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Abstract—In this paper, a novel covariance-based channel feed-
back mechanism is investigated for frequency division duplexing
(FDD) massive multi-input multi-output (MIMO) systems. The
concept capitalizes on the notion of user statistical separability
which was hinted in several prior works in the massive antenna
regime but has not fully exploited so far. We propose a hybrid
statistical-instantaneous feedback mechanism where the users
are separated into two classes of feedback design based on
their channel covariance. Under the hybrid framework, each
user either operates on a statistical feedback mode or quantized
instantaneous channel feedback mode. The key challenge lies in
the design of a covariance-aware classification algorithm which
can handle the complex mutual interactions among all users.
The classification is derived from rate bound principles and a
precoding method is also devised under the mixed statistical
and instantaneous feedback model. Simulations are performed
to validate our analytical results and illustrate the sum rate
advantages of the proposed feedback scheme under a global
feedback overhead constraint.

Index Terms—Massive MIMO, FDD, user classification, chan-
nel feedback, channel covariance.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is expected
to be a key enabler for the next generation communication
systems [1], [2]. It has drawn considerable interest from both
academia and industry for its potential energy savings and
spectral efficiency gains [3], [4].

However, the large number of antennas brings up new
challenges, one of which is the acquisition of accurate in-
stantaneous channel state information (CSI), especially the
downlink CSI. To counteract this effect, a majority of works
considered time-division duplex (TDD) mode where down-
link instantaneous CSI is obtained by estimating uplink CSI
via channel reciprocity [5], although the downlink CSI is
not always accurate in practice due to calibration error in
baseband-to-radio frequency chains [6]. However, most of the
current systems is based on frequency division duplex (FDD).
A successful deployment of massive MIMO in FDD setting

Manuscript received February 13, 2019; revised April 24, 2019 and Septem-
ber 10, 2019; accepted October 6, 2019. This work was supported in part
by National Science Foundation of China with Grant numbers 61771216,
61631015, 61831013. D. Gesbert is supported by the ERC under the Eu-
ropean Unions Horizon 2020 research and innovation program (agreement
no. 670896). The associate editor coordinating the review of this article and
approving it for publication was H. Suraweera. (Corresponding author: Tao
Jiang.)

S. Qiu, D. Chen and T. Jiang are with Wuhan National Laboratory
for Optoelectronics, School of Electronic Information and Communications,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
(e-mail: sqiu@hust.edu.cn, chenda@hust.edu.cn, tao.jiang@ieee.org).

D. Gesbert is with the Communication System Department, EURECOM,
06410 Sophia Antipolis, France. (e-mail: David.Gesbert@eurecom.fr).

brings up a serious problem: The uplink feedback overhead
for downlink channel acquisition increases linearly with the
number of antennas and quickly grows prohibitive. In practice,
the feedback channel is quantized subject to a uplink bit
resource constraint [7]. This unfortunately leaves the system
designer with a tough dilemma: Allow precise feedback with
unbearable cost of uplink bit resources or rough quantization
at the risk of high downlink interference.

To solve this well recognized problem, a large array of
strategies have been proposed to reduce FDD-based MIMO
feedback overhead, including recent efforts tackling FDD-
based massive MIMO specifically, such as advanced trellis-
extended codebook design [8], compressive sensing-based
channel feedback reduction [9], [10], antenna grouping-based
feedback reduction technique [11], frequency-independent pa-
rameter extraction and downlink channel reconstruction [12],
[13], angular domain energy distribution-based channel esti-
mation [14], [15] etc. Moreover, the limited channel feed-
back issue was also tackled by exploiting user cooperation
via device-to-device communications [16], [17]. The authors
in [17] adopted cooperative precoder feedback scheme among
users to improve system performance. Furthermore, a 3D
beamforming downlink transmission algorithm was proposed
for FDD massive MIMO systems in [18] to greatly reduce
feedback overhead with only statistical CSI. Quite notably,
some works took advantage of spacial low-rank channel co-
variance exhibited in the large array regime first characterized
in [19], [20] to reduce feedback information [10], [19]–[23].
The key principle is that the low-rank covariance behavior
stemming from finite scattering channel models can be used
to project channel into a lower dimensional space with little
or no loss of information [24]. In turn, a two-stage precoding
structure was presented in [19] where the first-stage precoding
is the key step to reduce the cost of downlink training and up-
link feedback through user grouping. Interestingly, this result
prompted a series of subsequent studies on the problem of user
grouping itself, such as agglomerative clustering method [25],
density-based clustering [26], [27] etc.

Although the above-mentioned works capitalize on the low
rank property of channel covariance, they fail to exploit
fully the mutual inter-covariance orthogonality property that
inherently comes along with it, and not for the purpose of
feedback reduction. To further build up intuition into this
issue, consider the following two examples: First, the case of
two closely spaced users whose channels undergo scattering
over a limited radius around them (e.g. under the famed
one ring model [19]). In this case, their signal subspaces
mostly coincide. Although their instantaneous channels can



2

be equivalently represented by their low-rank covariance’s
signal space projections, accurate (reduced) instantaneous CSI
feedback is still required to avoid serious inter-user interfer-
ence. In the second example, these two users move far from
each other and their signal subspaces become distinct. In this
case, it is well known that an interference canceling precoder
can be designed based on channel covariance matrices alone
[19], [21], [28]. In other words, inter-user signal subspace
orthogonality can be exploited to reduce the requirement
of accurate instantaneous CSI and feedback overhead when
feedback bit budget is limited. Interesting results were earlier
reported about the impact of spatial statistics on feedback
overhead [29]. Elsewhere, the allocation of feedback bits was
even designed as a function of transmit covariance matrix
information [30]. However, these works exploited finely the
per-user low-rank covariance properties and the inter-user
orthogonality remained ignored, which leads to an identical
feedback bit allocation to all the users if the users have roughly
the same covariance rank and eigenvalues.

In this paper, we highlight the fact that even when users have
roughly the same covariance properties, feedback overhead
can be saved by allocating differentiated feedback bits among
users with their pair-wise channel covariance orthogonality.
To the best of our knowledge, the pair-wise channel co-
variance property has not yet been exploited for feedback
bit allocation. A possible reason is the irregularity of the
phenomenon: Random channel statistical behavior causes a
variety of ranks to be observed in channel covariance as
well as highly diverse “degrees” of orthogonality between
pairs of users, making it very difficult in practice to assign
a rate-optimal amount of instantaneous CSI feedback bits to
each user. This work counteracts this issue by proposing a
novel simplification strategy for feedback assignment. Our
basic concept lies in a binary version of the hybrid statistical-
instantaneous feedback scheme. Under this feedback concept,
each user is classified either as an instantaneous feedback
user (labeled as class-I user) or a statistical feedback user
(labeled as class-S user). More classes could be considered
in principle but are fairly challenging, which are left out for
further studies. The classification is assumed to be carried out
as a preamble on the basis of statistical information alone
(covariance matrices). The challenge lies coming up with
an optimal classification algorithm capable of processing the
complex mutual interactions among the covariance matrices
of users.

