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A comparative evaluation of novelty detection
algorithms for discrete sequences

Rémi Domingues · Pietro Michiardi ·
Jérémie Barlet · Maurizio Filippone

Abstract The identification of anomalies in temporal data is a core component
of numerous research areas such as intrusion detection, fault prevention, genomics
and fraud detection. This article provides an experimental comparison of candi-
date methods for the novelty detection problem applied to discrete sequences. The
objective of this study is to identify which state-of-the-art methods are efficient
and appropriate candidates for a given use case. These recommendations rely on
extensive novelty detection experiments based on a variety of public datasets in
addition to novel industrial datasets. We also perform thorough scalability and
memory usage tests resulting in new supplementary insights of the methods’ per-
formance, key selection criteria to solve problems relying on large volumes of data
and to meet the expectations of applications subject to strict response time con-
straints.

Keywords Novelty detection · Discrete sequences · Temporal data · Fraud
detection · Outlier detection · Anomaly detection

1 Introduction

Novelty detection is an unsupervised learning problem and an active research area
[1,23]. Given a set of training samples, novelty detection is the task of classifying
new test samples as nominal when the test data relates to the training set, or as
anomalous when they significantly differ. Anomalous data is called novelties or
anomalies and is assumed to be generated by a different generative process. Since
novelty detection can be considered a one-class classification problem, it has also
been described as a semi-supervised problem [7] when the training set is exempt
of outliers. While most anomaly detection problems deal with numerical data
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2 Rémi Domingues et al.

[4,16,42], novelty detection methods have been successfully applied to categorical
data [23], time-series [28, 35, 51], discrete sequences [8, 11, 53] and mixed data
types [15].

This paper surveys the problem of detecting anomalies in temporal data, specif-
ically in discrete sequences of events which have a temporal order. Such a problem
can be divided into two categories. The first one is change point detection. In
this problem, the dataset is a single and often long sequence in which we seek
anomalous subsequences composed of contiguous events. Anomalies denote a sud-
den change of behavior from the data source. Use cases relating to this problem are
sensor readings [28] and first story detection [39]. In the second category, datasets
are composed of multiple sequences. The problem is thus to build a model which
differentiates nominal from anomalous sequences. Our study focuses on the latter,
which encompasses use cases such as protein identification for genomics [8, 49],
fraud and intrusion detection [8, 36,53] and user behavior analysis (uba) [47].

While this is a matter of interest in the literature, most reviews addressing the
issue focus on theoretical aspects [7, 21], and as such do not assess and compare
performance. Chandola et al. [8] showcase an experimental comparison of novelty
detection methods for sequential data, although this work uses a custom metric
to measure the novelty detection capabilities of the algorithms and misses meth-
ods which have been recently published in the field. Our work extends previous
studies by bringing together the following contributions: (i) comparison of the
novelty detection performance for 12 algorithms, including recent developments
in neural networks, on 81 datasets containing discrete sequences from a variety
of research fields; (ii) assessment of the robustness for the selected methods using
datasets contaminated by outliers, with contrast to previous studies which rely on
clean training data; (iii) scalability measurements for each algorithm, reporting
the training and prediction time, memory usage and novelty detection capabilities
on synthetic datasets of increasing samples, sequence length and anomalies; (iv)
discussion on the interpretability of the different approaches, in order to provide
insights and motivate the predictions resulting from the trained model. To our
knowledge, this study is the first to perform an evaluation of novelty detection
methods for discrete sequences with so many datasets and algorithms. This work
is also the first to assess the scalability of the selected methods, which is an impor-
tant selection criterion for processes subject to fast response time commitments,
in addition to resource-constrained systems such as embedded systems.

The paper is organized as follows: Section 2 presents the state-of-the-art of
novelty detection methods, Section 3 details the real-world and synthetic datasets
used for the study, in addition to the relevant metrics and parameters, Sections 4
and 5 report the results and conclusions of the work.

2 Methods

The current section details novelty detection methods from the literature. In or-
der to provide recommendations relevant to real-world use cases, only methods
satisfying the following constraints were selected: (1) the method accepts discrete
sequences of events as input, where events are represented as categorical samples;
(2) the sequences fed to the method may have variable lengths, which implies a
dedicated support or a tolerance for padding; (3) the novelty detection problem
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induces a distinct training and testing dataset. As such, the selected approach
should be able to perform predictions on unseen data which was not presented to
the algorithm during the training phase; (4) subject to user inputs and system
changes, the set of discrete symbols in the sequences (alphabet) of the training
set cannot be assumed to be complete. The algorithm should support new symbols
from the test set ; (5) in order to perform an accurate evaluation of its novelty
detection capabilities and to provide practical predictions on testing data, the
method should provide continuous anomaly scores rather than a binary decision.
This last point allows for a ranking of the anomalies, and hence a meaningful
manual validation of the anomalies, or the application of a user-defined threshold
in the case of automatic intervention. The ranking of anomalies is also required
by the performance metric used in the study and described in section 3.1.

2.1 Hidden Markov Model

Hidden Markov Models (hmms) [41] are popular graphical models widely used
in speech recognition and protein modelling, able to describe and generate se-
quences of symbols, also called emissions, y = {y1, ..., yT }. The approach fits
a probability distribution over the observed sequences by estimating the corre-
sponding sequences of hidden states s = {s1, ..., sT } taken by the model. An hmm
is thus defined by two sets of parameters. The transition matrix defines the state-
transition probabilities where the ijth element is P (st+1 = j|st = i). This set of
parameters represents the probability of the model to transit from a current state
st to the next state st+1. The set of N possible unobserved states is also referred
as components. To each state corresponds distinct emission probabilities grouped
in the emission matrix, whose iqth element is defined as P (yt = q|st = i). The
emission matrix represents thus the probability of a current state st to emit a sym-
bol yt. The last set of parameters is the initial state vector π describing P (s1 = i).
These parameters are usually estimated from a training set of sequences using the
Baum-Welch algorithm which applies Expectation-Maximization (EM) to hmms.
Based on a trained hmm, anomalous sequences of symbols can be identified by
computing the corresponding normalized likelihood, which acts as a novelty score.

