the problem of improving the data cleaning
process by involving non-expert users as first-class citizens,
and present Falcon, a novel system for interactive data re-
pairing. Falcon departs from other interactive data clean-
ing systems [20,27,37,41,46], since it brings together a sim-
ple, user-oriented interaction paradigm with the benefits of
a declarative, deterministic, and expressive data quality lan-
guage – sql update (sqlu) queries. In fact, the system is
bootstrapped by an update to the data made by the user to
rectify an error; based on that, it infers a set of sqlu queries
that can be used as data quality rules to correct more errors.
We illustrate by example how it works.

Example 1: Table 1 reports a sample real-world dataset
Tdrug for experiments collected from different labs. Each
record represents the quantity and date of a test done in
a lab over a certain molecule. Errors are highlighted. Con-
sider the following three user updates.

∆1: t3rLaboratorys Ð “New York” (from “N.Y.”)
∆2: t3rQuantitys Ð 100 (from 1000)
∆3: t2rMolecules Ð “C22H28F” (from “statin”)



There exist multiple interpretations for each update. For
instance, two possible semantics behind ∆1 could be either
reformatting all “N.Y.” to “New York” as shown in Q1, or
changing all Laboratory values to “New York” as shown in
Q11, regardless of their original values.

Q1: UPDATE Tdrug SET Laboratory = “New York”
WHERE Laboratory = “N.Y.”;

Q11: UPDATE Tdrug SET Laboratory = “New York”;

Similarly, one possible interpretation of ∆2, as given in
Q2, is that it is specific for Molecule and Date. Hence, it is
hard to generalize this update to apply it to other tuples.

Q2: UPDATE Tdrug SET Quantity = 100
WHERE Molecule = “C24H75S6” AND Date = “12 Nov”;

Update ∆3 is more interesting. Consider the following
three interpretations with different effects. Q3 repairs er-
rors in both t2 and t5. Q13 also repairs both t2 and t5, but
additionally, it modifies t4rMolecules to “C22H28F”, which is
an erroneous update, since in Boston they test a different
statin molecule. On the other hand, the tuple-specific query
Q23 only corrects t2 but misses the chance to repair t5.

Q3: UPDATE Tdrug SET Molecule = “C22H28F”
WHERE Molecule = “statin” AND Laboratory = “Austin”;

Q13: UPDATE Tdrug SET Molecule = “C22H28F”
WHERE Molecule = “statin”;

Q23: UPDATE Tdrug SET Molecule = “C22H28F”
WHERE Molecule = “statin” AND Laboratory = “Austin”

AND Date = “12 Nov” AND Quantity = 200;

From Example 1, one may observe that there might exist
a large number of sqlu queries. Indeed, this large number
is not surprising, as up to thousands of precise and reliable
update queries can be needed in real-world settings, such as
Walmart catalog [14]. However, while an update is a perfect
starting point for the process of inferring the general scripts,
it comes with new challenges in terms of user interactions.

First, the search space for a new update is exponential to
the number of the attributes, and domain experts cannot
manually validate each of these sqlu queries. We have to
assume that a budget (e.g., #-user interactions) is given for
a specific update. Second, the discovery algorithm must be
fast (e.g., able to react in seconds) to enable user interac-
tions. However, each interaction may trigger the update of
data, which makes the search space a dynamic environment.
This dynamic behavior, together with the large search space
and a budget of user capacity, prevents the use of tradi-
tional tools for interactive response, such as precomputing
and caching. In order to efficiently manage all potential up-
dates, and effectively interact with users, we propose Fal-
con, which works as follows.

Workflow. The workflow of Falcon is depicted in Figure 1.
¶ The user examines the data and provides a repair ∆ over
table T . · Given ∆, Falcon generates a set of sqlu queries
as rules. It then selects a query Q whose validity is yet
unknown, and asks the user to verify it. ¸ Based on the
user verification on Q to be either True (i.e., valid) or False
(i.e., invalid), if Q is True, it utilizes Q to repair more data.
Obviously, Falcon can prune the search space based on the
validation on Q. The loop for steps · and ¸ terminates
when either all usable queries have been identified, or the

1
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Figure 1: Falcon workflow.

user has no more capacity for the current ∆. Afterwards,
the user may go back to step ¶ to inspect another repair.

Contributions. We present Falcon, a novel interactive
data cleaning system, with the following contributions.

(1) To design data quality rules, we adopt the standard and
deterministic language of sql update statements (Section 2).
We discuss how to organize the search space of candidate
rules as a lattice, and its pruning principles, by leveraging
the properties of the lattice (Section 3).

(2) We devise efficient algorithms for selecting candidate
queries to effectively interact with the user (Section 4).
In particular, in contrast to traditional traversal (one-hop)
based approaches (Section 4.1), we present novel multiple-
hop search algorithms such that Falcon can accurately dis-
cover useful queries in a small number of steps (Section 4.2).

(3) We describe optimization techniques to improve the effi-
ciency of lattice maintenance (Section 5.1). We also propose
closed query sets to compress the lattice so as to improve the
search efficiency (Section 5.2).

(4) Implemented on top of an open-source data wrangling
tool OpenRefine (http://openrefine.org), we have conducted
experiments with real-world and synthetic data to show the
effectiveness and efficiency of Falcon (Section 6).

Section 7 presents related work. Section 8 closes this pa-
per, followed by our agenda for future work.

2. PROBLEM STATEMENT
We first introduce the rules used to repair data (Sec-

tion 2.1). We then describe the search space of rules given
one user update (Section 2.2) and formally define the prob-
lem studied in this paper (Section 2.3). Finally, we discuss
its associated fundamental problems (Section 2.4).

2.1 SQL Update Queries: Mother Tongue
We adopt a simple and standard language to repair the

database, the language of update statements in sql (sqlu).
An sqlu statement updates records in a table T on at-

tributes A,B . . ., when some conditions hold. In this work,
we restrict the language to the case where updates are done
on one attribute A of table T with only boolean conjunctions:

UPDATE T SET A “ a WHERE boolean conjunctions

More specifically, each boolean conjunction is of the form
B “ vB , where B is an attribute of table T and vB is
a constant value from the domain of B, e.g., Molecule “
“statin”. Attribute B could also be the attribute to be up-
dated (i.e., B “ A), such as Laboratory in Q1 of Example 1.

We shall use the terms sqlu queries and data quality rules
(or simply rules) interchangeably in the following. We will
also treat updates and repairs equally.



Remark. sqlu queries used in this work are quite different
from the integrity constraints (ICs) that are widely adopted
by other data cleaning systems, such as functional depen-
dencies [1], conditional functional dependencies [16], condi-
tional inclusion dependencies [7], and denial constraints [12].
ICs are used to capture errors as violations, where one vi-
olation is a set of values that is not semantically coherent
when putting together. In other words, ICs do not explicitly
specify how to change data values to resolve violations. In
contrast, sqlu statements explicitly specify how to change
data values, which are thus considered to be deterministic.
The proposed sqlu is powerful enough to support existing
deterministic cleaning languages such as fixing rules [43],
constant CFDs [16], and widely used ETL rules.

Note that in this work we restrict our discussion to con-
junctive sqlu queries for three reasons. (1) It is easy for
users to understand, which is important for interacting with
users; (2) It is efficient to reason about the relationship be-
tween different queries; and (3) It is known that queries
with other formulae such as disjunctions or negations can
be rewritten into an equivalent conjunctive formula [1].

2.2 Search Space for One Repair
Consider a repair ∆ : trAs Ð a1 that changes the value

of trAs from error a to its correct value a1 with a ‰ a1. We
want to generalize this action so as to repair more errors.

Naturally, there exist multiple queries to interpret this re-
pair ∆. Implicitly, for each query, the SET clause is AÐ a1.
Hence we focus on the WHERE clause. Consider a boolean
condition as B “ vB , where B could be any attribute in
relation R. In an open-world assumption, the constant vB
can be assigned from an infinite set of values, which is nei-
ther reasonable nor feasible in practice. Instead, we adopt a
closed-world assumption by only using the evidence from tu-
ple t, the tuple that is being repaired. In other words, for a
queryQ w.r.t. the above update ∆, if an attributeB appears
in the WHERE condition of Q, then the boolean conjunction
is B “ trBs, which is to bind the constant vB to the value
trBs. As a special query, we consider H as no condition be-
ing enforced in the WHERE clause. Stating in another way,
it is to update all A values in T to a1.

In summary, given a repair trAs Ð a1 for tuple t in table
T of relation R, the set Q of all rules for such a repair is:

UPDATE T SET A “ a1 WHERE X “ trXs

where X is an arbitrary subset of R, which can range from
the empty set H to all attributes in R (i.e., X “ R). Hence,

there are 2|R| possibilities of X, where |R| is the arity of
relation R. In other words, we can infer 2|R| queries for
each update. Consider update ∆3 in Example 1, we can
infer 24

“ 16 queries, where three of them are shown as
Q3, Q

1
3 and Q23.

2.3 Problem Statement
Given a repair, one wants to find the queries that are

semantically correct so as to repair the database.

Valid sqlu query. Given a repair, an sqlu query is valid
if the query is semantically correct. Since we do not know
which queries are valid in advance, we need to ask the user
to either validate the query as semantically correct, or inval-
idate it otherwise. Naturally, we want to find all valid sqlu
queries and use them to repair the database. A straight-
forward strategy is to ask the user to check every possible

query. Of course, this method is rather expensive as there
could be a large number of possible queries, for which we will
use containment relationships among queries to improve the
search of queries (Section 3).

Furthermore, the user normally has limited capacity for
the number of queries he/she can verify. To this end, we
want to find the cost-effective queries to maximize the num-
ber of repaired tuples based on the queries validated by the
user, which is formally defined below.

Budget repair problem. Given a set Q of sqlu
queries, a table T , and a budget B for the number of
interactions the user can afford, the budget repair prob-
lem is to select B queries Q1 from Q, so as to maximize
|
Ť

QPQ1^validpQq“TQpT q|.