The solution of this problem is carried out in three steps.
First, we articulate a precoder design capable of handling
the mixed statistical-instantaneous type of feedback infor-
mation, which can be seen as a relatively straightforward
extension of both the statistical signal-to-leakage-and-noise
ratio (SLNR) [28] and instantaneous SLNR precoders [31].
Second, we present a rate bound analysis predicting the rate
performance under the above precoder and any user classi-
fication solution. Finally, a sum rate bound is derived and
exploited to design a suboptimal greedy classifier with good
performance-complexity trade-off since the optimal classifier
is computationally complex. To observe substantial sum rate
gains on a fair feedback rate basis, the classifier is designed

under the same feedback resource constraint as a conventional
feedback scheme. For ease of exposition, our results are
mainly presented in a single-cell setting (interference of intra-
cell nature only). The accounting of the multi-cell case is
discussed in Section VI1.

The rest of the paper is organized as follows. In Section II,
the system and channel models are described. In Section III,
the SLNR-based precoder is proposed for both class-I and
class-S users. The system sum rate bound for single cell
setting is derived based on channel covariance in Section IV.
A user classification method is elaborated under the criterion
of system sum rate maximization in Section V. The user
classification for multi-cell scenario is given in Section VI. The
simulation results and conclusions are presented in Section VII
and VIII, respectively.

Notations: Boldface lowercase (uppercase) letters denote
column vectors (matrices). The superscripts (·)H represents
conjugate transpose and E {·} denote expectation operation.
The notation Cm×n represents a set of m × n matrices
with complex entries and , is used to denote a definition.
An n × n identity matrix is denoted as In and A =
diag(a1, . . . , al, . . . , aM ) denotes a diagonal matrix whose l-
th diagonal element is [A]l = al. The notations ⌊x⌉, ⌊x⌋
and ⌈x⌉ imply rounding a decimal number to its nearest,
nearest lower and nearest higher integers, respectively. The
notation z ∼ CN (0,Σ) means z is a complex Gaussian
random vector with zero mean and covariance matrix Σ. The
vector umax(A) denotes the eigenvector of matrix A corre-
sponding to its maximum eigenvalue λmax(A). In addition,
we use X = {x1, . . . , xN} and |X | to denote a set and its
cardinal number, respectively.

II. SYSTEM AND CHANNEL MODELS

A. Channel Model

A single-cell massive MIMO system is considered where the
BS is equipped with M antennas and simultaneously serves K
single-antenna users labeled as user set K = {1, . . . ,K}. For
each user k ∈ K, a physical channel model which describes
the multiple paths propagation is exploited and given as [9],
[14], [20]

hk , 1√
P

P∑
p=1

γkpa (θkp), (1)

where P is the number of independent, identically distributed
(i.i.d.) paths, γkp represents the complex gain of the p-th path,
a (θkp) is the steering vector. For tractability, we consider a
uniform linear array (ULA) and the steering vector is given as

a(θkp) ,
[
1, ej2π

d
λ sin(θkp), · · · , ej2π

(M−1)d
λ sin(θkp)

]T
, (2)

where θkp is the random angle of arrival (AoA) corresponding
to the p-th path, d is the antenna spacing at the BS and λ is

1Note that the idea of hybrid feedback has been presented in our previous
conference paper [32]. However, there are differences. First, the full rate
analysis is explicit here while only a sketch was given before. Secondly,
we improve the method to quantize the instantaneous CSI of class-I users
and more accurate quantized instantaneous CSI is obtained. Furthermore, the
multi-cell scenario is considered in this paper.
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wavelength. The AoAs of the P paths are assumed to be uni-
formly distributed over

[
θk − θ∆/2, θk + θ∆/2

]
where θk ∈[

−π
2 ,

π
2

]
is the mean AoA and θ∆ is spread AoA (SAoA).

We assume that the BS holds the statistical informa-
tion of users, such as channel covariance matrix Φk =
E
{
hkh

H
k

}
, k ∈ K. Compared to instantaneous CSI, accurate

estimation of channel covariance is much easier to obtain by
long-term statistics. Furthermore, downlink channel covariance
estimation for FDD systems can be estimated from uplink
channel covariance matrix through certain frequency calibra-
tion processing [37].

B. Feedback Model

Under the proposed hybrid statistical-instantaneous feed-
back scheme, the K users are classified into KS so-called
statistical feedback users (labeled class-S users) and KI in-
stantaneous feedback users (labeled class-I users). The user
sets are denoted as KS = {1, . . . ,KS} and KI = {1, . . . ,KI},
respectively. Different from conventional channel feedback
schemes where all the users need to feed back quantized
instantaneous channel, only the class-I users feed back their
quantized channel to the BS after channel quantization. In
contrast, the class-S users are assigned zero bit towards in-
stantaneous feedback, as shown in Fig. 1. As a result, when
the total feedback bit budget is Btotal, each class-I user
has B ,

⌊
Btotal

KI

⌋
bits for channel feedback.
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Fig. 1. Illustration of channel feedback and downlink data transmission
under the proposed hybrid statistical-instantaneous feedback scheme. Only
class-I users feed back quantized instantaneous channel.

Throughout the paper, we use subscript (·)I,i and (·)S,n
to denote the notations for the i-th class-I and n-th class-
S users, respectively. The quantized channel vector ĥB

I,i for
the i-th class-I user is selected based on its codebook CI,i ,
{c1, . . . , cX} with X = 2B and obtained as [8]

ĥB
I,i = arg max

cu∈CI,i

∣∣hH
I,icu

∣∣2 , (3)

where hI,i ∈ CM×1 represents the downlink instantaneous

CSI2. Thus, the BS holds the quantized channel matrix of
all the class-I users as ĤB

I ,
[
ĥB
I,1, . . . , ĥ

B
I,KI

]
∈ CM×KI

and channel covariance matrix Φk, k ∈ K of all the
users for downlink data transmission. Note that our analysis
does not account for the cost related to collecting covariance
information, which is left out for future studies.

C. Proposed Downlink Data Transmission

As our final goal is downlink data transmission, a first
challenge is how the BS can serve class-I and class-S users
simultaneously without the instantaneous CSI of class-S users
while managing inter-user interference. To handle this prob-
lem, we first characterize the received signals yI,i and yS,n at
the i-th class-I user and n-th class-S user as

yI,i = pdh
H
I,i

(
ŴIxI + ŴSxS

)
+ nI,i, (4)

yS,n = pdh
H
S,n

(
ŴIxI + ŴSxS

)
+ nS,n, (5)

where pd is downlink transmit power to each user, hS,n ∈
CM×1 represents the downlink channel vector of the
n-th class-S user, xI , [xI,1 . . . xI,KI ]

T and xS ,
[xS,1 . . . xS,KS ]

T are consisted of downlink data symbols sat-
isfying E

{
xIx

H
I

}
= IKI and E

{
xSx

H
S

}
= IKS , respec-

tively, nI,i and nS,n denote i.i.d. additive white Gaussian
noise (AWGN) with zero mean and unit variance, ŴI ,
[ŵI,1, . . . , ŵI,KI ] ∈ CM×KI and ŴS , [ŵS,1, . . . , ŵS,KS ] ∈
CM×KS denote the precoding matrices with ŵI,i and ŵS,n

representing the precoding vectors for the i-th class-I and the
n-th class-S users, respectively.