2.2 Distance-based methods

Distance-based approaches rely on pairwise distance matrices computed by ap-
plying a distance function to each pair of input sequences. The resulting matrix
is then used by clustering or nearest-neighbor algorithms to build a model of the
data. At test time, a second distance matrix is computed to perform scoring, which
contains the distance between each test sample and the training data.

2.2.1 Distance metrics

lcs is the longest common subsequence [2] shared between two sequences. A
common subsequence is defined as a sequence of symbols appearing in the same
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order in both sequences, although they do not need to be consecutive. For exam-
ple, lcs(xmjyauz,mzjawxu) = mjau. Since lcs expresses a similarity between
sequences, we use the negative lcs to obtain a distance.

The Levenshtein distance [31], also called the edit distance, is a widely used
metric which computes the difference between two strings or sequences of symbols.
It represents the minimum number of edit operations required to transform one
sequence into another, such as insertions, deletions and substitutions of individual
symbols.

Both metrics are normalized by the sum of the sequence lengths (equation 1),
which makes them suitable for sequences of different length.

distance(x, y) =
metric(x, y)

|x|+ |y| (1)

2.2.2 Algorithms

The k-nearest neighbors (k -nn) algorithm is often used for classification and
regression. In the case of classification, k -nn assigns to each test sample the label
the most represented among its k nearest neighbors from the training set. In [42],
the scoring function used to detect outliers is the distance d(x, nk) or dk(x) between
a point x and its kth nearest neighbor nk. This approach was applied to sequences
in [8] using the lcs metric, and outperformed methods such as hmm and other
methods presented in this study.

Local outlier factor (lof) [4] also studies the neighborhood of test samples
to identify anomalies. It compares the local density of a point x to the local density
of its neighbors by computing the reachability distance rdk(x, y) between x and
each of its k -nearest neighbors ni.

rdk(x, ni) = max(dk(ni), d(x, ni)) (2)

The computed distances are then aggregated into a final anomaly score detailed
in [4]. The method showed promising results when applied to intrusion detection
[29].

k-medoids [38] is a clustering algorithm which uses data points from the train-
ing set, also called medoids, to represent the center of a cluster. The algorithm first
randomly samples k medoids from the input data, then cluster the remaining data
points by selecting the closest medoid. The medoids of each cluster are further
replaced by a data point from the same cluster which minimizes the sum of dis-
tances between the new medoid and the points in the cluster. The method uses
expectation-maximization and is very similar to k -means, although the latter uses
the arithmetic mean of a cluster as a center, called centroid. Since k -means re-
quires numerical data and is more sensitive to outliers [38], it was not selected
for this study. Several versions of the k -medoids algorithm have been developed
to improve the performance, complexity and parallelization of the method, e.g.
PAM, CLARA or Park’s implementation, and are further discussed in the work of
Schubert et al. [46]. We use the distance to the closest medoid to detect anoma-
lies, which is the method used in [6] and [5]. Both papers used the lcs metric to
preprocess the data given to k -medoids.
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2.3 Window-based techniques

The two following methods observe subsequences of fixed length, called windows,
within a given sequence to identify abnormal patterns. This workflow requires to
preprocess the data by applying a sliding window to each sequence, shifting the
window by one symbol at each iteration and resulting in a larger dataset due to
overlapping subsequences.

t-stide [53], which stands for threshold-based sequence time-delay embedding,
uses a dictionary or a tree to store subsequences of length k observed in the training
data, along with their frequency. Once this model is built, the anomaly score of
a test sequence is the number of subsequences within the sequence which do not
exist in the model, divided by the number of windows in the test sequence. For
increased robustness, subsequences having a frequency lower than a given threshold
are excluded from the model. This increases the anomaly score for uncommon
patterns, and allows the algorithm to handle datasets contaminated by anomalous
sequences. This scoring method is called Locality Frame Count (lfc) and was
applied to intrusion detection [53] where it performed almost as well as hmm at a
reduced computational cost.

ripper [11] is a supervised classifier designed for association rule learning. The
training data given to the algorithm is divided into a set of sequences of length k,
and the corresponding labels. For novelty detection, subsequences are generated
by a sliding window, and the label is the symbol following each subsequence. This
allows ripper to learn rules predicting upcoming events. This method was applied
to intrusion detection in [30]. To build an anomaly score for a test sequence, the
authors retrieve the predictions obtained for each subsequence, along with the
confidence of the rule which triggered the prediction. Each time a prediction does
not match the upcoming event, the anomaly score is increased by confidence∗100.
The final score is then divided by the number of subsequences for normalization.

2.4 Pattern mining

Sequential Pattern Mining (SPM) consists in the unsupervised discovery of inter-
esting and relevant subsequences in sequential databases. A recent algorithm from
this field is Interesting Sequence Miner (ism) [18], a probabilistic and genera-
tive method which learns a set of patterns leading to the best compression of the
database. From a training set, ism learns a set of interesting subsequences ranked
by probability and interestingness. The interestingness of a sequence is based on
its length, redundancy and frequency in the dataset. Interesting sequences are
expected to explain a high proportion of sequences in which they appear. The
model is trained through structural expectation-maximization, thus refining the
set of sequences likely to generate the training set by iterative optimization steps.
The generation procedure uses a directed graphical model to combine interesting
sequences into a generated set of longer sequences. To score a test sequence, we
count the number of occurrences of each interesting pattern returned by ism, and
multiply the number of occurrences by the corresponding probability and inter-
estingness. This score is normalized by the length of the test sequence, a low score
denoting an anomaly. While alternatives to ism exist in the literature [19], few
provide both a probabilistic framework and an open source software.
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2.5 Neural networks

Recurrent neural networks (rnns) are widely used algorithms for a variety of
supervised tasks related to temporal data [32]. Long Short-Term Memory (lstm)
[22], a specific topology of rnn, has the ability to model long-term dependencies
and thus arbitrarily long sequences of events. This network can be applied to
unsupervised learning problems by using an autoencoder topology, i.e. using input
and output layers of same dimensions to present the same data in input and output
to the network. This allows the method to learn a compressed representation of the
data. For this purpose, the following algorithms use two multilayer lstm networks,
the first one encoding the data in a vector of fixed dimensionality (encoder), the
second one decoding the target sequence from the vector (decoder).