Here, validpQq is a boolean function that is T (resp. F) if
Q is a valid query (resp. not), and QpT q represents the set
of repairs of applying query Q over table T .

Observe that in the above problem, given a query Q, the
validity of Q (i.e., validpQq) is unknown, to be verified by
the user. Such a problem is typically categorized under the
framework of online algorithms [3], where one can process
input piece-by-piece in a serial fashion (i.e., the verification
validpQq of some Q), without having the entire input (i.e.,
the value validpQq for each Q in Q) available from the start.

Offline problem. Its corresponding offline variant is the
following. Given as input that whether each query Q in Q
is valid or not is known, how to select B queries from Q to
maximize the number of repaired tuples. The objective of
designing an online algorithm is to get answers as accurate as
the offline problem. It is easy to see that the offline problem
of its online version (i.e., the budget repair problem) is NP-
hard, which can be readily proved by a reduction from the
maximum-coverage problem [34].

On analogy of what is proved in [5], when the offline vari-
ant is NP-hard, there is no efficient algorithm for computing
an optimal solution for its online algorithm. In other words,
when the offline variant is intractable, there is no hope to
find an optimal solution with the cost in a constant factor
of the offline variant (a.k.a. a competitive analysis [39]).

However, not all is lost. As will be shown later, we can
organize all queries in a graphical structure, such that when
the user verifies a query Q as valid or invalid, we can even
generate more inputs by computing the validity of queries
Q1 that are related to Q (Section 3). Even better, we de-
vise efficient algorithms to search over the above graphical
structure (Section 4) and empirically show the effectiveness
of the presented strategies (Section 6).

2.4 Fundamental Problems
Let Q` be a set of valid queries w.r.t. one user update.

Termination problem. The termination problem deter-
mines whether a rule-based process will stop, given Q` and
an instance T . We can readily verify that no matter in what
order the queries in Q` are executed, the whole process will
terminate, since the execution of each query is deterministic.

Conflicting queries. Two queries Q1 and Q2 are conflict-
ing queries if there exists a tuple t1 such that the following
two sequences of sql updates will obtain different results:
(1) Q1pQ2pt

1
qq, i.e., applying Q2 first to t followed by Q1,

and (2) Q2pQ1pt
1
qq.



Note that, the search space w.r.t. one repair ∆ : trAs Ð a1

is a set Q of queries (Section 2.2), where each query Q P Q is
a way to generalize the action of changing trAs to a specific
value a1, by considering different attribute combinations. In
other words, no query Q will change a tuple to a value a2

that is different from a1. Hence, conflicting queries will not
be generated in one lattice.

Determinism problem. The determinism problem asks
whether all repairing processes (with different repairing or-
ders of the sqlu queries) end up with the same repair, given
Q` and an instance T .

It is easy to verify that, given Q` and T , regardless of the
orders of the queries in Q` are applied, all data repairs are
Ť

QPQ` QpT q, where T is the original instance. Hence, any
set of rules is trivially deterministic.

3. A LATTICE: FALCON SEARCH SPACE
In this section, we shall present our organization of the

search space, so as to enable both efficient and effective
search over the candidate rules. We start by discussing the
relationship between two data quality rules.

Rule containment. For two rules Q and Q1, we say that
Q is contained by Q1 (or Q1 contains Q), denoted by Q ĺ

Q1, if for all possible database instances T over the input
schema R, the result of QpT q is a subset of the result of
Q1pT q (i.e., QpT q Ď Q1pT q).

Intuitively, the rule containment captures the semantic
relationship among rules. In other words, no matter which
database T is used, Q will update a subset of T tuples that
Q1 will update if Q ĺ Q1, since Q is more specific than Q1.

Example 2: Consider queries Q3, Q13 and Q23 in Exam-
ple 1. It is straightforward to see that both Q3 and Q23 are
contained by Q13 (i.e., Q3 ĺ Q13 and Q23 ĺ Q13), and Q23 is
contained by Q3 (i.e., Q23 ĺ Q3).

It is readily to verify that the query containment “ĺ” is
a partial order over the set Q of all possible rules, which is
reflexive, antisymmetric, and transitive. More specifically:

[Reflexivity] Q ĺ Q, for any Q P Q.F
F[Antisymmetry] If Q ĺ Q1 and Q1 ĺ Q, then Q “ Q1.

[Transitivity] If Q ĺ Q1 and Q1 ĺ Q2, then Q ĺ Q2. F

For a query Q, we denote by attrpQq the set of distinct
attributes in its WHERE condition.

Note that for each user update, the sqlu queries have
the same value constraint on the same attribute, and thus
the rule containment verification is equivalent to a sim-
pler condition: Q ĺ Q1 if attrpQ1q is a subset attrpQq.
For instance, Q3 ĺ Q13 since attrpQ13q “ tMoleculeu Ď
tMolecule, Laboratoryu “ attrpQ3q.

Affected tuples. For each query Q and instance T , we
call the tuples in QpT q affected tuples, i.e., the tuples that
Q will repair. We also call |QpT q| the affected number of
Q, relative to T . Consider Q3 and Tdrug in Example 1 for
instance. The affected tuples are Q3pTdrugq “ tt2, t5u, and
its corresponding affected number is |Q3pTdrugq| “ 2.

We discuss next how to organize these queries to facilitate
search strategies.

A set with a partial order is a partially ordered set, or
poset. Hence, Q is a poset on the partial order ĺ of rule
containment. Moreover, consider any two rules Q and Q1.
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Figure 2: A sample lattice graph.

They have a greatest lower bound: the most specific query
that is contained by both Q and Q1. This query, denoted
byQ^Q1, is the one w.r.t. attrpQqYattrpQ1q. Also, they have
a least upper bound: the most general query that contains
both Q and Q1. This query, denoted by Q _ Q1, is the one
w.r.t. attrpQq X attrpQ1q. Therefore, we can organize the
queries in our search space as a lattice.

Query lattice. Given a repair ∆ and a database instance
T , we denote by pQ,ĺ, T q the corresponding lattice, or sim-
ply pQ,ĺq when T is clear from the context. Each node in
the lattice corresponds to a query Q P Q. Each directed
edge from node Q to Q1 indicates that Q ĺ Q1 (Q is con-
tained inQ1) and |attrpQq| “ |attrpQ1q|`1 (with one different
attribute). Moreover, the affected number associated with
each query is maintained in the lattice (we will discuss how
to compute the number in Section 5.1.2).

Example 3: Figure 2 depicts the lattice for dataset Tdrug

and update ∆3 given in Example 1. Each capital letter is an
abbreviation of an attribute, e.g., D for Date. The node ML
is for the query Q3 on attributes Molecule and Laboratory.
The edge from ML to M indicates that the query Q3 (for
ML) is contained in Q13 (for M). The number 2 in node ML
is the affected number of |Q3pTdrugq|. Moreover, the greatest
lower bound (resp. lowest upper bound) of ML and DL is
MDL (resp. L). We postpone the discussion of the shapes
in the figure, e.g., “Ź”, “‹” and “˝”, to Section 5.2.

Valid and maximal valid nodes. Given a lattice pQ,ĺq,
the node relative to a rule Q is valid if it is semantically
correct, thus should be executed to repair data. In our work,
if the validity of a rule is unknown, we rely on the user to
verify (see more details in Section 2.3). Fortunately, if a rule
Q is known to be valid, we can infer that Q1 is also valid if
Q1 ĺ Q. Moreover, the node relative to a valid rule Q is
maximal valid, if no Q2 is valid and Q ĺ Q2.

Example 4: Consider the lattice in Figure 2. Assume that
there are two valid queries to be applied: ML (Q3 in Exam-
ple 1); and the other query DL that represents on a certain
date a certain lab works on only one molecule. All red nodes
are invalid queries, i.e., the queries that users will semanti-
cally invalidate. The other nodes are valid nodes. Moreover,
the blue nodes DL and ML are maximal valid nodes.

One nice property of using a lattice is that it provides
opportunities to prune nodes to be visited during traversal.

Lattice pruning. If a node Q is valid, by inference, all
nodes Q1 where Q1 ĺ Q are valid. On the other hand, if a
node Q is invalid, by inference, all nodes Q2 where Q ĺ Q2



are invalid. The rationality behind the above inferences is
that: if one query is valid, then any query that is more
specific is also valid; conversely, if it is invalid, then any
query that is more general is also invalid.

We denote by Q/ (i.e., above Q in the lattice) the queries
that Q contains, and Q' (i.e., below Q in the lattice) the
queries that contain Q. These notations naturally extend to
a set of queries, Q/ and Q', such that Q/

“
Ť

QPQQ
/ and

Q' “
Ť

QPQQ'.

Example 5: Consider again the lattice in Figure 2. During
interactions with the user, if DL is validated, we can then
derive that DL/

“ {DML, DLQ, DMLQ} is valid. Con-
sider now DQ, if DQ is invalidated, we can then derive that
DQ' “ {D, Q, H} is invalid.

The notation used in this paper is summarized in Table 3
in Appendix A.

4. ALGORITHMS: FALCON IN ACTION
In this section, we first describe some traversal based al-

gorithms to solve our budget repair problem (Section 4.1).
We then present advanced algorithms to efficiently navigate
the search space (Section 4.2).

When discussing the algorithms, we assume that the lat-
tice has been built given the user provided repair. The algo-
rithms are designed for traversing the lattice and interacting
with the user. Details of constructing and maintaining the
lattice will be provided in Section 5.1.

4.1 One-Hop Search: Falcon Glide
In traditional traversal algorithms of a lattice L the search

is based on some seeds, and then neighbours of the seeds
(i.e., one-hop) are visited by following edge connections. For
example, Breadth-first search (BFS) traverses L, by starting
at the bottom and explores the neighbor nodes first, before
moving to the next level neighbors. Depth-first search (DFS)
differentiates in that after visiting a node, it explores as far
as possible along each branch before backtracking. A recent
traversal proposal, Ducc [28], bootstraps the search with a
DFS-style exploration until a node of interest is found. Then
it traverses the lattice alternating visits over valid and in-
valid nodes, in order to identify the border between them.
While the algorithm was defined to find minimal unique col-
umn combination, it can be used for any lattice traversal.