The received signal yI,i and yS,n are further expressed as

yI,i = pdh
H
I,iŵI,ixI,i︸ ︷︷ ︸

Expected signal

+ pd

KI∑
j=1,j ̸=i

hH
I,iŵI,jxI,j︸ ︷︷ ︸

Interference from the other class-I users

+ pd

KS∑
n=1

hH
I,iŵS,nxS,n︸ ︷︷ ︸

Interference from class-S users

+ nI,i︸︷︷︸
AWGN

, (6)

yS,n = pdh
H
S,nŵS,nxS,n︸ ︷︷ ︸

Expected signal

+ pd

KS∑
q=1,q ̸=n

hH
S,nŵS,qxS,q︸ ︷︷ ︸

Interference from the other class-S users

+ pd

KI∑
i=1

hH
S,nŵI,ixI,i︸ ︷︷ ︸

Interference from class-I users

+ nS,n︸︷︷︸
AWGN

. (7)

2Downlink channel acquirement has been widely studied in FDD massive
MIMO systems, such as downlink pilot signal design [38], compressed
sensing-aided sparse channel estimation [39] etc. The overhead to obtain
downlink channel can be efficiently controlled with the existing methods.
In our work, we mainly focus on uplink channel feedback issue and assume
the users hold their downlink channel before conducting channel quantization
and channel feedback.
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Thus, the signal-to-interference-plus-noise ratio (SINR) rI,i for
the i-th class-I user is given as

rI,i =
|hH

I,iŵI,i|2
KI∑

j=1,j ̸=i

|hH
I,iŵI,j |2 +

KS∑
n=1

|hH
I,iŵS,n|2 + 1

pd

. (8)

Following a similar approach, the SINR of the n-th class-S
user rS,n can be derived as

rS,n =
|hH

S,nŵS,n|2
KS∑

q=1,q ̸=n

|hH
S,nŵS,q|2 +

KI∑
i=1

|hH
S,nŵI,i|2 + 1

pd

. (9)

Based on the assumption of block fading channel model, the
downlink ergodic achievable rate of the i-th class-I and the n-
th class-S users are obtained as

RI,i = E {log2 (1 + rI,i)} , (10)
RS,n = E {log2 (1 + rS,n)} , (11)

respectively. The system sum rate under feedback bit con-
straint Btotal is

Rsum

(
KI,KS, B

total
)
=

KI∑
i=1

RI,i +

KS∑
n=1

RS,n. (12)

Clearly, the system sum rate is highly influenced by the
user classification solutions and the accuracy of class-I users’
quantized channel. Hence, the challenge behind this approach
is to find the optimal classifier capable of leveraging the com-
plex mutual interactions among users’s channel statistics. To
solve this problem, we propose a precoder design in the next
section to handle the mixed statistical-instantaneous feedback
information and then derive a sum rate bound to evaluate the
performance of different user classification solutions.

III. SLNR-BASED DOWNLINK PRECODER DESIGN

Precoding methods with mixed utilization of statistical and
instantaneous CSI have been studied in [33], where the inter-
ference between two user classes is canceled by removing the
common channel existing in overlapping subspaces. To min-
imize the channel loss, a SLNR-based downlink precoder is
designed in this paper with the mixed statistical-instantaneous
feedback information introduced in Section II. The motivation
of using SLNR-based precoder is twofold. First, the leakage-
based criterion leads to a decoupled optimization problem
and gives an analytical closed-form precoding solution which
is critical to derive the rate bounds needed for the user
classification algorithm [40]. Secondly, SLNR-based precoder
takes the Gaussian noise into consideration and has been
illustrated to achieve identical performance to minimum mean
square error precoder [31].

With the coexistence of class-I and class-S users, the SLNR
expressions of the i-th class-I and the n-th class-S users are

ΓI,i =
|hH

I,iŵI,i|2
KI∑

j=1,j ̸=i

|hH
I,jŵI,i|2 +

KS∑
n=1

|hH
S,nŵI,i|2 + 1

pd

, (13)

ΓS,n =
|hH

S,nŵS,n|2
KS∑

q=1,q ̸=n

|hH
S,qŵS,n|2 +

KI∑
i=1

|hH
I,iŵS,n|2 + 1

pd

, (14)

respectively. Since the BS only holds the statistical C-
SI of class-S users, we consider average SLNR E {ΓI,i}
and E {ΓS,n} to transfer the instantaneous CSI of class-S
users to their statistical CSI [28], [41]. Therefore, the average
operation is only over the instantaneous CSI hS,n, ∀n of class-
S users. By using Mullen’s inequality E

{
X
Y

}
≥ E{X}

E{Y } , the
lower bounds E

{
ΓLB
I,i

}
and E

{
ΓLB
S,n

}
of the average SLNR

are obtained with channel covariance as [42]

E {ΓI,i} ≥ E
{
ΓLB
I,i

}
=

ŵH
I,iHI,iŵI,i

ŵH
I,i

KI∑
j=1,j ̸=i

HI,jŵI,i + ŵH
I,i

KS∑
n=1

ΦS,nŵI,i +
1
pd

, (15)

E {ΓS,n} ≥ E
{
ΓLB
S,n

}
=

ŵH
S,nΦS,nŵS,n

ŵH
S,n

KS∑
q=1,q ̸=n

ΦS,qhH
S,nŵS,n+ŵH

S,n

KI∑
i=1

HI,iŵS,n + 1
pd

, (16)

respectively, where HI,i = ĥB
I,i

(
ĥB
I,i

)H
and ΦS,n =

E
{
hS,nh

H
S,n

}
denotes the channel covariance matrix of the

n-th class-S user. With the goal of maximizing the lower
bounds E

{
ΓLB
I,i

}
and E

{
ΓLB
S,n

}
, the closed-form precoding

vectors of the i-th class-I and the n-th class-S users are
obtained as

ŵI,i = umax


 KI∑

j=1,j ̸=i

HI,j +

KS∑
n=1

ΦS,n +
1

pd
IM

−1

HI,i

 ,

(17)

ŵS,n = umax


 KS∑

q=1,q ̸=n

ΦS,q +

KI∑
i=1

HI,i +
1

pd
IM

−1

ΦS,n

 ,

(18)

respectively, umax(·) denotes the eigenvector corresponding to
the maximum eigenvalue.

It can be seen that the proposed SLNR-based precoder is
an extension of the statistical SLNR and instantaneous SLNR
precoders. When all the users are selected as class-I users,
the proposed precoder becomes the classical instantaneous
SLNR precoder [31], likewise for class-S users, the proposed
precoder becomes the statistical SLNR precoder [28].

IV. SYSTEM SUM RATE BOUND ANALYSIS

Under the proposed feedback framework, the BS needs to
classify the users in the first place. After that, the class-I
users are able to quantize their instantaneous CSI according
to the assigned feedback bits and pre-defined codebooks. In
other words, the BS has no any instantaneous CSI of class-I
users when it performs user classification. Therefore, system
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performance prediction is necessary for the BS to evaluate
different user classification solutions.

In this section, we present a rate bound derived from covari-
ance matrices alone to predict the rate performance under the
proposed SLNR-based precoder and any classification solu-
tion. The objective behind the rate bound is less to characterize
precisely the system sum rate as it is to drive the design of a
classification algorithm. In the following subsections, so-called
beam domain channel and channel covariance are introduced
to rewrite the actual channel and channel covariance in the
form of discrete Fourier transform (DFT) matrix. Secondly,
a prediction method for quantized instantaneous channel of
class-I users is presented exploiting the beam domain repre-
sentation and DFT matrix.

Note that the quantized instantaneous channel prediction is
one-off operation and is only used for rate bound derivation.
Once the rate bound is obtained, the BS can directly use the
closed-form rate bound to evaluate system performance under
any user classification.

