
i
THÈSE DE DOCTORAT DE

l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Julien KEUFFER

Pour obtenir le grade de
DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Calcul vérifiable et vérification biométrique.

soutenue le 25 février 2019,

devant le jury composé de :

M. Josep Domingo-Ferrer Examinateur
M. Dario Fiore Examinateur
M. Sébastien Gambs Rapporteur
Mme. Aikaterini Mitrokotsa Rapporteuse
M. Refik Molva Directeur de thèse
M. Damien Vergnaud Examinateur

ii

Contents

1 Introduction 1

2 Preliminaries: Proof Systems and Useful Tools 9
2.1 Proofs systems . 9

2.1.1 Classical proofs and NP languages 9
2.1.2 Interactive Proofs and Arguments 10
2.1.3 Zero-knowledge Proofs . 11
2.1.4 Non-interactive arguments . 12
2.1.5 Proofs of knowledge . 13

2.2 Useful Tools . 13
2.2.1 Commitments schemes . 13
2.2.2 Ajtai hash function . 16
2.2.3 Bilinear pairings . 16

3 State of the Art in Verifiable Computation 19
3.1 Verifiable Computation from Interactive Proofs 20

3.1.1 A useful interactive proof for verifiable computation: the sum-
check protocol . 20

3.1.2 Arithmetic circuits . 21
3.1.3 Interactive Proofs for the Muggles (GKR) 23
3.1.4 Implementation of the GKR protocol and later optimizations . . . 27

3.2 Verifiable Computation from Interactive Arguments 28
3.2.1 Interactive Arguments . 29
3.2.2 Ishai et al. efficient arguments and later optimizations 30
3.2.3 Interactive Arguments from CMT 31

3.3 Verifiable Computation from Non-interactive Arguments 32
3.3.1 Definition . 33
3.3.2 Main tool: Quadratic Arithmetic Programs (GGPR13) 33
3.3.3 Pinocchio: a VC protocol from QAPs 37
3.3.4 zk-SNARK formal definition . 41
3.3.5 Groth’s zk-SNARK (Groth16) . 42
3.3.6 A remark on the setup phase . 44

3.4 Highlighting the Gaps . 44

iii

iv CONTENTS

4 Proof Composition 47
4.1 Motivation: increase prover’s efficiency in machine learning algorithms . . 47
4.2 State of the Art in Proof Composition 48

4.2.1 Ben Sasson et al.’s Recursive Composition of zk-SNARKs 48
4.2.2 Costello et al.’s Geppetto . 49

4.3 Embedded Proofs . 49
4.3.1 Problem Statement . 49
4.3.2 Idea of the Solution: Embedded Proofs 50
4.3.3 Building Blocks: Ajtai Hash Function 52

4.4 Embedded Proofs . 52
4.4.1 High level description of the generic protocol 52
4.4.2 Protocol instance using Pinocchio and Sum-Check 54
4.4.3 Prover’s input privacy . 55

4.5 Embedded proofs for Neural Networks 56
4.5.1 Motivation . 56
4.5.2 A use-case where input privacy is not required 56
4.5.3 A Verifiable Neural Network Architecture 56

4.6 Cost evaluation . 57
4.7 Implementation and Performance Evaluation 59

4.7.1 Matrix multiplication benchmark 59
4.7.2 Two-Layer Verifiable Neural Network Experimentations 60

4.8 Security Evaluation . 61
4.8.1 Correctness . 61
4.8.2 Soundness . 61

4.9 Conclusion . 62

5 Verifiable Computation and Zero-knowledge Proofs 63
5.1 Motivation: short ZK proofs for NP computations 63
5.2 Verifiable Document Redacting . 65

5.2.1 Problem Statement . 65
5.2.2 Related work: Redactable Signatures and Photoproof 66
5.2.3 Our Solution . 67
5.2.4 Security Proofs . 74

5.3 Privacy-preserving Biometric Commitments 75
5.3.1 Introduction . 75
5.3.2 Biometric Commitment Scheme 79
5.3.3 Privacy-preserving Biometric Authentication Protocol 85
5.3.4 PPBA Protocol Instantiation . 88
5.3.5 Experimental Results . 89
5.3.6 Use case: privacy-preserving boarding check 90

5.4 Chapter’s Conclusion . 91

Conclusion 93

Chapter 1
Introduction

Since the early 2000s, cloud computing has been a predominant paradigm for the entire
computing industry offering significant advantages for customers. The pay for use model
enables for instance individuals or small and medium companies to benefit from previ-
ously unaffordable computing resources. Thanks to the elasticity of cloud computing
resources, companies can enjoy from extensible computing and storage capacity without
having to pay for the cost of ownership for software and hardware. The advantages
of cloud computing do however come with the cost of new vulnerabilities due to the
lack of guarantees in the setting of outsourced computations, such as the guarantee for
correctness: there is no reason to trust a third party to which a computational task
has been delegated and running a computation by operating a network of computers is
complex. Moreover, unintended errors can happen, for instance due to hardware failure,
fire, earthquakes or lightning strikes. Besides, existing cloud computing companies deny
any liability in case of errors. This trust issue raises the need to verify a computation
performed by a third party cloud service provider.

A tentative solution to verify a computation is to leverage replication: the same
computation is executed on several hosts and a decision is taken based on the comparison
of the results produced by each host. For instance the distributed computing platform
SETI@home [ACK+02] shares several replicas of the same fast Fourier computation
among clients and verifies the returned results by means of a majority rule. Nonetheless,
this majority rule does not guarantee that the result is correct. A further possibility is
to rely on trusted hardware which ensures that the running code has not been tampered
with but again, the correctness of the result is not guaranteed. Moreover, the size of
the code that can be embedded in the trusted hardware is limited.

An alternative approach leverages recent results on the notion of proof that are
achieved in the field of cryptography and complexity theory. The seminal work of
Goldwasser et al. [GMR85] proposed a new way to envision the notion of proof and
designed a protocol where, thanks to randomness and interactions between a prover and
a verifier, the validity of a proof could be established. With an adequate language, the
proof can thus guarantee the correct execution of a program. Regarding delegation of
computations, the verification by means of a protocol driven by a trusted computer had
already been mentioned in 1991 as a potential application in a seminal article by Babai
et al. [BFLS91]:

“In this setup, a single reliable PC can monitor the operation of a herd
of supercomputers working with possibly extremely powerful but unreliable

1

2 CHAPTER 1. INTRODUCTION

software and untested hardware.”

Checking computation in polylogarithmic time – Babai et al.

Babai et al.’s article belonged to a series of articles that led to the celebrated Prob-
abilistically Checkable Proofs (PCP) theorem [AS98]. This seminal result deals with
probabilistic proofs and states that for every language inNP and for every instance that
belongs to the language, it is possible to produce a proof of membership that has to be
checked in a constant number of locations to decide if the proof is correct. The decision
holds with a certain probability that can be increased if more locations are consulted.
Even if the PCP theorem theoretically solves the problem of verifying computations, a
practical implementation of the scheme would have been impossible either because of
the proof size or because of the time required to produce such a proof.

Furthermore, the advent of cloud computing drew back the attention of the com-
puter science community to the question of verifying outsourced computations and
the establishment of a new research field known as verifiable computation (VC). The
goal of VC schemes is to attach a proof of correctness to the result of a computa-
tion. For that notion to be of practical interest, verifying the proof should addition-
ally be more efficient than running the computation. Verifiable computing schemes
offer therefore the possibility to delegate computations to an untrusted entity. At that
time, the existing practical-oriented VC schemes leveraged replication of computations
[ACK+02, KSC09, CRR11], relied on trusted hardware [SSW10] or were specialized for a
particular operation [Fre77, BGV11]. Nonetheless, these assumptions were not relevant
in the cloud setting because:

• the hardware in the cloud is often homogeneous: failures are thus correlated and
several instances of the same computation can be simultaneously erroneous,

• it seems unrealistic to assume that each machine running in the cloud has a trusted
hardware,

• the diversity of computations to verify ruled out specialized schemes.

Building on theoretical results published after the PCP theorem, a couple of research
teams studied verifiable computation with implementation as explicit goal. Further to
Goldwasser et al.’s seminal “Interactive Proofs for the Muggles” [GKR08], Cormode
et al. [CMT12] and later Thaler [Tha13] came up with an efficient interactive proof
system and implemented it. A different approach was taken by Setty et al. : inspired
by Ishai et al.’s linear PCP [IKO07], they proposed and implemented an interactive
argument [SMBW12, SVP+12]. Another important step toward practicality was the
publication of Parno et al.’s Pinocchio [PHGR13], which leverages a new encoding of
computations that could be efficiently embedded into a verifiable computation protocol.
The encoding was made by means of quadratic arithmetic programs (QAP), as defined
in Gennaro et al.’s groundbreaking article [GGPR13]. Parno et al. [PHGR13] also
released a complete compilation toolchain that takes as input a program written in a
subset of C and outputs a verifiable executable. However, Pinocchio’s implementation
was not completely open sourced, due to the use of a proprietary library. Due to their
remarkably efficient encoding, QAPs were the baseline for several subsequent works:
Ben-Sasson et al. optimized Parno et al.’s protocol [BCG+13, BCTV14b] and extended
the expressiveness of the original scheme while Setty et al. [SBV+13] integrated QAPs

3

in their interactive argument scheme. Both research teams released the source code of
their implementations [lib, pep].

It is important to note that for every general-purpose VC scheme, the program to
be verified should be expressed as a circuit, namely an oriented acyclic graph whose
nodes are operations, such as addition or multiplication, and whose edges, called wires,
carry values of a finite field. Executing a program comes down to assigning the input
values of the program to the nodes of in-degree 0 of the circuit, the result of the program
being the output of the circuit. Theoretical results guarantee that every Turing machine
can be represented as a circuit at the expense of a polynomial blow-up. Nonetheless,
representing efficiently a program as a circuit is itself an active research area. There are
two kinds of circuits: in boolean circuits, the finite field is F2 and the nodes are and or
xor operations while in arithmetic circuits, the finite field is Fp, p > 2 and the nodes
are addition and multiplication in the finite field Fp.

Three major approaches have been considered to produce proofs of computation
correctness:

• Interactive proofs: allowing interactions between the prover and the verifier without
any assumption on the computing power of a malicious prover,

• Interactive arguments: allowing interactions but designing systems that are secure
against computationally bounded provers,

• Non-interactive arguments: requiring that the prover should produce the proof
without interacting with the verifier.

Non-interactive proof systems are of particular interest since they enable the prover to
execute the computation and to prove its correctness without being synchronized with
the verifier. At a high-level view, a VC scheme is secure if it satisfies the following
properties:

• Correctness: a verifier should accept every proof that has been computed by an
honest prover.

• Soundness: no cheating prover can produce the proof of a false statement that will
be accepted (except with negligible probability).

• Efficiency: verifying the proof should be more efficient than running the compu-
tation.

Some constructions reach additional interesting properties such as zero-knowledge:
the prover can supply inputs in the computation to verify for which the proof will leak
no information. For instance VC protocols based on QAPs enable to get zero-knowledge
arguments with little extra effort for the prover. Moreover, these arguments also achieve
the proof of knowledge property, in that if a prover convinces a verifier about the witness
of a statement, he must be in possession of this witness. The resulting zero-knowledge
arguments are called zero-knowledge succinct arguments of knowledge (zk-SNARKs)
[BCCT12], for which many applications have been proposed, such as a crypto-currency
[BCG+14] or a verifiable MapReduce function [BFR+13b, CFH+15] to cite a few.

4 CHAPTER 1. INTRODUCTION

The difficult trade-off between efficiency and expressiveness. The numerous works
of the last years have brought verifiable computation closer to a practical use, however
the overhead costs for the prover remains high [WB15]. One the one hand, protocols that
come from interactive proofs are efficient but their expressiveness is limited to structured
circuits. Hence, they do not reach full generality. On the other hand, the most expressive
protocols, such as Ben-Sasson et al.’s tinyram [BCG+13] that reproduces a set of
assembly instructions, are inefficient and cannot address practical scenarios. Protocols
that build on QAP, whether building on interactive arguments [WSR+15] or on non-
interactive arguments [PHGR13, CFH+15] reach a trade-off between expressiveness and
efficiency. However, they are still too inefficient to deal with large computations.

Even if existing VC systems do not achieve the efficiency as required in practice (no-
tably when comparing the verification of the computation to its native implementation
[WB15, WJB+17a]), there are settings where the efficiency requirement is not relevant.
When the VC scheme enables the prover to provide private inputs for a computation,
efficiency makes no longer sense because the complete computation could not have been
run by the verifier. Several state-of-art VC schemes ensure that the prover’s private
inputs do not leak in the proof by achieving a zero-knowledge property. QAP-based VC
schemes notably require few extra work for the prover to get a zero-knowledge proof,
resulting in zk-SNARK schemes. While the first efficient zero-knowledge proofs were de-
signed for specialized computations that have a strong algebraic structure, the relative
efficiency (at least compared to the generic transformation proposed in [GMW86]) of
zk-SNARKs enables to compute zero-knowledge proofs for unstructured computations
and furthermore to instantiate and enrich existing primitives.
In conclusion, all existing VC schemes adopt a certain trade-off between efficiency and
expressiveness but none of them meets the requirements for an ideal VC scheme that
should:

• be capable to deal with a large class of computations,

• have minimal proving costs, not only asymptotically but also in practice,

• have a short and efficiently verifiable proof,

• fulfill the efficiency requirement, namely verify the proof faster than executing the
computation.

Moreover, there are situations where a VC scheme is required but the prover additionally
wants to hide some of his inputs from the verifier. Hence, such VC schemes should also:

• enable the prover to provide private inputs (non-deterministic computations),

• provide additional properties like zero-knowledge or proof of knowledge,

• be able to produce short proofs that can be integrated in larger protocols.

5

Contributions

Our first contribution intends to shift the trade-off of non-interactive schemes by in-
creasing efficiency. It starts from an expressive VC scheme and improves the efficiency
of the latter by leveraging proof composition with an efficient VC scheme. The result-
ing scheme keeps its expressiveness while being more efficient each time it performs a
computation for which an efficient and composable scheme exists. The second contri-
bution leverages existing zk-SNARK scheme to build a protocol that enables to redact
documents while keeping both integrity for the redacted document and privacy for the
redacted information. These goals can be achieved thanks to the privacy protection in
zk-SNARK that allows the prover to supply private inputs to the computation without
revealing them to the verifier. Also leveraging the features of zk-SNARK, the third con-
tribution is an authentication scheme where the entire authentication process is handled
by an untrusted client device that provides the authentication result as a zk-SNARK
proof.

Embedded Proofs [KMC18]

We present a new VC scheme tailored to efficiently deal with diverse type of operations,
some of them requiring an expressive VC scheme (that we will call here “complex opera-
tions”) while some others require a huge amount of computations (that we will call here
“large operations”). To address this problematic, we propose to compose proof systems
by embedding efficient but specialized VC schemes that can deal with large operations
into a general-purpose VC scheme that is expressive enough to deal with complex oper-
ations. The embedding is based on the following idea: we compute the large operations
outside the general-purpose proof system and leverage the specialized proof system to
produce proofs of correctness. Then, we pass the result of these sub-computations along
with their proofs to the general-purpose system. The latter embeds the verification
algorithm of the specialized VC schemes and therefore checks that the result of the
sub-computations is correct. The general-purpose VC scheme (GVC) also computes the
complex operations. The final proof produced by the GVC scheme proves that all the
sub-computations are correct (since the verification of their proof has passed) and that
the complex operations have been correctly computed. As a consequence, the proof
system generates only one proof for the whole computation, regardless of the number of
sub-computations considered. Due to the efficiency requirement for VC schemes - veri-
fying should be more efficient than computing - such embedding would a priori meet the
efficiency objectives. However, a technical difficulty remains: all the VC schemes require
the algorithms that will be verified to be expressed as circuits. Therefore, expressing the
verification algorithm of the specialized scheme may not be as efficient as expressing the
computation directly as a circuit and running it in the general-purpose VC scheme. We
nonetheless propose several schemes for which the verification algorithm is more efficient
than running the computation, even when expressed as a circuit. In particular, we pro-
pose an embedding of the sum-check protocol [LFKN90] that might be of independent
interest. As an application of this new system, we implement a verifiable 2-layer neural
network and show that our VC system improves the proving time compared to running
the entire 2-layer neural network inside the GVC scheme. Thanks to this new scheme,
we can run a verifiable 2-layer network with previously unreachable parameter size.

6 CHAPTER 1. INTRODUCTION

Verifiable Document Redacting [CHK17]

The first zk-SNARK application we propose addresses the following problematic: is
it possible to perform modifications on a document that has been authenticated by a
signature while keeping a notion of authenticity regarding this document? A primitive
called redactable signature[JMSW02, SBZ01, BBD+10] solves this problem, however it
does not scale well in terms of signature size. Indeed, the redactable signature considers
a message as a set of blocks that can be redacted separately and if the message has
n blocks, then the signature is of size at least O(n). By contrast, the proof in our
scheme has constant size. Hence, if the document we want to redact is a large image for
which each pixel can potentially be redacted, the difference is significant. The protocol
we propose involves three parties: a document issuer who is in charge of generating
and authenticating the initial document, the client who receives the document from the
document issuer and the service provider who receives a redacted document and verifies
its validity. In detail, the document issuer produces the original document, computes a
hash value from the document and a random value and signs the hash. Then he passes
the document, its signed hash and the random value used in the hash computation
process to the client. The client can then redact some parts of the original document and
keeps track of each modification performed as a set of blocks that have been modified.
Once this operation is done, the client computes a proof that will provide authenticity
to the redacted document. Finally, the client passes the redacted document, the hash
value and the set of locations of modification to the service provider. The service
provider can verify the authenticity of the redacted document: he checks that the hash
value is authentic thanks to its signature; if the verification passes, the hash value and
the redacted document are given as inputs to the proof verification algorithm. If the
signature of the hash and the proof verification both pass, the service provider can be
confident that the document is authentic. The proof produced by the client is computed
thanks to verifiable computation and proves that:
• there exists a document that hashes into the given hash,

• the only differences between the original document and the redacted one lie in the
set of modification locations.