The Sequence to Sequence (seqseq) [50] network is a recent work designed
for language translation. The method is based on lstm hidden cells and uses
various mechanisms such as dropout to prevent overfitting and attention [34] to
focus on specific past events to establish correlations. As suggested in [35,45], the
reconstruction error is used to score anomalies. The reconstruction error is the
distance between the input and the reconstructed output, computed by lcs in
this study.

We also include a simpler lstm Autoencoder (lstm-ae) for the sake of the
comparison, paired with a different scoring system. This network is also composed
of two lstm networks, and both seqseq and lstm-ae perform masking to handle
padding characters appended to the end of the sequences of variable length. How-
ever, lstm-ae does not use the dropout and attention mechanisms. The goal of
lstm-ae is to learn a numerical fixed-length embedding vector to represent each
input sequence. Instead of comparing the input to the reconstructed output for
scoring, we now feed the latent representation of the training set provided by the
network to train an Isolation Forest [33], an unsupervised novelty detection al-
gorithm for numerical data recommended in [16]. At test time, the input sequence
is encoded into an embedding vector which is scored by Isolation Forest. Isolation
Forest is a random forest method which performs random splits over the feature
domain. Observations which are isolated from the rest of the dataset after few
splits are considered anomalous. The scoring function relies on the average path
length required to reach the leaves containing a given observation from the root
of the trees.

3 Experimental setup

3.1 Performance tests

Our evaluation uses 81 datasets related to genomics, intrusion detection and user
behavior analysis (uba). The datasets are divided into 9 categories detailed in
Table 1, and cover a total of 68,832 sequences. For a given dataset, we use 70% of
the data for the training, and 30% for the testing.

We detail thereafter the metrics used to evaluate the novelty detection capabil-
ities of the methods. At prediction time, each method provides us with continuous
anomaly scores s which allow us to rank novelties from a testing set. We can then
define a threshold α and classify test points as anomalies when s > α. The novelty
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detection capabilities of the algorithms can further be assessed by computing the
precision and recall metrics on the resulting binary classification (eq. 3). These
metrics require a labelled testing dataset where novelties and nominal cases are
defined as positive and negative observations. In this unsupervised setting, labels
are only used to assess the performance of the methods and are not provided at
training time. Data points correctly labelled as positives are called true positives
(TP), examples incorrectly labelled as positives are called false positives (FP),
and positive samples incorrectly labelled as negatives are referred as false nega-
tives (FN).

precision =
TP

TP + FP
recall =

TP

TP + FN
(3)

By varying α over the range of values taken by s, we can compute different
precision and recall measurements resulting in a precision-recall curve. The area
under this curve is called average precision (ap) and is the recommended metric
to assess the performance of novelty detection methods [13]. An alternative metric
used in the literature is the area under the receiver operating characteristic (roc)
curve. While the latter is widely used for classification problems, Davis et al. [13]
demonstrated that it was not appropriate when dealing with heavily imbalanced
class distributions, which is inherent to novelty detection where anomalies con-
sist in a small proportion of the labelled data. Indeed, false positives have very
little impact on the roc, whereas ap is strongly penalized by these, even if their
proportion is not significant compared to the size of the negative class.

We thus measure the performance of the algorithms by computing the average
precision (ap) over the testing data. To ensure stability and confidence in our
results, we perform 5-fold cross-validation for each method and dataset. The final
performance given in Table 3 is thus the mean average precision (map), i.e. the ap
averaged over the 5 iterations. A robust method is able to learn a consistent model
from noisy data, i.e. a training set contaminated by anomalies. We use the same
proportion of outliers in the training and testing sets to showcase the robustness
of the selected methods.

The corpus of data described in Table 1 includes 6 widely used public collections
of datasets, in addition to 3 new collections of industrial datasets from the company
Amadeus. pfam (v31.0) describes 5 families of proteins, namely rub (PF00301),
tet (PF00335), sno (PF01174), nad (PF02540) and rvp (PF08284). intrusions
contains unix system calls for the traces lpr-mit, lpr-unm, sendmail-cert,
sendmail-unm, stide and xlock. Concerning industrial datasets, rights details
the actions performed by users in a Web application designed to manage the per-
missions of users and roles. The dataset shows the sessions of the 10 most active
users. For each user dataset, anomalies are introduced by sampling sessions from
the 9 remaining users. transactions-fr and transactions-mo are generated
from a business-oriented flight booking application and covers Web traffic coming
from France and Morocco. User selection and anomaly generation were performed
as described previously.
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Table 1: Datasets benchmarked, related to genomics (gen), intrusion detection
(int) or user behavior analysis (gen). D is the number of datasets in each collec-
tion. The following characteristics are averaged over the collection of datasets: N
is the number of samples, A and pA are the number and proportion of anomalies,
respectively, ML is the length of the shortest sequence, µL is the average sequence
length, SL is the entropy of the sequence lengths, σ is the number of unique events,
Sσ is the entropy of the event distribution, T5 (Top 5%) is the proportion of events
represented by the 5% biggest events and L1 (Lowest 1%) is the proportion of the
smallest events representing 1% of the events.