A. Beam Domain Channel and Channel Covariance

Channel vectors can be equivalently presented in virtual
angular domain by simply sampling at equi-spaced angular
intervals at the BS side. Then, the multipath channel vec-
tor hk, k ∈ K, can be approximately rewritten as a beam
domain channel and given as [34]–[36]

hk =
M∑
t=1

[
hBD
k

]
t
a(φt) = AhBD

k , (19)

where A = [a(φ1), . . . ,a(φt), . . . ,a(φM )] ∈ CM×M

with a(φt) representing the t-th virtual beam
and φt representing its AoA, and hBD

k =[[
hBD
k

]
1
, . . . ,

[
hBD
k

]
t
, . . . ,

[
hBD
k

]
M

]T with
[
hBD
k

]
t

denoting
the complex gain of the t-th beam. By considering ULA
with half wavelength antenna spacing, the matrix A can be
approximately constructed as a DFT matrix V [19], [43].
Set φt = arcsin( 2t

M − 1), t = 1, . . . ,M, and the t-th column
of matrix V is given as

V (:, t) , 1√
M

[
1, ejπ(

2t
M −1), · · · , ejπ(M−1)( 2t

M −1)
]T

.

(20)
Thus, the p-th path of the k-th user can be presented with
virtual beams as

γkpa(θkp) =
M∑
t=1

[
h̃BD
kp

]
t
V (:, t) , (21)

where
[
h̃BD
kp

]
t

denotes the gain of the p-th path in the t-th
virtual beam given as∣∣∣[hBD

kp

]
t

∣∣∣ = |γkp|V (:, t)
H
a(θkp)

=
|γkp|√
M

∣∣∣∣∣∣ej M−1
2 πβt

kp

sin
(

M
2 πβt

kp

)
sin
(

1
2πβ

t
kp

)
∣∣∣∣∣∣ , (22)

where βt
kp = sin(θkp)− 2t

M + 1. Then, the beam domain gain
of the k-th user in the t-th beam is given as∣∣∣[h̃BD

k

]
t

∣∣∣ = 1√
P

P∑
p=1

∣∣∣[h̃BD
kp

]
t

∣∣∣ . (23)

The beam domain channel can be approximately expressed

as h̃k =
M∑
t=1

∣∣∣[h̃BD
k

]
t

∣∣∣V(:, t). The beam domain channel

covariance matrix is given as

Φ̃k = E
{
h̃kh̃

H
k

}
= VΦ̃BD

k VH , (24)

where Φ̃BD
k = diag

(
E

{∣∣∣[h̃BD
k ]1

∣∣∣2} , . . . ,E

{∣∣∣[h̃BD
k ]M

∣∣∣2}).

For the simplicity of notations, we assume the complex gain
of each path satisfies γkp ∼ CN (0, 1). Thus, the t-th diagonal
element of Φ̃BD

k is given as

[
Φ̃BD

k

]
t
= E

{∣∣∣[h̃BD
k ]t

∣∣∣2} =
1

MP

P∑
p=1

∣∣∣∣∣∣
sin
(

M
2 πβt

kp

)
sin
(

1
2πβ

t
kp

)
∣∣∣∣∣∣
2

.

(25)
It can be seen that the beam domain channel covariance is only
related to the number of paths and antennas, and the AoAs of
paths which can be obtained via long-term statistics.

B. Quantized Instantaneous Channel Prediction

To derive a rate bound, the BS needs to know the quantized
instantaneous CSI of class-I users which influences the down-
link precoder design. However, the quantized instantaneous
CSI has not been fed back before user classification operation.
One possible solution is to derive the rate bound based on
predicted instantaneous CSI.

The key idea of predictting the quantized instantaneous CSI
is to find the codeword from a predefined codebook which
has the largest similarity to the channel direction of one user
based on its beam domain channel covariance. The codebook
size decides the number of predefined spatial directions and
impacts the accuracy of quantized CSI. The detailed prediction
method is given as follows.

Since the users lie in low-dimension subspaces due to
limited scatterers, the codebook design for spatially corre-
lated channel usually takes the subspaces into account [44].
Therefore, we first present approximate subspaces of users
with virtual beams. Because of the low-rank property of
channel covariance, the dominant nonzero elements in Φ̃BD

I,i

are limited and assumed to be distributed between indices
xI,i,min and xI,i,max

3. Then, the dominant subspace of the i-th
class-I user can be presented as

SI,i = Span {V (:, x) , xI,i,min ≤ x ≤ xI,i,max} . (26)

The predefined codewords are simply considered to be isotrop-
ically distributed in subspace SI,i. Thus, the codewords

3The parameters xI,i,min and xI,i,max are influenced by the number of BS
antennas M and SAoA of users [43]. It is difficult to determine the parameters
in theoretical analysis, while they can be obtained from long-term statistics
or off-line tables at the BS.
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cI,i,u ∈ CI,i, u = 1, . . . , X, is created as

cI,i,u =
1√
M

[
1, ejπηI,i(u), · · · , ejπ(M−1)ηI,i(u)

]T
, (27)

where ηI,i(u) is given as

ηI,i(u) =

(
2xI,i,min

M
− 1

)
+ u

2 (xI,i,max − xI,i,min)

MX
. (28)

Thus, the codebook is also presented in form of DFT vectors.
Given feedback bits B (codebook size X = 2B) for each
class-I user, the codebook and quantized channel of the i-th
class-I user can be predicted based on its beam domain channel
covariance. The codeword index and quantized channel are
respectively given as

ũ∗
I,i = arg max

u=1,...,X,

[
Φ̃BD

I,i

]
⌊M

2 (ηI,i(u)+1)⌉
, (29)

ĥB
I,i = cI,i,ũ∗

I,i
. (30)

The proof of Equation (29) and (30) is given in Appendix A.
Briefly speaking, the selected codeword of the i-th class-
I user should be the one closest to its strongest channel
direction which can be considered as the virtual beam m
with the largest beam domain channel gain

[
Φ̃BD

I,i

]
m

. When
the number of antennas M is infinite, there must exist a
codeword identical to the virtual beam m, while the number
of BS antennas is limited in practice. But power leakage
happens and most of power concentrates around m. Thus,
the codeword corresponding to the virtual beam m can be
selected by

[
Φ̃BD

I,i

]
⌊m⌉

given in equation (29) and the selected

codeword is taken as the predicted channel in equation (30).
Although the channel quantization given in (30) is not

obtained from instantaneous CSI, the predicted channel can
be accurate in direction based on statistical information. Note
that the quantized channel prediction is one-off operation at
the BS and is only used for rate bound derivation. The real
quantized channel used for downlink data transmission will be
fed back by class-I users after user classification.