The proof does not reveal information about the original document thanks to the zero-
knowledge property of the verifiable computation scheme. We then define security prop-
erties for our scheme:
• The scheme should be private: an adversary who is only in possession of the
redacted message and its proof cannot recover information about the redacted
parts of the message.

• The scheme should be unforgeable: an adversary who is not in possession of the
original message cannot create a redacted document and a proof that will be ac-
cepted by the verifier.

We formalize these properties and prove that, as long as the signature scheme is secure
(unforgeable under chosen message attacks) and the verifiable computation scheme is a
secure zk-SNARK, our verifiable redacting document scheme is secure. We also provide
experimental results of our construction, showing that the proving time a compatible
with a practical use. We built a proof of concept of the verifiable redacting document
scheme and presented it in the final review of the H2020 European project TREDISEC.

7

Privacy Preserving Biometric Commitment

The second application we propose is related to biometrics. Biometric systems enable
to measure biological characteristics such as irises, fingerprints or face. Their advan-
tage over authentication systems relying on passwords is that they suppress the need
to remember any data to successfully authenticate. After a phase of collection of the
biometrics by the mean of sensors, signal processing algorithms extract features from
the data. A digital format compatible with an automated usage is obtained, called a
biometric template. This template can be stored for a later comparison. There is vari-
ability in the biometric feature extraction process due to external conditions such as
light, moisture or the sensor used for the capture. This is why feature extraction algo-
rithms are designed such that two templates coming from the same individual are “close”
while two templates coming from different individuals are “distant”, these notions being
related to a distance (e.g. Hamming or Euclidean, depending on the biometric modality
and on the feature extraction algorithm). A threshold has to be defined to discriminate
the templates belonging to the same individual or not: if the distance is lower than
the threshold then the templates are supposed to belong to the same individual. If
the distance is superior to the threshold, the templates come from different individuals.
However, in real life, two different individuals may have a matching score lower than
the threshold, which is a false acceptance, while two templates coming from the same
individual may have a distance superior to the threshold, which is a false rejection. The
performance of a biometric system are measured in terms of false acceptance rate (FAR)
and false rejection rate (FRR). Note that FAR and FRR are linked to the threshold: if
the threshold increases there are more matching pairs so the FAR increases and the FRR
decreases. If the threshold decreases, there a less matching pairs so the FAR decreases
and the FRR increases.

A biometric authentication proceeds in two phases: during the enrollment, a user
presents his biometric modality in front of a sensor and a feature extraction algorithm
turns the capture into a biometric template. This template is stored as a reference
value along with an identifier id by the authentication server. During the authentication
phase, a user who claims to be registered extracts his biometric template and sends it
along with his claimed id. The server retrieves the reference template corresponding to
id in its database, compares the reference template and the fresh one and decides if the
user is who he claims to be. However, the fact that biometric modalities are irrevocable
makes the authentication process complicated: if the biometric templates are stored
without being encrypted, any breach in the database compromises the privacy and
security of the individuals involved in the authentication system. On the other hand, if
the template are encrypted, the inherent variation between several acquisition prevents
from performing comparison with the encrypted templates.

In 1999, Juels and Wattenberg [JW99], inspired by the storage of password in UNIX
systems, proposed a system to securely store biometric template. Their idea was to
replace the template itself by a commitment on this template for the storage. To realize
this commitment, Juels and Wattenberg relied on error correcting code theory to be able
to deal with the variability of templates coming from the same individual, as long as
the variation is small. They called their new primitive a fuzzy commitment and showed
how these commitments can be leverage to perform authentication. It is important to
note that, even if Juels and Wattenberg’s fuzzy commitment scheme avoids the storage
of biometric templates in clear, the user still has to send his template in clear when an

8 CHAPTER 1. INTRODUCTION

authentication is performed. Moreover, from a successful authentication, the server can
also retrieve the reference template. Hence we propose a new fuzzy commitment proto-
col, that builds on the ’commit and prove’ paradigm, where no template is sent in clear
to the authentication server. In our scheme, the authentication server receives a classical
commitment and an identifier during the enrollment phase. In the authentication phase,
the user captures a fresh biometric template, computes a commitment on this template
and performs a matching between his reference and fresh template. Using a zk-SNARK
scheme, he then computes a proof that the templates match and that the commitments
indeed open to the templates. The user sends the claimed identifier, the commitment
on the fresh template and the proof. Using the identifier, the authentication server re-
trieves the reference commitment and calls the verification algorithm of the zk-SNARK
scheme with inputs the two commitments and the proof. If the verification passes, the
user is authenticated. We define security properties for our fuzzy commitment scheme:

• The scheme is correct if it accepts a proof that has been honestly computed with
a template whose distance from the reference one is inferior to the threshold.

• The scheme is hiding if no useful information about the template can be extracted
from the fuzzy commitment.

• The scheme is strongly binding if the fuzzy commitment cannot be opened by the
sender successfully except if the template freshly captured has a distance to the
reference template inferior to the threshold.

We prove that our fuzzy commitment scheme is secure as long as the underlying zk-
SNARK scheme and the commitment scheme are secure. We also give experimental
results (using the libsnark library) that show the scheme is of practical use. Moreover,
from our fuzzy commitment scheme we define a privacy-preserving biometric authenti-
cation scheme. Here, the scheme is private in the sense that, when the protocol ends, the
authentication server has not gained any useful information about the user’s reference
and fresh templates except the fact they match.

Organisation of the manuscript

The first part of this thesis presents the background required to understand verifiable
computation protocols: different proof systems and their properties are described in
chapter 2 and useful tool for the sequel are given. Chapter 3 describes the different VC
state-of-the-art schemes within the three categories mentioned above, namely interactive
proofs, interactive arguments and non-interactive arguments. A comparison is therefore
made between the different state-of-the-art schemes regarding several metrics, such as
the size of the proof, the proving and verifying costs and the expressiveness of the
schemes.
The second part of this thesis presents in chapter 4 our first contribution: a new VC
scheme tailored to efficiently deal with diverse type of operations, some of them requiring
an expressive VC scheme while some others require a huge amount of computations.
The third part presents in chapter 5 two schemes that leverage zk-SNARKs schemes to
provide new instantiations: a primitive that is close to redactable signatures [JMSW02]
is described in Section 5.2 and a fuzzy commitment scheme [JW99] in Section 5.3.

Chapter 2
Preliminaries: Proof Systems and Useful
Tools

2.1 Proofs systems

2.1.1 Classical proofs and NP languages

Proofs play a central role in science, notably in mathematics and computer science. In
these disciplines, the common representation we have of a proof is a static string that
contains a sequence of logically chained arguments and that can be verified by anyone.
In computer science, the notion of proof is close to the NP complexity class: a language
is in NP if given a statement x, it is easy to decide the membership of x in the language
when given a polynomial-size solution for x that certifies this fact. Such certificates is
also called a witness and can be viewed as a proof that x belongs to the considered
language. An alternate and equivalent definition that better illustrate that idea is the
following: a language is in NP if there exists a deterministic verifier that accepts a proof
of membership for this language in polynomial time. More precisely:

Definition 1. A language L is in NP if there exists a deterministic verifier V such
that:

• if x ∈ L, there exists w such that V (x,w) accepts

• if x /∈ L, for every w, V (x,w) rejects

• V (x,w) runs in time polynomial in |x|

Such a w is a witness or a certificate that x ∈ L.

From the NP complexity class, we can define a proof system that involves two parties,
a prover P and a verifier V . The verifier and the prover have a common input, denoted
by x. Without lost of generality, we assume that P wants to prove that the common
input x belongs to a language L ⊆ {0, 1}∗. As a natural proof system defined from L,
P can simply send the witness w as a proof that the common input x belongs to L. By
the definition of L being in NP, the verifier can efficiently the claimed membership.

The two main security properties that proof systems should reach are completeness
and soundness. Completeness basically states that if the prover behaved honestly and if
the assertion is true then the verifier always accepts the assertion after the interaction.

9

10 CHAPTER 2. PRELIMINARIES: PROOF SYSTEMS AND USEFUL TOOLS

Soundness conversely states that no cheating prover interacting with the verifier on a
common input that does not belong to the language can trick the verifier into accepting
the proof, except with negligible probability.

2.1.2 Interactive Proofs and Arguments

In their seminal paper [GMR85], Goldwasser, Micali and Rackoff explored a notion of
proof different from the traditional one, described in the previous section. By allowing
interaction between the prover and the verifier and the possibility to tie coins to establish
the proof, they obtained a new proof system called interactive proofs. Interactive proof
systems are powerful, in the sense that a large class of statements can be proved with
these proof systems. Moreover, for language in NP the verifier of an interactive proof
has less work to do than checking the witness.

An interactive proof is a game between two parties, a powerful prover and a computa-
tionally bounded verifier. The goal of the prover is to convince the verifier of the validity
of some assertion. The verifier and the prover exchange messages and finally the verifier
outputs a decision about the assertion. The verifier is also allowed to use randomness
in its messages, which can be seen as challenges to force the prover to behave correctly.
If the verifier’s randomness can be shared with the prover, then the protocol is a public
coin interactive proof. During their interactions, the verifier and the prover keep track
of the exchanges in a local state and the message they send at a given round depends
on the messages sent and received in all the previous rounds.

The interaction between the two parties is formalized by the notion of strategy. For
a party, a strategy is its next move, seen as a function of all the messages received so
far, its internal randomness and of the proof’s common input, i.e. the assertion to be
proved. A probabilistic polynomial time strategy is therefore a strategy that makes
use of randomness and for which the next move can be computed in a number of steps
polynomial in the size of the common input. We can now define interactive proofs:

Definition 2. An interactive proof system for a set S is a two-party game, between a
verifier executing a probabilistic polynomial-time strategy, denoted V, and a prover that
executes a computationally unbounded strategy, denoted P and satisfies the following
properties:

• Completeness: for every x ∈ S, the verifier V always accepts after interacting with
the prover P.

• Soundness: for every x /∈ S and every strategy P∗, the verifier V rejects with
probability εs (εs < 1) after interacting with P∗.

The class of sets having interactive proof systems is denoted by IP.

Several remarks can be made about definition 2. First, the probability εs, called the
soundness error, can be made arbitrarily close to 0 by sequentially repeating calls to
the proof system. Second, the number of rounds during the interaction of the prover
and the verifier is polynomial in the size of the common input. Indeed, the verifier’s
last message is a function of all the sent and received messages and since the verifier’s
strategy is polynomial, this means that the number of inputs of the last message function
is polynomial. Third, randomness is essential for the verifier: restricting the verifier’s
strategy to be deterministic leads to the complexity class NP ([Gol08] Ch9 - Prop

2.1. PROOFS SYSTEMS 11

9.2). Shamir [Sha90] proved that IP=PSPACE, i.e. that the class of sets having an
interactive proof coincides with the class of sets that can be decided in polynomial space.
PSPACE class is believed to be strictly larger than the NP class.

Although being powerful, interactive proofs have drawbacks. For instance the num-
ber of rounds in an interactive proof is polynomial in the size of the input, which might
prevents from using such proof systems if the communication bandwidth between the
prover and the verifier is limited. In addition, interactive proofs protect the verifier
against a computationally unbounded prover, which does not model well reality. Keep-
ing in mind that in real life the prover would be for example a server to whom a computa-
tion would have been delegated, design a proof system secure against a computationally
unbounded prover might be an overkill. Assuming that the computational power of
the prover is limited enables to leverage cryptographic primitives and to achieve more
goals that was possible with interactive proofs. Brassard et al. [BCC88] thus defined
interactive argument systems, which still have to achieve correctness and soundness.
The difference with interactive proof systems is that the soundness holds only against
computationally bounded provers. Building on such arguments, Kilian [Kil92] built a
proof system for all NP-statement that requires only 4 messages between the prover
and the verifier, assuming that collision resistant hash functions exist.

2.1.3 Zero-knowledge Proofs

Besides defining the notion of interactive proofs, Goldwasser et al. also studied in
[GMR85] the amount of information conveyed in proof systems. Indeed, in interactive
proofs the prover gives information about the statement during the interactions with the
verifier. Ideally, only one bit of information regarding the statement is necessary, namely
a bit that conveys its correctness for the common input. Goldwasser et al. defined zero-
knowledge proofs as proof systems where no information is given about the statement
except its validity. To assert that the verifier could not extract information during the
protocol, Goldwasser et al.’s crucial idea is that the whole conversation between the
verifier and the prover could have been simulated. Therefore, they focus on the protocol
view: when a verifier V and a prover P interact with common input x, V ’s output can be
modeled by a random variable since each output depends on the previous messages and
on V ’s internal random values, we denote by 〈P(zP),V(zV)〉(x) this random variable.
Note that P and V are allowed to have auxiliary inputs zP and zV .

Definition 3. Let P and V be a prover and a verifier involved in an interactive proof
with common input x. The view of the protocol is the distribution of the random variable
defined by 〈P(zP),V(zV)〉(x). We denote by View〈P(zP),V(zV)〉(x) such distribution.

To formalize the fact that the verifier learns nothing about the statement to be
proved from the interaction with the prover, Goldwasser et al. define an algorithm,
the simulator, that on input the statement to be proved, outputs a view of a simulated
protocol. A protocol is thus zero-knowledge if the output of the simulator cannot be
distinguished from a view of a real execution of the protocol. Formally:

Definition 4. Let L ⊂ {0, 1}∗ be a language. For x ∈ L, let denote by Rx the set of
valid witnesses for x, i.e. Rx = {ws.t.(x,w) ∈ L}. Let RL be the language of valid
(input,witness) pairs, RL = {(x,w) : x ∈ L, w ∈ Rx}. An interactive proof system is
zero-knowledge with respect to auxiliary inputs if for all probabilistic polynomial-time

12 CHAPTER 2. PRELIMINARIES: PROOF SYSTEMS AND USEFUL TOOLS

(PPT) machine V ∗ there exists a PPT algorithm S such that for every x ∈ L, w ∈ Rx,
z ∈ {0, 1}∗,

View〈P(w),V∗(z)〉(x) ≈ S(x, z) (2.1)
The symbol ≈ means that View and the output of S are computationally indistinguish-
able.
The auxiliary input z represents prior knowledge: (2.1) states that even if V had some
information before starting the protocol, he does not get more information at the end of
protocol. S is called the simulator, it runs in time polynomial in the length of x.

Definition 4 defines computational zero-knowledge. Zero-knowledge proofs can also be
statistical if the statistical distance between the two distributions is negligible. The class
of languages that have zero-knowledge proofs is large: Goldreich, Micali and Widgerson
[GMW86] proved, assuming that secure encryption exists, that all languages in NP
have computational zero-knowledge proofs. Ben-Or et al. extended that result, under
the same assumption, to languages in IP [BGG+88].

2.1.4 Non-interactive arguments

Fortnow proved that only trivial languages can have an interactive perfect zero-knowledge
proof [For89]. Therefore, other model removing interaction were studied: Blum et al.
defined the notion of non-interactive zero-knowledge proofs [BFM88]. However the ab-
sence of communication prevents the verifier and the prover to use random challenges
in the protocol. Blum et al. proposed a new model called the common reference string
(CRS) model to provide access to randomness to both the verifier and the prover and
proved that all languages in NP have non-interactive zero-knowledge proofs in the CRS
model. Groth et al. [GOS06] proposed the first perfect non-interactive zero-knowledge
argument for any language in NP, building their argument with a bilinear group. Their
construction was later refined to reduce the size of the proof and the size of the CRS.

Definition 5. Let R be an efficiently computable binary relation and L be the NP-
language of statements and witnesses in R. We denote by RN the relation R with
statements of size N . A non-interactive argument system is a triple (G,P ,V), where G
is the common reference string generator, P is the prover and V is the verifier.

• G takes a security parameter λ and some auxiliary input aux and outputs a CRS
σ.

• P takes as input the CRS σ, a statement x and a witness w and outputs a proof
π.

• V takes as input the CRS σ, a statement x and a proof π and outputs 1 if the
argument is acceptable and 0 otherwise.

(G,P ,V) is an argument for R if it satisfies completeness and soundness:

Completeness: for every adversary A and N = λO(1):

Pr[σ ← G(1λ, N); (x,w)← A(σ), π ← P(σ, x, w) : V(σ, x, π) = 1 if (x,w) ∈ RN] = 1
(2.2)

Soundness: for all probabilistic polynomial time adversary A and N = λO(1):

Pr[σ ← G(1λ, N); (x, π)← A(σ) : x /∈ L and V(σ, x, π) = 1] ≤ negl(λ) (2.3)

2.2. USEFUL TOOLS 13

Another construction that does not build on the CRS model is Micali’s computa-
tionally sound proofs. Based on Kilian’s efficient argument [Kil92], Micali defined the
first non-interactive argument [Mic00] in the random oracle model. Another interesting
feature of Micali’s construction was the possibility to transfer the proof: once the verifier
is convinced by the proof, he can pass this proof to another verifier to convince him.
Micali’s construction was the first argument system where size of the resulting proof
was sublinear. Subsequent works tried to obtain such efficient argument without the
random oracle but the only known construction that are efficient rely on non-standard
cryptographic assumptions. Gentry and Wichs defined succinct non-interactive argu-
ments (SNARG) and proved that SNARG cannot be obtained relying in falsifiable as-
sumptions [GW11]. The definition of a SNARG add a requirement to the definition
of non-interactive arguments, namely succinctness: keeping the notations of the above
definition, it is required that the length of the proof π is such that:

|π| = poly(λ) (|x|+ |w|)O(1) (2.4)

2.1.5 Proofs of knowledge

Zero-knowledge proofs enables to prove existential statements: for a statement x, there
exists a witness w such that (x,w) ∈ R, where R is a binary relation. In proofs of
knowledge, a prover claims to know some information. The related security properties
are knowledge completeness and knowledge soundness. Knowledge completeness is very
close to completeness as in definition 2, but the main difference lies in the definition
of knowledge soundness, which states that if a prover can convince a verifier with non-
negligible probability, then he must know the information on which the protocol was
run. This notion is formalized by the mean of an algorithm called an extractor such that
if the prover outputs a valid proof for a statement, the verifier can not only conclude
that there exists a witness but also that the extractor can extract the witness from the
prover.
Formally, a triple (G,P ,V) that has the syntax of a non-interactive argument (see Sec-
tion 2.1.4) is a proof of knowledge if the soundness property is replaced by the knowledge
soundness property:
Knowledge soundness: For every polynomial time prover P∗, there exists a polyno-
mial time extractor E such that:

Pr

[V(σ, x, π) = 1, (x,w) /∈ R :
w ← E(aux, σ), (x, π)← P∗(aux, σ), σ ← G(1λ, R)

]
≤ negl(λ) (2.5)

A SNARG that satisfies a proof of knowledge property is therefore called a succinct non-
interactive argument of knowledge (SNARK). If furthermore, this SNARK also verifies a
zero-knowledge property, then it is a zero-knowledge succinct non-interactive argument
of knowledge (zk-SNARK). Formal definitions and constructions of zk-SNARK schemes
will be described in Section 3.3.4.