Category Area D N A (pA) ML µL SL σ Sσ T5 L1

splice-junctions gen 1 1710 55 (3.22%) 60 60 0.00 6 1.39 25.76 16.67
promoter gen 1 59 6 (10.17%) 57 57 0.00 4 1.39 26.85 0.00
pfam gen 5 5166 165 (3.19%) 117 1034 0.15 45 1.17 83.97 40.00
masquerade int 29 94 6 (6.29%) 100 100 0.00 113 3.40 49.69 29.55
intrusions int 6 2834 202 (7.14%) 56 1310 4.27 43 2.01 66.91 36.43
unix uba 9 1045 33 (3.20%) 1 31 3.60 379 3.31 77.54 48.86
rights uba 10 677 22 (3.18%) 1 15 3.31 67 2.19 70.03 55.95
transactions-fr uba 10 215 7 (3.21%) 4 49 3.57 285 4.16 47.57 33.37
transactions-mo uba 10 386 12 (3.19%) 5 37 3.88 416 4.18 67.08 33.46

3.2 Scalability tests

Synthetic datasets are generated to measure the scalability of the selected meth-
ods. Nominal data is obtained by sampling N sequences of fixed length L from
a Markov chain. The transition matrix used by the Markov chain is randomly
generated from a uniform distribution and has dimension σ, where σ is the size
of the alphabet. Anomalies are sampled from a distinct random transition matrix
of same dimension, to which we add the identity matrix. The default proportion
of anomalies in the training and testing sets is 10%. Both transition matrices are
normalized to provide correct categorical distributions.

We vary N , L and the proportion of anomalies to generate datasets of in-
creasing size and complexity. We also studied the impact of σ on the methods,
and found that it had little effect on the scalability and map. The training time,
prediction time, memory usage and novelty detection abilities of the algorithms
are measured during this process. For each configuration, we run the algorithms
3 times over distinct sampled datasets and average the metrics to increase confi-
dence in our results. Training and testing datasets are generated from the same
two transition matrices, and have the same number of samples and outliers.

The experiments are performed on a VMWare platform running Ubuntu 14.04
LTS and powered by an Intel Xeon E5-4627 v4 CPU (10 cores at 2.6 GHz) and
256GB RAM. We use the Intel distribution of Python 3.5.2, Java 8 and R 3.3.2.
Due to the number of algorithms and the size of the datasets, we interrupt training
and scoring steps lasting more than 12 hours. Memory usage is measured by mem-
ory profiler for algorithms written in Python and R, and by the unix ps command
for other languages. We perform a garbage collection for R and Python before
starting the corresponding methods. Memory consumption is measured at inter-
vals of 10−4 seconds, and shows the maximum usage observed during the training
or scoring step. The memory required by the plain running environment and to
store the dataset is subtracted to the observed memory peak.

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+%28Promoter+Gene+Sequences%29
https://pfam.xfam.org/family/browse
http://www.schonlau.net/intrusion.html
https://www.cs.unm.edu/~immsec/systemcalls.htm
http://archive.ics.uci.edu/ml/datasets/unix+user+data
https://pypi.org/project/memory_profiler/
https://pypi.org/project/memory_profiler/
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3.3 Algorithms

The implementation and configuration of the methods are detailed in Table 2.
Parameter selection was achieved by grid-search and maximizes the map averaged
over all validation datasets. These datasets are detailed in Section 3.1 and contain
the same proportion of anomalies as the training sets. The parameters detailed
in Table 2 are shared across datasets. We use rpy2 to run algorithms written in
R from Python, and create dedicated subprocesses for Java and C. For ripper,
the parameters F, N and O denote the number of folds, the minimum number of
occurrences required for a rule and the number of runs, respectively. The selected
implementation of lcs uses dynamic programming, although faster versions may
be available [12,25].

Table 2: Parameters and implementations of the selected algorithms. Parameters
are described in Section 2, and no parameter is required for the Levenshtein and
lcs distance metrics.

Algorithm Language Parameters

hmm 1 Python components = 3, iters = 30, tol = 10−2

lcs Python n/a
Levenshtein Python n/a
k -nn Python k = max(n ∗ 0.1, 20)
lof Python k = max(n ∗ 0.1, 50)
k -medoids Python k = 2
t-stide 2 C k = 6, t = 10−5

ripper 2 R K = 9, F = 2, N = 1, O = 2
ism Java iters = 100, s = 105

seqseq 3 Python iters = 100, batch = 128, hidden = 40, enc dropout = 0.5, dec dropout = 0.
lstm-ae 3 Python batch = 128, iters = 50, hidden = 40, δ = 10−4

1 New symbols are not supported natively by the method.
2 Sequences were split into sliding windows of fixed length.
3 Padding symbols were added to the datasets to provide batches of sequences having the same length.

4 Results

4.1 Novelty detection capabilities

The mean average precision (map) resulting from the experiment detailed in Sec-
tion 3.1 is reported in Table 3 for each algorithm and dataset. When no significant
difference can be observed between a given map and the best result achieved on
the dataset, we highlight the corresponding map in bold. The null hypothesis is
rejected based on a pairwise Friedman test [20] with a significance level of 0.05.

While we believe that no method outperforms all others, and that each prob-
lem may require a distinct method, we attempt to give a broad overview of how
methods compare to one another. For this purpose, we extract the rank of each
algorithm on each collection of datasets from Table 3 and aggregate them to pro-
duce an overall ranking reported in the last column. The aggregation is performed
using the Cross-Entropy Monte Carlo algorithm [40] and rely on the Spearman
distance.

In order to infer the behavior of each method based on the datasets charac-
teristics, we learn an interpretable meta-model using the features introduced in
Table 1. While the metrics given in Table 1 are computed over entire datasets,

https://rpy2.readthedocs.io
https://github.com/hmmlearn/hmmlearn
http://mlpy.sourceforge.net/docs/3.5/lcs.html
https://pypi.org/project/leven/
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
https://github.com/letiantian/kmedoids/blob/master/kmedoids.py
http://www.cs.unm.edu/~immsec/software/stide_v1.2.tar.gz
https://cran.r-project.org/web/packages/RWeka/index.html
https://github.com/mast-group/sequence-mining
https://www.tensorflow.org/tutorials/seq2seq
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Table 3: Mean area under the precision-recall curve (map) averaged per group of
datasets over 5 cross-validation iterations. Results in bold indicate that we cannot
reject the null hypothesis of the given map to be identical to the best map achieved
for the dataset. Column Rank reports the aggregated rank for each method based
on the Spearman footrule distance.