C. Lower Bound Analysis of System Sum Rate

After quantized channel prediction, the BS can forecast the
system sum rate with the proposed SLNR-based precoder.
First, the downlink SLNR-based precoding vectors for the i-
th class-I and the n-th class-S users can be approximately
obtained as

w̃I,i = V(:, ˜̂mI,i), (31)

w̃S,n = V(:, l̃∗S,n), (32)

respectively, where the index ˜̂mI,i is

˜̂mI,i =

⌊
xI,i,min +

xI,i,max − xI,i,min

X
ũ∗
I,i

⌉
, (33)

and the index l̃∗S,n is obtained from

l̃∗S,n = arg max
l=1,...,M,

[
Σ̃S,n

]
l

(34)

with the l-th diagonal element of matrix Σ̃S,n given as

[
Σ̃S,n

]
l
=

[
Φ̃BD

S,n

]
l

KS∑
q=1,q ̸=n

[
Φ̃BD

S,q

]
l
+

KI∑
i=1

δ( ˜̂mI,i − l) + 1
pd

. (35)

The proof of equation (31) and (32) is given in Appendix B.
Next, with the predicted quantized channel of class-I users

and the approximate SLNR-based precoding vectors, a lower
bound of system sum rate can be obtained as

R̃LB
sum =

KI∑
i=1

log
(
1 + E

{
r̃LBI,i

})
+

KS∑
n=1

log
(
1 + E

{
r̃LBS,n

})
,

(36)

where E
{
r̃LBI,i
}

and E
{
r̃LBS,n

}
denote approximate effective

SINR and are respectively obtained as

E
{
r̃LBI,i
}
=

[
Φ̃BD

I,i

]
˜̂mI,i

KI∑
j=1,j ̸=i

[
Φ̃BD

I,i

]
˜̂mI,j

+
KS∑
n=1

[
Φ̃BD

I,i

]
l̃∗
S,n

+ 1
pd

, (37)

E
{
r̃LBS,n

}
=

[
Φ̃BD

S,n

]
l̃∗S,n

KS∑
q=1,q≠n

[
Φ̃BD

S,n

]
l̃∗S,q

+
KI∑
i=1

[
Φ̃BD

S,n

]
˜̂mI,i

+ 1
pd

. (38)

The proof of Equation (36) is given in Appendix C.
Note that the rate bound is computed based on channel

statistics alone and can be directly used to predict system
performance under any user classification. A greedy user
classification algorithm is presented in the next section.

V. GREEDY USER CLASSIFICATION

The optimal classifier for the proposed feedback scheme
to maximize the system sum rate is computationally complex.
Therefore, the rate bound obtained in Section IV is exploited to
obtain a suboptimal greedy classifier with good performance-
complexity trade-off. The user classification problem can be
formulated as

Ksub
I ,Ksub

S = argmax R̃LB
sum

(
KI,KS, B

total
)

(39a)
s.t. K = KI ∪ KS, (39b)

K = KI +KS, (39c)

B =

⌊
Btotal

KI

⌋
, (39d)

where the system sum rate in the objective function (39a) is
given in (53), the constraints (39b) and (39c) is to make sure
all the K users are classified and each user only belongs to
one user class, and the constraint (39d) indicates that class-I
users share the total feedback bit budget Btotal evenly.

To find the solution for problem (39), a greedy user clas-
sification algorithm is proposed in Alg. 1. First, we assume
all the K users are class-I users and calculate the predicted
sum rate R̃LB,K

sum based on (36). The superscript K in R̃LB,K
sum

denotes the number of class-I users. Then, we choose one user
from class-I user set who can achieve the largest R̃LB,K−1

sum as
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Algorithm 1 Greedy User Classification Algorithm
Input: ΦBD

k , k ∈ K, Btotal

Output: Ksub
I , Ksub

S

1: Initialize
Set f = K and a vector r̃sum = ∅
The set of class-I users KI = {1, . . . ,K}
The set of class-S users KS = ∅
Calculate R̃LB,f

sum based on (53)
Update r̃sum =

[
r̃sum R̃LB,K

sum

]
2: while f ≥ 0 do
3: Decrease f by 1 and calculate B =

⌊
Btotal

f

⌋
4: Find the user with index nS as class-S user satisfying

nS = arg max
u∈KI

R̃LB,f
sum

(
KS ∪ {u},KI \ {u}, Btotal

)
5: Update KS and KI as

KS = KS ∪ {nS}
KI = KI \ {nS}

6: Update r̃sum =
[
r̃sum R̃LB,f

sum

]
7: end while
8: Find the largest rate with index d∗ in vector r̃sum
9: The first K+1−d∗ users in KS belong to Ksub

S and Ksub
I

consists of the remaining users
10: Return Ksub

I , Ksub
S

a new class-S user. Repeat this procedure until all the users
have been selected as class-S users. Finally, compare all the
K + 1 sum rate R̃LB,f

sum , f = 0, . . . ,K, and select the largest
rate with index d∗. Thus, the optimal numbers of class-I and
class-S users are d∗ − 1 and K + 1 − d∗, respectively. The
user set of class-S users Ksub

S consists of the first K +1− d∗

selected class-S users and the remaining users are class-I users.

VI. USER CLASSIFICATION FOR MULTI-CELL SCENARIO

Different from the single-cell setting, the multi-cell scenario
will give rise to inter-cell interference, especially for the users
located in the edge of cells [45]. Thus, any user classification
algorithm should consider all the users in the multi-cell
network to maximize the system sum rate. In this section,
we introduce the system model, precoding design, a lower
bound for the system sum rate and user classification for a
multi-cell network. Note that the principles are easily derived
from the single cell setting, hence only sketches of results are
detailed below.

An L-cell massive MIMO network is considered serving K

users simultaneously. We use K[I]
l and K[S]

l to represent the
user sets of class-I and class-S users in the l-th cell, respec-
tively. The numbers of class-I and class-S users are labeled
as
∣∣∣K[I]

l

∣∣∣ = K
[I]
l and

∣∣∣K[S]
l

∣∣∣ = K
[S]
l , respectively. The total

numbers of class-I and class-S users in this network are K [I]

and K [S], respectively. Moreover, the channel vector between
the BS in the l-th cell to user k in the j-th cell is modeled as

gl,j,k =
√
ςl,j,khl,j,k, (40)

where ςl,j,k is large-scale fading and hl,j,k is fast fading given
in Eq. (1). All the class-I users in this network share the

total feedback bit budge Btotal evenly and each of them can
be assigned B =

⌊
Btotal

K[I]

⌋
bits for channel quantization. No

cooperation is considered among the BSs and the class-I users
in the l-th cell only feed back their quantized channel to its
own BS for downlink precoding design. Moreover, each BS
is assumed to have the statistical information of all the K
users in this network, including the AoAs of multipaths for
each user, gain variance of each path and covariance matrices.
Then, the BSs transform the statistical information into beam
domain channel covariance which is composed of DFT matrix
and one diagonal matrix with gain variance of virtual beams,
e.g., Φ̃l,j,k = VΦ̃BD

l,j,kV
H . We assume that the diagonal

matrices Φ̃BD
l,j,k held by the BSs can be exchanged or sent

a central control unit to conduct user classification.
First, by considering inter-cell interference leakage, the

SLNR expressions for class-I user i and class-S user n in
the l-th cell are respectively given as

Γ
[I]
l,i =

∣∣∣∣(h[I]
l,l,i

)H
ŵ

[I]
l,l,i

∣∣∣∣2
Lintra
l,i + Linter

l,i + 1
pd

,
(41)