To better understand how different algorithms work, we
illustrate by an example below.

Example 6: Figure 3 shows how various search algorithms
work, where red nodes indicate invalid nodes, blue nodes
represent maximal valid nodes, and the other nodes (i.e.,
small circles) are valid nodes. Let B “ 3, the number of
questions the user can verify. BFS search will visit the nodes
in a bread-first fashion, e.g., in the order B1, B2, B3. DFS
search will visit the nodes in a depth-first fashion, e.g., in the
order D1, D2, D3. Different from BFS and DFS, Ducc [28]
explores the graph in a zigzag fashion, which tries to pivot on
valid nodes and explores their neighbors, e.g., in the order
A1, A2, A3. Since the above methods are edge based, the
search paths are indicated on edges.

Now let us give some insight why traversal based algo-
rithms fail for our problem. Nodes close to the top (resp.
bottom) are more likely to be valid (resp. invalid). Hence,
if we traverse the lattice top-down, we have more chances
to visit a valid node Q. However, since it is close to the
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Figure 3: Lattice search algorithms. (Nodes ˝/‚/‚
represent valid nodes/maximal valid nodes/invalid
nodes. Red/green/blues edges are used to explain
different search strategies: BFS/DFS/Ducc.)

top, the number of inferred valid nodes Q/ is small. On
the other hand, if we traverse the lattice bottom-up, we have
more chances to visit an invalid node Q1. However, since it
is close to the bottom, the number of inferred invalid nodes
Q1' is small.

As shown in Example 6 and the above discussion, traver-
sal based algorithms are locality based – they follow edge
connections from visited nodes. In such a way, Falcon can
only glide over the lattice. This is obviously not ideal when
the lattice is big but the budget B is small, which is exactly
the case we face. Hence, we propose new algorithms next.

4.2 Multi-Hop Search: Falcon Dive
Now that we know that traversal based algorithms are

not suitable for our studied problem, we need to devise new
algorithms so that Falcon can dive on the lattice.

4.2.1 Binary Jump
Given a budget B, our objective is to define a divide-

and-conquer strategy that efficiently identifies nodes that are
both valid and not very close to the top, so as to maximize
the number of tuples to be repaired. To this purpose, we
present an strategy, namely binary jump, inspired by clas-
sical binary search. Roughly speaking, we treat the search
space as a linear space (i.e., an array) by sacrificing some
structural connections, and sort the nodes based on their as-
sociated affected numbers. We can then do multi-hop search
to locate a candidate node to be verified with the user.

Note that conventionally, a binary search finds the posi-
tion of a target value within a sorted array. Different from
it, binary jump does not have a target value to be searched.
In other words, binary jump is just inspired by binary search
by doing half-interval style lattice traversal.

Binary jump over a path. We first discuss binary jump
over a path. Consider DMLQ Ñ DLQ Ñ LQ Ñ Q Ñ H

in Figure 2. The ground truth of the validity of them is
(T, T, F, F, F), where T means valid and F means invalid.
The search algorithm does not know the ground truth, so
initially we have p?, ?, ?, ?, ?q. To find the truth with traver-
sal based approaches, we need OpNq questions in average,
where N is the length of the path. However, using binary
jump will reduce it to OplogNq questions, which is optimal,
by applying inferences of finding all valid/invalid nodes.

Next we discuss the meaning of “binary”. Straightfor-
wardly, binary may refer to the offset as standard binary



search. However, we need to incorporate the information of
affected number. Hence, the binary search could refer to the
median number. For instance, in Figure 2, the path DMLQ
Ñ DLQ Ñ LQ Ñ Q Ñ H corresponds to the affected num-
bers p1, 2, 3, 4, 6q and the binary jump is to find the value
that is closest to rp1` 6q{2s “ 4.

For binary jump, we introduce a parameter d to bound
the search depth, which is the number of iterations one
can do binary jump before termination. Given a path
Q1, Q2, ¨ ¨ ¨ , Qx, we first ask the middle node Qx{2. If the
node is valid, we ask the next middle node between Qx{2 and
Qx; otherwise, we ask the next middle node between Q1 and
Qx{2. After d wrong searches, the process terminates. We
refer to this search strategy as BinaryJump(). The ratio-
nale behind using the parameter d is that if we are following
the wrong direction, we should be aware and go back to the
right track, as a fault confessed is half redressed. We will
discuss how d is set in practice in Section 6.

Note that the number of the most general query (i.e., the
empty set at the bottom of the lattice) will change the whole
column, which makes the median number an optimistic es-
timation. To make it more realistic, instead, we set the
binary jump using log scale to find the value that is closest

to e.g., rlog
p1`6q
2 s “ 3.

From a path to a lattice. In order to take the advantage
of binary jump for lattice traversal, the broad intuition is to
do dimension reduction from a lattice to a one-dimensional
structure. That is, if we treat all nodes in the lattice uni-
formly, by sorting them in ascending order on their associ-
ated affected numbers, we get a sorted array similar to the
one discussed above for the path.

Let Q? denote a set of unvalidated nodes, Q` represent
a set of valid nodes, and Q´ indicate a set of invalid nodes.
Next we present the algorithm.

Algorithm. Given a lattice pQ,ĺq w.r.t. a repair ∆ over
table T , a budget B for the number of questions the user
can answer, and a depth d to bound the search depth, the
algorithm for binary jump is given below.

D1. [Initialization.] Let Q´ “ H, Q` “ ttopu (the top
node of the lattice), and Q?

“ QzpQ´ YQ`q. Also, let QX

be the set of nodes verified by users, initially empty.

D2. [Sort.] Sort unvalidated nodes Q? based on their af-
fected numbers in ascending order.

D3. [Binary jump] Do the binary jump over Q? and select

one node Q, which is referred to as BinaryJump() . If the

user still has capacity (the total number of interactions is
below B), it interacts with user to verify Q, and updates
QX

“ QX
Y tQu. Otherwise, the whole process terminates.

If Q is valid, it goes to step D4; otherwise, it goes to D5
below, if Q is invalid.

D4. [Q is valid.] Apply Q over table T and update the
affected numbers of nodes in Q. Set Q` “ Q` YQ/ (infer
and enlarge valid nodes). Let Q?

“ Q' and go to step D2.

D5. [Q is invalid.] Set Q´ “ Q´ Y Q' (infer and enlarge
invalid nodes). If the current depth is d, it goes to step D6.
Otherwise, Q?

“ Q/ and goes to step D2.

D6. [New search space.] Let Q?
“ QzpQX/

Y QX'q, i.e.,
search on the nodes that are not linked to any verified node.
It then goes to step D2.

Complexity. It is easy to see that there are up to B iter-
ations, and the sort (D2) dominates the cost. Hence, the
total time complexity is OpB ¨|Q|¨log|Q|q. Here, budget B is
typically small. Although the size of Q could be large for a
big relation, we will discuss an optimization in Section 5.1.1
about how to ensure that the size of Q is easily manageable.

4.2.2 Attribute Correlation: A Good Bait
Intuitively, we want to greedily select at each step the

node Q that is more likely to repair a large number of tuples.
However, since we do not know what are the correct nodes
until we verify them with the user, we need to estimate this
information. To define the score of a node, we augment the
existing information on the affected number of each query
Q, i.e., the number of A values Q can repair (Section 3),
with the likelihood of a certain node to be related to the
current attribute A.

Attribute correlations. The attribute correlation between
two attributes A and B, denoted by corpA,Bq, is to measure
how close they are to each other.

The intuition of using attribute correlations is that, if node
Q is correlated to attribute A that is being updated, then
it is more likely to be semantically relevant and useful for
the repair process. In general, we may get such information
from data profiling tools that measure attributes correlation.

We adopt the techniques proposed in CORDS [29] to pro-
file a database T of relation R. Specifically, CORDS com-
putes for each attribute pair a score in r0, 1s. Note that
pA,Bq and pB,Aq are different pairs. The score of an at-
tribute pair pA,Bq equals to 1 means that it is a soft FD, in-
dicating that A approximately uniquely determines B. Oth-
erwise, it is a score computed using χ2 statistics by exam-
ining the attribute values in attributes A and B.

In our lattice, oftentimes, we want to estimate the cor-
relation between the attributes in a query Q (i.e., attrpQq)
and the attribute A being updated. In other words, we need
to compute the correlation between a set of attributes to a
single attribute.

Using attribute correlations. We modified the algorithm
presented in CORDS to compute the correlation between a
setX of attributes and an attribute A, denoted by corpX,Aq.
In CORDS, an attribute pair pA,Bq is a soft FD if the sup-
port value suppA,Bq is above a given threshold τ (see [29]
for more details). Similarly, we output pX,Bq as a soft FD

if the support value suppX,Bq ą τ . Otherwise, we compute
the correlation score in r0, 1s for pX,Bq as follows.

corpX,Bq “
χ2

nq
(1)

χ2
“

m1
ÿ

v1“1

m2
ÿ

v2“1

...

mk
ÿ

vk“1

pnv1,v2,...,vk ´ ev1,v2,...,vk q
2

ev1,v2,...,vk
(2)

ev1,v2,...,vk “ n
k

ź

j“1

Prpvjq “ n
k

ź

j“1

njvj
n
“
nji1n

j
v2 ...n

j
vk

nk´1
(3)

q “
k

ź

i“1

mi ´

k
ÿ

i“1

mi ` k ´ 1 (4)

Here, k is the number of attributes in X and mi is the
number of distinct values in the i-th attribute. Moreover,
pv1, v2, ..., vkq is a tuple where the value of the j-th at-
tribute is vj . Also, nv1,v2,...,vk is the frequency of tuple
pv1, v2, ..., vkq, and ev1,v2,...,vk is the estimated frequency



Austin N.Y. Boston Dubai
C16H16Cl 1 0 0 0 1

statin 2 0 1 0 3
C24H75S6 0 1 0 0 1
C17H20N 0 0 0 1 1

3 1 1 1

Table 2: A 2-way contingency table.

based on the probability of vj appearing in the j-th at-
tribute, i.e., njvj {n, where njvj is the frequency of vj in the
j-th attribute and n is the number of tuples.