2.2 Useful Tools

2.2.1 Commitments schemes

In commitment schemes [Blu81] one player, called sender, first “commits” by submitting
a value b in a concealed fashion to another player, called receiver. Later, the sender

14 CHAPTER 2. PRELIMINARIES: PROOF SYSTEMS AND USEFUL TOOLS

“opens” the committed value by proving the receiver that the value stored by the latter
is a hidden version of b. Commitment schemes [Blu81] fulfill two basic properties: they
are concealing in the sense that the receiver cannot guess the value of b prior to its
opening by the sender; they are binding in the sense that the sender cannot succeed in
“opening” with a value other than b. A simple analogy is with a safe including the value
b and that is locked by the sender. The receiver cannot disclose the value of b before the
sender agrees to open the lock and the sender cannot substitute the value b stored in the
safe with another one since the safe is kept by the receiver. Another property required
is correctness: if the sender opens the commitment to the good message, the receiver
must accept it. Depending on the scheme goal, the hiding and binding properties can
be unconditional, statistical or computational but hiding and binding properties cannot
be simultaneously unconditional [Fis01]. We now give syntax and security definitions of
commitment schemes. We also provide some commitment examples below.

Commitment scheme syntax.

Let λ be a security parameter, a commitment scheme involves a sender A and a receiver
B. The commitment algorithm is run by A and the verification algorithm is run by B.

Parameter generation: pk ← KeyGen(1λ): on input 1λ, the key generation algorithm
KeyGen outputs a public key pk.

Commit stage: c ← Commit(pk,m, r): the commitment algorithm Commit takes a
message m, a public key pk and some randomness r and outputs a commit c.

Open stage: b ∈ {0, 1} ← Verif(pk, c, r,m): the verification algorithm Verif takes as
input a public key pk, a message m, a commitment c and an opening value r and
outputs 1 if c opens to m and 0 otherwise.

Commitment scheme definition.

Let (KeyGen, Commit, Verif) be a commitment scheme, the three required properties for
a secure commitment scheme are correctness, binding and hiding. We denote by negl a
negligible function.
Correctness LetM denote the message space. The correctness property is formalized
as follow:

Pr
[
Verif(pk, c, r,m) = 1 : c← Commit(pk,m, r),
pk ← KeyGen(1λ),m ∈M

]
= 1

Binding Let A be a PPT adversary:

bind_attack(1λ)
pk ← KeyGen(1λ)
(c, r1,M1, r2,M2)← A(pk)
if M1 6= M2 and:
Verif(pk, c, r1,M1) = 1 ∧ Verif(pk, c, r2,M2) = 1
return 1

else:
return 0

2.2. USEFUL TOOLS 15

The scheme is binding if for every PPT adversary:

Pr
[
bind_attack(1λ) = 1

]
6 negl(λ)

Hiding Let A = (A1,A2) be a PPT adversary.

hide_attack(1λ)
pk ← KeyGen(1λ)
(aux,M0,M1)← A1(1λ, pk)
d

$← {0, 1}
r

$← {0, 1}p(λ)

c← Commit(pk,Md, r)
d∗ ← A2(c, aux)
if d = d∗ ∧M0 6= M1:
return 1,

otherwise:
return 0

The scheme is hiding if for every PPT adversary:

Pr
[
hide_attack(1λ) = 1

]
6

1
2 + negl(λ)

Commitment examples.

In this section, we give some examples of commitment schemes built from different
cryptographic primitives. In all the examples, A is the sender and B the receiver of the
commitment.
Pedersen commitments: Let G be a cyclic group of prime order q. Pedersen com-
mitments [Ped91] allow A to commit to a scalar m ∈ Zq. They are perfectly hiding and
computationally binding under the discrete logarithm hardness assumption.

KeyGen : pk = (g, h) such that: g $← G,h $← G such that g and h are generators of G.

Commit : to commit on a message m ∈ Zq, A picks s $← {1, . . . , q} and computes
c = Commit(pk,m, s) = gmhs.

Open A sends (m, s) and B checks that: c ?= gmhs.

Commitments from hash functions: let k be a security parameter andH : {0, 1}∗ →
{0, 1}2k be a hash function.

KeyGen : The public parameter is the description of the hash function H.

Commit : to commit on a message m ∈ {0, 1}∗, A picks r $← {0, 1}3k and computes
c = Commit(pk,m, r) = H(m ‖ r).

Open : A sends m and r. B checks that: c ?= H(m ‖ r).

This commitment scheme can be proven secure in the random oracle model [BR05].

16 CHAPTER 2. PRELIMINARIES: PROOF SYSTEMS AND USEFUL TOOLS

2.2.2 Ajtai hash function

The Ajtai hash function [Ajt96] is a hash function based on the subset sum problem.
Its definition is the following:

Definition 6. Let m,n be positive integers and q a prime number. For a randomly
picked matrix A ∈ Zn×mq , the Ajtai hash Hn,m,q : {0, 1}m → Znq is defined as:

∀x ∈ {0, 1}m, Hn,m,q = A× x mod q (2.6)

As proved by Goldreich et al. [GGH96], the collision resistance of the hash function relies
on the hardness of the Short Integer Solution (SIS) problem. Ajtai hash functions have
first been used in verifiable computation by Braun et al. in [BFR+13b]. Ben-Sasson et
al. [BCTV14a] then noticed that designing an arithmetic circuit that implements such
hash function is easier if the parameters are chosen to fit with the underlying field of
the computations.
A concrete hardness evaluation is studied by Kosba et al. in [KZM+15]. Choosing Fp
as be the field where the computations of the arithmetic circuit take place (with p a
254-bit prime number) leads to the following parameters for approximately 100 bit of
security:

n = 3,m = 1524, q = p ≈ 2254.

2.2.3 Bilinear pairings

A bilinear group is a tuple (p,G1,G2,GT , e, g, h) with the following properties:

• p is a prime number,

• G1,G2,GT are group of order p,

• the function e : G1 × G2 → GT is a non-degenerate bilinear map, (e is called a
pairing),

• g and h are respectively the generators of G1 and G2.

If G1 = G2, then the bilinear group is symmetric, otherwise it is asymmetric. There
exists two types of asymmetric bilinear groups, depending on the existence of an effi-
ciently computable non-trivial homomorphism between G1 and G2. Asymmetric bilinear
groups where there exists no homomorphism have the most efficient pairings.

All the currently known instantiations of bilinear groups that are secure for cryptog-
raphy build on elliptic curves, i.e. G1 and G2 are sub-groups of an elliptic curve. If the
latter elliptic curve is defined over a finite field Fr, then the group GT is a multiplicative
subgroup of Frk for some value k linked to the elliptic curve and called the embedding
degree. The pairing are implemented as the Weil pairing for the symmetric setting and
the Tate pairing for the asymmetric setting [BSSC05]. We thus use additive notation
for G1 and G2 and multiplicative notation for GT . A pairing e has therefore the following
property:

e(P + P ′, Q) = e(P,Q) · e(P ′, Q) (2.7)
e(P,Q+Q′) = e(P,Q) · e(P,Q′) (2.8)

∃P ∈ G1, Q ∈ G2 such that e(P,Q) 6= 1 (2.9)

2.2. USEFUL TOOLS 17

From (2.7) and (2.8) it follows that: e([a] ·P, [b] ·Q) = e(P,Q)ab = e([b] ·P, [a] ·Q). The
security of the construction basically relies on the hardness of the discrete logarithm in
G1, G2 and GT .

18 CHAPTER 2. PRELIMINARIES: PROOF SYSTEMS AND USEFUL TOOLS

Chapter 3
State of the Art in Verifiable Computation

Verifiable computation (VC) involves two parties: a verifier V and a prover P , which are
also sometimes referred as the client and the worker, recalling the client-server setting.
The verifier agrees with the prover to delegate some computation, the prover carries
on the calculation and sends the result to the verifier. The prover should also convince
the verifier that the result is correct. Ideally, we would like to outsource a program
written in a high-level language and to get insurance that the returned output of this
program is correct. For that setting to be meaningful, the verification process should be
efficient, more efficient than performing the computation locally, otherwise the verifier
has little interest in outsourcing the computation. Moreover, the verifier should put
no trust in the prover and therefore the VC scheme should provide strong guarantees
against potentially malicious provers that might be cheating with the proof. There
exists a large variety of dedicated VC protocols, e.g. for matrix multiplication [Fre77],
polynomial evaluation [FG12, BFR13a], or database query and update [BGV11]. We
focus on general-purpose VC schemes that typically are designed to verify the correct
execution of a circuit, as discussed in Section 3.1.2. Even if they can be less efficient
than the schemes dedicated to certain category of computation, the expressiveness of
general-purpose schemes allows them to deal with programs involving several different
categories and therefore enable outsourcing larger classes of computations.

The way to establish the correctness of the computation depends on the setting. If
the prover and the verifier are allowed to communicate while establishing the correctness
of the computation and no assumption is made on the prover’s computational power,
then verifiable computation can be obtained from interactive proofs. This connection is
developed in Section 3.1. Allowing interaction but restricting the security of the system
to hold against computationally bounded provers gives additional properties to the VC
scheme that are unfeasible in the interactive proof setting. Such VC schemes typically
are based on interactive arguments and are described in Section 3.2. Finally, there are
some settings where it cannot be assumed that the verifier and the prover have the
possibility to efficiently exchange messages. In such settings, the prover has to build the
proof of correctness without interacting with the verifier. Such VC schemes build on
the notion of non-interactive arguments and require a common reference string (CRS).
Since the generation of the CRS is often costly, most non-interactive VC schemes place
themselves in the pre-processing model: the CRS is generated in a first phase and its
generation is not considered as part of the time that the prover takes to compute the
proof. Besides, it may contain information helping the prover to build a proof more

19

20 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

quickly. Non-interactive arguments will be presented in Section 3.3.
Since there are plenty of approaches to build general-purpose verifiable computa-

tion schemes, there are also several metrics to measure the performance of the resulting
schemes. These metrics are described in Section 3.4, strength and weaknesses are ana-
lyzed for each setting and a gap analysis is presented.

3.1 Verifiable Computation from Interactive Proofs

3.1.1 A useful interactive proof for verifiable computation: the sumcheck
protocol

The Sum-Check protocol [LFKN90] enables to prove the correct evaluation of a multi-
variate polynomial f defined over a finite field. Suppose that f is a degree d polynomial
with n variables, defined over a finite field F and that it has to be evaluated on the
sub-cube {0, 1}n. Using the Sum-Check protocol, a prover P can efficiently convince a
verifier V that he knows the value:

H =
∑

t1∈{0,1}

∑
t2∈{0,1}

. . .
∑

tn∈{0,1}
f(t1, . . . , tn) (3.1)

Note that a direct computation performed by the verifier would require at least 2n
evaluations while the Sum-Check protocol only requires O(n) evaluations for the verifier.
The protocol is a public coin interactive proof with n rounds of interaction during which
the prover computes n univariate polynomials fi, i = 1, . . . , n. These polynomials are
computed from f and the degree of polynomial fi is degi(f), the partial degree of f
regarding the i-th variable of f . During each round, V generates a random field value
that P has to integrate in the computation of the next fi. The consistency of P ’s answer
is then checked with this value. V is supposed to be able to compute f in one point,
namely in the point (r1, r2, . . . , rn), defined by the random challenges ri he has sent to
P during the protocol rounds.
The n rounds of the protocol are summarized below:
Round 1

• P computes the univariate polynomial f1 as follows:

f1(x) =
∑

t2∈{0,1},...,tn∈{0,1}
f(x, t2, . . . , tn) (3.2)

• P sends H and f1 to V .

• V checks if P computed f1 correctly by computing: H = f1(0) + f1(1).
If the equality does not hold, V rejects and the protocol stops.
Otherwise, V chooses uniformly at random r1 ∈ F and sends it to P .

Round 2

• P computes the univariate polynomial f2 as follows:

f2(x) =
∑

t3∈{0,1},...,tn∈{0,1}
f(r1, x, t3, . . . , tn) (3.3)

• P sends f2 to V .

3.1. VERIFIABLE COMPUTATION FROM INTERACTIVE PROOFS 21

• V checks if P computed f2 correctly by checking: f1(r1) = f2(0) + f2(1).
If the equality does not hold, V rejects the response and the protocol stops.
Otherwise, V picks another value r2∈F uniformly at random and sends the prover
P the challenge.

The protocol goes on, until the last round:
Round n

• P computes the univariate polynomial fn defined by:

fn(x) = f(r1, r2, r3, . . . , rn−1, x) (3.4)

• P sends fn to V .

• V picks a random value rn ∈ F and checks that fn(rn) = f(r1, r2, . . . , rn).
If the equality holds, then V is convinced that H = f1(0) + f1(1) and that H has
been evaluated as in (3.1).

For H ∈ F, let LH denote the language:

LH =

f ∈ F[x1, . . . , xn]
∣∣∣∣ deg(f) = d,H =

∑
t1∈{0,1}

∑
t2∈{0,1}

. . .
∑

tn∈{0,1}
f(t1, . . . , tn)

The following theorem states that the sumcheck protocol is an interactive proof and
gives its soundness error:

Theorem 1. The Sum-Check protocol is a public coin interactive proof for LH with n
rounds and soundness error εs = (n · d)/|F|.

Therefore, for a given polynomial with degree and number of variables set, the soundness
εs can be made arbitrary low by choosing a large enough finite field.

3.1.2 Arithmetic circuits

The previous section described an interactive proof for the evaluation of a multivariate
polynomial to a given value. Even if this language seems to include a large class of
computations, it is not a priori clear how the sumcheck protocol can be linked to verifi-
able computing protocols that can check the correctness of any function evaluation. To
establish the connection between the sumcheck protocol and verifiable computation pro-
tocols we have to deal with circuits, which are a common and convenient way to model
the evaluation of a function. Moreover, all the other general-purpose VC schemes that
will be described in the sequel also build on circuits. Basically, a circuit is composed
of wires that carry values, it also has gates that execute a limited set of operations.
The circuit can be boolean using values in {0, 1} and the operations AND, OR and
NOT or arithmetic with values in a finite field F and operations that are additions and
multiplications over F. The size of a circuit is its number of gates, the depth of a circuit
is the longest path from the inputs to the outputs. Note that every boolean circuit
can be converted into an arithmetic circuit, the size and depth of the resulting circuit
increase by at most a constant factor. Circuits are very expressive: Fischer-Pippenger
theorem [PF79] states that any deterministic Turing machine that runs in time t(n),
n being the size of the input, can be represented by a boolean circuit whose size is

22 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

no more than t(n) log(t(n)). This loosely means that every computer program can in
theory be represented as a boolean circuit, at the expense of a performance decrease.
Nevertheless, representing actual programs with circuits that have size and depth small
enough to implement protocols such as verifiable computation is an active research area.
Several efforts have been made to represent programs as arithmetic circuits: Parno et
al. [PHGR13] and Setty et al. [SVP+12] were the first to design compilers that take
as input a program written in a high-level language and output arithmetic circuits.
These compilers were later refined to deal with more expressive computations: Wahby
et al. [WSR+15] design efficient circuits to model programs that contain data depen-
dent control loops and random access memory while Costello et al. [CFH+15] proposed
a compiler that allows state sharing between sub-computations and reduces the size
of circuits containing loops and several calls to the same sub-function. Ben Sasson et
al. [BCG+13] designed circuits to model a minimal random access machine, though
the resulting circuits are too large to enable practical computations [WSR+15]. They
also provide a low-level language to implement arithmetic circuits in the libsnark li-
brary [lib], which provides efficient circuits at the cost of a larger programming effort.
Kosba et al. [KPS18] came up with a comprehensive comparison of programmability
between existing systems. A common benchmark is the implementation of the SHA256
hash function [Nat15] as an arithmetic circuit because this function is an example of a
computation that has no algebraic structure (as opposed e.g. to matrix multiplication)
and thus does not easily translate into a circuit. Kosba et al. [KPS18] report 45000
gates for an implementation using Wahby et al.’s compiler, 38500 using Costello et al.’s
as opposed to 26100 gates using their own compiler. Hand-optimized implementation,
such as the ones using Ben Sasson et al.’s libsnark library report about 27000 gates
[BCG+14].
The precise definition of an arithmetic circuit is the following:
Definition 7. An arithmetic circuit over a field F is a directed acyclic graph in which
each node has an indegree equal to 0 or 2. Node with indegree 0 represents input variables
or constants. Nodes with indegree 2 either represents an addition or a multiplication in
F. Such nodes are respectively called addition and multiplication gates.
An example of circuit is shown in Figure 3.1. The outputs of a circuit can be viewed
as a function of the inputs. Denoting by C an arithmetic circuit and labeling x1, . . . , xn
the inputs and y1, . . . , ym the outputs, one can write (y1, . . . , ym) = f(x1, . . . , xn). An
immediate recursion proves that f is a tuple of multivariate polynomials. In the se-
quel, for the sake of simplicity the circuit is assimilated with the function it com-
putes. Therefore, we will often write that C is a function from Fn to Fm such that:
(y1, . . . , ym) = C(x1, . . . , xn).

The correct execution of a circuit is linked to circuit satisfiability. We describe the
circuit satisfaction problem in the case of arithmetic circuits, a similar definition exists
for boolean circuits. An instance of the arithmetic circuit satisfaction problem is a
circuit C that has two inputs x ∈ Fn (the statement) and w ∈ Fm (the witness) and
that outputs a value y ∈ F`. The arithmetic circuit satisfaction asks, given a statement
x, to find a witness w such that the output of C is 0`.
Definition 8 (Arithmetic circuit satisfaction). Let C : Fn × Fm → F` be an arith-
metic circuit. The circuit satisfaction problem for C is defined by the relation RC =
{(x,w) ∈ Fn × Fm such that C(x,w) = 0`} and its language LC = {x ∈ Fn : ∃w ∈
Fm s.t. C(x,w) = 0`}.