Γ
[S]
l,n =

∣∣∣∣(h[S]
l,l,n

)H
ŵ

[S]
l,l,n

∣∣∣∣2
Lintra
l,n + Linter

l,n + 1
pd

,
(42)

where ŵ
[I]
l,l,i and ŵ

[S]
l,l,n denote the precoding vectors, Lintra

l,i

and Lintra
l,n represent the interference leaked to the users inside

the l-th cell respectively given as

Lintra
l,i =

∑
b∈K[I]

l \{i}

∣∣∣∣(h[I]
l,l,b

)H
ŵ

[I]
l,l,i

∣∣∣∣2+∑
n∈K[S]

l

∣∣∣∣(h[S]
l,l,n

)H
ŵ

[I]
l,l,i

∣∣∣∣2 ,
Lintra
l,n =

∑
q∈K[S]

l \{n}

∣∣∣∣(h[S]
l,l,q

)H
ŵ

[S]
l,l,n

∣∣∣∣2+∑
i∈K[I]

l

∣∣∣∣(h[I]
l,l,i

)H
ŵ

[S]
l,l,n

∣∣∣∣2 ,
and the symbols Linter

l,i and Linter
l,n denote the interference

leakage to the users in the other cells given as

Linter
l,i =

∑
j ̸=l

∑
k∈Kj

∣∣∣hH
l,j,kŵ

[I]
l,l,i

∣∣∣2 , (43)

Linter
l,n =

∑
j ̸=l

∑
k∈Kj

∣∣∣hH
l,j,kŵ

[S]
l,l,n

∣∣∣2 , (44)

respectively. Exploiting the same idea given in Section III
to maximize the lower bound of average SLNR with the
quantized channel of class-I users and the channel covariance
matrices of the remaining users, the precoding vectors for the
users in the l-th cell are obtained as

ŵ
[I]
l,l,i = umax

{(
Z

[I]
l,l,i

)−1

H
[I]

l,l,i

}
, (45)

ŵ
[S]
l,l,n = umax

{(
Z

[S]
l,l,n

)−1

Φ
[S]
l,l,n

}
, (46)
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r
[I]
l,l,i =

∣∣∣∣(h[I]
l,l,i

)H
ŵ

[I]
l,l,i

∣∣∣∣2∑
b∈K[I]

l \{i}

∣∣∣∣(h[I]
l,l,i

)H
ŵ

[I]
l,l,b

∣∣∣∣2+ ∑
q∈K[S]

l

∣∣∣∣(h[I]
l,l,i

)H
ŵ

[S]
l,l,q

∣∣∣∣2+∑
j ̸=l

∑
n∈Kj

∣∣∣∣(h[I]
j,l,i

)H
ŵj,j,n

∣∣∣∣2+ 1
pd

. (49)

where H
[I]

l,l,i =
(
ĥ
[I]
l,l,i

)H
ĥ
[I]
l,l,i and matrices Z

[I]
l,l,i and Z

[S]
l,l,n

are given as

Z
[I]
l,l,i =

∑
b∈K[I]

l \{i}

H
[I]

l,l,b +
∑

n∈K[S]
l

Φ
[S]
l,l,n +

∑
j ̸=l

∑
k∈Kj

Φl,j,k +
1

pd
I, (47)

Z
[S]
l,l,n =

∑
i∈K[I]

l

H
[I]

l,l,i +
∑

q∈K[S]
l \{n}

Φ
[S]
l,l,q +

∑
j ̸=l

∑
k∈Kj

Φl,j,k +
1

pd
I, (48)

respectively. Each user in the network suffers intra-cell and
inter-cell interference (from both class-I and class-S users).
Take class-I user i as an example, its SINR is given in (49)
on the top of this page.

Then, we intend to obtain effective SINR ϱ
[I]
l,l,i and ϱ

[S]
l,l,n to

derive a lower bound of multi-cell sum rate. To achieve this
goal, we first calculate the predicted quantized channel for
class-I users following the similar approach of Equation (29)
and (30), and denote the feedback codeword index as ũ

[I]
l,l,i

for the class-I user i in the l-th cell. Then, by exploiting
the predicted channels and beam domain covariance matrices,
approximate precoding vectors of the users in the l-th cell are
obtained with the similar procedure given in Equation (31)
and (32), and presented as w̃l,l,k = V (:,ml,l,k) , k ∈ Kl.
Due to the limited space, we omit the details to obtain ml,l,k

and directly present the result for a class-I user as ml,l,k =⌊
xI,i,min +

xI,i,max−xI,i,min

2B
ũ
[I]
l,l,i

⌉
. For a class-S user, we have

ml,l,k = arg max
x=1,...,M

[
Σ̃

[S]
l,l,k

]
x
, (50)

where Σ̃l,l,k is a diagonal matrix and its x-th element is
given as[
Σ̃

[S]
l,l,k

]
x
= [

Φ̃
[S],BD
l,l,k

]
x∑

q∈K[S]
l \{k}

[
Φ̃

[S],BD
l,l,q

]
x
+
∑

i∈K[I]
l

δ(ml,l,i − x) +
∑
j ̸=l

∑
k∈Kj

[
Φ̃BD

l,j,k

]
x
+ 1

pd

,

where the superscript (·)[S],BD denotes that the user belongs
to class-S users. Combining with the beam domain channel
representation and the approximate precoding vectors, the
effective SINR can be obtained based on (49) and given in (51)
and (52) shown on the top of next page. Thus, the sum rate
of the network is given as

R̃net,LB
sum =

L∑
l=1

∑
i∈K[I]

l

log
(
1 + ϱ

[I]
l,l,i

)
+

L∑
l=1

∑
n∈K[S]

l

log
(
1 + ϱ

[S]
l,l,n

)
.

(53)
Replacing the sum rate expression as R̃net,LB

sum and inputting
the beam domain channel covariance Φ̃BD

l,j,k into Alg. 1, we
can get the user classification result for multi-cell network.

VII. SIMULATION RESULTS

In this section, the analytical rate bound and the perfor-
mance of the proposed hybrid statistical-instantaneous channel
feedback mechanism are evaluated. For any user k, we set
xk,min = 1 and xk,max = M for channel feedback prediction.
As a comparison, we also depict the performance of the
conventional feedback scheme where all the K users evenly
share the feedback budget and feed back their quantized
instantaneous channel to BS. Besides, SLNR precoder is
adopted for the conventional scheme [31]. Note that the
proposed and conventional feedback schemes can work for
any codebook. In order to evaluate the advantages of the
proposed feedback scheme under any codebook design, two
representative codebooks with and without channel covariance
are considered for the simulations, i.e., DFT-based codebook
and skewed codebook:

1) DFT-based codebook: The DFT-based codebook does not
take channel statistics into consideration. When the codebook
size is X , the u-th codeword cu is defined as

cu , 1√
M

[
1, ejπ(

2u
X −1), · · · , ejπ(M−1)( 2u

X −1)
]T

. (54)

2) Skewed codebook: For class-I user i , the codebook with
size X is given as

CI,i =

 Φ
1/2
I,i fu∥∥∥Φ1/2
I,i fu

∥∥∥ , u = 1, . . . , X

 , (55)

where fu ∈ CM×1 is isotropically distributed on the unit-
sphere. This codebook is more efficient for spatially correlated
channel than DFT-based codebook [44].

For the multi-path channel model, we assume that us-
er k’s channel is composed by P = 20 paths. Al-
l the paths are assumed to be uniformly distributed
over

[
θk − θ∆/2, θk + θ∆/2

]
where the mean AoA θk is

uniformly distributed in
[
−π

2 ,
π
2

]
and the SAoA is set to

θ∆ = 10◦ for all the simulations [20].