Example 7: Consider Table 1, and a given soft
FD in the traditional form: tMolecule, Laboratoryu Ñ

Quantity. Naturally, we have that the correlation value for
corptMolecule, Laboratoryu,Quantityq “ 1, since they can be
verified from the soft FD given above.

Consider now X “ tMoleculeu and B “ Laboratory.
Since there is no corresponding soft FD as tMoleculeu Ñ
Laboratory, we compute its correlation value by normalizing
χ2 statistics.

To do so, we first compute contingency table (see Ta-
ble 2). We then compute expected count of each symbol
tuple. Consider tuple {statin,Austin}. The expected count

estatin,Boston “ pnMolecule
stain ¨ nLaboratory

Boston q{n “ 0.5, and the real
count nstatin,Austin “ 1. Thus the difference is pnstatin,Austin ´

estatin,Bostonq
2
{estatin,Boston “ 0.5. By summing up all differ-

ences we have χ2
“ 12.67, the degrees of freedom q “

4 ¨ 4´p4` 4q` 2´ 1 “ 9, thus corptMoleculeu, Laboratoryq “
12.67{p6 ˚ 9q “ 0.235.

We now give our greedy algorithm for multi-hop search
driven by correlation and affected number.

Correlation aware binary jump (CoDive). We revise
binary jump by using the correlation information, affecting
D3 in Section 4.2.1. Note that the function BinaryJump()
will locate a node Q in the sorted list Q?. Instead of asking
the user to verify Q, we revise it with the following method-
ology. (1) We pick more nodes around Q in the sorted list,
with w on its left and the other w on its right. (2) For the
above 2w` 1 nodes, we compute their scores (affected num-
ber multiplies correlation score) and select the one with the
largest score, which will then be verified by the user. We
will discuss how w is set in practice in Section 6.

5. OPTIMIZATIONS
In this section, we first discuss optimizations for maintain-

ing the lattice (Section 5.1). We then describe a technique
to compress the search space, which can be applied to all al-
gorithms (Section 5.2). We also discuss an extension when
external sources are available (Appendix B).

5.1 Lattice Maintenance
There are two main challenges when maintaining the lat-

tice: its potential large size, and the updates of affected
numbers of lattice nodes during each interaction. We ad-
dress these two issues below.

5.1.1 Partial Lattice Materialization
For some dataset, the number of attributes in R can be

large, such that a full materialization of the lattice is pro-
hibitively expensive with 2|R| nodes.

Fortunately, in our framework, the update provided by the
user is a strong indicator to guide which attributes should

be used. The intuition is that, given an update trAs Ð a1,
not all attributes are relevant. Consequently, constructing
a lattice by incorporating irrelevant attributes will decrease
both efficiency and effectiveness. Hence, we propose to pick
top-k attributes that are related to the attribute A being
updated, based on the attribute correlation score discussed
in Section 4.2.2. We refer to such a strategy as partial lattice
materalization, which performs much faster than a full mate-
rialization of the entire lattice, without losing accuracy. This
reduces the time complexity from Op2|R| ¨ |T |q to Op2k ¨ |T |q
where k could be much smaller than |R| in practice.

Practically, attribute correlation plays an important role
in devising effective search strategies. We combine func-
tional dependencies (FDs) and highly related attribute sets
(rules) to improve the search strategy. Please see the exper-
iment in Appendix D.1 for more details on this point.

5.1.2 Initialize and Maintain Affected Numbers

Initialization. Given an update trAs Ð a1, we need to
compute the affected number of each query Q in the lattice.
The straightforward way of executing an sqlu query for each
node is very costly.

We approach the problem of initializing affected numbers
by leveraging the containment relationships between nodes.
Consider two queries Q and Q1, if Q ĺ Q1, then given any
database T , we have QpT q Ď Q1pT q. Clearly, we can com-
pute the result of QpT q from Q1pT q. This is exactly the
problem of answering queries using materialized views [26].
Given the simplicity of the sqlu queries adopted in this
work, the query rewriting is simply to apply a selection us-
ing a constant value.

Example 8: Consider two queries Q3, Q13, and the dataset
Tdrug in Example 1. If we compute Q13 over Tdrug first as
Q13pTdrugq, the result of Q3pTdrugq is simply to select all tuples
from Q13pTdrugq whose Laboratory values are Austin.

The above example suggests a simple way of computing
affected numbers of lattice nodes in a bottom-up fashion.
Indeed, only one sqlu query is needed for the bottom node
of the lattice. Afterwards, in the bottom-up procedure, for
each query Q, it applies the aforementioned query rewrit-
ing technique on Q1pT q to compute QpT q, where Q ĺ Q1

indicates that Q1 is one level below Q.

Maintenance. Given the lattice pQ,ĺq for table T and
update ∆, when some rule Q is validated by the user, the
tuples affected by Q will be repaired, i.e., QpT q will result in
a repaired database T 1 where T 1 “ T ‘QpT q, i.e., applying
Q to T . For each yet unvalidated rule Q1, the above changes
should be reflected, i.e., the number of affected tuples should
be changed correspondingly, from |Q1pT q| to |Q1pT 1q|.

The straightforward way is to execute Q1pT 1q to refresh
|Q1pT 1q|, or an optimized way of using the query rewriting
technique discussed above. However, in such incremental
scenarios, incremental algorithms have been developed for
various applications (see [36] for a survey). For incremental
algorithms, the updates are typically computed from affected
areas, not the entire dataset. In our case, the affect area is
exactly the affected tuples QpT q. Next, we discuss how to
compute, for each unvalidated rule Q1, the new |Q1pT 1q|.

Case 1 [Q1 ĺ Q]: |Q1pT 1q| “ 0.

Case 2 [Q ĺ Q2]: |Q2pT 1q| “ |Q2pT q| ´ |QpT q|.

Case 3 [Q and Q3 are disjoint]: Neither Q ĺ Q3 nor
Q3 ĺ Q holds. We have |Q3pT 1q| “ |Q3pT q| ´ |Q3pQpT qq|.



The above case 1 says that, if a valid rule Q is executed,
then the tuples that can be affected by the queries Q1 it
contains have already been repaired. It is safe to set their
affected numbers to 0 directly. The above case 2 tells that,
for all the queries Q2 that contains Q, the set of tuples
QpT q that Q2 can affect has been repaired. Hence, it is
simple to reduce their affected numbers by |QpT q|. In case
3, since neither Q3 ĺ Q nor Q ĺ Q3 holds, it first checks
the number of tuples that Q3 can affect w.r.t. Q by execut-
ing Q3pQpT qq, and then deducts its cardinality |Q3pQpT qq|
from its maintained value |Q3pT q|.

Time complexity. Cases 1 and 2 are clearly in constant
time. For case 3, the cost is reduced from computing Q3pT 1q
(i.e., the entire table) to Q3pQpT qq (the tuples affected by
Q) where |QpT q| is typically much smaller than |T |.

Example 9: Consider Fig. 2. Assume that during one
interaction, the users validate ML (i.e., query Q3 in Ex-
ample 1). The affected tuples are Q3pTdrugq “ tt2, t5u and
|Q3pTdrugq| “ 2. One can directly set the numbers associated
with DML, DLQ, and DMLQ to 0 (case 1). Moreover, it is
safe to change the number with node M as 3´ 2 “ 1. Simi-
larly, we change the number with L (resp. H) to 1 (resp. 4)
(case 2). Consider DL and tuples Q3pTdrugq “ tt2, t5u, it is
easy to verify that DL can update t2 but not t5, hence the
number with DL will be changed as 1´ 1 “ 0 (case 3).

5.2 Closed Rule Sets
A natural question, when searching a lattice, is whether

there is any redundancy in the behavior of the rules, so we
turn our attention now on how to identify such redundancy.

Closure operator f . Given a lattice pQ,ĺq for update
∆ and table T , we define a closure operator f . For any
Q P Q, let fpQq “ tQ1u and the following properties hold:
(1) Q ĺ Q1; (2) |QpT q| “ |Q1pT q|; and (3) EQ2 P Q where
Q1 ‰ Q2, Q1 ĺ Q2, and |Q1pT q| “ |Q2pT q|.

Intuitively, the closure operator f is to locate the maximal
ancestor of a query Q that has the same effect on the number
tuples they can change. Consider Fig. 2 for example, we have
f(DMLQ) = {DL}, and f(DMQ) = {DM, DQ}.
Closed rule sets. Given a lattice pQ,ĺq, two rules Q and
Q1 belong to the same closed rule set, iff fpQq “ fpQ1q.
The smallest (minimal) closed rule set contains one rule Q,
i.e., fpQq “ tQu and no other rule Q1 where fpQ1q “ tQu.

Example 10: Consider Fig. 2. The shapes identify distinct
closed rule sets. For example, the closed rule set for “˝” is
{DMLQ, DML, DLQ, DL}, since they are connected and
have the same affected numbers. Also, the closed rule set
for “‚” is {DMQ, DM, DQ}, similar for other shapes.

It deserves to note that the concept of closed rule sets is in
the instance level, i.e., queries in the same closed rule set will
change the same set of tuples for the given dataset. However,
they are not the same in the semantic level, i.e., some of
them might be valid while the others might be invalid. In
order to better understand the above discussion, consider
an extreme case that each lattice node can change only one
tuple, which makes all candidate queries in one closed rule
set. Apparently, they contain both valid and invalid rules.
In other words, the closed rule set ignores the factor that
whether a rule is valid or not.

