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ABSTRACT

In this work, the authors extend their previous work [1] on
the design of sum rate maximizing beamformers for a MIMO
OFDM scenario under high Doppler. We first justify the lin-
ear approximation for the channel variation over an orthogo-
nal frequency division multiplexing (OFDM) symbol. Then,
a modified power update for the optimized spatio-frequential
precoder is presented. Of great interest is the exploitation
of the Excess Cyclic Prefix (ExCP) at the receiver through
windowing. We prove that the sum rate metric is a convex
function of the window parameters and present a novel ma-
jorization based algorithm to design an optimal window. The
convergence of the iterative approach is proved and the theory
is validated via numerical simulations.

Index Terms— MIMO, ICI, Excess Cyclic Prefix, Beam-
forming, OFDM

1. INTRODUCTION

High Doppler encountered in high-speed train (HST) environ-
ments violates the orthogonality requirement for orthogonal
frequency division multiplexing (OFDM), resulting in inter-
carrier interference (ICI). The signal to interference plus noise
ratio (SINR) analysis due to ICI can be found in ( [2], [3]). It
is known that multiple receive antennas in a single input mul-
tiple output (SIMO) scenario is very effective in canceling out
the ICI (for example, see [4]). Another important tool in the
mitigation of ICI is the exploitation of excess cyclic prefix
(CP). With an appropriate window function, the excess CP at
the receiver may be exploited to reduce the ICI. This is par-
ticularly relevant for HST scenarios where due to the close
proximity of the Base station towers to the railway tracks, the
delay spread expected is very minimal. The significance of
using the excess CP and the Nyquist criterion can be found
in [5]. For a single input single output (SISO) scenario, opti-
mal window coefficients were derived to minimize the com-
bined ICI and noise power in [6].

In [1], the authors of this paper considered a multiple in-
put multiple output (MIMO) scenario at 2.4GHz and derived
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the channel sum rate in the presence of ICI caused by channel
variation. The novel contributions in this paper are as follows:
• We directly optimize the stream powers at all subcar-

riers via an ICI-interference aware spatio-frequential
water filling (as opposed to introducing intermediate
power constraints at subcarriers in [1]).
• We prove the convexity of the sum rate metric with re-

spect to the window parameters.
• We introduce a quadratic minorizer for the Gaussian

sum rate that can be optimized iteratively with respect
to (w.r.t.) the window coefficients to exploit the excess
CP.
• The convergence of the entire beamformer design fol-

lows by design.
In the following discussions, a bold notation in small let-

ters indicates a vector and bold notation with capital letters
indicates a matrix. Unless otherwise specified, vector refers
to a column vector. The operation ”diag” has an interpretation
identical to that in Matlab.

2. SYSTEM MODEL

Consider a multiple input multiple output (MIMO) system
with Nt transmit antennas and Nr receive antennas. An
OFDM framework is chosen with N subcarriers and sam-
pling rate fs. Thus, for every combination of transmit (Tx)
and receive (Rx) antenna, the time domain channel at sample
n of an OFDM symbol may be represented as

h(n) = h0 + h
′
(n) (1)

where h0 is of dimension L × 1 and represents the average
channel across the OFDM symbol. h

′
is also of dimension

L× 1 and captures the time variation, has an average value of
zero and is orthogonal to h0. With this formulation, the ICI
contribution comes entirely from h

′
(n) (see [4] for example).

The length of the CP is considered to be greater than the chan-
nel delay spread byNe samples. In what follows, without loss
of generality, we take the CP length to be the same as that of
the excess CP length. The total length of the OFDM symbol
including the excess CP length is taken as Ns = N + Ne. It
is also assumed that the receiver would take advantage of this
excess CP through windowing. Letwi be the window weights
satisfying the Nyquist criterion, ( [5]),

wi + wN+i = 1, i ∈ {−Ne · · · − 1}. (2)
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Fig. 1. Plot showing the residual error resulting from approx-
imating the channel variation as linear at different Doppler
frequencies.