3.1. VERIFIABLE COMPUTATION FROM INTERACTIVE PROOFS 23

The following theorem states that all NP problems have a reduction into an arith-
metic circuit satisfaction problem:

Theorem 2 ([AB09]). The arithmetic circuit satisfaction problem is NP-complete.

Adding the possibility to provide a witness in a circuit computation leads to the class of
non-deterministic computations. Let’s look at a simple scenario that puts in evidence the
power of non-deterministic computations by considering the composite number problem:
given three numbers n, b1, b2, decide if the number n has a factor in the bound [b1, b2].
To answer such problem, one could factor n but if n and the bounds are large, since
the better known factorization algorithms are sub-exponentials, the time to answer will
be prohibitive. Supplying a factor of n as a witness will result in a quick answer to
the initial problem: it suffices to check that the given number belongs to the bounds
and that it indeed divides n, which can be done in polynomial time as opposed to the
sub-exponential time required by the state of the art factorization algorithms [Sho06].

Non-determinism also allows to speed-up computations during their verification and
are therefore very useful in verifiable computations as long as the VC systems accept
auxiliary inputs. Suppose that you want to verify a computation that involves a division
between two integer values a and b. A first attempt could be to design a circuit that
implements a division algorithm between two integers, takes as inputs the two integers
a and b and outputs the quotient and remainder of the division of a by b. Such circuit
will have a large number of gates, at least one per bit of the divisor b. Instead, using
non-determinism, one can first perform the division outside the circuit, get the quotient
q and the rest r of the division and then supply these values to an arithmetic circuit
that will simply check that: a − (b × q + r) = 0, which only involves four operations:
one multiplication, one multiplication by a constant (−1) and two additions.

From an arithmetic circuit C computing a function f : Fn → Fm, there is a natural
transformation to turn C into a circuit C ′ suited for the circuit satisfaction problem.

1. C ′ has n + m input variables, where the m additional input variables come from
the number of outputs of C.

2. C ′ is such that it is a copy of C to which the m additional values are subtracted
from the outputs of circuit C.

Now, if a correct inputs/outputs pair of the circuit C is provided to C ′, it will output
0m.
Figure 3.1 gives an example of such transformation. The original circuit, shown in Figure
3.1a, takes as inputs the values (a1, a2, a3, a4) and computes the function f : (a1, a2, a3, a4) 7→
(a1 · a2) · (a3 + a4). The output of the circuit is a7 and a5, a6 are the intermediate values
of the circuit.

Figure 3.1b shows the circuit verifying that an assignment ((a1, a2, a3, a4), a5) is a
correct input/output pair for the original circuit, it has been built with the transforma-
tion described above. This circuit C ′ computes a5− (a1 · a2) · (a3 + a4) and is equal to 0
if a5 is indeed the output of C(a1, a2, a3, a4).

3.1.3 Interactive Proofs for the Muggles (GKR)

In the proof of the result IP=PSPACE [Sha90], Shamir starts from a PSPACE-
complete problem, namely the True Quantified Boolean Formulae (TQBF) and exhibits

24 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

a1 a2 a3 a4

× +

×
a5 a6

a7

(a) Original arithmetic circuit

a1 a2 a3 a4 a5

× +

×
a6 a7

+

×− 1

a8

a9

(b) Modified arithmetic circuit suited for
circuit satisfaction

Figure 3.1 – From circuit evaluation (3.1a) to circuit satisfaction (3.1b)

an interactive proof for this problem, which proves that IP ⊇ PSPACE. The key idea
underlying the interactive proof is to leverage arithmetization: the boolean formulas are
represented as polynomials defined over a finite field and their correctness is checked
with the sumcheck protocol (see Section 3.1.1 for details). This technique could in theory
be applied to any computation by expressing the computation as an arithmetic formula
and running the sumcheck protocol on it. However, even for polynomial computations,
the work of the resulting prover is super-polynomial in the size of the computation input
and hence the basic method is far from being practical. In 2008, Goldwasser, Kalai and
Rothblum [GKR08] designed a protocol for correct circuit evaluation where the prover
and the verifier are efficient. This protocol is compatible with a large class of circuits.
For a circuit with the adequate structure that has S gates, Goldwasser et al. obtain an
interactive proof where the prover runs in time poly(S) while the verifier runs in time
sub-linear in the size of the circuit: it is more efficient to delegate the computation and
to verify it than to locally execute it.

At a high-level view, the protocol proceeds as follows: the verifier V and the prover
first agree on an arithmetic circuit C. This circuit C has to be layered, i.e. gates are
gathered by set (layers) and gates of a particular layer are only connected to adjacent
layers. The protocol proceeds layer by layer, from the output layer to the input layer.
It starts with P sending V the output of layer 1, i.e. the computation output, which
V cannot verify unless he executes the whole computation. Instead, V and P interact
and reduce P ’s claim about the output to another claim about layer 2. The reduction
is done in the sense that the first claim is true as long as the second one is true. The
claim reduction is achieved thanks to the sumcheck protocol (see Section 3.1.1). Since V
cannot verify the latter claim, a new interaction starts and results in a new claim about
layer 3. The protocol proceeds until the interaction of P and V results in a claim about
the input layer. This claim can ultimately be verified by V : if the verification passes, V
can accept the initial claim and the output of the computation is correct.

Goldwasser et al.’s main theorem is stated below. It applies to logspace uniform
circuits, which are circuits that can be described by a Turing machine using logarithmic
space.

3.1. VERIFIABLE COMPUTATION FROM INTERACTIVE PROOFS 25

Theorem 3 ([GKR08]). Let L be a language that can be computed by a family of logspace
uniform boolean circuits of size S(n) and depth d(n). L has an interactive proof with
P’s running time being poly(S(n)), V’s running time being n · poly(d(n), logS(n)) and
space O(logS(n)). Moreover, the communication is d(n) · polylog(S(n)).

Further focusing on this protocol, we need to explain what the claims about layers
are and how a layer’s claim is reduced into another one’s. For each layer of the circuit,
Goldwasser et al. define a function that expresses the output of the layer as a function
of the layer input. The resulting function is a polynomial since the gates of a layer can
only be addition or multiplication gates. Cormode et al. [CMT12] denote that function
a wiring predicate. To increase the possibility to catch a misbehaving prover, the verifier
asks the prover to compute a low-degree extension from the wiring predicate. The next
section defines low-degree extensions and gives useful related results for the sequel of
the discussion.

Low-degree extensions

Low-degree extensions allow to apply the Sum-Check protocol to polynomials defined
over some finite set included in the finite field where all the operations of the protocol
are performed.
Let F be a finite field. For any d-variate polynomial P , we denote by degi(P) the degree
of P in variable i.

Definition 9. Let H be a subset of F and f : Hd → F be any d-variable function
mapping to F. A d-variate polynomial g over F is said to be an extension of f if:
∀x ∈ Hd, g(x) = f(x).
An extension g of f is a low-degree extension if: degi(g) < |H|, ∀i ∈ {1, . . . , d}. It is
multilinear if: degi(g) 6 1, ∀i ∈ {1, . . . , d}.

A multilinear extension (MLE) of a function f is therefore a polynomial that is an
extension of f and has degree at most 1 in each variable. We now give a theorem that
will be useful for the sequel of this section. Taking H = {0, 1}, we have:

Theorem 4. Let f : {0, 1}d → {0, 1} be a function and F be a finite field. The function
f has a unique multilinear extension over F.

We will hereafter denote by f̃ the MLE of f . Using Lagrange interpolation, an explicit
expression of a MLE can be obtained as follows:

Lemma 1. Let f : {0, 1}d → {0, 1}. Then f̃ : Fd → {0, 1} has the following expression:

f̃(x1, . . . , xd) =
∑

w∈{0,1}d

f(w)χw(x1, . . . , xd) (3.5)

In equation (3.5), χw is defined for all w = (w1, . . . , wd) as:

χw(x1, . . . , xd) =
d∏
i=1

(
xiwi + (1− xi)(1− wi)

)
(3.6)

26 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

Wiring predicate

As mentioned above, in order to build their efficient interactive proof system, Goldwasser
et al. [GKR08] leverage the layered structure of the circuit and reduce the correctness
of the circuit execution to a sequence of claims about the layers, the truth of each claim
being related to the truth of the next one, until a last claim about the input layer. This
last claim can finally be checked by the verifier since it only involves the inputs of the
computation.

Let layers be labeled from 0 to d, 0 for the output layer and d for the input layer. The
main component of the interactive proof proposed by Goldwasser et al. is, for each layer
i, a claim made about the low-degree extension of a function that carries information
regarding the inputs and outputs of layer i.

In detail, let Wi denote the function that takes as input a binary gate label and
outputs the corresponding gate’s value at layer i. Without loss of generality, we assume
that the circuit has the same number of gates S at each layer and that gates at layer
i are labeled {gi,0, gi,1, . . . , gi,S−1}. We denote by s the value s = log2(S). Then: Wi :
{0, 1}s → F.

Layer i

Layer i− 1

× + ×

+ × +

1 2 3

1 2 3

Figure 3.2 – Relation between gates of two different layers of a circuit

Figure 3.2 depicts a sample circuit with two layers, denoted i and i − 1. Using the
notations above, we have: Wi−1(2) = Wi(1) × Wi(2): the output value of the gate
labeled 2 at layer i − 1 is the product of the output value of the gates labeled 1 and 2
from layer i.

All the gates of a layer i are linked to two gates of the previous layer by a similar
relation, involving a multiplication or an addition. Goldwasser et al. use wiring predi-
cates to obtain an expression of Wi that carries the input/output relations of the whole
layer gates. To explicit that relation, we define two functions addi, multi for layer i and
a layer-independent function eq.

addi : {0, 1}3s −→ {0, 1}

(j, k, `) 7−→

1 if gi−1,j = gi,k + gi,`

0 otherwise
(3.7)

multi : {0, 1}3s −→ {0, 1}

(j, k, `) 7−→

1 if gi−1,j = gi,k × gi,`
0 otherwise

(3.8)

3.1. VERIFIABLE COMPUTATION FROM INTERACTIVE PROOFS 27

eq : {0, 1}2s −→ {0, 1}

(x, y) 7−→

1 if x = y

0 otherwise
(3.9)

The value addi(j, k, `) equals one if the gate labeled by j at layer i − 1 is the sum of
the gates labeled k and ` of layer i while multi(j, k, `) encodes the same information for
gate multiplication. The functions addi, muli and eq allow to get an explicit and global
expression that links Wi and Wi−1. For z ∈ {0, 1}s, we have:

Wi−1(z) =
∑

(j,k,`)∈{0,1}3s

eq(z, j) ·
(
addi(j, k, `) ·(Wi(k)+Wi(`))+multi(j, k, `) ·Wi(k) ·Wi(`)

)
(3.10)

Equation (3.10) states that at layer i − 1, the value of the gate labeled z is the sum
or the product of gates from layer i whose output is the input of the gate labeled z.
The function eq acts here like a selector and allows to have a single expression for the
whole layer even if addi and multi are functions acting at the gate level. The low-
degree extension of (3.10) finally enables the reduction from a layer to the previous
one. The verifier sends the prover a random value of F and then they engage in a
sumcheck protocol about the evaluation over {0, 1}3s of the polynomial fi(z) := ẽq(z, j) ·(
ãddi(j, k, `) · (W̃i(k) + W̃i(`)) + m̃ulti(j, k, `) · W̃i(k) · W̃i(`)

)
. Cormode et al. [CMT12]

estimate that a naive implementation of the prover would give a complexity of Ω(S 3),
i.e. the work of the prover is at least cubic in the size of the circuit. Goldwasser et
al. also note that the functions ãddi and m̃ulti are circuit-dependent but not input
dependent. Therefore, some work can be saved by performing offline computations to
pre-compute the latter functions. Indeed, the verifier and the prover are supposed to
agree on a given circuit on which they will run the protocol. Both can then compute
the functions ãddi and m̃ulti before the circuit is evaluated and save time during the
interactions.

In the sequel, we will denote Goldwasser et al.’s protocol by GKR. Next section
describes the efforts made to actually implement the GKR protocol, mainly through
some efficiency improvements. Furthermore, some optimizations allowed to decrease
the prover’s work, resulting in an optimal prover for certain class of circuits.

3.1.4 Implementation of the GKR protocol and later optimizations

In 2012, Cormode Mitzenmacher and Thaler published a paper [CMT12] where they
studied Goldwasser et al.’s protocol with a practical purpose in mind. The paper contains
refinement that were required to be able to implement the protocol. One of the major
contributions is an improvement on the prover’s work. Cormode et al. notice that, for
each round of the sumcheck protocol applied to the polynomial fi (as defined in section
3.1.3), the gates at layer i and i−1 only contribute for a single term of the sum computed
in the round. For a circuit of size S, this observation enables Cormode et al. to decrease
the prover’s work from Ω(S 3) to O(S logS). They also provide an implementation of
their refined protocol and give several examples that are benchmarked. In a subsequent
note 1, Thaler notes that the term ẽq is not necessary in (3.10), provided that the low-

1http://people.cs.georgetown.edu/jthaler/GKRNote.pdf

http://people.cs.georgetown.edu/jthaler/GKRNote.pdf

28 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

degree extensions are multilinear extensions. This observation reduces the umber of
rounds needed in each application of the sumcheck protocol and the hidden constants
in the O(S logS).

In a paper published at Crypto ’13, by carefully studying the expression (3.10),
Thaler [Tha13] notices that the polynomial fi used by Cormode et al. is very sparse.
This, on the one hand enables to improve the prover’s efficiency but on the other hand
prevents from reusing work over iterations of the sumcheck protocol. Choosing a new
polynomial defined over a smaller domain to express the relation between Wi and Wi−1,
Thaler succeeds in decreasing the prover’s work to O(S), which is optimal: the prover’s
work to evaluate the circuit and compute the proof increases only by a constant. How-
ever, Thaler’s optimization applies to layered circuits that possesses supplementary
structure. This still encompasses a large class of circuits computing non-trivial prob-
lems, notably matrix multiplication, pattern matching, frequency vector computations
in data streaming or fast Fourier transform [Tha13]. The experimental results show
a prover that is at least 200 times faster and a communication two times less than
Cormode et al.’s implementation.

Building on Thaler’s work, more optimizations were proposed for structured circuits:
Wahby et al. [WJB+17b] show that if the considered arithmetic circuit is structured
with multiple copies of the same sub-circuit, which models well parallelizable compu-
tations, then the prover’s work can further be decreased. They show that when a
sub-computation is repeated about 30 times, the work of the prover is linear in the size
of the computation, with a hidden constant being approximately 10: to prove correct-
ness of a computation, the prover only has to perform 10 times more work than if he
ran the unproven computation.

3.2 Verifiable Computation from Interactive Arguments

Verifiable computation has strong links with non-deterministic computations because
verifying and performing a computation often do not have the same complexity. A
typical example is the factorization of a number: while it is difficult to factor n, allowing
non-determinism makes the problem easy since it suffices to provide factors p and q as
witnesses and to check that the given integer n is indeed the product of p and q. The
factorization problem has sub-exponential complexity for the better algorithms while the
verification that factors provided for a number are correct has polynomial complexity.
A large class of problems can be solved when the possibility to provide a witness in
a computation is added. Such problems can be modeled by the computation of non-
deterministic circuits: a non-deterministic circuit C takes two inputs x and y and accepts
x if there exists an input y such that C(x, y) = 1. The input value y is the witness of the
computation. It is sometimes referred as the auxiliary input, the advice or the guess. A
practical advantage of non-deterministic computations is that the prover can choose any
efficient algorithm to solve the problem and only has to follow a given algorithm to prove
that he owns the witness of a correct result. This principle applies to interactive proofs:
for instance, the multiplication of two (n, n) matrices can easily be translated into an
arithmetic circuit of size O(n3) that lends itself well for Goldwasser et al.’s protocol
[GKR08]. But, even if Thaler’s optimal protocol [Tha13] is used, the prover still has
a O(n3) work to compute the proof whereas he could prove the matrix multiplication
correctness using Freivalds’ algorithm [Fre77] and perform the verification in time O(n2).
In the case of interactive proof protocols deriving from the GKR protocol, a problem

3.2. VERIFIABLE COMPUTATION FROM INTERACTIVE ARGUMENTS 29

remains because, in order to prove the correctness of a computation, the prover has
to send the witness and to run the protocol involving it. This can be problematic for
several reasons. First, the witness may be too large and thus cannot be sent or its size
may dramatically increase the communication cost of the interactive proof. Zhang et
al. [ZGK+17] consider the outsourcing of a database into the cloud with verifiable SQL
queries and show that for some queries, the witness of the computation can be as large
as the whole database. Second, the prover may want to keep the witness secret as in
the case of factorization: proving that one knows the factorization of an RSA modulus
n has no interest if the prime factors p and q are disclosed because the security of the
RSA scheme relies on the difficulty to factor the modulus.

Such limitations can be overcome by weakening the computational power of the
prover in the soundness requirement of Definition 2. This relaxation on security proper-
ties enables to leverage cryptographic techniques and therefore to get additional prop-
erties for the considered schemes, such as efficient non-deterministic computation or
public verifiability of the proof. Brassard et al. [BCC88] define argument systems by
restricting the soundness to hold against computationally bounded provers. Note that
a prover with super-polynomial computing power can then make the verifier accept the
proof of a false statement. On the next section, we describe the evolution of arguments
from their definition to their implementation as verifiable computing systems.

3.2.1 Interactive Arguments

Definition 10. An interactive argument system for a set S is a two-party game, between
a verifier, denoted V, and a prover denoted P, satisfying the following properties:

• Completeness: The prover P runs in polynomial time in the size of the common
input. For every x ∈ S, there exists an auxiliary input wx so that the verifier V
always accepts after interacting with the prover P(wx) on common input x.

• Soundness: For every probabilistic polynomial time prover P, for all x /∈ S and
for all w ∈ {0, 1}∗, the verifier V rejects with probability εs (εs < 1) after interacting
with P on common input x.