Representative rule. One natural question, given a closed
rule set, is which query to be verified by the user. The intu-

ition behind our choice is that, the more specific the query
is, the easier it is for the user to verify. Hence, we define the
most representative rule in a closed rule set to be the query
Q with the largest number of predicates w.r.t. |attrpQq|.

For instance, in Example 10, the representative rule for
the rule set of “˝”, {DMLQ, DML, DLQ, DL}, is DMLQ.

Benefits of the closed rules set. Any search algorithm
over the lattice can benefit from the closed rules set. Given
a node in a set, there are consequences that favor the search
both if the rule is judged valid or invalid. Remember that
we expose and test the representative rule. If it is true, we
do not need to compute the updates for any query in the
same closed rule set any more. If the answer is no, we also
have a benefit in terms of pruning of the nodes, since all the
nodes in the set can be safely discharged.

Example 11: Consider Figure 3 and the case that an al-
gorithm has to test node F1. By computing the closed rule
set (nodes marked with ˝), the rule at the top is tested. If
the rule is valid, and therefore being executed, all the nodes
marked with ˝ will have empty updates now, so we can avoid
their computation. But if the rule is invalid, we can prune
all the nodes in the set, which is a big benefit compared with
the failed test of F1. In the latter case, we would still have
to validate the remaining nodes marked with ˝, even if we
can already derive that they are not valid.

The major difference of our lattice, in contrast to tradi-
tional closed item set lattice used for data mining [42], is
that our lattice is dynamically changed. More specifically,
for each node Q, its associated information |QpT q| might
change during each interaction, such that the closed rule
sets will change correspondingly.

6. EXPERIMENTAL STUDY
We implemented Falcon in Java and used PostgreSQL

9.3 as the underlying DBMS. All experiments were con-
ducted on a MacBook Pro with an Intel i7 CPU@2.3Ghz
and 16GB of memory. Our frontend extends OpenRefine.

Datasets. We used four real-world datasets and one syn-
thetic dataset, described as follows.

¶ Soccer is a real dataset with 7 attributes and 1625 tu-
ples about soccer players and their clubs scraped from the
Web (www.premierleague.com/en-gb.html, www.legaseriea.
it/en/, www.bundesliga.com/en/).

· Hospital is based on a dataset from US Department
of Health & Human Services (http://www.medicare.gov/
hospitalcompare/). It has 12 attributes and 100k tuples.

¸ BUS is one of the UK government public datasets avail-
able at http://data.gov.uk/data and deals with bus sched-
ules and routes. It contains 15 attributes and 250K tuples.

¹ DBLP is based on the popular collection of authors, publi-
cations and venues from http://dblp.uni-trier.de/xml/. We
downloaded the whole xml dataset, and translated it into
a single relational table with 15 attributes. We considered
instances of 1M and 5M tuples, for quality and scalability
tests, respectively.

º Synth is a dataset we designed starting from the orig-
inal Soccer dataset in order to study the scalability over
the number of tuples and a larger number of attributes.
The dataset has 10 attributes and we used a generator
from http://www.cs.toronto.edu/tox/toxgene/ to create in-
stances of different sizes.



Algorithms. We implemented several algorithms for the
exploration of the lattice. First, we study our own proposals
for multi-hop search. Dive is the binary jump algorithm
presented in Section 4.2.1. CoDive is its extention to make
use of the attributes correlation information, when this is
available, as described in Section 4.2.2.

These are compared with one-hop search strategies (Sec-
tion 4.1). Beside BFS and DFS, we have also implemented
Ducc [28], which was designed to reduce the number of tests
during the discovery of all the minimal unique column com-
binations in a given dataset. As we will show in the results,
Ducc is better than BFS and DFS for extensive searches of
maximal rules in the lattice, but it was not designed to deal
with small values of budget B for user interactions.

In addition to these, we also compared our results with the
greedy search algorithm for the off-line version of our prob-
lem. This algorithm, OffLine, is aware of the valid nodes
in the lattice. Given this information, it greedly picks the
node that maximizes the error coverage at each step, with
the number of steps equals to the budget B.

Baselines. We compared Falcon with four baselines.

¶ Refine: Our proposal generalizes the transformation
language of existing tools such as OpenRefine (http:
//openrefine.org/) and Trifacta Wrangler (https://www.
trifacta.com/trifacta-wrangler/) [27]. These tools enable
users to define transformations by examples exactly as in
our setting. Users modify values in a cell for attribute A
and the systems suggests possible transformations over the
remaining tuples for A. While we do not focus on string
manipulation as some of these tools, our language supports
rules (i.e., transformations) with look-up over any combina-
tion of columns in the relation. In fact, given an update,
these tools enable the inference of only two transformations
that are comparable to our language: either the single cell
is updated (the top of the lattice) or the erroneous value e
is replaced with the new value v for all the occurrences in
the attribute. The latter corresponds to one of the nodes
in our lattice. More precisely, the standardization rule is:
UPDATE T SET A = v WHERE A = e.

Given this context, a natural baseline algorithm models
these transformation tools. This algorithm, namely Refine,
checks for every user update the node that generalizes it to
a standardization rule, or picks the rule at the top of the
lattice if the validation fails.

· Rule-Learning Approaches: Many previous approaches
have concentrated on learning data-quality rules (e.g., [12,
17]). Therefore, we compared our algorithm with one of
these methods. More specifically:

piq starting from a dirty database, we asked users to clean a
sample of tuples (part of the budget was used to do this);

piiq based on the sample tuples, we used a CFD-miner to
learn a number of SQL-updates; since it is known that rule-
mining algorithms may discover semantically invalid rules
(due to “overfitting”) we asked users to select a subset of
semantically valid rules (the second part of the budget was
used for this purpose); and

piiiq we used the set of SQL-updates to repair the dirty
instance, and measured the benefit score (see below).

¸ Guided Data Repairs: To explore the impact of active
learning, we used GDR [46]. GDR (“Guided Data Repairs”)
is a recently proposed algorithm that relies on active learn-

ing in order to improve the quality of repairs. Given a set
of rules, it will incrementally ask users to solicit the right
repairs suggested by the rules. We tested an incremental
variant of algorithm · above, by using GDR to suggest re-
pairs (i.e., cell updates) to users. In this case, additional
budget is used to answer GDR user queries.

¹ Active Learning in Lattice Traversal: Finally, we com-
pared our methods to an active learning variant of our
lattice-based approach that was designed ad-hoc for this pur-
pose. In the active learning algorithm, we first generated
some features for each node, including attribute indicator,
attribute values, original value, and updated value. We then
trained a support vector machine (SVM) model with labeled
nodes. Finally we used active learning to select the best node
to ask users in each iteration.

Errors and Metrics. Since the considered datasets are
clean, we introduce noise to verify the algorithms behaviour
in the cleaning process. To start, we manually defined a set
of CFDs [16] and fixing rules [43] for each scenario. We used
8 rules for Soccer, 124 rules for Hospital, 8 rules for BUS, 69
rules for DBLP, and 12 rules for Synth.

Afterwards, we used an error-generation tool to inject er-
rors into the clean instances. To make our error-generation
more systematic, we relied on an open-source error genera-
tion tool by Arocena and others [6]. The tool allows users to
inject various kinds of errors within a clean database, both
rule-based, random and statistics-based. Being based on an
open-source tool, our error generation configuration can be
easily shared and reused.

We keep running an algorithm until all the introduced
errors are fixed either by a rule or by the user updates.
Then, we focus our attention on the interaction cost. We
adopt natural metrics: the number of user-provided updates
U , the number of users’ answers for nodes validation A, and
we simply add them up to get the total interaction cost
TC . Notice that the latest metric is treating both kinds of
interaction with the same weight, i.e., they are considered
equally difficult for the user. Despite more sophisticated
combinations are possible, we found that the simple sum
gives a global overview of the algorithms behaviour that is
close to the real overall experience of the users.

In order to have an indicator of the advantage of using
interactive cleaning, we also measure the benefit of an al-
gorithm in comparison to the manual update of all the er-
rors. We first define the cost ratio as the number of actions
divided by the number of errors. Manually updating 100
errors requires 100 user actions (updates) for a cost ratio
of 1. However, by using our tool, it may be the case that
25 actions can fix 100 errors, therefore the cost ratio would
be 0.25. Given an algorithm α, a dataset D, and the in-
teraction cost TC to obtain a set of queries Q covering all
introduced errors, we define the benefit of the algorithm as
BNFα “ 1´ TC{|QpDq|.

Finally, we measure the execution times for the algorithms
in the generation of the lattice and in its maintenance.

Notice that we do not assume that users always provide
correct inputs. On the contrary, the impact of user mistakes
is studied in one of our experiments.

Experiments. We conducted five experiments. piq Exp-1
compares benefits of the various lattice-traversal algorithms
with different budget values, and show that CoDive maxi-
mizes the benefit. piiq Exp-2 studies the impact of different
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Figure 4: Benefit for the various algorithms for the five datasets.

parameters of the models. In particular, we show that closed
rule sets, an optimization technique discussed in Section 5.2,
always reduces the cost. piiiq Exp-3 compares CoDive with
closed rule sets to the four baselines. Interestingly, our al-
gorithm outperforms all of the baselines. pivq Exp-4 studies
scalability. pvq Finally, Exp-5 investigates the robustness of
Falcon w.r.t. user mistakes.

Exp-1: Lattice search algorithms. We now turn our at-
tention to the comparison of the different search algorithms.
Figure 4 reports the benefit of each algorithm for the six
datasets over increasing budget B (i.e., maximum number
of questions after an update).