The Nyquist criterion ensures that no new ICI components
are introduced as a result of the windowing operation. To
continue the analysis, we can approximate h

′
(n) by a poly-

nomial function. Fig. 1 shows the goodness of the assumption
of the linear variation in the channel at different Doppler fre-
quencies. In the plot, the Doppler is generated in two ways -
as a single sinusoid or using the Jakes model [7]. The curve
”mean channel power” plots the average channel power. The
curves ”interference power” plot the interference power as
predicted by the linear model. Finally, the curves ”residual
interference” plot the error left un-modeled due to the linear-
ity assumption. As expected, the single sinusoid model shows
slightly more interference power than the Jakes model which
considers all frequencies up to the max Doppler frequency. At
2.4GHz and 450kmph, the corresponding Doppler frequency
is 1KHz. At this frequency, the residual error is around 40dB
below the mean signal level implying that this approximation
would hold good up to operating SNRs of 30dB. I.e, at this
operating SNR, the error due to the approximation in channel
variation is significantly lower than that of the AWGN noise
floor. Indeed, if the operating SNR is lower, Fig. 1 shows that
channel variation may be safely treated as linear across the
OFDM symbol for even higher levels of Doppler.

Thus, for the duration of an OFDM symbol including the
excess CP, (1) may be rewritten in terms of orthogonal basis
functions for every Tx-Rx antenna pair as, hT (−Ne)

...
hT (N − 1)

 =

1 (−Ne − Ns−1
2 )

...
...

1 (N − 1− Ns−1
2 )

[hT
0

hT
1

]
(3)

where h1 is a constant across the OFDM symbol and captures
the time variation per sample. The receiver output across all
the receive antennas and subcarriers after the windowing and
N -point fast Fourier transform (FFT) may be expressed as a
column vector of lengthNrN (Nr received elements for each
subcarrier). Proceeding similar to [1], we can arrive at the
expression at each subcarrier k,

yk = H0kdk︸ ︷︷ ︸
Signal term

+

N−1∑
l=0,l 6=k

H1ldlξ((l − k)N ) + vk︸ ︷︷ ︸
ICI and noise terms

.
(4)

H0k (dimension Nr × Nt) is the mean frequency domain

channel observed at subcarrier k. The second term in equa-
tion (4) represents the ICI caused by linear time variation due
to Doppler. dk = [s(kNt + 1) · · · s(kNt + Nt − 1)]T is
the Nt × 1 vector of transmitted data symbols on the carrier
k. vk is the Nr × 1 vector of AWGN (additive white Gaus-
sian noise) noise observed at carrier index k, with variance
Rvk

= (eTk FNTT
cpDwDH

w TcpF
H
Nek)INr . ek is a column

vector with 1 at the kth element. Db is a diagonal matrix rep-
resenting the linear basis function of the time variation of the
channel.

Dw = diag([w−Ne . . . w−1 1 . . . 1 w1 . . . wNe ]T )︸ ︷︷ ︸
diag(w)

Db = diag

(
−(Ne −

Ns − 1

2
) . . . (N − 1− Ns − 1

2
)

)
.

Tcp =

[
0Ne×N−Ne

INe

IN

]
.

Ξ = FNTT
cpDwDbTcpF

−1
N is a circulant matrix of dimen-

sion N × N . As Ξ is circular, any element k, l of the ma-
trix may be expressed as ξ((l − k)N ) where the notation ()N
refers to modulo operation with respect to N. ξ would be the
first row vector of Ξ and hence of length N . We constrain the
window in such a manner that ξ(0) = 0 and this is factored in
later during the window design in section 3.2.

Let P be the maximum sum power requirement across all
the subcarriers and let Pi be the individual power at any sub-
carrier i such that

∑N−1
i=0 Pi = P . Let the transmit covariance

matrix of subcarrier k be Qk = E(dkdH
k ) where E(·) is the

expectation operator. Let Rk̄ = Rvk
+
∑N−1

l=0,l 6=k |ξ((l −
k)N )|2H1lQlH

H
1l . We are interested in determining the opti-

mal Qk and the window weights wi such that the sum rate of
the link is maximized under constraints,

f0 : max
Qk,w

C = max
Qk

N−1∑
k=0

log |I + H0kQkHH
0kR−1

k̄
|

subject to

N−1∑
k=0

tr {Qk} ≤ P, Vw = b

(5)

Here, matrix V captures the constraints on w and b is a col-
umn vector.

3. BEAMFORMER DESIGN

We employ the alternating (cyclic) minimization approach to
alternately optimize the precoder design and window design.
At the beginning of the iteration for the subcarrier i, let Pi be
the power constraint, Q̄i be the current values of the precoder
and wi be the window values.