The first asymptotically efficient arguments build on the probabilistically checkable
proofs (PCP) theorem [AS98], which notably states that for every NP language, there is
an encoding of the proof that can be probabilistically verified by querying only a small
number of bits. To satisfy this requirement, the proof encoding must add redundancy.
More precisely, the length of the encoded proof in the PCP theorem is polynomial in the
size of the original proof and the number of queries is constant (more queries decrease
the soundness error of the proof system). One could envision building an interactive
proof system using PCPs but in the PCP theorem [AS98] the soundness holds only if
the proof is immutable: a cheating prover could adapt his answer to the verifier’s queries
to make them consistent with the protocol. Therefore, in a proof system based on PCP
the prover should send the whole PCP to the verifier. However, the size of the PCP
is superior to the size of the computation witness and thus the resulting proof system
would be inefficient.

Kilian [Kil92] and Micali [Mic00] overcome that problem by defining efficient argu-
ments from PCPs. Instead of sending the PCP, the prover rather commits to the proof

30 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

obtained with the PCP theorem and sends this commitment to the verifier. Then, the
verifier makes queries for a few bits of the proof and the prover decommits those bits.
Leveraging the commitment to the previously received PCP, the verifier can then check
the prover’s answer without the need for the prover to decommit the whole proof. The
latter schemes are only relevant if the commit to the PCP has a small size, which is
reached by the mean of Merkle trees [Mer87].

3.2.2 Ishai et al. efficient arguments and later optimizations

Albeit asymptotically efficient, Kilian’s or Micali’s constructions have no practical inter-
est due to the time required to compute a PCP or the space required to store it. Ishai
et al. [IKO07] proposed another argument system with worse asymptotic complexity
but also potentially better efficiency for practical instances. Their idea is to give up on
having a polynomial-size proof: the proof is described as a function that can have expo-
nential size and a proof query is simply the evaluation of such function. In details, let P
be a prover and V be a verifier. Let us consider a circuit C for which P wants to prove
he knows a correct assignment (x,w) and denote by W a transcript of the evaluation of
C: W is a string supposed to contain constraints that check if x has really been applied
as input, if the input/output relations of each gate of C are correct and if the output
of C is indeed 1. The PCP function fW will then be the Walsh-Hadamard encoding of
W [AB09] and the PCP itself – that we denote by π – consists of all the evaluations of
fW . Note that fW is a linear function and that, if C has s gates, fW : Fs2+s → F and π
has size |F|s2+s. In Ishai et al.’s scheme, that we will denote by IKO, the verifier then
makes queries whose goal is to check that:

i) fW is indeed a linear function,

ii) π contains the evaluation of a Walsh-Hadamard encoding of W ,

iii) W satisfies all the constraints of circuit C

The checks are performed thanks to an additively homomorphic encryption scheme E:
the verifier V picks a random vector r and sends P the encryption E(r). The prover
can then evaluate fW at r and get E(fW (r)). Since P has no information about r, the
computation of E(fW (r)) serves for the purpose of a commitment on function fW . The
subsequent queries also leverage the homomorphism to check that the above mentioned
properties are satisfied.

IKO as a VC system

Based on the IKO protocol, Setty et al. [SMBW12] achieve the first implementation
of a VC system. They instantiate the homomorphic encryption scheme with El-Gamal
encryption [Gam84] and refine IKO protocol to deal with arithmetic circuits instead of
boolean circuits in the original protocol. They also perform verification on batched input
to amortize the cost of the PCP queries. Finally, they provide a compiler that takes
the description of a circuit in a high-level language and output the set of constraints
that will define the transcript W of a correct computation. Subsequent works [SVP+12,
BFR+13b, WSR+15] refine the resulting VC system by adding expressiveness through
the optimization of the compiler or the one at the linear function whose evaluation
defines the PCP π. This latter enhancement builds a linear PCP from Gennaro et al.’s

3.2. VERIFIABLE COMPUTATION FROM INTERACTIVE ARGUMENTS 31

Quadratic Arithmetic Programs (QAP) [GGPR13] (see Section 3.3.2 for details on QAP
construction).

3.2.3 Interactive Arguments from CMT

Zhang et al.’s argument [ZGK+17]

Recently, Zhang et al. [ZGK+17] proposed an extension to the CMT protocol (see
Section 3.1.4), turning it into an interactive argument. When studying the outsourcing
of a database compatible with verifiable queries, Zhang et al. raised a need that was the
same as the one described in Section 3.2.1, namely to efficiently prove the correctness of a
non-deterministic computation without sending the witness. Zhang et al. first note that
in the interactions of the CMT protocol, the verifier does not need to know the witness
except in the last round of interactions where he only needs to perform computation
with the evaluation of the multilinear extension of the witness at a random value. Zhang
et al. therefore define a polynomial commitment scheme and force the prover to commit
on the multilinear extension w̃ of the witness w, which is indeed a polynomial. Later,
during the CMT protocol, upon receiving the verifier’s challenge r, the prover will send
him the value w̃(r). V can then check that this value is indeed the evaluation of the
committed polynomial w̃ at r. The commitment enables the verifier to work on w̃(r)
without ever seeing the witness w. It also gives the verifier confidence that the prover
cannot cheat about the witness, as long as the cryptographic assumption on which
the commitment scheme relies holds. Zhang et al.’s polynomial commitment scheme
leverages bilinear pairing for the opening and relies on two cryptographic assumptions:
a generalization of Groth’s knowledge of exponent assumption [Gro10] and a strong
Diffie-Hellman assumption [BB04]. Note also that the scheme requires a pre-processing
phase where the parameters of the polynomial commitment scheme are computed. This
phase consists of a trusted setup, in the sense that the parameter generation requires
some randomness that must be discarded once the setup phase ends. An adversary in
possession of such randomness is able to break the soundness of the scheme and thus
to forge a proof for bogus results that will nonetheless be accepted. Assume that the
witness of the scheme, here the database to be outsourced, is denoted by w. Then Zhang
et al. show that:

• The setup phase runs in time linear in the size of the witness.

• The prover runs in time quasi-linear in the size of the circuit and of the witness.

• The verifier runs in time sub-linear in the size of the circuit and of the witness.

Wahby et al.’s argument [WTS+18]

As Zhang et al. [ZGK+17], Wahby et al. [WTS+18] leverage commitment schemes to
turn CMT into an argument. Although being related, Wahby et al.’s approach brings
several improvements: their scheme is zero-knowledge, relies on weaker and standard
cryptographic assumptions and results in a more efficient argument scheme. They start
from an slightly improved version of CMT [WJB+17b] and use several commitment
schemes that have a homomorphic property and for which the prover can prove the
opening in zero-knowledge. These commitment schemes allow to implement a zero-
knowledge version of the sumcheck protocol (see Section 3.1.1). Since this protocol

32 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

involves successive claim reductions about the arithmetic circuit from the output layer
to the input layer, Wahby et al.’s modification of CMT is therefore zero-knowledge. In
detail, Wahby et al. use Pedersen’s commitment scheme [Ped91] and prove in zero-
knowledge the knowledge of the commitment opening, that two commits open to the
same value and that a committed value is the product of two committed values. During
the sumcheck protocol, the prover sends commitments to the coefficients of the interme-
diate polynomials, denoted fi. In Wahby et al.’s protocol, the intermediate polynomials
involved in the sumcheck protocol have degree 3: the prover thus commits to 4 values.
From those commitments, the verifier V has to check that: fi(0) + fi(1) = fi−1(ri−1).
Since V knows ri−1, this comes down to computing the left hand and right hand sides
of the previous equality and to engage with the prover in a zero-knowledge proof if the
two obtained commitments open to the same value. The first round of interaction in
the sumcheck is a little different but the techniques rely on the same principles. Wahby
et al.’s argument system is particularly efficient if the circuit considered for verification
has some regularity, e.g. the circuit to verify has N identical sub-computations. Be-
sides, it relies on classic cryptographic assumptions (i.e. the Decisional Diffie Hellman
assumption [CS98]). For circuits that reproduce the same sub-computation N times,
N ≥ 30:

• the communication costs are sub-linear in the size of the circuits and of the witness,

• the prover runs in time linear in the size of the circuit (with small constants),

• the verifier runs in time sub-linear in the size of the circuits and the witness.

3.3 Verifiable Computation from Non-interactive Arguments

There are settings where it is difficult to assume that a verifier V and a prover P have
access to a channel over which they can efficiently communicate. This raises the need
for defining non-interactive verifiable computation where the only interactions during
the protocol are V sending the desired input for the computation and P sending back
the result of the computation and the proof of correctness.

A first possibility is to use the Fiat-Shamir transformation [FS86] to turn a public-
coin interactive argument into a non-interactive argument. The idea of this transfor-
mation is to ask the prover to compute himself the random values sent by the verifier
during the protocol: the prover replaces the uniformly random challenges sent by the
verifier with challenges he computes applying a public hash function to the transcript
of the protocol so far. The prover then sends the whole protocol transcript, which can
be verified by recomputing the challenges with the same hash function. This method
has been proved secure in the random oracle model [PS00].

However, this methodology has a drawback: the resulting proof is at least equal to
the amount of communication produced during the interactive argument. Therefore,
other approaches try to directly define non-interactive arguments tailored for verifiable
computation. Gennaro et al. were the first to formally define Verifiable Computa-
tion (VC) and to propose a non-interactive scheme that satisfies the VC requirements.
Their construction leverages fully homomorphic encryption and therefore does not fit
a practical and efficient verifiable computing scheme. The definition was successively
refined [PRV12, GGPR13, PHGR13], for the sequel we rely on Parno et al.’s definition
[PHGR13].

3.3. VERIFIABLE COMPUTATION FROM NON-INTERACTIVE ARGUMENTS 33

3.3.1 Definition

Definition 11 (VC scheme). Let F be a function, expressed as an arithmetic circuit
over a finite field F and λ be a security parameter.

• (EKF , V KF) ← KeyGen(1λ, F): the randomized algorithm KeyGen takes as input
a security parameter and an arithmetic circuit and produces two public keys, an
evaluation key EKF and a verification key V KF .

• (y, π) ← Prove(EKF , x): the deterministic Prove algorithm, takes as inputs x
and the evaluation key EKF and computes y = F (x) and a proof π that y has been
correctly computed.

• {0, 1} ← Verify(V KF , x, y, π): the deterministic algorithm Verify takes the in-
put/output (x, y) of the computation F , the proof π and the verification key V KF

and outputs 1 if y = F (x) and 0 otherwise.

The desired security properties for a publicly verifiable VC scheme are the following:

• Correctness: for any function F and any input x:

Pr

 (EKF , V KF)← KeyGen(F, 1λ);
(y, π)← Compute(EKF , x);

Verify(V KF , x, y, π) = 1

 = 1

• Soundness: for any function F and any probabilistic polynomial-time adversary
A,

Pr

 (u, y, π)← A(EKF , V KF) :
F (u) 6= y and

Verify(V KF , u, y, π) = 1

 6 negl(λ)

• Efficiency: the cost of Verify is lower than the cost of executing F .

Parno et al. [PHGR13] consider that since KeyGen is only performed once for the lifetime
of the VC system, its costs is amortized over all future instances of the problem and
has not to be taken into account for the efficiency of the system. In constrast, some
later works, e.g.[WJB+17b], consider that the KeyGen phase has to be included in the
efficiency metric.

3.3.2 Main tool: Quadratic Arithmetic Programs (GGPR13)

Assume that you want to check the correctness of a computation, expressed as an
arithmetic circuit. Given an assignment of the input variables and the output value, a
straightforward solution is to evaluate the circuit and to verify that the circuit output
is indeed the given output value. But is it possible to check correctness while doing
less computations ? Quadratic arithmetic programs (QAP) enable to perform the latter
task more efficiently than redoing the whole computation, they reduce the satisfiability
of an arithmetic circuit (see Section 3.1.2) to a divisibility check between polynomials.
Let us explain in detail how the reduction from an arithmetic circuit is performed. We
start by giving an arithmetic circuit example and the construction of its related QAP

34 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

before formally defining QAPs and stating their properties. Consider the function f
defined over F37 by:

f : (a1, a2, a3, a4) 7→ (2a2 · (a1 + 3) + (a2 + a3) · a4) · a4. (3.11)

This function can be represented as the arithmetic circuit displayed in Figure 3.3. All
the wires of the circuit are labeled: in figure 3.3 the input values are a1, a2, a3, a4, the
output is a7, while a5 and a6 are intermediate values.

1 a1 a2 a3 a4

×3 ×2

+ +

× ×

+

×

a5 a6

a7

r1 r2

r3

Figure 3.3 – Arithmetic circuit for f : (a1, a2, a3, a4) 7→ (2a2 · (a1 + 3) + (a2 + a3) · a4) · a4

The relation between the inputs and the outputs of the function is a multivariate
polynomial whose degree and number of variables do not easily lend themselves to
cryptographic operations. For instance, Ben Sasson et al. [BCG+14] report an optimized
arithmetic circuit with about 30000 multiplicative gates that represents the compression
function of SHA256 [Nat15]. This means that the correctness check would involve a
degree 30000 polynomial for this single hash computation. Instead of dealing with
the constraints between the inputs and the output of the whole circuit, Gennaro et al.
[GGPR13] flatten the circuit by considering the input/output relationships of each gate,
which leads to a set of quadratic equations. In the case of function f , the set is:

f(a1, a2, a3, a4) = (2a2 · (a1 + 3) + (a2 + a3) · a4) · a4 ⇐⇒

a5 = 2a2 · (a1 + 3) (3.12a)
a6 = (a2 + a3) · a4 (3.12b)
a7 = (a5 + a6) · a4 (3.12c)

3.3. VERIFIABLE COMPUTATION FROM NON-INTERACTIVE ARGUMENTS 35

The quadratic arithmetic programs leverage the equations (3.12) and build two polyno-
mials from this set, one that will contain all the relationship and one that will enable to
efficiently check the correctness of the relationships using polynomial division. To build
these polynomials, each multiplicative gate g of the arithmetic circuit is associated to
an arbitrary value rg. Then, three polynomial families V = {vk(x)}, W = {wk(x)} and
Y = {yk(x)} are defined from each value of the circuit – input, output or intermediate.
Denoting by G the set of multiplication gates of the circuit, the polynomials are defined
by the value they take on (rg)g∈G. Polynomials in V represent left inputs of gates, poly-
nomials in W represent right inputs of gates while polynomials in Y represent outputs
of gates. Table 3.1 gives all these polynomials for the arithmetic circuit described in
Figure 3.3. For instance, polynomial v1(r1) = 1 means that the wire labeled by a1 is
a right input of the gate 1, associated with the value r1. Note that even if V , W and
Y are defined only at multiplication gates, multiplications by constants and additions
are taken into account: for example, w2(r1) = 2 means that a right input of the gate
1, associated with value r1 is 2 × a2. The case of addition will be considered few lines
below. To see how these polynomial families enable to check if a circuit assignment is
correct, let consider an assignment (a1, a2, a3, a4, a5, a6, a7). From the families V = {vi}i,
W = {wi}i, Y = {yi}i, we compute three polynomials v, w, y such that:

v(x) =
7∑
i=1

aivi(x) (3.13a)

w(x) =
7∑
i=1

aiwi(x) (3.13b)

y(x) =
7∑
i=1

aiyi(x) (3.13c)

r1 r2 r3
v0 3 0 0
v1 1 0 0
v2 0 1 0
v3 0 1 0
v4 0 0 0
v5 0 0 1
v6 0 0 1
v7 0 0 0

r1 r2 r3
w0 0 0 0
w1 0 0 0
w2 2 0 0
w3 0 0 0
w4 0 1 1
w5 0 0 0
w6 0 0 0
w7 0 0 0

r1 r2 r3
y0 0 0 0
y1 0 0 0
y2 0 0 0
y3 0 0 0
y4 0 0 0
y5 1 0 0
y6 0 1 0
y7 0 0 1

Table 3.1 – QAP polynomial family for the arithmetic circuit defined in figure 3.3

Now, using equation (3.13a) and Table 3.1, we see that: v(r2) = ∑
aivi(r2) = a2 +a3

which is exactly the fact that a2 and a3 are left inputs of the gate 2 associated to r2. This
also shows that additions are taken into account by the polynomial families. Next, let
us define a polynomial p by p(x) = v(x) ·w(x)− y(x). The intuition for p is that it will
somewhat compress all the input-output relations at the circuit multiplication gates.
Indeed, by inspection we see that evaluating p at a value associated to a multiplicative
gate gives the input/output relation at this gate. In our running example, the evaluation

36 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

of p at r2 gives:

p(r2) = (
7∑
i=1

aivi(r2)) · (
7∑
i=1

aiwi(r2))− (
7∑
i=1

aiyi(r2)) = (a2 + a3) · (a4)− a7 (3.14)

Therefore, if p vanishes at r2 then: a7 = (a2 + a3) · (a4), which exactly describes a
correct input-output relationship at gate 2. Conversely, if equation (3.12c) holds then,
by relation (3.14) p will vanish at r2.
The interest of the polynomial p is that a divisibility check is enough to check all the
input-output relations mentioned above: denoting by {rg | g ∈ G} the values associated
with each gate, we first define a polynomial t as t(x) = ∏

g∈G(x− rg). This polynomial
will enable to verify that the circuit assignment is correct by checking that it divides p.
Indeed, if the input-output relationships hold for each multiplication gate of the circuit,
the polynomial p built from the V , W and Y families will vanish at every value of the
set {rg | g ∈ G}. The fact that p vanishes at every value rg means that p(x) is divisible
by the polynomial ∏g∈G(x− rg), which is by construction the polynomial t(x). To sum
up: The correctness of the circuit assignment comes down to check that p(x) is divisible
by t(x).