We start with the setting where the user is willing to an-
swer only two questions (B=2) in Figure 4(a). The proposed
algorithms, Dive and CoDive, consistently report a positive
gain, which, for CoDive, can be interpreted as a reduction
of the total user interaction cost between 22% (Soccer) and
97% (BUS). The plot also reveals that one-hop algorithms
fail for the budget exploration of the lattice, with the no-
table exception of the Hospital dataset. This results is not
surprising if we look more closely at this scenario. Hospital
schema has a large number of FDs with always one or two
attributes in the left hand side (LHS) of the rules. This is
reflected in the CFDs that we used to introduce the errors.
Rules with one or two LHS attributes are at the bottom of
the lattice, and this is the most favourable setting for one-
hop based algorithms, since they all start from the bottom.
On the other hand, when rules start to have more attributes
in the LHS, more nodes must be checked to take a decision,
these algorithms fail and Dive and CoDive greatly outper-
form them. Similar results can be observed with B “ 3 in
Figure 4(b). More details are provided in Appendix D.2.

By increasing the budget to five questions, as reported in
Figure 4(c), all algorithms can explore the lattice further
at each update and the performance improve accordingly.
This improvement is bigger for one-hop based algorithms as
they are now able to get closer to the maximal rules in the
traversal with a smaller number of updates.

Finally, since algorithm OffLine does not need to perform
the search, for each update it is able to identify immediately
the maximal rule. Therefore as expected OffLine is always
able to completely fix the data with a number of steps that
is equal to the number of rules used to introduce noise.

Exp-2: Closed rule sets and parameters. The results
for the previous experiments have been conducted with the
closed rule sets computed in the lattice. In fact, this opti-
mization enables a reduction both in the number of updates
and in the number of questions. To illustrate the impact
of the closed rule sets, we executed the lattice search algo-
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rithms with and without this optimization, and we measure
the difference in the number of required user updates and
user answers to cover all errors on three scenarios (Soccer,
Hospital and Synth 10k) (see Figure 5). All methods benefit
from the optimization, with the exception of Ducc, which
does not show any difference, and thus is not reported.

The method that gains most benefit from this optimiza-
tion is DFS. The explanation is that with low budgets, such
as B “ 2, DFS always reaches the level in the lattice with
two attributes. While the rule corresponding to the node
may be too general and therefore invalidated by the user,
it may be part of a closed rule set. Therefore, the user is
offered the representative rule, which is more specific and,
in some cases, true. This happens also for rules with only
one attribute in the LHS for Hospital, as discussed above. In
fact, even BFS, which never goes beyond nodes with only
one attribute in the LHS with low B values, benefits from
the closed rules set for this dataset.

As shown in Exp-1, on average CoDive has higher benefit
values than Dive. However, the quality of CoDive depends
on the value for parameter w (Section 4.2.2). We report in
Figure 6(a) the experimental results with different w values.
Each reported value is the number of user updates U (user
answers A) averaged over the results for B equals to 2, 3,
and 5. Both for Hospital and Synth 10k the best results are
observed with w “ 3. The parameters does not impact the
results for Soccer.



-1,5

-1,0

-0,5

0,0

0,5

1,0

CoDive Refine Rule	
Learn.

GDR Active	
Learn.Be

ne
fit

Soccer Hospital Synth	10k Synth	1M DBLP BUS

Figure 7: Benefit compared with the baselines.

We also report in Figure 6(b) the experimental results for
the synthetic datasets with different values of the parame-
ter d, as introduced for the binary jump algorithm in Sec-
tion 4.2.1. Experiments over different B values and datasets
also confirm that d “ 3 leads to the best results in terms of
optimization of the interaction cost.

Exp-3: Comparison to the baselines. Figure 7 reports
a comparison of our CoDive algorithm to the four baselines
discussed in Section 6. We fixed a timeout of two hours for
all tests. Notice that not all algorithm terminated within the
timeout. This accounts for the missing bars in the chart.

Our approach significantly outperforms all baselines.
First, CoDive results are significantly better than those
based on rule discovery. This suggests that our novel
paradigm for data repairing is an improvement w.r.t. pre-
vious approaches in which quality rules are established up-
front. Interestingly, this is confirmed also in the case in
which rule discovery is coupled with an interactive algo-
rithm, like GDR. In fact, the additional number of user in-
teractions needed to run GDR brings to even lower benefit.

Results confirm our intuition that using user updates to
lead the discovery of rules in an incremental way yields more
complete and effective repairs than state-of-the-art rule-
learning algorithms, which can return incomplete or redun-
dant sets of constraints. In fact, in our experiments neither
RuleLearning, nor GDR was able to repair all of errors in
the data. Detailed comparison is reported in Appendix D.2.

CoDive algorithm also outperforms its active learning
variant. Since ActiveLearning shares the same infrastruc-
ture as CoDive, here results are better w.r.t. RuleLearning
and GDR. In fact, as for CoDive, whenever it terminated
also ActiveLearning was able to repair all errors. Active-
Learning worked well in datasets with few rules, such as
BUS and Synth 10k, while performed poorly in datasets with
many rules like Hospital. Appendix C reports further details
on active learning algorithm. Overall, however, benefit lev-
els are lower. Hence, the active learning variant pays the
price in terms of user-interactions of the additional training
phase, which does not bring benefits w.r.t. CoDive.

Finally, CoDive outperforms Refine because of the less
expressive language in the latter. While we discover rules
using any combination of columns, Refine either generates
rules for the entire column, which is unlikely to hold for
data errors, or rules that update a single tuple. Single tuples
updates are always correct and promptly validated, but their
very small coverage leads to no benefit in using this tool.

Exp-4: Scalability. We report the performance of the
lattice construction and maintenance in Figure 8. Times
are reported in ms and the y axis is in log scale.
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Figure 9: Impact of user mistakes.

We start by analyzing the impact of the techniques dis-
cussed in Section 5.1 for lattice maintenance. Figure 8(a)
shows the total execution time for an update, defined as the
time to create the lattice plus the time to update it with
rules validated by the user in the interaction. We find it
interesting to show that different updates can lead to very
different execution times, because of the size of the queries
involved in the lattice. Therefore, for the same scenario,
we report both the execution times for the first user update,
and corresponding interaction, and the times for the 4th user
update. For all combinations of updates and scenarios, the
incremental maintenance is 3–5 times faster than the naive
solution that rebuilds the lattice for every rule validated by
the user (4 times faster on average for the first five updates).

Creating the lattice requires to run queries to collect the
data, and intersection over the sets of tuples to find the cor-
responding number of affected tuples for each node. When
the dataset is large, the creation of the lattice can require
a couple of seconds, as reported in Figure 8(b-c) for the
average of the first ten updates. However, the creation is re-
quired only when a new user update is given, and the main-
tenance of the lattice in the rule validation always requires
less than 20ms with our technique.

Finally, we study how the number of attributes in the
dataset influences the performance. For this experiment we
selected subsets of attributes of Hospital and also extended
it with two more attributes by joining another table. Fig-
ure 8(d) shows the average times over the first five updates
for the creation of the lattice and its maintenance with our
technique. While the response time is always below 10ms,
the creation of the lattice takes on average about 10 seconds,
with a maximum of 30 seconds for the first user update. As
discussed in Section 5.1.1, it is important to be able to iden-
tify the attributes of interest for the mining to limit the
exponential explosion of the number of nodes in the lattice.

Exp-5: User Mistakes. We also tested the robustness of
our approach w.r.t. to user-errors. That is, we do not as-
sume that users always provide correct answers. On the con-
trary, assume users may sporadically make mistakes. These
may be of two kinds, as follows. We notice that in both
cases, our algorithm is essentially self-healing:

piq The user performs a wrong update. This is the easier
case, since we can expect that from a wrong update, only
invalid rules are generated; these will be rejected by the user,
and the error is fixed.

piiq Following a valid update, the user wrongfully validates
an invalid rule. This case in more delicate, since, follow-
ing the wrong rule, the algorithm will indeed perform some
incorrect updates. Overall, however, this will simply gener-
ate more dirtiness in the database, and the user still has a
chance to correct this new dirtiness that s/he has introduced
in the database in subsequent iterations.
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Figure 8: Efficiency for the lattice creation and maintenance: Dive algorithm, unbounded B.

A key property is that the rules we discover at each step
are applied only once – i.e., during the step they were gener-
ated in – and therefore they can be fixed by further interac-
tion. This requires that the user is requested to reconsider
some previously updated cells. As a consequence, repair
ratios decrease in case of errors. In addition, we need to
prevent cyclic behaviors. To do this, the system checks up-
dates and notifies users whenever it is updating a cell that
has been repaired in previous iterations. This helps users to
identify previous mistakes, and prevents cycles.

Figure 9 shows the impact of user mistakes. Assume that
users made mistakes with a given probability – ranging from
1% to 5% – and compare results to the case without mistake.
Experiments confirm that the system is able to recover from
these errors, at the price of more user interactions.

7. RELATED WORK
Data transformation. Interactive systems for data trans-
formation [27,37,44] also reason about the updated attribute
to learn transformation rules. They mainly focus on string
manipulation and reformatting at the text level. In contrast,
we use more expressive SQL scripts. Consequently, we dis-
cover not only rules that contain one attribute that is being
updated syntactically, but also rules that combine multiple
attributes to semantically determine new repairs. Our lan-
guage and algorithms can lead to smaller interaction cost,
as discussed in Section 6 Exp-3.

Machine learning for cleaning. Given a set of user up-
dates, they can be used as training data to train machine
learning models, which in turn can be used to predict other
repairs [41, 45]. However, ML models are typically black-
boxes that identify updates without explanations, which are
hard to be trusted by users, especially for critical applica-
tions that need repairs with guaranteed correctness. Instead,
sqlu queries are declarative and are preferred for human val-
idation. Moreover, to train a machine learning model with
updates, they must be semantically consistent, i.e., they
refer to the same type of errors. In practice, however, this
assumption does not always hold since multiple updates may
refer to different types of errors. This heterogeneity may hin-
der the usability of the trained machine learning model for
prediction. Different from them, Falcon is bootstrapped
by a single update, and ensures the following interactions
are related to the queries with consistent semantics.