3.1. Transmit covariance matrix update
Our iterative optimization algorithm operates one subcarrier
at a time. With a focus on subcarrier i, on the same lines
as [8], the objective function f0 may be rewritten as

max
Qi

{log |I + H0iQiH
H
0iR

−1
ī
|+ fi(Qi,Q−i)} (6)



where fi(Qi,Q−i) =
∑

l 6=i log |I + H0lQlH
H
0lR

−1
l̄
|. Q−i

refers to the transmit covariances of all the subcarriers except
the ith. It is shown in [8] (Lemma 1) that fi(Qi,Q−i) is
convex in Qi. Thus, equation (6) is the sum of a concave
and convex function and hence the overall sum rate is a non-
convex function. As in [9], we replace the non-concave func-
tion above by its minorization which is concave.

f1 : log |I + H0iQiH
H
0iR

−1
ī
| − tr

{
Bi(Qi − Q̄i)

}
+

fi(Q̄i, Q̄−i) subject to tr {Qi} ≤ P̄i

(7)
P̄i indicates the current value of Pi at any given stage of the

algorithm. Bi = −
[
∂fi(Qi,Q−i)

∂Qi

]H
,

=
∑
l 6=i

|ξ((l − i)N )|2H1i

{
R−1

l̄
− (Rl̄+H0lQlH

H
0l)
−1
}

HH
1i

Let Ai = HH
0iR

−1
ī

H0i, Qi = ViΛiV
H
i , and λij be the

jth diagonal element of Λi. The optimal solution to this
sub-problem are the (normalized) generalized eigenvectors
Vi (see [9])

AiVi = (Bi + µI) ViΣi (8)

Let VH
i AiVi = D1i and VH

i BiVi = D2i, where D1i, D2i

are diagonal matrices as Vi is the generalized eigenmatrix of
Ai, Bi + µI. Now optimizing the sum of equation (7) over
all subcarriers after adding the power constraint, w.r.t. the
powers Λi yields

λij =

[
1

D2i(j, j) + µ
− 1

D1i(j, j)

]+

(9)

where [x]
+ indicates max(x, 0). The optimal Lagrange multi-

plier µ for the power constraint can now be determined using
a bisection search as the λij are monotonic in µ. Thus, the
concave objective functions f1 can be solved alternatingly till
the Qi converge.

3.2. Optimization of the window parameters
Once Tx covariance matrices Qi have been computed for all
the subcarriers, we propose an iterative algorithm based on
majorization [10] to determine the window parameters that
optimize the metric,

max
w

C =

N−1∑
k=0

log |I + H0kQkHH
0kR−1

k̄
|, (10)

The window parameters, of course, are constrained to satisfy
the Nyquist criterion. In addition, we impose that ξ(0) = 0.
Theorem 1.Sum rate in (10) is a convex function in ∆w =
wwH .
Proof. As ξ(0) = 0, w influences only the term R−1

k̄
. We

make use of the following matrix rearrangements,

Rvk
= (eTk FNTT

cpD
H
w DwTcpF

H
Nek)INr

= wHX1(k)XH
1 (k)wINr

= tr{X1(k)XH
1 (k)wwH}INr

.

ξ((l − k)N ) = eT
k FNTT

cp∂DwDbTcpF
−1
N el

= xT
2 (k, l)w.

(11)

Here, X1(k) = diag(eTk FNTT
cp) and the column vector

x2(k, l) = diag(DbTcpF
−1
N ele

T
k FNTT

cp). ()* refers to
taking the complex conjugate. Further, we have used the
properties of the trace operator [11]. Thus, (10) may be
rewritten as,

Rk̄ = tr{X1(k)XH
1 (k)∆H

w }INr+
N−1∑

l=0,l 6=k

tr{x∗2(k, l)xT
2 (k, l)∆H

w }H1lQlH
H
1l .

(12)

Now, to show convexity, it is sufficient to show that f(t) ,
C(∆a

w+t∆b
w) is convex w.r.t. t ∈ [0, 1] (see [8],Lemma 1).

f(t) =

N−1∑
k=0

log |I + H0kQkHH
0k(Ra

k̄ + tRb
k̄)−1|, (13)

Let Ak = H0kQkHH
0k. Following the steps in [12] (see the

three-step procedure therein),

∂f(t) =− tr

{N−1∑
k=0

(
I + Ak(Ra

k̄ + tRb
k̄)
)−1

Ak(Ra
k̄ + tRb

k̄)−1∂tRb
k̄(Ra

k̄ + tRb
k̄)−1

}
.