The polynomial p is computed by interpolating the V , W and Y polynomials from
their values at {rg | g ∈ G} and computing:

p(x) = (
|G|∑
i=1

aivi(x)) · (
|G|∑
i=1

aiwi(x))− (
|G|∑
i=1

aiyi(x)) (3.15)

Note that, by construction, many of the polynomials in V , W and Y are equal to zero,
which is leverage to compute efficiently p from the evaluated polynomials. In our running
example, setting r1 = 1, r2 = 10, r3 = 26 and using Table 3.1, we obtain:

v0(x) x2 + x+ 1 w0(x) 0 y0(x) 0
v1(x) 25x2 + 25x+ 25 w1(x) 0 y1(x) 0
v2(x) 28x2 + 21x+ 25 w2(x) 27x2 + 27x+ 27 y2(x) 0
v3(x) 28x2 + 21x+ 25 w3(x) 0 y3(x) 0
v4(x) 0 w4(x) 12x2 + 12x+ 13 y4(x) 0
v5(x) 21x2 + 28x+ 25 w5(x) 0 y5(x) 25x2 + 25x+ 25
v6(x) 21x2 + 28x+ 25 w6(x) 0 y6(x) 28x2 + 21x+ 25
v7(x) 0 w7(x) 0 y7(x) 21x2 + 28x+ 25

Quadratic arithmetic programs have been defined by Gennaro et al. [GGPR13]. As
in [Gro16], we slightly modify the original notations in the characterization to ease the
exposition:

Definition 12. A quadratic arithmetic program (QAP) Q over a field F is a tuple of
polynomials from F[x] such that: Q = {{vk(x)}, {wk(x)}, {yk(x)}, k ∈ {0, . . . ,m}, t(x)}.
The size of Q is m and its degree is deg(t(x)).

Definition 13. Let f : Fn → Fn′ be a function with input variables labeled by {1, . . . , n}
and output variables labeled by {n + 1, . . . , n + n′}. A QAP Q computes f if, denoting
Q = {{vk(x)}, {wk(x)}, {yk(x)}, k ∈ {0, . . . ,m}, t(x)}, the following assertion is true:

3.3. VERIFIABLE COMPUTATION FROM NON-INTERACTIVE ARGUMENTS 37

(a1, . . . , an, an+n′) is a valid input/output assignment for f
⇔

∃(an+n′+1 . . . , am) ∈ Fm−n−n′ s.t. t(x) divides p(x) := (
m∑
i=1

aivi(x)) · (
m∑
i=1

aiwi(x))− (
m∑
i=1

aiyi(x))

Theorem 5 states that for every arithmetic circuit there exists a QAP that can be
efficiently built.

Theorem 5. Let C be an arithmetic circuit with input from Fn, that has s multiplicative
gates, each with fan-in two, and whose output gates are all multiplication gates. There
is a QAP Q of size n+ s and of degree s that computes C.

3.3.3 Pinocchio: a VC protocol from QAPs

In the previous section, we defined QAPs as very efficient objects to encode compu-
tations, even non-deterministic ones. QAPs seem a priori very suited to build VC
schemes but they cannot be securely used directly. Indeed, in the QAP definition, the
divisibility of the built polynomial p by the target polynomial t does not imply the
correctness of the circuit evaluation if different coefficients are used to build the poly-
nomials v,w and y. Take our running example, providing the values (30, 13, 3, 12) as
input gives an output value of 14 and intermediate values (21, 6). A cheating prover
can first choose an arbitrary output value and then build v,w and y with the good in-
put values but with intermediate values chosen such that the divisibility check holds.
In our example, after choosing 5 as output, setting (30, 13, 3, 12, 1, 7, 3) as coefficients
for v, (30, 13, 3, 12, 0, 0, 3) for w and (30, 13, 3, 12, 21, 6, 3) for y leads to a polynomial
p∗ = 15 ∗ x4 + 24 ∗ x3 + 16 ∗ x + 7 that is still divisible by t (the correct polynomial
p for the same inputs should be p(x) = 3 ∗ x4 + 22 ∗ x3 + 28 ∗ x + 9). To protect the
verifier against a cheating prover, Gennaro et al. [GGPR13] use an homomorphic en-
cryption scheme to force the prover to work over encryptions of the polynomial families
and thus to behave correctly. In detail, the prover will encrypt the evaluation of v, w
and y at a point s that neither he nor the verifier know. To enable the verifier to check
the divisibility, the prover is asked to compute the quotient polynomial h := p/t and to
provide h(s), v(s), w(s), y(s). Encryptions of the values {vk(s)}, {wk(s)}, {yk(s)} and
of powers of s define the evaluation key. These values enable the prover to build the
values h(s), v(s), w(s), y(s). The verifier, having access to t(s), has therefore to check
that:

t(s) · h(s) = v(s) · w(s)− y(s) (3.16)

The scheme should thus be additively homomorphic to perform the polynomial evalu-
ations over encrypted data and multiplicatively homomorphic in order to perform this
last check. Gennaro et al. [GGPR13] propose to use Paillier’s encryption [Pai99]. Parno
et al. [PHGR13] rather leverage encryption in bilinear groups. Even if the scheme is
only additively homomorphic, pairings enable to check relationship involving a product.
A new problem arises when using encryption of the polynomials: how can the prover be
sure that the encrypted value he receives have been computed correctly ? Additional
elements need to be appended to the proof in order to check that the prover indeed com-
puted the values v(s), w(s) and y(s) from the values of the families {vk(s)}, {wk(s)},

38 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

{yk(s)}. Verifier also need to be convinced that the prover used the same linear combi-
nation while computing v, w and y. Additional elements in the proof enable the verifier
to check that last condition. In the sequel, we will describe the implementation of such
VC scheme as done by Parno et al.

The Pinocchio protocol [PHGR13]

Assume that C : Fn → Fn′ is an arithmetic circuit with d multiplicative gates and define
N as N = n + n′. By theorem 5, there exists a QAP Q = {V = (vk(x)),W =
(wk(x)),Y = (yk(x))}k∈{0,1,...,m} of size m := d + N and degree d that computes C.
Let denote G a symmetric bilinear group, g a generator of G and e the bilinear map
associated to G: e : G × G → GT . As the group G will be a subgroup of an elliptic
curve, we use additive notations for elements in G. Like in Parno et al. [PHGR13],
the protocol is described in a symmetric bilinear group but the actual implementation
leverages asymmetric bilinear groups for efficiency. Some background on symmetric and
asymmetric bilinear groups can be found in Section 2.2.3. The Pinocchio protocol is the
following:

KeyGen

• Pick rv, rw, s, αv, αw, αy, β, γ $← F
• Set ry = rv · rw, gv = [rv]g, gw = [rw]g and gy = [ry]g.
• Denote respectively IO the set of wire labels of the circuit corresponding to inputs
and outputs and NIO the wire labels of the intermediate values of the circuit: IO =
{0, . . . , N} and NIO = {N + 1, . . . ,m}. Therefore, the public evaluation key is:

EK=
{ {[vk(s)] · gv, [wk(s)] · gv, [yk(s)] · gv, [αvvk(s)] · gv, [αwwk(s)] · gv, [αyyk(s)] · gv}k∈NIO
{[βvk(s)] · gv + [βwk(s)] · gw + [βyk(s)] · gy}k∈NIO, {[si]g}i∈{0,...,d}

}
(3.17)

• The public verification key is:

V K =
{
g, [αv]·g, [αw]·g, [αy]·g, [γ]·g, [βγ]·g, [t(s)]·gy, {[vk(s)]·gv, [wk(s)]·gv, [yk(s)]·gv}k∈IO

}
(3.18)

Prove

• From input a = (a1, . . . , aN) ∈ FN , the prover computes y = C(a) and gets the
intermediate values (aN+1, . . . , am).
• Being in possession of a tuple (a1, . . . , am), the prover then computes the polynomial
p and the quotient polynomial: h = p/t (see definition 13).
• Using the evaluation key EK, the prover builds the proof, which has 8 elements, as:

π =

[vNIO(s)] · gv, [wNIO(s)] · gw, [yNIO(s)] · gy, [h(s)] · g,

[αvvNIO(s)] · gv, [αwwNIO(s)] · gw, [αyyNIO(s)] · gy,
[βvNIO(s)] · gv + [βwNIO(s)] · gw + [βyNIO(s)] · gy

 (3.19)

where vNIO(x) =
∑

i∈NIO
aivi(x), wNIO(x) =

∑
i∈NIO

aiwi(x) and yNIO(x) =
∑

i∈NIO
aiyi(x)

3.3. VERIFIABLE COMPUTATION FROM NON-INTERACTIVE ARGUMENTS 39

Verify

Upon receiving a claimed proof π, the verifier parses the proof as:

π = {[VNIO] · g, [WNIO] · g, [YNIO] · g, [H] · g, [V ′NIO] · g, [W ′
NIO] · g, [Y ′NIO] · g, [Z] · g}

(3.20)
and then proceeds as follows:

• leveraging the public verification key, the verifier computes the following values:

[vIO(s)] · gv =
∑
k∈IO

[ak] · ([vk(s)] · gv) (3.21)

[wIO(s)] · gw =
∑
k∈IO

[ak] · ([wk(s)] · gw) (3.22)

[yIO(s)] · gy =
∑
k∈IO

[ak] · ([yk(s)] · gy) (3.23)

• using the pairing e, the verifier first performs the divisibility check:

e([v0(s)] · gv + [vIO(s)] · gv + [VNIO] · g, [w0(s)] · gw + [wIO(s)] · gw + [WNIO] · g)
= e([t(s)] · gy, [H] · g)× e([y0(s)] · gy + [yIO(s)] · gy + [YNIO] · g, g)

(3.24)

Then he verifies that the values sent by the prover were indeed computed as linear
combination of the vk, wk and yk polynomials:

e([V ′NIO] · g, g) = e([VNIO] · g, [αv] · g)
e([W ′

NIO] · g, g) = e([WNIO] · g, [αw] · g)
e([Y ′NIO] · g, g) = e([YNIO] · g, [αy] · g)

(3.25)

Finally, the verifier checks that, in the calculation of the polynomial p, the prover
provided the same coefficient for the linear combinations involving the vk, wk and yk
polynomials:

e([Z] · g, [γ] · g) = e([VNIO] · g + [WNIO] · g + [YNIO] · g, [βγ] · g) (3.26)

Making the proof zero-knowledge

In a genuine proof, the correctness of a computation is checked via the divibility check
performed in (3.24), which verifies if the polynomial p computed from the circuit is
indeed divisible by the target polynomial t. Adding a random multiple to each of the
proof elements does not change the divisibility by t but it has the effect of randomizing
the proof. Gennaro et al. [GGPR13] showed that such proof is zero-knowledge, in the
sense that the prover can provide inputs that will not be revealed in the proof. Parno et
al. [PHGR13] show how to modify the evaluation keys to compute this zero-knowledge
proof: they add multiples of t(s) to help the prover in building the randomized proof.
Compared to a plain proof, the computation of the zero-knowledge proof requires few
additional operations. Such zero-knowledge proofs are examples of zk-SNARKs (see
Section 2.1.4): the succinctness is achieved because the proof has constant size.

40 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

Security of Pinocchio

The security of Pinocchio relies on the q-power knowledge of exponent (q-PKE), the
q-power Diffie-Hellman (q-PDH assumptions) and the q-strong Diffie-Hellman (q-SDH).
The q-power knowledge of exponent and q-power Diffie-Hellman assumptions have been
defined by Groth [Gro10] and the q-strong Diffie-Hellman assumption by Boneh and
Boyen [BB04]. The q-PDH assumption roughly states that even if an adversary knows
a sequence of powers of a secret value s encrypted in points of G except one of the power,
it can recover the missing one only with negligible probability. The q-SDH assumption
states that an adversary seeing consecutive powers of a secret value s encrypted in points
of G cannot build a value in the target group GT that depends on s. Finally, the q-PKE
assumption states that if an adversary sees consecutive powers of s and consecutive
powers of αs for a randomly chosen secret α, it is impossible to compute a power of αs
without knowing the value α.

The intuition behind these assumption is the following:

• If the q-PKE assumption holds then the adversary must have build the terms
[vNIO(s)] · gv and [αvvNIO(s)] · gv by respectively computing a linear combination
of the terms [vk(s)] · gv and of [αvvk(s)] · gv.

• If the q-PDH assumption holds then the adversary must have used the same linear
combination while computing the polynomials vNIO, wNIO and yNIO.

• If the 2q-SDH assumption holds then the adversary must have computed an en-
crypted value of the polynomial h(s) that is indeed the result of the division of the
polynomial p(x) by t(x) evaluated at s.

Parno et al. [PHGR13] show that if the QAP computed from the circuit to verify
has d multiplicative gates, their protocol is sound under the d-PKE, (4d+4)-PDH and
(8d+8)-SDH assumptions.

Pinocchio and SNARKs

Bitansky et al. defined the notion of Succinct Non-Interactive Argument of Knowl-
edge [BCCT12] (SNARK) in [BCCT12]. The difference with non-interactive arguments
resides in the length of the resulting argument: SNARK proofs for non-deterministic
computations are independent of the size of the witness. Groth [Gro10] gave the first
argument with constant size at the expense of a long common reference string (CRS),
whose size was later decreased by Lipmaa [Lip12]. Groth’s arguments have 42 group el-
ements. Gennaro et al.’s SNARK construction [GGPR13] enables to build an argument
with only 9 group elements. Parno et al.’s Pinocchio [PHGR13] gives an argument with
8 group elements.

Let C be a NP-statement, expressed as an arithmetic circuit over a finite field F and
λ be a security parameter. We denote by w a witness of a valid statement. A zk-SNARK
scheme is defined by three polynomial-time algorithms (KeyGen, Prove, Verifiy), such
that:

• (ekC, vkC) ← KeyGen(1λ, C): the randomized KeyGen algorithm takes as input a
security parameter and an arithmetic circuit and produces two public keys, an
evaluation key ekC and a verification key vkC.

3.3. VERIFIABLE COMPUTATION FROM NON-INTERACTIVE ARGUMENTS 41

• (y, π) ← Prove(ekC, x, w): the deterministic Prove algorithm, takes as inputs a
value x, a witness w and the evaluation key ekC and outputs y = C(x,w) along
with a proof π that y has been correctly computed.

• {0, 1} ← Verify(vkC, x, y, π): the deterministic Verify algorithm takes the in-
put/output (x, y) of the circuit C, the proof π and the verification key vkC and
outputs 1 if there exists a witness w such that y = C(x,w) and 0 otherwise.

A zk-SNARK reaches the following security properties that we first describe informally.

• Completeness: if there exists a satisfying witness for the statement C, the verifier
should always accept a proof produced by an honest prover.

• Proof of knowledge: if the proof of a statement C is accepted by the verifier, it
means that not only a witness exists for the statement but also that the prover
indeed knows this witness. This is formalized with an efficient algorithm that is
able to extract the witness from the proof.

• Zero-knowledge: the proof reveals no more information about the witness that
what could be inferred from the result of the computation. This is formalized with
an algorithm that can simulate proofs, zero-knowledge is thus reached if a verifier
cannot distinguish between a proof produced by the prover and a proof produced
by the simulator.

• Efficiency: the proof has a polynomial size in the security parameter and the
verifier algorithm runs in time that is polynomial in the security parameter and
the input length.

3.3.4 zk-SNARK formal definition

We use Ben-Sasson et al. [BCG+13] definitions of zk-SNARKs.

Definition 14. A triple of algorithms (KeyGen, Prove, Verify) is a publicly verifiable
zk-SNARK if the following conditions are satisfied.

1. Completeness: for every large enough security parameter λ, every circuit C :
{0, 1}n×{0, 1}h → {0, 1}, every input x ∈ {0, 1}n and every assignment a ∈ {0, 1}h
with (x, a) ∈ RC,

Pr

[
Verify(vkC, x, π)

∣∣∣∣∣ (ekC, vkC) ← KeyGen(1λ, C)
π ← Prove(ekC, x, a)

]
= 1

2. Proof of knowledge: for every polynomial size prover P ∗ there exists a polynomial
size extractor E such that for every constant c > 0, large enough security parameter
λ ∈ N, every auxiliary input z ∈ {0, 1}poly(λ) and every circuit C : {0, 1}n ×
{0, 1}h → {0, 1} of size λc,

Pr

 Verify(ekC, x, π) = 1
(x, a) /∈ R

∣∣∣∣∣∣∣
(ekC, vkC) ← KeyGen(1λ, C)

(x, π) ← P ∗(z, ekC, vkC)
a ← E(z, ekC, vkC)

 6 negl(λ)

42 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

3. Zero knowledge: there exists a stateful interactive polynomial size simulator S such
that for all stateful interactive polynomial size distinguisher D, constant c, large
enough security parameter λ ∈ N, every auxiliary input z ∈ {0, 1}poly(λ) and every
circuit C : {0, 1}n × {0, 1}h → {0, 1} of size λc, such that the two distributions
(3.27) and (3.28) above are statistically close:

Pr

 (x, a) ∈ R
D(π) = 1

∣∣∣∣∣∣∣
(ekC, vkC) ← KeyGen(1λ, C)

(x, π) ← D(z, ekC, vkC)
π ← Prove(ekC, x, a)

 (3.27)

Pr

 (x, a) ∈ R
D(π) = 1

∣∣∣∣∣∣∣
(ekC, vkC, trap) ← S(1λ, C)

(x, a) ← D(z, ekC, vkC)
π ← S(z, ekC, x, trap)

 (3.28)

4. Efficiency: there is a universal polynomial p such that for every large enough secu-
rity parameter λ ∈ N, every circuit C : {0, 1}n×{0, 1}h → {0, 1}, input x ∈ {0, 1}n
and assignment a ∈ {0, 1}h with (x, a) ∈ RC,

• the verifying algorithm runs in time p(λ+ |x|)
• an honestly generated proof has size p(λ).

3.3.5 Groth’s zk-SNARK (Groth16)

Bitansky et al. [BCI+13] noticed that Gennaro et al.’s QAP construction [GGPR13] did
not follow the framework often used to design arguments. Usually, designers start from
an information-theoretic proof system, such as e.g. a PCP, and restrict the possibility
of the prover by the mean of cryptographics tool applied to the information-theoretic
proof system. They came up with an information-theoretic framework called linear-
interactive proofs that can then be compiled into a SNARK, provided that the prover
of the information-theoretic framework is restricted to compute linear functions of the
messages exchanged with the verifier during the protocol. This framework is compiled
into an argument by the mean of an homomorphic encryption scheme that restricts
the prover to perform linear operations on the ciphertexts. The verifier can then en-
crypt queries and send them to the prover that can only perform linear operations on
the query due to the encryption scheme. Bitansky et al. show that Gennaro et al.’s
SNARK construction [GGPR13] fits into the linear interactive proof framework: the
QAP construction induces a linear interactive proof and the encryption scheme (in the
bilinear group) is homomorphic. The location of the queries to the linear interactive
proof are encrypted and stored in the common reference string (CRS) of the scheme.
They correspond to the encryption of the QAP evaluations at a random point, denoted
by s above. Since the prover does not know the value s and cannot recover it from
the encrypted values in the CRS, he is only able to compute linear combinations of the
encrypted values to compute the proof. Note that the prover can also be restricted to
perform affine operations on the messages if the encryption of the constant 1 is added
in the common reference string.