Query by examples. Several proposals have exploited the
opportunity of using examples to discover queries [2,8,9,38,
49,50], schema matchings [35,47], and schema mappings [4].
They mainly focus on finding how to join multiple tables. In
contrast to them, we study how to discover sqlu queries on
one table, with the main challenge of understanding the up-
date semantics that is not considered by other approaches.

From an algorithmic perspective, most of these approaches
exploit active learning to validate with users informative ex-
amples; we show in Section 6 Exp-3 how other signals, such
as correlation, can better guide the search in our setting.

Rule-based data cleaning. Rule-based approaches for
data cleaning are divided between methods to discover the
rules from clean data [11, 12, 17, 25, 40], and algorithms and
systems to apply the rules over dirty data to automatically
fix the detected errors [7,13,15,18,19,21,23,24,30,32,43,46].
Our proposal overcomes some of the shortcomings in these
methods. In terms of rules discovery, mining on dirty data
leads to a lot of useless rules, therefore most of the methods
report effective results assuming a clean sample. On the
contrary, we naturally start from dirty data. In terms of
cleaning, we restrict our language to deterministic updates,
which do no need variables or placeholders that the users
ultimately have to manually verify. In terms of learning
from user repairs, the closest approach to our solution is the
use of previous repairs to model “repair preferences” [41].
However, this approach needs a set of rules to be given as
input and it only refines them, without discovering new ones.

Search on lattice. Besides traditional search strategies
such as DFS and BFS, we also looked at recent lattice traver-
sal proposals, such as the Ducc algorithm [28]. Unfortu-
nately, these algorithms fail for our problem as they were
not designed to handle the budget constraint.

Closed frequent itemset. The concept of closed frequent
itemset is widely used in data mining (see [48] for a survey),
where it refers to a set of itemsets that are both frequent
(i.e., the support value is above a given threshold) and closed
(i.e., there is no superset that is closed). In fact, our closed
rule set is inspired from closed frequent itemset, with the
major difference that our data structure (i.e., the lattice)
keeps changing during interactions. Traditionally, the search
space for closed frequent itemset in data ming is static.

8. CONCLUSION AND FUTURE WORK
We have presented Falcon, an interactive, declarative

and deterministic data cleaning system. We have demon-
strated that Falcon can effectively interact with users to
generalize user-solicited updates, and clean-up data with a
significant benefit w.r.t. the number of required interactions.

A number of possible future studies using Falcon are
apparent. First of all, we plan to extend it by using exter-
nal sources, as remarked in Appendix B. Secondly, we will
leverage the information obtained from previous interactions
with the user w.r.t. multiple data updates. Finally, extend-
ing this approach to a crowd of noisy users would enable
larger applicability and scalability, but also raises new chal-
lenges, such as the resolution of conflicts over the updates.
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APPENDIX
A. SUMMARY OF NOTATION

We summarize the notations used in the paper in Table 3.

Symbol Description
Q a sqlu query, or a data quality rule

QpT q affected tuples of Q over table T
Q1 ĺ Q2 Q1 is contained by Q2

attrpQq attributes in the WHERE condition of Q
∆: trAs Ð a1 an update of trAs to a1

pQ,ĺq w.r.t. ∆ a lattice of queries Q on partial order ĺ

Q/ (Q/) the set of queries that Q (queries Q) contains
Q' (Q') the set of queries that contains Q (queries Q)

Table 3: Notations used in the paper.

B. USING EXTERNAL SOURCES
In this section, we discuss an extension of our system when

external sources are present. Often times, external sources
(e.g., master data) are available and contain high quality
data. Next, we shall discuss how to leverage such informa-
tion by Falcon.

Consider a dirty table T with schema R and master data
M with schema Rm. Assume without loss of generality that
|R| “ |Rm|, and the alignment of attribute from each at-
tribute A P R to A P R1 is given. For all other attributes in
either relation that are not aligned will be ignored. More-
over, given the update ∆ : trAs Ð a1, we assume that A P R.

UPDATE T SET T.A “M.A1

FROM T,M WHERE T rXs “MrX 1s P
Note that, differently from the sqlu queries defined in

Section 2.1, we enforce the condition that A R X. The
reason is that we assume that master data contains only
correct values, but not errors. In such case, the number
of potential queries is 2|R|´1, which is the number of all
combinations of attributes in RztAu.

From the extension, we can repair errors from instance
level to schema level by using the same lattice and the same
algorithms.

C. ACTIVE LEARNING APPROACH
Active learning is a special case of semi-supervised ma-

chine learning with the goal of substantially reducing the
number of labelling when training a model. All the labels
for learning are obtained without reference to the learning
algorithm, while in active learning the learner interactively
chooses which data points to label. The hope of active learn-
ing is that interaction can substantially reduce the number of
labels required. The method relies on interactively querying
the user for labelling the data trying to maximize the benefit
for the actual learning algorithm.

We adopt a similar idea in our setting, as described below.
In order to use active learning in our problem, i.e., to

predict that which node (or query) in the lattice is valid or
invalid, we face two main issues to be addressed.

(1) We need to generate features for nodes in the lattice,
which are used to capture their characteristics.

Indicators AttributeValues Original Updated
D M L Q D M L Q M M

1 2 1 0 11 Nov statin Austin null statin C22H28F

Table 4: Features of node DML.

Rank Attributes Set Correlation
1 {Stadium, Club Country} 1
2 {Soccer Manager, Soccer Club } 1
3 {Stadium, Soccer Club} 0.822
4 {Stadium, Soccer Manager} 0.789
5 {Stadium, Soccer Club, Soccer Manager} 0.654
... ... ...
99 {Stadium, Playercountry, Soccer Club} 0.303
100 {Stadium, Position} 0.006

Table 5: Correlation of attributes in Soccer dataset
when Stadium is updated.

(2) We need to use these features to select the node with the
maximum benefit to be labelled, which is then interact with
users to verify the selected node.

We explain in more detail about the implementation of
the above two steps below.

Feature Selection. We generate a number of features for
each node Q and train a Support Vector Machine (SVM)
model with LIBSVM [10]. For a node Q, the features in-
clude attribute indicator, attribute value, the original value
before the update, and the updated value. Attribute indica-
tor indicates whether the attribute is included in the node
(rule): if included, the indicator is 1; 0 otherwise. While if
the attribute is being updated, the indicator value is 2.

Question Generation. There are two phases in question
generation. First, in the initial 20 user updates, we use Ducc
to explore the lattice to label the nodes, taking the nodes
(and the corresponding features) from the user labelling as
the training data to train a SVM model that bootstraps the
active learning. Second, in each iteration, we apply the SVM
model to predict the label and corresponding probability of
each node, and select the node with the highest probabil-
ity of being valid (reported by SVM) to ask users. After
obtaining a label from user, we use lattice pruning tech-
nique (discussed in Section 3) to label other nodes in the
lattice and add them to existing training data to re-train
the SVM model.

We illustrate by an example for the active learning
method.

Example 12: Consider node DML in Figure 2. Firstly,
we generate features as illustrated in Table 4. Attribute
indicator of D is 1 because node DML includes attribute
D, indicator of M is 2 since it is the updated attribute.
Attribute values are the corresponding values taken from the
update ∆3 in Example 1. The original value and updated
value for the update are shown in the table.

Secondly, in each iteration, we apply SVM model to pre-
dict the probability of being valid of each node in the lattice.
Suppose node ML has the highest probability to be valid
that is 0.78. We then ask the user to label node ML and,
since in our example the node is valid, we label all nodes
above ML, i.e., {ML, DML, MLQ, DMLQ} to be valid and
we add them to re-train the SVM model.



Soccer Hospital Synth 10k Synth 1M DBLP BUS
U A U A U A U A U A U A

DFS 11 33 129 387 177 531 5094 15282 1462 4386 3646 10938
BFS 82 246 423 1269 729 2187 14035 42105 1338 4014 4172 12516
Ducc 25 75 129 387 70 210 3083 9249 1122 3036 3646 10938
Dive 15 41 219 657 29 87 74 222 462 1386 312 936

CoDive 8 19 206 412 24 72 74 222 140 420 48 144

|QpT q| 82 2000 1640 15000 6086 4172

Table 6: Comparison of the lattice search algorithms with B “ 3: U is the number of user updates, A is the
number of user answers, and |QpT q| is the total number of errors.

Soccer Hospital Synth 10k Synth 1M DBLP BUS
TC Rep TC Rep TC Rep TC Rep TC Rep TC Rep

CoDive B=5 49 82 567 2000 70 1640 394 15000 560 6086 96 4172
Refine 132 82 4000 2000 2470 1640 13326 15000 12172 6086 7258 4172

Rule Learning 194 27 315 500 474 1212 4800 15000 502 0 1191 757
GDR 225 30 1025 500 1578 943 - - - - - -

Active Learning 217 82 2157 2000 214 1640 - - - - 1220 4172

|QpT q| 82 2000 1640 15000 6086 4172

Table 7: Comparison of the baselines. Here TC is the total interaction cost for the user, Rep is the number of
repaired cells, and |QpT q| is the number of errors.

D. ADDITIONAL EXPERIMENTS

D.1 Correlation Score Results
Correlation guides the search to nodes that are likely to

have a semantic connection. How to compute correlation
is discussed in Section 4.2.2 to improve the binary jump
strategy. This is crucial in order to discover set of attributes
that form rules that are worth validating with the user. Note
that if many null values are present, we only count non-null
values, and the attributes with many null values will have
low correlation score. To clarify the role of the correlation
score, consider the following example.

∆1: t1rStadiums Ð “Volkswagen Arena”(from “Weserstadion”)

The user updates attribute Stadium. Table 5 shows a sum-
mary of the correlation scores, relative to attribute Stadium,
for attributes in the Soccer dataset. Every set of attributes
in the table can be seen as the left hand side attributes to
form a FD. In fact, we know the conclusion of the rule for the
given update (the Stadium attribute), but we do not know
which attributes to use in the premise of the rule. From
the correlation scores, we can deduce that each Stadium usu-
ally belongs to one Soccer Club and has one Soccer Manager,
while each Stadium could have many Positions. Thus the cor-
relation score of Stadium, SoccerClub, SoccerManager (row
with rank 5) is much larger than that of Stadium and Position
(row at rank 100). Our algorithm uses this intuition to guide
the search strategy, and the experiment results also verify
that the correlations are effective in avoiding rules that are
unlikely to be validated by the user, such as the one deriving
from row at rank 100.