splice promot. pfam masque. intrus. unix rights trans-fr trans-mo Mean Rank

hmm 0.027 0.336 0.387 0.166 0.580 0.302 0.246 0.260 0.164 0.274 1
k -nn-lcs 0.032 0.437 0.516 0.132 0.425 0.207 0.270 0.179 0.097 0.255 3
k -nn-lev 0.033 0.412 0.516 0.129 0.405 0.120 0.188 0.185 0.083 0.230 5
lof-lcs 0.042 0.150 0.029 0.167 0.141 0.073 0.042 0.091 0.041 0.086 12
lof-lev 0.031 0.226 0.517 0.156 0.181 0.132 0.191 0.192 0.099 0.192 4
k -medoids-lcs 0.027 0.581 0.510 0.134 0.318 0.155 0.218 0.184 0.092 0.247 6
k -medoids-lev 0.040 0.692 0.513 0.148 0.222 0.086 0.146 0.189 0.078 0.235 7
t-stide 0.048 0.806 0.506 0.122 0.469 0.081 0.130 0.136 0.112 0.268 9
ripper 0.028 0.431 0.034 0.176 0.359 0.053 0.077 0.105 0.079 0.149 10
ism 0.027 0.205 0.116 0.140 0.559 0.220 0.217 0.211 0.111 0.201 2
seqseq 0.072 0.341 0.035 0.178 0.113 0.076 0.083 0.092 0.063 0.117 11
lstm-ae 0.034 0.494 0.591 0.178 0.174 0.074 0.100 0.173 0.075 0.210 8

then averaged over the corresponding collection, this experiment focuses on the
training data and retains features for each of the 81 datasets. We use these fea-
tures as input data, and fit one decision tree per algorithm in order to predict
how a given method performs. The resulting models are binary classifiers where
the target class is whether the average rank of the algorithm is among the top
25% performers (ranks 1 to 3), or if it reaches the lowest 25% (ranks 9 to 12).
Figure 1 shows the trained meta-model of k -medoids-lev as an example. These
trees expose the strengths and weaknesses of the methods studied, and highlight
the most important factors impacting the methods’ performances.

In order to provide a concise visual overview of this analysis, we report in
Figure 2 the performance of each method based on the datasets’ characteristics.
For this purpose, we extract the rules of the nodes for which depth < 4 in all meta-
models, then aggregate these rules per feature to identify values corresponding to
the most important splits. The resulting filters are reported in the horizontal axis
of the heatmap.

Our experiments show that no algorithm consistently reaches better results
than the competing methods, but that hmm, k -nn and ism are promising novelty
detection methods. While previous comparisons [6,8,53] use clean datasets exempt
of anomalies, our study shows a good robustness for the selected methods, even
for datasets with a high proportion of outliers, namely promoter, masquerade
and intrusions.

Concerning the applications studied, k -nn, k -medoids, t-stide and lstm-
ae show good performance on datasets related to genomics, which are splice-
junctions, promoter and pfam. t-stide apart, these methods have successfully
addressed numerous supervised numerical problems, and could thus reach good
performance when applied to sequence-based supervised use cases. The best meth-
ods for intrusion detection are hmm and ripper, while t-stide shows reduced per-
formance compared to [53], likely caused by the introduction of anomalies in the
training sets. Our observations for genomics and intrusion detection corroborate
the conclusions presented for t-stide and ripper in [8]. However, our study shows
much better performance for hmm, the previous study using a custom likelihood
for hmm based on an aggregated sequence of binary scores. With regard to user
behavior analysis, hmm, k -nn, k -medoids-lcs and ism show the best ability to
differentiate users. While the performance of t-stide on uba is not sufficient to
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T_5 <= 47.526
gini = 0.478
samples = 38

value = [23, 15]
class = low

p_A <= 5.898
gini = 0.459
samples = 14
value = [5, 9]

class = top

True

N <= 757.0
gini = 0.375
samples = 24

value = [18, 6]
class = low

False

gini = 0.0
samples = 6

value = [0, 6]
class = top

S_sigma <= 3.707
gini = 0.469
samples = 8

value = [5, 3]
class = low

gini = 0.48
samples = 5

value = [2, 3]
class = top

gini = 0.0
samples = 3

value = [3, 0]
class = low

sigma <= 115.5
gini = 0.198
samples = 18

value = [16, 2]
class = low

mu_L <= 377.482
gini = 0.444
samples = 6

value = [2, 4]
class = top

S_L <= 1.78
gini = 0.444
samples = 6

value = [4, 2]
class = low

gini = 0.0
samples = 12

value = [12, 0]
class = low

gini = 0.444
samples = 3

value = [1, 2]
class = top

gini = 0.0
samples = 3

value = [3, 0]
class = low

gini = 0.0
samples = 3

value = [0, 3]
class = top

gini = 0.444
samples = 3

value = [2, 1]
class = low

Fig. 1: Decision tree showing the position of k -medoids-lev in the overall ranking
based on features extracted from the datasets. Ranks have been aggregated into
the top and low classes which encompass the best (1 to 3) and worst (10 to 12)
25% ranks, respectively.

recommend the method, we believe that increasing the threshold of t-stide would
lead to increased performance. Indeed, user actions are often based on well-defined
application flows, and most of the possible subsequences are likely to exist in the
training sets. The amount of supplementary information which can be provided
by the models about the user behaviors will determine the most suitable methods
for this field (Section 4.5).