Following Bitansky et al. [BCI+13], Groth [Gro16] proposed the most efficient QAP-
based SNARK: the proof only consists of 3 group elements. Groth also proves that in the
linear interactive proof framework, it is impossible to build a SNARK that has only one
group for the proof. Groth’s construction is thus quasi-optimal since there is only place

3.3. VERIFIABLE COMPUTATION FROM NON-INTERACTIVE ARGUMENTS 43

left for a SNARK that has 2 group elements. We describe Groth’s SNARK construction
in the sequel. It takes place in an asymmetric bilinear group (G1,G2,GT , e, g) where:

• G1,G2 and GT have order p, a prime number,

• The pairing e : G1 ×G2 → GT is a bilinear map,

• g is a generator of G1, h a generator of G2 and e(g, h) a generator of GT .

To simplify the notations, elements in the groups are represented by their logarithms:
[α]1 stands for [α] · g, [α]2 stands for [α] · h while [α]T stands for e(g, h)α. Note that the
pairing enables to write ‘products’ between elements of G1 and G2, the result belongs
to the target group GT . Writing [α]1 · [β]2 = [α · β]T makes sense since:
e([α]1, [β]2) = e([α] · g, [β] · h) = e(g, h)αβ = [αβ]T .

KeyGen

• Pick α, β, γ, δ, s $←− F∗p.
• Define τ = (α, β, γ, δ, s)
• Compute σ = (σP , σV), where:

σP =

[α]1, [β]1, [β]2, [δ]1, [δ]2, [γ]2, {[si]1}n−1

i=0 , {[si]2}n−1
i=0 ,

{[
βui(s) + αvi(s) + wi(s)

γ

]
1

}`
i=0

,

{[
βui(s) + αvi(s) + wi(s)

δ

]
1

}m
i=`+1

,

{[
sit(s)
δ

]}n−2

i=0

(3.29)

σV =
[1]1, [α]1, [1]2, [α]2, [γ]2, [δ]2,

{[
βui(s) + αvi(s) + wi(s)

γ

]
1

}`
i=0

 (3.30)

Prove(σ, a1, . . . , am)

• Pick rA, rB $←− Fp
• Compute:

[A]1 =
[
α +

m∑
i=0

aiui(s) + rAδ

]
1

(3.31)

[B]2 =
[
β +

m∑
i=0

aivi(s) + rBδ

]
2

(3.32)

[C]1 =
[
m∑
i=0

ai(βui(s) + αvi(s) + wi(s))
δ

+ h(s)t(s)
δ

+ ArB +BrA + rArB δ

]
1

(3.33)

• The proof is π = ([A]1, [B]2, [C]1).

Verify(σ, π, a1, . . . , a`))

• Parse π as ([A]1, [B]2, [C]1) ∈ G2
1 ×G2.

44 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

• Accept π if and only if:

e([A]1, [B]2) = e([α]1, [β]2) + e

(∑̀
i=0

ai

[
βui(s) + αvi(s) + wi(s)

γ

]
,

)
+ e([C]1, [δ]2)

(3.34)

The verifier performance can be improved by replacing the two values [α]1 and [β]2 in
the verification key σV by the value [αβ]T . This replacement removes a pairing operation
for the verifier: instead of computing e([α]1, [β]2) the verifier has already access to this
value because it is equal to [αβ]T . Note that the proof is zero-knowledge by design since
the three elements of the proof are randomized: [A]1 contains rAδ, [B]2 contains rBδ
and [C]1 contains rArBδ.

Security

In the linear interactive proof (LIP) framework, once the information-theoretic proof
scheme is defined there are different ways to compile the proof scheme into an argument.
Groth chooses to compile its LIP that contains 3 group elements into an argument that
also contains 3 group elements. This ‘aggressive’ compilation comes at the expanse of
a stronger cryptographic assumption, namely the generic group model [Sho97]. In this
model, it is assumed that an adversary only has a black-box access to group operations
of the curve. For instance, to add two points on the curve, the adversary has to query
an addition oracle by sending the two points he wants to add. The oracle then sends
back the adversary the sum of the two given points.

3.3.6 A remark on the setup phase

Parno et al.’s protocol and Groth’s protocol both require a setup phase (the KeyGen
algorithm). The phase generates secret values, notably the value s where the polynomials
will be evaluated. The KeyGen algorithm must be run by a trusted party because anyone
in possession of the secret values generated during the setup can forge proofs of incorrect
statements that will nonetheless be accepted. Campanelli et al. [CGGN17] build and
implement attacks on a zk-SNARK protocol by first tampering the KeyGen phase. They
are then able to break the zero-knowledge property of the scheme.

To ensure that the setup phase was run properly, Ben-Sasson et al. [BCG+15] design
a secure multiparty computation protocol to securely run the KeyGen protocol as long
as at least one participant of the protocol is honest.

Another line of work builds on the notion of subversion-resistant protocols [BFS16]
to design a different KeyGen algorithm where the resulting evaluation and verification
keys consistency can be checked [Fuc18, GKM+18].

3.4 Highlighting the Gaps

The objective of our study is general-purpose verifiable computation aiming at practi-
cality. Therefore, one of the main goals is to increase the verifier’s efficiency without
sacrificing the prover’s. Table 3.2 summarizes the complexity of verifiers and provers
in the schemes described in the chapter while table 3.3 sums up the expressiveness of
such schemes. As mentioned in Section 3.1, interactive proofs yield very efficient VC

3.4. HIGHLIGHTING THE GAPS 45

Prover Verifier Bandwidth / Proof size
Interactive linear sub-linear sub-linearProofs
Interactive linear sub-linear sub-linearArguments

Non-interactive linear (crypto ops) linear in the constantArguments quasi-linear (non-crypto ops) input size

Table 3.2 – Performance of state of the art VC schemes (except when mentioned, complexi-
ties depend on the circuit size).

protocols: for some class of computations, the state of the art protocols achieve com-
plexity linear in the circuit size for the prover and sublinear complexity for the verifier,
which reaches the goal mentioned above. However these protocols are not fully general-
purpose: in order to be efficient the computation to verify must be structured like a
parallel computation with the same subcomputation repeated several times, e.g. at least
ten times in [WTS+18] for the scheme to reach efficiency for the verifier.

More general computations, notably non-deterministic computations, can be verified
using arguments as described in Section 3.2. However, these protocols are built from
interactive proofs and, even though they allow for interesting properties and help pre-
serve the prover’s efficiency, their drawback is the requirement for interaction between
the verifier and the prover to establish the argument and the resulting communication
overhead. Moreover, the expressiveness in terms of the variety of computations that can
be verified is not fully achieved: there still are some class of computations that do not
lend themselves to efficient verification.

Non-interactive verifiable computation schemes leveraging QAP-based non-interactive
arguments achieve several interesting properties: they can deal with virtually every kind
of computation, the proof has constant and short size regardless of the complexity of
the computation to verify and therefore the verification is very efficient. Moreover,
such QAP-based schemes have additional properties like public verifiability or perfect
zero-knowledge for the proof. Such schemes seem to perfectly fit our requirement for
general-purpose VC schemes, however the drawback is the large computation overhead
for the prover: for a circuit with N multiplication gates, the complexity of the state
of the art prover is O(N logN) non-cryptographic work and O(N) cryptographic work:
there is at least one public-key cryptographic operation for each multiplication gate to
produce the proof. Compared to the interactive prover designed by Thaler [Tha13] that
has a O(N) complexity, with no public-key cryptographic operations, the difference in
efficiency is huge. Therefore, there is room for improvement of non-interactive prover’s
efficiency. This raises the following question:
Is it possible to improve the efficiency of the prover in VC systems while keeping a
general-purpose protocol and the succinctness of the proof ?
Ideally, such VC system should achieve the following requirements:

• It should be expressive: the VC system should be able to verify any NP-problem.
A VC system able to deal with a large subset of a high-level programming language
would meet such a requirement.

• The entities involved in the VC scheme should be efficient: ideally the prover
should not have much more work than executing the circuit that implements the

46 CHAPTER 3. STATE OF THE ART IN VERIFIABLE COMPUTATION

Expressiveness
Auxiliary inputs support Circuit types

Interactive proofs No Low-depth circuits
Interactive Arguments Yes Low-depth circuits

Non-interactive Arguments Yes All

Table 3.3 – Expressiveness of state of the art VC schemes.

function to verify, while the verifier should not have more work than reading the
input of the outsourced computation to verify the correctness of the computation.
As a consequence, proofs produced by the prover should be short (constant size or
at least polylogarithmic in the input size).

• With practicality in mind, the VC system should not only have good asymptotics
for the prover, the verifier and the proof size as required above but it should also
exhibit good hidden constants in these asymptotics such that the implementation
of the scheme in a prototype would be efficient.

In the sequel, we propose to leverage proof composition to define a VC scheme approach-
ing the above goals: we embed efficient but specialized protocols into a state-of-the-art
non-interactive scheme. The resulting scheme preserves the proof succinctness and a
high degree of expressiveness while increasing the efficiency of the prover.

Chapter 4
Proof Composition

4.1 Motivation: increase prover’s efficiency in machine learn-
ing algorithms

While achieving excellent results in diverse areas, machine learning algorithms require
expertise and a large training material to be fine-tuned. Outsourcing machine learning
algorithms helps users to deal with large amounts of data without the need to develop
the expertise required by these algorithms. Therefore, cloud providers such as Amazon
or Microsoft have started offering Machine Learning as a Service (MLaaS) to perform
complex machine learning tasks. Outsourcing however raises severe security issues due
to potentially untrusted service providers and raises a new requirement: in the face
of potentially malicious service providers, the users need additional guarantees to gain
confidence in the results of outsourced computations. Verifiable computing (VC) tackles
some of these issues by providing computational integrity for an outsourced computation
and provides proofs of computational integrity without any assumptions on hardware
or on potential failures. Existing VC systems can theoretically prove and verify all
NP computations (see chapter 3 for details), nevertheless, despite the variety of ex-
isting solutions, existing VC schemes have to make trade-offs between expressiveness
and functionality, see Section 3.4. Therefore, they cannot efficiently handle the ver-
ifiability of a sequence of operations with a high variance in nature and complexity,
like the ones involved in machine learning techniques. Even if expressive VC schemes
such as Pinocchio [PHGR13] can ensure the verifiability of a machine learning algo-
rithm, the cryptographic work required to produce the proof prevents from dealing with
large but simple computations such as matrix multiplications. On the other hand, some
schemes like Cormode et al.’s CMT [CMT12] are very efficient and can deal with large
computations, e.g. large matrix multiplications, but cannot handle the variety of even
very simple operations such as integer comparisons. Hence there is a need for a VC
scheme that achieves both efficiency by handling complex operations and expressiveness
through the variety of types of operations it can support. In this chapter, we propose
a scheme that combines a general purpose VC scheme like Pinocchio and various spe-
cialized VC schemes that achieve efficient verification of complex operations like large
matrix multiplications. We denote by GVC the general purpose VC scheme and EVC
the specialized VC schemes.

Existing works have already considered the problem of outsourcing machine learning

47

48 CHAPTER 4. PROOF COMPOSITION

algorithms: in SafetyNets [GGG17], Ghodsi et al. build an interactive proof protocol
to verify the execution of a deep neural network on an untrusted cloud. This approach,
albeit efficient, has several disadvantages over ours. The first is that expressivity of the
interactive proof protocol used in SafetyNets prevents using state of the art activation
functions such as ReLU. Following CryptoNets [GDL+16], Ghodsi et al. replace ReLU
functions by a quadratic activation function, namely x 7→ x2, which squares the input
values element-wise. The fact that square activation functions have unbounded deriva-
tive causes instability on the neural network training, as mentioned in [GDL+16]. A
second disadvantage is the impossibility for the prover to hide some of his inputs, i.e. to
prove a non-deterministic computation (see Section 3.1.2). As a consequence, the veri-
fier and the prover of SafetyNets have to share the neural network model, namely the
values of the matrices that represent the linear operations of the neural network. This
situation is quite unusual in machine learning: since the training of neural networks is
expensive and requires a large amount of data, powerful hardware and technical skills
to obtain a classifier with good accuracy, it is unlikely that cloud providers share their
models with users. In contrast, with our proposed method the prover could keep the
model private and nonetheless be able to produce a proof of correct execution.

4.2 State of the Art in Proof Composition

4.2.1 Ben Sasson et al.’s Recursive Composition of zk-SNARKs

Building on Valiant’s incrementally verifiable computations [Val08], Bitansky et al.
[BCCT13] develop recursive composition for SNARKs by proving there exists a SNARK
that produces a proof that i) a computation has been carried out correctly, ii) a pre-
vious SNARK proof has passed the verification. Albeit proving the existence of such
recursive composition under reasonable assumptions, Bitansky et al.’s work is essentially
theoretical.

In [BCTV14a], Ben Sasson et al. take Bitansky et al.’s theoretical work and tackle
several challenges to obtain a concrete instantiation of recursive SNARKs. If efficient,
the resulting systems would allow to divide a complex program to verify into several
smaller parts, to produce a proof for each sub-part and, via recursive composition, to
compress the proofs into a single short proof. The high level idea of the Ben-Sasson
et al.’s proof system is to prove or verify the satisfiability of an arithmetic circuit that
checks the validity of the previous proofs. Thus, the verifier should be implemented as
an arithmetic circuit and used as a sub-circuit of the next prover. However, SNARKs
verifiers perform the verification checks using an elliptic curve pairing and it is mathe-
matically impossible for the base field to have the same size as the elliptic curve group
order. Ben-Sasson et al. therefore propose a cycle of elliptic curves to enable proof
composition. When two such elliptic curves form a cycle, the finite field defined by the
prime divisor in the group order of the first curve is equal to the base field (or field
of definition) of the second curve and vice versa. Although proofs can theoretically
be composed as many times as desired, this method has severe overhead, as shown by
experimental results in the paper. The method we propose in this chapter has a more
limited spectrum than Ben-Sasson et al.’s but our resulting system is still general pur-
pose and enjoys the property of the GVC system, such as succinctness or efficiency for
the prover. Furthermore, our proposal improves the prover time, replacing a part of
a computation by sub-circuit verifying the sub-computation that can then be executed

4.3. EMBEDDED PROOFS 49

outside the prover.

4.2.2 Costello et al.’s Geppetto

Building on Pinocchio [PHGR13], Costello et al. design a proof system called Geppetto
[CFH+15] that can deal with computations decomposed into smaller sub-computations
that share values. Their system produces as many proofs as there are sub-computations.
They further adapt the recursive composition proposed by Ben Sasson et al. [BCTV14a]
to end with a single proof for the whole computation: noticing that, although Ben Sas-
son et al. technique enables to compose an unbounded number of proofs, their recursive
composition technique is way inefficient, Costello et al. limit the number of proof that
can be composed. Therefore, they are able to choose more efficient and secure (128 bit
instead of 80 bit of security) elliptic curves to embed the verification algorithm of the
sub-proofs. Compared to our proposal, the drawback remains similar since the outer
elliptic curve still has to verify a pairing computation. Besides, Geppetto also leverage
commitments for computations that share states and the verification of these commit-
ments also incurs overheads. Finally, even if Geppetto increases the expressiveness of
Pinocchio and obtains an efficient verifier with proof composition, the efficiency of the
prover is not improved.

4.3 Embedded Proofs

4.3.1 Problem Statement

Most applications involve several sequences of function evaluations combined through
control structures. Assuring the verifiability of these applications has to face the chal-
lenge that the functions evaluated as part of these applications may feature computa-
tional characteristics that are too variant to be efficiently addressed by a unique VC
scheme. For instance, in the case of an application that involves a combination of com-
putationally intensive linear operations with simple non-linear ones, none of the existing
VC techniques would be suitable since there is no single VC approach that can efficiently
handle both. This question is perfectly illustrated by the sample scenario described in
the previous section, namely dealing with the verifiability of Neural Network Algorithms,
which can be viewed as a repeated sequence of a matrix product and a non-linear acti-
vation function. For instance, a two layer neural network, denoted by g, on an input x
can be written as:

g(x) = W2 · f(W1 · x) (4.1)
Here W1 and W2 are matrices and f is a non-linear function like the frequently chosen
Rectified Linear Unit (ReLU) function x 7→ max(0, x). For efficiency, the inputs are
often batched and the linear operations involved in the Neural Network are matrix
products instead of products between a vector and a matrix. The batched version of
(4.1) therefore is:

g(X) = W2 · f(W1 ·X) (4.2)
where X is a batch of inputs to be classified.

In an attempt to assure the verifiability of this neural network, two alternative VC
schemes seem potentially suited: the CMT protocol [CMT12] based on interactive proofs
and Pinocchio [PHGR13]. CMT can efficiently deal with the matrix products but prob-
lems arise when it comes to the non-linear part of the operations since, using CMT,

50 CHAPTER 4. PROOF COMPOSITION

each function to be verified has to be represented as a layered arithmetic circuit (i.e.
as an acyclic graph of computation over a finite field with an addition or a multipli-
cation at each node, and where the circuit can be decomposed into layers, each gate
of one layer being only connected to an adjacent layer). Nevertheless the second com-
ponent of the neural network algorithm, that is, the ReLU activation function, does
not lend itself to a simple representation as a layered circuit. [GKR08] and [CMT12]
have proposed solutions to deal with non-layered circuits at the cost of very complex
pre-processing resulting in a substantial increase in the prover’s work and the overall
circuit size. Conversely, Pinocchio eliminates the latter problem by allowing for efficient
verification of the non-linear ReLU activation function while suffering from excessive
complexity in the generation of proofs for the products of large matrices (benchmarks
on matrix multiplication proofs can be found in [WB15]).