D.2 More Details on Exp-1 and Exp-3
We now discuss in more details the different search algo-

rithms and baselines for all datasets.
As reported in Table 6, all search algorithms, with the

exception of BFS, lead to a clean dataset with a number of
user updates U that is smaller than the number of errors in
the data (|QpT q|, reported at the bottom). When consider-
ing the user answers (A), their number is from 4 to 68 times
smaller than the cost of manually fixing the errors (without

any rule nor tool), when considering the best performing
algorithm (numbers in bold). In particular, both for num-
ber of required updates and for number of required answers,
CoDive is always the method with the lowest effort, with
the exception of the Hospital dataset. In this case, DFS and
Ducc perform better because of the simple rules that have
been used to model the injection of the errors in the data.
All rules for this dataset have only one or two attributes
in the left hand side of the rules, such as Zip Ñ State or
Address, City Ñ State. In these cases, the correct rules are
at the bottom of the lattice, which is the level that DFS
and Ducc explore first. On the contrary, if our algorithms
miss the correct node at the bottom, they would start ex-
ploring the rest of the lattice and converge to the bottom
again slowly, thus with a larger number of questions. Notice
that, as discussed in Exp-2, the closed rule sets optimization
shows a significant improvement on the Hospital scenario for
the DFS algorithm.

We also remark that the Hospital dataset has a number of
rather specific features. This dataset was created by joining
several tables, originally in normal form, in order to obtain a
large number of functional dependencies and redundancy in
the data for testing rule-based data repair algorithms [20,22].
Given the highly denormalized table resulting from these
joins, the dataset should not be considered representative of
a standard data cleaning task.

Table 7 reports the results for CoDive compared with the
baselines. Missing numbers denote cases for which the tool
was stopped after the fixed timeout (two hours) for all tests.
We observe that Rule Learning and GDR were not able to
cover all errors because of the limited scope of the discovered
rules. This is due to the limited size of the sample used
in mining. A larger sample would lead to better results in
terms of recall, but with a higher cost for the collection of the
clean tuples. Refine is always able to detect all errors, but
with a much larger number of interaction because of its less
expressive language, compared to CoDive. Finally, active
learning has worse performance w.r.t. CoDive because of
required training data, and in two cases with large dataset
it was not able to terminate before the timeout.
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Chapter 4

Conclusions

The topic of data cleaning has gained considerable attention in the database community

since the development of the first methods exploiting a declarative approach [47, 19] . After

that, a huge number of contributions have been proposed to increase the coverage, with

new rule languages [31, 41, 44, 49], and the effectiveness of the cleaning, with automatic

algorithms [46, 65, 17] and frameworks [110, 24, 36, 64, 9] for the rule enforcement. While

these approaches have proven successful to some extent, recent years have seen the rise of

more interactive methods as the preferred way to tackle data preparation problems [68, 35, 69].

This direction is also confirmed by the increasing expansion of start-ups focused on the user

experience in the data wrangling step, such as Tamr1 and Trifacta2.

The contributions gathered in this thesis aim to render the cleaning based on rules more

practical and scalable and set solid foundations to explore more in the interactive cleaning

direction. By developing these techniques further, the goal is to enable users to get the benefit

of declarative rules without the existing obstacles. My research agenda will therefore explore

this idea by moving the user interaction closer to the mining and cleaning algorithms, as

demonstrated in some of the work presented in the thesis [52].

My current ongoing research is investigating a number of extensions, including two main

topics that are most related to this thesis:

• Specifications for Cleaning from Data Examples: One line of work is to develop

a unified framework for the automatic synthesis of heterogeneous cleaning specifications

from data examples. Given a dataset D with errors, and a new version of the dataset

D′ for which at least one error has been fixed, we want to identify at least one cleaning

specification that transforms D to D′. The instance pair is our data example. If multiple

specifications exist for an example, then we want to characterize the “most general” one,

1https://www.tamr.com/
2https://www.trifacta.com/
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so that its cleaning impact can be maximized over the data. In order to reach this goal,

we need to tackle several challenges:

(i) Determining an appropriate formal framework in which cleaning specifications can

be expressed and that allows one to numerically assess the quality of a specification.

Specifications for cleaning programs are numerous and heterogeneous [3, 26]. The dif-

ferent kinds of specifications range from logical rules [28, 48] to procedural transfor-

mations [61], from parameters for quantitative models [84, 55], to training data for

learning models [93, 4]. The framework should be general enough to express all kinds

of specification, while at the same time being precise enough to enable rigorous formal

studies. Building on solutions developed in my previous work, we will adopt for the

framework the logic formalism of denial constraints [27, 28] extended with generic user

defined functions [11, 64].

(ii) Understanding the computational fundamentals of the synthesis of cleaning speci-

fications, complexity issues, and algorithms. Each example is a partial description of

the semantics for a candidate specification. Given a set of examples, a decision prob-

lem states if there exists a set of specification that “fit” them. Previous efforts have

shown in specific settings that the complexity varies from quadratic over the number

of records for regular expressions [58] to exponential for logical formulas [7]. To handle

complexity, for every specification kind we will develop a new algorithm that does not

try to uniquely characterize the specification. Since any specification that holds is use-

ful for cleaning, synthesizing the most general one(s) is the sensible approach to obtain

significant cleaning effects.

(iii) Synthesizing heterogeneous specifications from data examples. Systems that infer

queries and logical expressions from data examples rely on the assumption that the

specification is expressed in a fixed target formalism [101, 93]. This is not the case for

cleaning, as all kinds of specifications are needed to achieve effective results [3]. This

new setting leads to a rethinking of the previous results, motivating algorithms that

discover different kinds of specifications from a given set of examples. While every

synthesis algorithm exploits the single formalism assumption for optimization, a new,

“polyglot” synthesis mechanism will be built on top of the generic formal framework

from the first challenge to enable a unified discovery.

• Automatic Quality Measures for Noisy Data: The second direction is to auto-

mate the cleaning process. Since a major goal in this context is to avoid the upfront

specification and to involve the domain expert with a limited set of examples, the ability

to automatically identify errors and their fixes is of utmost importance. In this context,

we are looking at three problems:

(i) Reusing existing cleaning programs. Existing mining systems discover a limited num-

ber of specifications for cleaning, are often inaccurate, and cannot identify rich semantic

validations [78]. The problem is that complex specifications require background knowl-
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edge, that it is not in the data. We therefore aim at synthesizing specifications from

existing programs, in which engineers and experts have already encoded their knowl-

edge. We plan to leverage internal and external code repositories, such as GitHub.

Given that specifications were not created for the dataset at hand, the challenges are in

discovering the useful ones and in their reuse. We will design algorithms to automat-

ically adapt cleaning specifications from one context to another, drawing inspiration

from the literature in transfer learning [12] and recent related proposals [53]. We re-

cently showed that this approach can be successful for declarative transformations [10],

in a setting with a corpus of (generic) schema mappings [82].

(ii) Combining all available signals that lead to error identification. Examples of qual-

ity signals are statistical properties of the data, such as outlying values or correlations

among attributes [27, 58], mappings to reference data [4], and rules mined from user

updates [52]. Some of these methods allow the discovery of approximate specifications

from noisy data, but since they are uncertain, they need to be manually validated before

execution. Instead of exposing the uncertain programs for validation, we will combine

their signals to identify the records that are most likely to be erroneous. We will con-

sider the input data as a noisy version of a hidden clean dataset and treat each signal as

evidence on the correctness of different records in it. To combine different signals and

accumulate evidence for the detection of errors and the imputation of correct values,

we will employ ensemble algorithms [90] and probability theory, which enables reason-

ing about inconsistencies across signals, for example with a probabilistic model whose

random variables capture the uncertainty over records in the dataset [66]. Previous

attempts to solve the data cleaning problem holistically considered the initial signals as

certain, as the rules and mappings were manually defined by the users in a top-down

fashion [36, 28, 88, 48].

(iii) Assessing the quality of a noisy dataset. Given a noisy dataset, an open challenge

is ensuring that all data errors have been identified. This problem applies both for

specifications, as they can be incomplete and miss rare problems, and for domain ex-

perts, as they might miss subtle issues. The ability to estimate the number of errors

undetected by cleaning programs would enable the quantitative measure of the current

data quality state. However, it is challenging to define data quality without knowing

the ground truth (i.e., the hidden clean dataset) [83]. One direction is to exploit a

statistical approach to estimate the number of remaining errors by extrapolating the

number of errors from a “perfectly clean” sample [105], e.g., 10 errors in a sample of

1000 records out of 1M records leads to estimate about 10000 additional errors. This

method clearly depends on the quality and size of the data sample, which is problematic

to guarantee. A poor sample will give inaccurate extrapolation and therefore useless

estimates. One idea is to design a statistical estimator based on the principle that every

additional error is more difficult to detect than the previous ones [102], e.g., the first

execution of the detection ensemble in the previous challenge should find more errors
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than every subsequent execution, and so on. If we estimate this diminishing return rate,

we can then use it to estimate the number of remaining errors.

I envisage immediate impact of the results of my research in data cleaning systems. I have

recently been awarded an ANR JCJC national grant for the duration of 3.5 years to investigate

these topics in greater detail. We aim at the release of an open-source cleaning system as a

product of this project. The system will be the first of its kind, as it will provide data cleaning

as a service to any domain expert in the form of questions expressed over data examples. To

provide the right context for these new techniques and show the impact of the project in

different domains and scenarios, we plan to deploy and test the system with real case studies

within ongoing collaborations, such as a leading auditing company and an European central

bank.
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