Figure 2 shows that the performance of hmm improves significantly with the
number of available samples. Both hmm and ism achieve good performance, even
when a high discrepancy is observed among the sequence lengths. hmm, ism and
ripper are able to handle efficiently a large alphabet of symbols. ripper also
shows good performance for datasets containing a high proportion of outliers, while
nearest neighbor methods are strongly impacted by this characteristic. Distance
metrics are known to suffer from the curse of dimensionality inherent to a high
number of features. Similarly, Figure 2 shows a decrease of performance for k -
nn, k -medoids and lof when σ increases, these methods relying on the lcs and
Levenshtein metrics for distance computations. While lcs is a metric widely used
in the literature [5, 6, 8], our experiments show that it does not perform better
than the Levenshtein distance. If both lcs and the Levenshtein distance metrics
provide satisfactory results for novelty detection when paired with k -nn or k -
medoids, the combination of lof and lcs produces the lowest accuracy of our
evaluation. Nonetheless, the efficiency of lof-lev prevents us from discarding this
method, even though k -nn-lev achieves a similar accuracy to lof-lev with a
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Fig. 2: Novelty detection capabilities of the algorithms based on the datasets char-
acteristics. The scores range from 0 to 10 and are based on the rank of the method
averaged over the subset of datasets matching the corresponding filter applied to
the 81 datasets. A score of 10 corresponds to an average rank of 1, while a score
of 0 indicates that the method consistently ended in the last position. N is the
number of samples; pA is the proportion of anomalies; ML, µL and SL are the
minimum, average and entropy computed over the sequence length; σ and Sσ are
the alphabet size and the corresponding entropy of its distribution, the entropy
increasing with the number of events and the distribution uniformity; T5 is the
proportion of events represented by the 5% biggest events, a high value denotes
important inequalities in the distribution; L1 is the proportion of the smallest
events representing 1% of the data, a high value indicates numerous events with
rare occurrences; the genomics (gen), intrusion detection (int) and uba columns
target datasets related to the corresponding field of study.

simpler scoring function. For the sake of the experiment, we evaluated the scoring
function proposed for t-stide in [24]. For each subsequence of fixed length in
a test sequence, the authors compute the hamming distance between the test
window and all training windows, and return the shortest distance. This method
was much slower than a binary decision based on the presence of the test window
in the training set, and did not strongly improve the results. Neural networks
do not stand out in this test. The reconstruction error showed good results for
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detecting numerical anomalies in previous studies [35, 45], but the approach may
not be appropriate for event sequences. The reconstructed sequences provided by
seqseq are often longer than the input data, and the network loops regularly
for a while over a given event. Figure 2 show that lstm networks perform better
with long sequences and a moderate alphabet size. We repeated our experiments
using the Python library difflib as an alternative to lcs for seqseq, but it did
not improve the performance of the network. lstm-ae shows an acceptable novelty
detection accuracy, which could be further improved with dropout and attention.
Thanks to their moderate depth, these two networks do not require very large
datasets to tune their parameters. For example, lstm-ae achieves a good map
even for small datasets such as promoter and masquerade. Despite the use of
masks to address padding, these methods have difficulty with datasets showing an
important disparity in sequence length, such as intrusions and the four collections
of uba datasets.

4.2 Robustness

Figures 3 to 5 report the mean area under the precision recall curve (map) for
datasets of increasing proportion of outliers, number of samples and sequence
length, respectively. The positive class represents the nominal samples in Figure
3, and the anomalies in Figure 4 and 5 (as in Section 4.1).
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Fig. 3: Robustness for increasing noise density

Figure 3 demonstrates a more complex test case than just identifying uni-
form background noise against a well-defined distribution. In this test, anomalies
are sampled according to their own probability distribution, which will affect the
models learnt when a sufficient proportion of anomalies is reached. The test high-
lights thus how algorithms deal with complex data based on multiple distributions.

https://docs.python.org/3.5/library/difflib.html#difflib.SequenceMatcher.ratio
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We observe that most algorithms focus on the major distribution as long as the
proportion of corresponding samples remains higher than 60%. hmm uses 3 com-
ponents and may thus learn the second distribution much earlier in the test. On
the opposite, most of the distance-based methods discard the smallest distribution
even if this one represents up to 40% of the data. lof-lcs shows poor performance
from the very beginning, which prevents us from concluding on the behavior of
this method.
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Fig. 4: Robustness for increasing number of samples

Figure 4 shows that 200 samples are a good basis to reach stable novelty
detection results. While we expected the performance of deep learning methods to
improve with the number of samples, these networks did not significantly increase
their detection with the size of the dataset. The best results on large datasets
were achieved by distance-based methods, most of which rely on nearest-neighbor
approaches particularly efficient when a high number of samples is available. Good
performance were also achieved by hmm, presumably due to a generation method
for nominal samples and outliers based on Markov chains, which matches the
internal representation of hmm.

Despite the increasing volume of data over the scalability test reported in
Figure 5, important variations can be observed for the results, e.g. for a length of
200 events. Such variations are probably related to the limited number of samples
used in the generated datasets, which is a computational requirement to perform
experiments with long sequences for several algorithms. k -medoids achieve better
performance than other distance-based methods, which suggests a better approach
for small datasets. hmm achieves once again good results, while lstm networks
show improved novelty detection capabilities for datasets containing sequences
longer than 100 events. The performance of ism also increases with the volume of
data, although the method require bigger datasets to reach comparable results.
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Fig. 5: Robustness for increasing sequence length

In summary, our experiments show that robust models require at least 200
training samples to provide satisfactory results. lof-lcs and t-stide do not pro-
vide satisfactory performance, even though fine-tuning t-stide by increasing the
frequency threshold could lead to better results.

4.3 Runtime performance

The computation time for training and prediction steps is reported in Figures
6 to 9. While time measurements are impacted by hardware configuration (Sec.
3.2), the slope of the curves and their ranking compared to other methods should
remain the same for most running environments.