(14)

∂f(t)

∂t
= −tr

{N−1∑
k=0

(
I + Ak(Ra

k̄ + tRb
k̄)
)−1

Ak(Ra
k̄ + tRb

k̄)−1Rb
k̄(Ra

k̄ + tRb
k̄)−1

}
=−tr

{N−1∑
k=0

(
Ak+Ra

k̄ + tRb
k̄

)−1
Ak(Ra

k̄ + tRb
k̄)−1Rb

k̄

}
(15)

Proceeding similarly to take the second derivative,

∂2f(t)

∂t2
=tr

{N−1∑
k=0

((
Ak + Ra

k̄ + tRb
k̄

)−1
+
(
Ra

k̄ + tRb
k̄

)−1
)

Rb
k̄(Ak + Ra

k̄ + tRb
k̄)−1Ak(Ra

k̄ + tRb
k̄)−1Rb

k̄

}
≥ 0.

(16)
The second derivative involves the sum of the trace of posi-

tive semi definite matrices and hence results in a non-negative
number indicating that the metric C is convex in ∆w.

To arrive at a stationary point of w, we follow the itera-
tive steps in minorization [10]. Let w̄ be the value of w at
any given iteration. Construct a minorizer for the sum rate as
follows,

C̄ + tr
{ ∂C

∂∆w
(∆w −∆w̄)

}
. (17)

C̄ refers to the value of C at ∆w = ∆w̄. As the objective
function has been proved to be convex already, (17) forms
a touching tangent to this convex function at the point ∆w =
∆w̄ and is hence a minorizer. At every step, the maximization
of the minorizer results in an updated ∆w that causes a non-
decreasing change in C.



∂C = −
N−1∑
k=0

tr{X1(k)XH
1 (k)∆w}tr{X3(k)}

−
N−1∑
k=0

∑
l 6=k

tr{x∗2(k, l)xT
2 (k, l)∆w}tr{X4(k, l)}.

X3(k) = R−1
k̄

(I + H0kQkHH
0kR−1

k̄
)−1H0kQkHH

0kR−1
k̄
.

X4(k, l) = H1lQlH
H
1lR

−1
k̄

(I + H0kQkHH
0kR−1

k̄
)−1

H0kQkHH
0kR−1

k̄
,

∂C

∂∆w
= U = −

N−1∑
k=0

X1(k)XH
1 (k)tr{X3(k)}

−
N−1∑
k=0

∑
l 6=k

x∗2(k, l)xT
2 (k, l)tr{X4(k, l)}

Note that U is a Hermitian matrix. The Nyquist conditions
on the window together with the (single) additional constraint
ξ(0) = 0 lead to a set of linear constraints of the form Vw =
b. b is a column vector of all ones except the last entry which
is zero. To impose the constraint that ξ(0) = 0, note from
equation (11) that ξ(0) = xT

2 (k, k)w. The solution for the
optimization of w is then given by,

w = U−1VH(VU−1VH)−1b. (18)

3.3. Overall Algorithm and Convergence
The overall algorithm alternates between the transmit beam-
former optimization and the window coefficient optimization.
At every iteration of the transmit beamformer, a concave sub-
problem f1 is created and optimized based on the updated
value of Qi,Q−i from the last optimization in the alternat-
ing process. The window optimization is based on another
minorizer. Hence, the overall algorithm is such that the sum
rate metric update is non-decreasing at each step, and is upper
bounded due to the noise, which ensures convergence.

4. NUMERICAL RESULTS

Consider a single user MIMO fading channel based on equa-
tion (3) and Nt = Nr = 3 with a signal to AWGN noise ratio
of 20dB. For every Tx-Rx pair, FIR Rayleigh fading chan-
nels are generated independently with the power delay profile
(PDP) as [0 -5 -5] in dB for h0 and h1. An OFDM system
operating at 2.4GHz band is considered with 15KHz of sub-
carrier spacing. The entries of h1 are scaled such that the
overall ICI power experienced at any receive antenna corre-
sponds to a Doppler frequency shift of 450kmph. We con-
sider N = 64 and Ne = 16 corresponding to a 25% excess
CP. Fig. 2 plots the achievable sum rates for different config-
urations. The curve (”WF, No ExCP”) gives the water-filling
performance in the absence of cyclic prefix exploitation. This
is the standard water-filling algorithm where H1 is naively
taken as all zeros and no excess CP is exploited. Also given is
a curve (”ICI aware WF,no ExCP”) that does the iterative op-
timization of the transmit beamformer with the knowledge of
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ICI, again in the absence of excess CP. The curve ”ICI aware
WF, ExCP RC window” shows the performance of the ICI
aware transmit beamforming optimization that uses a raised
cosine window (as in [13]) to exploit the excess CP. Finally,
the curve (”ICI aware WF, ExCP optimal window”) shows the
performance with ICI aware transmit beamformer optimiza-
tion and optimized window coefficients for excess CP. Fig. 3
gives the roll-off obtained for the optimized window in com-
parison with other windows. It is very clearly seen that the op-
timal window does a good side lobe reduction for the closest
side lobes and does not over attenuate the farther side lobes
(as done by the raised cosine window). Thus, the optimal
window can be observed to strike a better balance in side lobe
reduction compared to the raised cosine window. This is quite
intuitive too and explains why the optimal window performs
superior to the raised cosine window. In the simulations, we
see that the iterations always exhibit a non-decreasing behav-
ior in the sum rate as is predicted by the theory (section 3.3).