A. Evaluation for Single-cell Scenario

Fig. 2 depicts the system sum rate under the proposed
feedback mechanism with Monte Carlo result and analytical
lower bound derived in Section IV. As a comparison, the
Monte Carlo result of system sum rate with perfect downlink
instantaneous CSI is also provided. Fig. 2 shows that the
proposed channel feedback scheme achieves similar sum rate
performance under the DFT-based and skewed codebooks.
Although there are only 40 feedback bits for 10 users, the
proposed feedback scheme can still obtain satisfying system
performance. Moreover, although the analytical lower bound
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ϱ
[I]
l,l,i =

[
Φ̃

[I],BD
l,l,i

]
ml,l,i∑

b∈K[I]
l \{i}

[
Φ̃

[I],BD
l,l,i

]
ml,l,b

+
∑

q∈K[S]
l

[
Φ̃

[I],BD
l,l,i

]
ml,l,q

+
∑
j ̸=l

∑
t∈Kj

[
Φ̃

[I],BD
j,l,i

]
mj,j,t

+ 1
pd

, (51)

ϱ
[S]
l,l,n =

[
Φ̃

[S],BD
l,l,n

]
ml,l,n∑

i∈K[I]
l

[
Φ̃

[S],BD
l,l,n

]
ml,l,i

+
∑

q∈K[S]
l \{n}

[
Φ̃

[S],BD
l,l,n

]
ml,l,q

+
∑
j ̸=l

∑
t∈Kj

[
Φ̃S,BD

j,l,n

]
mj,j,t

+ 1
pd

. (52)

of system sum rate is derived only from channel statistics and
does not rely on codebook design, it can display the change
of system sum rate versus transmit power.
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Fig. 2. Performances comparison of Monte Carlo and the analytical lower
bound results with M = 128, K = 10 and Btotal = 40 bits.
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Fig. 3. System sum rate versus different downlink transmit power to each
user with conventional and the proposed feedback schemes when M = 128,
K = 10, Btotal = 40 bits and B = 4 bits for each user under
conventional scheme.
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Fig. 4. Performances comparison under the proposed and the existing feed-
back bit allocation scheme with M = 128, K = 10 and Btotal = 40 bits.
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Fig. 5. System sum rate versus different numbers of users with conventional
and the proposed feedback schemes when M = 128, pd = 10 dB, Btotal =

40 bits and B =
⌈
Btotal

K

⌉
for each user under conventional scheme.

The performance comparison of conventional and the pro-
posed feedback schemes is provided in Fig. 3 with differ-
ent downlink transmit power. Under conventional scheme,
all the users share the feedback bits evenly and feed back
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for each user under conventional scheme.
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Fig. 7. System sum rate versus different SAoA with conventional and the
proposed feedback scheme when M = 128, K = 10, pd = 10 dB, Btotal =
40 bits and B = 4 bits for each user under conventional scheme.

quantized channel. It is shown that the proposed feedback
scheme outperforms the conventional one, especially when
DFT-based codebook is used. Besides, the skewed codebook
achieves better performance than DFT-based codebook due
to the consideration of channel statistics. Moreover, the con-
ventional scheme only obtains marginal performance gain in
high SNR regime, while the performance of the proposed
feedback scheme keeps growing with the downlink transmit
power increasing.

Fig. 4 illustrates the system sum rate under the proposed and
the existing feedback bit allocation schemes [29], [30]. The
existing works only exploited per-user low-rank covariance
property to perform feedback bit allocation and the inter-user
covariance orthogonality was ignored. Moreover, the feedback
bit allocation of the existing works was derived under zero-

forcing downlink precoder which can not handle hybrid instan-
taneous and statistical CSI. For fair comparison, we consider
the users allocated 0 bit feedback overhead under the existing
scheme as class-S users and the remaining users as class-I
users. Besides, the proposed SLNR-based precoder is used
for the existing feedback scheme to handle the interference
among class-S and class-I users. It can be seen from that the
proposed scheme can significantly improve the system sum
rate compared to the existing feedback scheme.

Fig. 5 indicates the system sum rate versus different num-
bers of users under the same feedback bit budget Btotal = 40
bits. When only a few of users exist in the cell and each
user has sufficient feedback bits (i.e., K = 4), the BS takes
every user as class-I user. Then, the proposed feedback scheme
has identical performance as conventional scheme. Moreover,
with the increasing of users, the performance of conventional
scheme with DFT-based codebook badly deteriorates and the
performance with skewed codebook is also restricted. Howev-
er, the performance of the proposed feedback scheme keeps
growing with K increasing. When K = 20, the system sum
rate under the proposed feedback scheme is more than 20 times
larger than the conventional one with DFT-based codebook and
1.4 times larger with skewed codebook.

Fig. 6 shows the system sum rate under different feedback
bit budget. The proposed scheme can always achieve much
better system performance even when the feedback bit budget
is very limited, i.e., 10 bits in total for 20 users. With the
increasing of feedback bit budget, the performance of the
proposed feedback scheme with skewed codebook keep rising,
while the performance with DFT-based codebook slightly
decreases. When feedback bit budget is extremely large, the
performances of the conventional and the proposed scheme
will be identical.

The system sum rate under different channel correlation
is shown in Fig. 7. When SAoA becomes larger, users have
stronger channel correlation with the others and suffer more
inter-interference. Then, the system performance decreases
under identical feedback bit budget. However, the performance
of the proposed feedback scheme outperforms the conventional
scheme and achieves more stable system sum rate with the
increasing SAoA.

B. Evaluation for Multi-cell Scenario

We consider L = 3 cells with the radius of 500 meters and
each BS is equipped with M = 128 antennas. We assume that
the users are randomly distributed in the adjacent three sectors
of the cells and no user is closer to the BSs than rh = 100
meters. The topology of the system is shown in Fig. 8. The
large-scale fading is modelled as ςl,j,k = z/(dl,j,k/rh)

ν ,
where z is a log-normal random variable with standard de-
viation σshadow, the variable dl,j,k is the distance between
user k in the j-th cell to the BS in the l-th cell and ν is
the path loss exponent. For fair comparison, the inter-cell
interference suppression is also considered in conventional
SLNR precoding scheme which is taken as a special case
of (45) and (46) with K[S]

l = ∅, l = 1, 2, 3. Fig. 9 illustrates
that the system sum rate of the proposed feedback scheme
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Fig. 8. The topology of 3-cell massive MIMO network where only the users
located in the adjacent three sectors are considered and the number of users
in each cell is Kl = 4, l = 1, . . . , 3.
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Fig. 9. Sum rate of multi-cell system versus transmit power with σshadow =
8 dB, ν = 2.2 for large-scale fading, Btotal = 48 bits and Kl = 4, l =
1, . . . , 3.

outperforms the conventional scheme, especially when DFT-
based codebook is used.

VIII. CONCLUSIONS

This paper proposed a hybrid statistical-instantaneous chan-
nel feedback scheme for FDD-based massive MIMO systems
by exploiting mutual inter-covariance orthogonality property.
Under this scheme, the BS only requires the quantized instan-
taneous CSI from part of users for downlink data transmission.
We developed a SLNR-based precoder to handle the mixed
statistical and instantaneous channel feedback information.
Then, closed-form sum rate bounds were analyzed for both
single-cell and multi-cell settings and were used to design
good performance-complexity trade-off user classification al-
gorithms. Simulations illustrated that the proposed feedback
scheme significantly improves system sum rate over the con-
ventional feedback schemes under feedback budget constraint,

especially when the global feedback overhead is deficient.