The measurements from Figures 6 and 7 show a poor scalability of algorithms
relying on pairwise distance matrices, namely lof, k -nn and k -medoids. Most
of the training and prediction time of these methods is dedicated to the compu-
tation of the distance matrix, and thus to the lcs and Levenshtein algorithms.
Since training and testing sets have the same number of samples in this test, the
previous assumption is confirmed by observing a similar training and prediction
time for the methods. In addition, k -medoids is the only distance-based algorithm
with a faster prediction time, caused by a smaller number of distances to compute.
The prediction step of this method requires only to compare a small number of
medoids with the testing set, instead of performing a heavy pairwise comparison.
Regarding distance metrics, lcs shows a much higher computation time than the
Levenshtein distance despite a similar time complexity. The resort to alternative
and faster implementations [12, 25] is thus recommended. Furthermore, parallel
or distributed algorithms could be used for pairwise distance matrix computa-
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Fig. 6: Training time for increasing number of samples
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Fig. 7: Prediction time for increasing number of test samples

tions, which would significantly reduce the computation time of these methods [9].
However, distance-based methods would likely remain among the most compu-
tationally expensive algorithms when applied to a high number of observations.
Despite a very small σ, the rule-learning algorithm ripper shows the highest train-
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ing time, reaching our 12-hour timeout for 13,000 samples. The missing results for
the prediction step (Fig. 7) are thus caused by an interrupted training. On the
opposite and as expected, the use of mini-batch learning by lstm-ae and seqseq
allows the two methods to efficiently handle the increasing number of sequences,
although we recommend to increase the batch size or the number of iterations
according to the size of the training set. However, such technique is only valid
for the training step, and both methods show a scoring scalability comparable to
the other algorithms. The extreme simplicity of t-stide, which essentially stores
subsequences in a dictionary at train time, makes this algorithm one of the fastest
methods. The increasing load does not affect much ism, since the method stops
iterating over the dataset if it does not find new interesting patterns after a given
number of sequences.
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Fig. 8: Training time for increasing sequence length

We now use a fixed number of samples while increasing the length of the se-
quences and report the computation time in Figures 8 and 9. The careful reader will
notice that both scalability tests, i.e. number of sequence-based and length-based,
produce datasets containing the exact same number of symbols (e.g. 105 sequences∗
20 symbols = 200 sequences ∗ 104 symbols). This configuration reveals the true
impact of samples and length on the scalability, while keeping the same volume
of data. While we still observe a poor scalability for distance-based algorithms
caused by a high computation time to compute distances, the training and pre-
diction time of these methods was reduced due to a smaller number of samples
to handle by the core algorithm. On the opposite, ripper and ism show a much
higher training time when dealing with long sequences. However, the prediction
time of these two methods only depends on the volume of data, i.e. the total
number of symbols in the dataset, and will be impacted similarly by the number
of samples and length. Mini-batch methods are now subject to training batches
of increasing volume, which reveals a poor scalability for seqseq. lstm-ae per-
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Fig. 9: Prediction time for increasing sequence length

forms better due to an early stopping mechanism, interrupting the training when
the loss does not improve sufficiently over the iterations. The computation time of
these two neural networks could however be improved with the use of dedicated
GPU architectures. These tests show the limitations of ripper, which suffers from
a long training step, even for datasets of reasonable size. Distance-based meth-
ods and seqseq also show limited scalability, although k -medoids provide fast
predictions and seqseq easily supports datasets containing a large number of
samples. ism and t-stide show the best computation time for both training and
prediction steps, and could even prove useful in lightweight applications.

4.4 Memory usage

Monitoring the memory consumption in Figures 10 and 11 highlights important
scalability constraints for several algorithms.

We first observe in Figure 10 that memory usage for ripper and distance-
based methods is strongly correlated with the number of input sequences. ripper
shows a very high memory usage, although the method reaches our 12h timeout at
train time before exceeding the limit of 256GB RAM. Distance-based methods are
also strongly impacted by the number of samples. However, most of the memory
is here consumed by the pairwise distance matrix. Despite storage optimizations,
e.g. symmetric matrix, integers are stored on 24 bytes by Python, resulting in
a memory usage of 114GB and 167GB for k -nn-lev and lof-lev, respectively.
Interestingly, ism stabilizes at 10GB after having discovered a sufficient number
of patterns from the data. Mini-batch neural networks are not strongly impacted
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Fig. 10: Memory usage for increasing number of samples

by the number of samples, and the small σ limits the diversity of sequences, thus
reducing the memory usage of t-stide.
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Fig. 11: Memory usage for increasing sequence length

The metrics reported in Figure 11 corroborate the previous conclusions. The
experiment reveals a number of rules learnt by ripper increasing linearly with the
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number of events, the final model containing in average #events
50 rules. The size

of the decision tree built by association rule learning is thus correlated with the
volume of the data. To the opposite, the memory usage of ISM stabilizes again
after convergence, showing a more efficient internal representation of the data than
ripper. The memory consumption of distance-based methods is very low due to
small distance matrices, although the computation of lcs shows a memory usage
increasing with the length of the sequences compared. Neural networks, especially
seqseq, are more impacted by the increasing sequence length. This is caused by
a network topology depending on the size of the padded sequences, in addition to
matrix multiplications of dimensionalities directly impacted by the length of the
sequences.

We have observed that most algorithms have a memory consumption strongly
related to the volume of input data. The requirements of ripper are too impor-
tant for most systems, and distance-based methods are not suitable to address
problems pertaining to more than 20,000 sequences. Interestingly, we did not ob-
serve correlations between training or prediction time and memory usage, while
one could expect fast algorithms consume more memory, performing faster com-
putations due to a massive caching system. If this may be true when comparing
similar methods, the important differences in time and memory are here caused
by major discrepancies in the approaches taken by the algorithms.

4.5 Interpretability

The ability for humans to understand a machine learning model and the resulting
predictions is called interpretability. This trait allows data scientists to validate the
final model and provides useful insights on the targeted dataset, e.g. discovering
valuable information about user behaviors which have an important business value.
While continuous scores are usually sufficient for automatic intervention modules,
this information and the corresponding ranking may not be sufficient when a
manual investigation of the anomalies is required. This situation arises for critical
applications, where false positives could strongly impact the brand image, e.g. deny
access to services for a business partner, or incur heavy costs, e.g. component
replacement based on failure prediction with applications to data centers and
airplanes. In this case, especially if many alerts are raised every day, the time
allocated to manual investigation could be greatly reduced if we could provide
the motivations behind high scores to the human expert. Transparency is thus
an essential criterion for the choice of algorithms in many applications, and data
analysts may accept to trade performance for model accountability. If human eyes
may differentiate outlying activity from the underlying patterns in numerical time-
series, this task is much harder for discrete event sequences, which emphasizes the
need for model interpretability.