5. CONCLUSION
In this paper, we have extended our previous work on the
water-filling problem for an OFDM system in the presence
of ICI. We justified the linearity assumption on channel vari-
ation. Then, we proved that the sum rate metric is convex in
terms of the window coefficients. Minorizers of the sum rate
were constructed to iteratively derive the window weights.
The ICI roll off for the optimally derived window is compared
with other windows and the observations are intuitively ap-
pealing. While the window parameter optimization has been
developed in the general context of MIMO Tx beamformer
design, it is optimal in the context of ICI reduction for a sin-
gle input multiple output (SIMO) scenario as well.



6. REFERENCES

[1] K. Gopala and D. Slock, “High Doppler MIMO OFDM
capacity maximizing spatial transceivers exploiting ex-
cess cyclic prefix,” in Intern’l Symp. on Wireless Com-
munication Systems (ISWCS), Sept 2016.

[2] M Faulkner, L.R Wilhelmsson, and J. Svensson, “Low-
Complex ICI Cancellation for Improving Doppler Per-
formance in OFDM Systems,” in IEEE Vehicular Tech-
nology Conference, Sept 2006.

[3] Yuexing Peng, Wenbo Wang, and Young Il Kim,
“Performance Analysis of OFDM System Over Time-
Selective Fading Channels,” in IEEE Wireless Comm.
and Networking Conference (WCNC), April 2009.

[4] Kalyana Gopala and Dirk Slock, “Doppler compensa-
tion and Beamforming for High Mobility OFDM trans-
missions in multipath,” in EAI International Conf.
on Cognitive Radio Oriented Wireless Networks, June
2016.

[5] S. H. Muller-Weinfurtner, “Optimum Nyquist window-
ing in OFDM receivers,” IEEE Trans. on Communica-
tions, Mar 2001.

[6] C. Y. Ma, S. W. Liu, and C. C. Huang, “On Optimum
Segment Combining Weight for ICI Self-Cancellation in
OFDM Systems under Doubly Selective Fading Chan-
nels,” in IEEE Vehicular Technology Conference (VTC
Spring), May 2012.

[7] William C. Jakes and Donald C. Cox, Eds., Microwave
Mobile Communications, Wiley-IEEE Press, 1994.

[8] Seung-Jun Kim and G.B. Giannakis, “Optimal Resource
Allocation for MIMO Ad Hoc Cognitive Radio Net-
works,” IEEE Trans. on Info. Theory, May 2011.

[9] K.Gopala and D.Slock, “MIMO OFDM Capacity Max-
imizing Beamforming for Large Doppler Scenarios,” in
IEEE Workshop on Signal Processing Advances in Wire-
less Communications (SPAWC), July 2016.

[10] Petre Stoica and Y. Selen, “Cyclic minimizers, ma-
jorization techniques, and the expectation-maximization
algorithm: a refresher,” IEEE Signal Proc. Magazine,
Jan 2004.

[11] K. B. Petersen and M. S. Pedersen, “The Matrix Cook-
book,” Nov 2012.

[12] A. Hjorungnes and D. Gesbert, “Complex-Valued Ma-
trix Differentiation: Techniques and Key Results,” IEEE
Trans. on Signal Processing, June 2007.

[13] A. Farhang, N. Marchetti, L. E. Doyle, and B. Farhang-
Boroujeny, “Low Complexity CFO Compensation in
Uplink OFDMA Systems With Receiver Windowing,”
IEEE Trans. on Signal Processing, May 2015.