APPENDIX A
PROOF OF EQUATION (29) AND (30)

The quantized channel for the i-th class-I user is obtained by

ĥB
I,i = arg max

cI,i,u∈CI,i

∣∣hH
I,icI,i,u

∣∣2 , (56)

where cI,i,u is given in (27) and
∣∣hH

I,icI,i,u
∣∣2 can be further

derived with beam domain channel as∣∣hH
I,icI,i,u

∣∣2 =
M∑

m=1

∣∣∣[hBD
I,i

]
m

∣∣∣2 ∣∣VH (:,m) cI,i,u
∣∣2

=
1

M2

M∑
m=1

∣∣∣[hBD
I,i

]
m

∣∣∣2 ζ, (57)

where ζ =

∣∣∣∣ej M−1
2 π(ηI,i(u)− 2m

M +1) sin(
M
2 π(ηI,i(u)− 2m

M +1))
sin( 1

2π(ηI,i(u)− 2m
M +1))

∣∣∣∣2.

When the number of BS antennas satisfies M → ∞, we
have ζ → M2δ

(
ηI,i(u)− 2m

M + 1
)
. Then, the expression∣∣hH

I,icI,i,u
∣∣2 is

∣∣hH
I,icI,i,u

∣∣2 ≈
M∑

m=1

∣∣∣[h̃BD
I,i

]
m

∣∣∣2 δ(ηI,i(u)− 2m

M
+ 1

)
. (58)

Only one nonzero value exists for (58) when ηI,i(u)− 2m
M +1 =

0. Therefore, the virtual beam of the i-th user corresponding
to the selected codeword should be mI,i = M

2 (ηI,i(u) + 1)

and the obtained value is
∣∣∣∣[h̃BD

I,i

]
mI,i

∣∣∣∣2. However, when M is

not infinite, power leakage may happen around mI,i leading
to multiple nonzero values for (58). But most of power still
concentrates around mI,i. We denote the closest beam index
to mI,i as m̃I,i =

⌊
M
2 (ηI,i(u) + 1)

⌉
. Moreover, due to the

absence of instantaneous channel gain, channel feedback is
decided by channel statistics. Thus, the value of objective

function
∣∣∣∣[h̃BD

I,i

]
m̃I,i

∣∣∣∣2 corresponding to the u-th codebook is

replaced by its variance
[
Φ̃BD

I,i

]
m̃I,i

. The codeword index for

the i-th class-I user is

ũ∗
I,i = arg max

u=1,...,X,

[
Φ̃BD

I,i

]
⌊M

2 (ηI,i(u)+1)⌉
, (59)

and the quantized channel is ĥB
I,i = cI,i,ũ∗

I,i
.

APPENDIX B
PROOF OF EQUATION (31) AND (32)

For the ease of analysis for system sum rate, we first
rewrite the quantized channel in the form of DFT matrix
V. Following the similar derivation given in (57), there
exists a column vector in V which is identical or closest
to the predicted channel feedback ĥB

I,i. The index of the DFT

vector satisfies ηI,i(ũ
∗
I,i) −

2 ˜̂mI,i

M + 1 = 0 and is obtained

as ˜̂mI,i =
⌊
xI,i,min +

xI,i,max−xI,i,min

X ũ∗
I,i

⌉
. Thus, the quan-

tized channel ĥB
I,i is approximately written as h̃B

I,i = Ve( ˜̂mI,i),
where e( ˜̂mI,i) is the ˜̂mI,i-th column of an identity matrix.
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By substituting h̃B
I,i into the SLNR-based precoding vectors,

an approximate precoding vector for the i-th class-I and n-
th class-S users are obtained in (60) and (61), respective-
ly and given on the top of next page, where Σ̃S,n =(

KS∑
q=1,q ̸=ñ

ΦBD
S,q +

KI∑
i=1

E( ˜̂mI,i) +
1
pd
IM

)−1

Φ̃BD
S,n with E( ˜̂mI,i) =

e( ˜̂mI,i)e
H( ˜̂mI,i). The l-th diagonal element is

[
Σ̃S,n

]
l
=

[
Φ̃BD

S,n

]
l

KS∑
q=1,q ̸=n

[
Φ̃BD

S,q

]
l
+

KI∑
i=1

δ( ˜̂mI,i − l) + 1
pd

. (62)

The vector in matrix V corresponding to the largest
[
Σ̃S,n

]
l

is selected as ŵS,n and the index of the largest di-
agonal element is labeled as l̃∗S,n, such that l̃∗S,n =

arg max
l=1,...,M

[
Σ̃S,n

]
l
.Therefore, the approximate precoding

vector for the n-th class-S user is w̃S,n = Ve(l̃∗S,n) = V(:

, l̃∗S,n).

APPENDIX C
PROOF OF EQUATION (36)

Combining with the beam domain channel representation
and the approximate precoding vectors, we obtain the lower
bound SINR of the i-th class-I user as

r̃LBI,i

=

∣∣∣∣(h̃BD
I,i

)H
e
( ˜̂mI,i

)∣∣∣∣2
KI∑

j=1,j ̸=i

∣∣∣∣(h̃BD
I,i

)H
e
( ˜̂mI,j

)∣∣∣∣2+KS∑
n=1

∣∣∣∣(h̃BD
I,i

)H
e(l̃∗S,n)

∣∣∣∣2+ 1
pd

=

∣∣∣∣[h̃BD
I,i

]
˜̂mI,i

∣∣∣∣2
KI∑

j=1,j ̸=i

∣∣∣∣[h̃BD
I,i

]
˜̂mI,j

∣∣∣∣2+KS∑
n=1

∣∣∣∣[h̃BD
I,i

]
l̃∗S,n

∣∣∣∣2 + 1
pd

. (63)

Similarly, the lower bound SINR of the n-th class-S user is

r̃LBS,n =

∣∣∣∣[h̃BD
S,n

]
l̃∗S,n

∣∣∣∣2
KS∑

q=1,q ̸=n

∣∣∣∣[h̃BD
S,n

]
l̃∗S,q

∣∣∣∣2+ KI∑
i=1

∣∣∣∣[h̃BD
S,n

]
˜̂mI,i

∣∣∣∣2 + 1
pd

. (64)

Since the BS only holds channel statistics, effective SINR is
considered and an approximate effective SINR can be given as

E
{
r̃LBI,i
}

=

E

{∣∣∣∣[h̃BD
I,i

]
˜̂mI,i

∣∣∣∣2
}

KI∑
j=1,j ̸=i

E

{∣∣∣[h̃BD
I,i ] ˜̂mI,j

∣∣∣2}+
KS∑
n=1

E

{∣∣∣[h̃BD
I,i ]l̃∗S,n

∣∣∣2}+ 1
pd

=

[
Φ̃BD

I,i

]
˜̂mI,i

KI∑
j=1,j ̸=i

[Φ̃BD
I,i ] ˜̂mI,j

+
KS∑
n=1

[Φ̃BD
I,i ]l̃∗

S,n

+ 1
pd

, (65)

E
{
r̃LBS,n

}
=

[
Φ̃BD

S,n

]
l̃∗S,n

KS∑
q=1,q ̸=n

[
Φ̃BD

S,n

]
l̃∗S,q

+
KI∑
i=1

[
Φ̃BD

S,n

]
˜̂mI,i

+ 1
pd

. (66)

Thus, the effective achievable sum rate is obtained as

R̃LB
sum =

KI∑
i=1

log
(
1+E

{
r̃LBI,i

})
+

KS∑
n=1

log
(
1+E

{
r̃LBS,n

})
. (67)
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