The internal representation of interpretable methods provides sufficient infor-
mation to motivate a predicted score with respect to an input sequence. For exam-
ple, hmm learns intuitive transition and emission matrices, providing an insightful
weighted process flowchart. Unusual event transitions in the test sequence can be
visually highlighted by putting a threshold on the emission transition probabili-
ties. Pairwise distance matrices also convey valuable information and can be turned
into intuitive visualizations. The matrices can be plotted as Voronoi diagrams, heat
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maps or fed into a multidimensional scaling (MDS) algorithm resulting in a scatter
plot of chosen dimensionality. If additional insight on the distance computations
is required, lcs is an intuitive metric and the subsequence common to two com-
pared samples can be underlined. On the other hand, the cost matrix computed
by Levenshtein is more difficult to read. Further on, the scoring performed by
distance-based methods can be easily motived in the previous 2D representations
of distance matrices, e.g. by highlighting the test sample and its kth neighbor for
k -nn, or the corresponding medoid for k -medoids. The scoring function of lof is
more complex, as it studies the local density of a test sample and its neighbors.
Moving back to standard sequence representations, t-stide is extremely account-
able and subsequences can be underlined based on their frequency in the model,
thus motivating the resulting score. Pointing out events incorrectly predicted by
ripper should also provide some information, and interesting patterns learnt by
ism could be emphasized similarly. Neural networks are closer to black-box sys-
tems, and their interpretability has recently gained a lot of attention [54]. However,
recent efforts mostly focus on numerical and convolutional networks, which leaves
room for future lstm representations. Differences between the input sequence and
the reconstructed output could be highlighted for seqseq, although it would not
explain the underlying model. For lstm-ae, we could learn and plot a low di-
mensional numerical representation based on the internal representation of the
network, but dimensionality reduction methods will often produce an output bi-
ased towards the average sample of the dataset [37] and must be selected with care.
This is the reason why the reconstruction error is used with seqseq to identify
anomalies.

In order to overcome the lack of accountability of a given algorithm, an alterna-
tive approach is to infer meaningful rules based on the inputs and outputs predicted
by a trained model [14]. The rule extraction method should provide simple rules
showing a transparent decision, while minimizing the prediction error. This is a
popular approach used to improve the interpretability of classification models, in
particular neural networks and support vector machines (svms). Two good rule ex-
traction methods for classifiers are osre [17] and hypinv [43]. These methods are
also compatible with novelty detection when the targeted model produces a binary
output such as fraud and non-fraud. If a continuous anomaly score is required to
rank anomalies, we should then resort to regression rule extraction methods which
learn rules producing a continuous output, e.g. REFANN [48], ITER [26] or clas-
sification and regression trees (cart) [3]. Both regression and classification rule
mining methods show good performance when applied to numerical or one-hot
encoded input data. In order to feed temporal data to these algorithms (or to
any standard regression or classification methods), numerical features should be
extracted from the sequences during a preprocessing step. The feature selection
must be performed with great care to minimize the amount of information lost,
and was automated for continuous time-series in a previous work [10]. While dif-
ferent features should be selected for discrete event sequences, either manually or
based on existing techniques [44,52], any regression rule extraction technique can
be subsequently applied for both data types. The numerical latent representation
provided by lstm autoencoders could be used as input features for rule mining, but
it would only improve the interpretability of the decoder, leaving aside the data
transformation performed by the encoder. Table 4 summarizes our observations
about the scalability and interpretability of the methods surveyed.
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Table 4: Scalability and interpretability summary. Runtime and memory consump-
tion are reported for synthetic datasets of increasing number of samples and se-
quence length.

Training/prediction time Mem. usage
Algorithm → Samples → Length → Samples → Length Interpretability

hmm Medium/Low Low/Low Low Low High
k -nn-lcs High/High Medium/High High Low High
k -nn-lev High/High Medium/High High Low Medium
lof-lcs High/High Medium/High High Low Medium
lof-lev High/High Medium/High High Low Medium
k -medoids-lcs High/Low Medium/Medium High Low High
k -medoids-lev High/Low Medium/Medium High Low Medium
t-stide Low/Low Low/Low Low Low High
ripper High/Low High/Medium High High Medium
ism Low/Low Medium/Low Medium Medium High
seqseq Low/Medium High/High Low High Low
lstm-ae Low/Low Low/Low Low Medium Low

5 Conclusions

This work studied the performance and scalability of state-of-the-art novelty de-
tection methods based on a significant collection of real and synthetic datasets.
The standard metric used in the literature to compare event sequences is lcs.
Given the evidence provided, we found that although lcs produced more trans-
parent insights than the Levenshtein distance, it did not exhibit better anomaly
detection performance and was computationally more expensive. Our experiments
suggest that k -nn, k -medoids, t-stide and lstm-ae are suitable choices to iden-
tify outliers in genomics, and that hmm and ripper are efficient algorithms to
detect intrusions. hmm is a strong candidate for most novelty detection appli-
cations, and shows a good scalability and interpretability. These characteristics
make hmm appropriate for user behavior analysis, along with k -nn, k -medoids
and ism which also provide a good model accountability. The fast scoring achieved
by hmm, t-stide and ism implies an excellent management of heavy loads arising
in production environments. Major scalability constraints are pointed out for rip-
per and distance-based methods, namely k -nn, k -medoids and lof. Resorting to
alternative approaches when tackling large volumes of data is recommended. The
widely used lstm networks show a lack of interpretability, and we believe that
improving the understanding of recurrent networks as performed in [27] would
strongly benefit to the research community. Most approaches evaluated in this
study are suitable for supervised tasks based on event sequences. Studying how
these methods compare in a supervised context would be of interest.
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