This sample scenario points to the basic limitation of existing VC schemes in effi-
ciently addressing the requirements of common scenarios involving several components
with divergent characteristics such as the mix of linear and non-linear operations as part
of the same application. The objective of our work therefore is to come up with a new VC
scheme that can efficiently handle these divergent characteristics in the sub-components
as part of a single VC protocol. We propose a new proof composition scheme where the
resulting VC scheme:

1. efficiently addresses the verifiability of a sequence of operations,

2. inherits the properties of the outer scheme, namely Pinocchio, and can thus provide
privacy for inputs supplied by the prover.

4.3.2 Idea of the Solution: Embedded Proofs

Our solution is based on a method that enables the composition of a general purpose
VC scheme suited to handle sequences of functions with one or several specialized VC
schemes that can achieve efficiency in case of a component function with excessive
requirements like very large linear operations. Without loss of generality, we apply the
method to a pair of VC schemes, assuming that one is a general purpose VC scheme,
called GVC, like Pinocchio [PHGR13], which can efficiently assure the verifiability of
an application consisting of a sequence of functions, whereas the other VC scheme
assures the verifiability of a single function in a very efficient way, like, for instance,
a VC scheme that can handle large matrix products efficiently. We call this scheme
EVC. The main idea underlying the VC composition method is that the verifiability
of the complex operation (for which the GVC is not efficient) is outsourced to the EVC
whereas the remaining non-complex functions are all handled by the GVC. In order to get
the verifiability of the entire application by the GVC, instead of including the complex
operation as part of the sequence of functions handled by the GVC, this operation is
separately handled by the EVC that generates a standalone verifiability proof for that
operation and the verification of that proof is viewed as an additional function embedded
in the sequence of functions handled by the GVC. Even though the verifiability of the
complex operation by the GVC is not feasible due to its complexity, the verifiability of
the proof on this operation is feasible by the basic principle of VC, that is, because the
proof is much less complex than the operation itself.

We illustrate the VC composition method using as a running example the Neural
Network defined with formula (4.2) in Section 4.3.1. Here, the application consists of

4.3. EMBEDDED PROOFS 51

t1 = f(x)
+ proof π1

t2 = g(t1)

y = h(t2)
+ proof π2

Proof that:

Verify(π1, t1, x) = 1

t2 = g(t1)

Verify(π2, y, t2) = 1

t1 , π1

t2

t3, π3

P1 (EVC1)

P2 (EVC2)

P (GVC)

Figure 4.1 – High level view of the embedded proofs

the sequential execution of three functions f , g and h (see Figure 4.1), where f and h
are not suitable to be efficiently proved correct by GVC while g is. Note that we consider
that g cannot be proved correct by any EVC systems or at least not as efficiently as with
the GVC system. The computation to verify is therefore y = h(g(f(x))). In our example,
the functions f , g and h are f : X 7→ W1 ·X, h : X 7→ W2 ·X and g : X 7→ max(0, X),
where X, W1 and W2 are matrices and g applies the max function element-wise to the
input matrix X.

In order to cope with the increased complexity of f and h, we have recourse to EVC1
and EVC2 that are specialized schemes yielding efficient proofs with such functions. πEVC1

denotes the proof generated by EVC1 on f , πEVC2 denotes the proof generated by EVC2 on
h and ΠGVC denotes the proof generated by GVC. For the sequential execution of functions
f , g and h, denoting t1 = f(x) and t2 = g(t1), the final proof then is:

ΠGVC

((
VerifEVC1(πEVC1 , x, t1) ?= 1

)
∧
(
g(t1) ?= t2

)
∧
(
VerifEVC2(πEVC2 , t2, y) ?= 1

))
. (4.3)

Here the GVC system verifies the computation of g and the verification algorithms of
the EVC1 and EVC2 systems, which output 1 if the proof is accepted and 0 otherwise.
We note that this method can easily be extended to applications involving more than
three functions, Section 4.4 describes the embedded proof protocol for an arbitrary
number of functions. Interestingly, various specialized VC techniques can be selected as
EVC based on their suitability to the special functions requirements provided that:

1. The verification algorithm for each EVC proof is compatible with the GVC scheme.

2. The verification algorithm for each EVC proof should have much lower complexity
than the outsourced computations (by the basic VC advantage).

3. The EVC schemes should not be VC’s with a designated verifier but instead publicly
verifiable [GGP10]. Indeed, since the prover of the whole computation is the verifier
of the EVC, no secret value should be shared between the prover of the EVC and the
prover of the GVC. Otherwise, a malicious prover can easily forge a proof for EVC
and break the security of the scheme.

52 CHAPTER 4. PROOF COMPOSITION

In the sequel, we present a concrete instance of our VC composition method using
a QAP-based VC scheme as the GVC and an efficient interactive proof protocol, namely
the Sum-Check protocol [LFKN90] as the EVC. We further develop this instance with
a Neural Network verification example. We first introduce the building blocks required
to instantiate our method in Section 4.3.3. Following our embedded proof protocol,
we describe a VC scheme involving composition in Section 4.4 and then specialize the
GVC and EVC schemes to fit the Neural Network use-case in section 4.5. We compute
the related costs of our algorithm in Section 4.6 and report experimental results on the
implementation of our scheme in Section 4.7. We finally prove the security of our scheme
in Section 4.8 and conclude in Section 4.9.

4.3.3 Building Blocks: Ajtai Hash Function

As mentioned in Section 4.3.1, our goal is to compute a proof of an expensive sub-
computation with the Sum-Check protocol and to verify that proof using the Pinoc-
chio protocol. The non-interactive nature of Pinocchio prevents from proving the sub-
computation with an interactive protocol. As explained in Section 3.1.1, we turn the
Sum-Check protocol into a non-interactive argument using the Fiat-Shamir transform
[FS86]. This transformation needs a hash function to simulate the challenges that would
have been provided by the verifier. The choice of the hash function to compute chal-
lenges in the Fiat-Shamir transformation here is crucial because we want to verify the
proof transcript inside the GVC system, which will be instantiated with the Pinocchio
protocol. This means that the computations of the hash function have to be verified by
the GVC system and that the verification should not be more complex than the execution
of the original algorithm inside the GVC system. For instance the costs using a standard
hash function such as SHA256 [Nat15] would be too high: [BCG+14] reports about
27,000 multiplicative gates to implement the compression function of SHA256. Instead,
we choose a hash function which is better suited for arithmetic circuits, namely the
Ajtai hash function [Ajt96] that is described in Section 2.2.2. Few gates are needed to
implement an arithmetic circuit for this hash function since it involves multiplications
by constants (the matrix A is public): to hash m bits, m multiplicative gates are needed
to ensure that the input vector is binary and 3 more gates are needed to ensure that
the output is the linear combination of the input and the matrix. With the parameters
selected by Kosba et al. in [KZM+15], this means that 1527 gates are needed to hash
1524 bits.

4.4 Embedded Proofs

4.4.1 High level description of the generic protocol

Let us consider two sets of functions (fi)1≤i≤n and (gi)1≤i≤n such that the fi do not
lend themselves to an efficient verification with the GVC system whereas the gi can be
handled by the GVC system efficiently. For an input x, we denote by y the evaluation
of x by the function gn ◦ fn ◦ . . . g1 ◦ f1. In our embedded proof protocol, each function
fi is handled by a sub-prover Pi while the gi functions are handled by the prover P .
The sub-prover Pi is in charge of the efficient VC algorithm EVCi and the prover P
runs the GVC algorithm. The steps of the proof generation are depicted in Figure 4.2.
Basically, each sub-prover Pi will evaluate the function fi on a given input, produce

4.4. EMBEDDED PROOFS 53

Verifier

r
$← F

VerifyGVC(πGVC, y, x, r)
?
= 1

Prover

t0 := x
For i = 1, . . . , n :

t2i−1 = fi(t2i−2)

compute proof πi for t2i−1

t2i = gi(t2i−1)
t2n := y

EVCi

Compute proof πGVC that:

For i = 1, . . . , n :{
Verify(πi, t2i−1, t2i−2) = 1

t2i = gi(t2i−1)

GVC

t0, . . . , t2n
π1, . . . , πn

x, r

y, πGVC

Figure 4.2 – Embedded proof protocol

a proof of correct evaluation using the EVCi system and pass the output of fi and the
related proof πi to P , who will compute the next gi evaluation and pass the result to
the next sub-prover Pi+1.

In the Setup phase, the verifier and the prover agree on an arithmetic circuit which
describes the computation of the functions gi along with the verification algorithms of
the proof that the functions fi were correctly computed. The pre-processing phase of
the GVC system takes the resulting circuit and outputs the corresponding evaluation
and verification keys.

In the query phase, the verifier sends the prover an input x for the computation
along with a random value that will be an input for the efficient sub-provers Pi.

In the proving phase, P1 first computes t1 = f(x) and produces a proof π1 of the
correctness of the computation, using the efficient proving algorithm EVC1. The prover
P then computes the value t2 = g1(t1) and passes the value t2 to P2, who computes
t3 = f2(t2) along with the proof of correctness π2, using the EVC2 proving system. The
protocol proceeds until y = t2n is computed. Finally, P provides the inputs/outputs
of the computations and the intermediate proofs πi to the GVC system and, using the
evaluation key computed in the setup phase, builds a proof πGVC that for i = 1, . . . , n:

1. the proof πi computed with the EVCi system is correct,

2. the computation t2i = gi(t2i−1) is correct.

In the verification phase, the verifier checks that y was correctly computed using
the GVC’s verification algorithm, the couple (y, πGVC) received from the prover, and
(x, r).

Recall that our goal is to gain efficiency compared with the proof generation of the
whole computation inside the GVC system. Therefore, we need proof algorithms with

54 CHAPTER 4. PROOF COMPOSITION

a verification algorithm that can be implemented efficiently as an arithmetic circuit
and for which the running time of the verification algorithm is lower than the one of
the computation. Since the Sum-Check protocol involves algebraic computations over
a finite field, it can easily be implemented as an arithmetic circuit and fits into our
scheme.

4.4.2 Protocol instance using Pinocchio and Sum-Check

In this section, we give a description of embedded proofs in the case where the functions
fi takes as input a matrix X and returns the product Wi ×X and the functions gi are
functions that no efficient VC system but GVC can verify. We use the Sum-Check protocol
to prove correctness of the matrix multiplications, as in [Tha13] and Pinocchio as the
global proof mechanism. We assume that the matrices involved in the fi functions do not
have the same sizes so there will be several instances of the Sum-Check protocol. It thus
makes sense to define different efficient proving algorithms EVCi. Indeed, the Pinocchio
system requires that the verification algorithms are expressed as arithmetic circuits in
order to generate evaluation and verification keys for the system. As the parameters
of the verification algorithms are different, the Sum-Check verification protocols are
distinct as arithmetic circuits. For the sake of simplicity, the Wi matrices are assumed
to be square matrices of size ni. We assume that ni ≥ ni+1 and we denote di = log ni.
We denote by H the Ajtai hash function (see Section 4.3.3 for details).

The protocol is the following:

Setup: • Verifier and Prover agree on an arithmetic circuit C description for the
computation. C implements both the evaluations of the functions gi and the
verification algorithms of the Sum-Check protocols for the n matrix multipli-
cations.
• (EKC, V KC)← KeyGen(1λ, C)

Query Verifier:

• generates a random challenge (rL, rR) such that: (rL, rR) ∈ Fd1 × Fd1

• sends the prover the tuple (X, rL, rR), where X is the input matrix of the
computation.

Proof :
For i = 1, . . . , n, Sub-prover Pi on input (T2i−2, rL, rR):

• computes the product T2i−1 = Wi × T2i−2, (denoting T0 := X)
• computes rLi

and rRi
by respectively selecting the di first component of rL

and rR,
• computes the multilinear extension evaluation T̃2i−1(rLi

, rRi
)

• computes, using serialized Sum-Check protocol, the proof πi of the evaluation
of the polynomial:

Pi(x) = W̃i(rLi
, x) · T̃2i−2(x, rRi

) (4.4)

where x = (x1, . . . , xdi
) ∈ Fdi .

• sends the tuple (T2i−2, T2i−1,Wi, πi, rLi
, rRi

) to prover P .

4.4. EMBEDDED PROOFS 55

Prover P computes the value T2i = gi(T2i−1) and sends (T2i, rL, rR) to the next
sub-prover Pi+1

Prover P , receiving from sub-provers the inputs {(T2i−2, T2i−1,Wi, πi, rLi
, rRi

)}i=1,...,n:

• Computes T̃2i−1(rLi
, rRi

).
• Parses πi as (Pi,1, ri,1, Pi,2, ri,2, . . . , Pi,d1 , ri,di

), where the proof contains the
coefficient of the degree two polynomials Pi,j that we denote by (ai,j, bi,j, ci,j)
if: Pi,j(x) = ai,jx

2 + bi,jx+ ci,j
• Verifies πi:

– Checks: Pi,1(0) + Pi,1(1) ?= T̃2i−1(rLi
, rRi

)
– Computes: ri,1 =

(∑
j rLi

[j]
)
·
(∑

j rRi
[j]
)

– For j = 2, . . . , di,
∗ Check: Pi,j(0) + Pi,j(1) ?= Pi,j−1(ri,j−1)
∗ Computes: ri,j as the product of components of the Ajtai hash function
output, i.e. ri,j = ∏3

k=1 H(ai,j, bi,j, ci,j, ri,j)[k]
– From T2i−2 andWi, computes the multilinear extensions: W̃i(rLi

, ri,1, . . . , ri,d1)
and T̃2i−2(ri,1, . . . , ri,d1 , rRi

)
– Checks that Pdi

(ri,di
) is the product of the multilinear extensions W̃i(rLi

, ri,1,. . . , ri,di
)

and T̃2i−2(ri,1,. . . , ri,di
, rRi

).
• Aborts if one of the previous checks fails. Otherwise, accepts T2i−1 as the
product of Wi and T2i−2.
• Repeat the above instructions for all the inputs until the proof πn has been
verified.
• Using Pinocchio, computes the final proof πGVC that all the EVCi proofs πi have
been verified and all the T2i values have been correctly computed from T2i−1.
• Sends (Y, πGVC) to the Verifier.

Verification Verifier:

• computes Verify(X, rR, rL, Y, πGVC)
• If Verify fails, rejects the value Y . Otherwise accepts the value Y as the
result of:

Y = gn(. . . (g2(W2(g1(W1 ·X)))) . . .)

4.4.3 Prover’s input privacy

Pinocchio is a QAP-based protocol (see Section 3.3) and Gennaro et al. proved in
[GGPR13] that their QAP-based protocol is statistical zero-knowledge for input pro-
vided by the prover. The combination of the proof of knowledge and zero knowledge
properties in the zk-SNARK proof enables the prover to provide some inputs for the
computation to be proved with Pinocchio for which no information will leak. Thus
in the complete example of figure 4.2, the verifier only knows t0, i.e. x and t2n, i.e.
y which are the input output of the global operation. Intermediate inputs, such as
ti, i = 1, . . . , 2n − 1, are hidden from the verifier even though they are taken into ac-
count during the verification of the intermediate proofs by the GVC prover. Therefore,
thanks to the zk-SNARKs the intermediate results are verified but not disclosed to the
verifier.

56 CHAPTER 4. PROOF COMPOSITION

4.5 Embedded proofs for Neural Networks

4.5.1 Motivation

In order to show the relevance of the proposed embedded proof scheme, we apply the re-
sulting scheme to Neural Networks (NN), which are machine learning techniques achiev-
ing state of the art performance in various classification tasks such as handwritten digit
recognition, object or face recognition. As stated in Section 4.3.1, a NN can be viewed
as a sequence of operations, the main ones being linear operations followed by so-called
activation functions. The linear operations are modeled as matrix multiplications while
the activation functions are non-linear functions. A common activation function choice
is the ReLU function defined by: x 7→ max(0, x). Due to the sequential nature of NNs, a
simple solution to obtain a verifiable NN would consist of computing proofs for each part
of the NN sequence. However, this solution would degrade the verifier’s performance,
increase the communication costs and force the prover to send all the intermediate re-
sults, revealing sensitive data such as the parameters of the prover’s NN. On the other
hand, even if it is feasible in principle to implement the NN inside a GVC system like
Pinocchio, the size of the matrices involved in the linear operations would be an obsta-
cle. The upper bound for the total number of multiplications Pinocchio can support as
part of one application is estimated at 107 [WSR+15]. This threshold would be reached
with a single multiplication between two 220×220 matrices. In contrast, our embedded
proof protocol enables to reach much larger matrix sizes or, for a given matrix size, to
perform faster verifications of matrix multiplications.

4.5.2 A use-case where input privacy is not required

Despite the fact that no efficient GVC built system can currently provide privacy for
the verifier’s input, verifiable computation of Neural Networks can still suit some real
life scenarios. State of the art face recognition systems use NNs [SKP15, TYRW14] to
extracts features from a face picture. The features are gathered in a vector, called a
(biometric) template, which has the property that if another extraction is performed
from the same individual, there will be a short Euclidean distance between the resulting
vector and the reference template of the individual. Note that some other distance
can also be considered. In contrast, extracting features based on another individual’s
face will yield a vector at a greater distance. Now, consider the case of e-passports:
such documents contain a chip in which information on the passport holder is written,
in particular the chip contains a digital picture of the holder. It could therefore be
interesting to add into the chip a reference template obtained using Neural Networks.
To increase the confidence in the resulting vector, a proof computed with a VC scheme
could be added, which would then allow to check that the template has been correctly
computed. In this use-case, the privacy of the verifier’s input is not required since the
information would already be stored in the passport chip.

4.5.3 A Verifiable Neural Network Architecture

We now describe how our proposed protocol can provide benefits in the verification of
a neural network (NN): in the sequel, we compare the execution of a GVC protocol on
a two layers NN with the execution of the embedded proof protocol on the same NN.
Since NN involve several matrix multiplications, embedded proofs enable substantial

4.6. COST EVALUATION 57

gains. See Section 4.7.2 for implementation report. We stress that we consider neural
networks in the classification phase, which means we consider that all the values have
been set during a training phase, using an appropriate set of labeled inputs.

The NN we verify starts with a fully connected layer combined with a ReLU activa-
tion layer. We then apply a max pooling layer to decrease the dimensions and finally
apply another fully connected layer. The execution of the NN can be described as:

input → fc → relu → max pooling → fc

The fully connected and the ReLU layers have been mentioned in Section 4.5. The
fully connected layer takes as input a value and performs a dot product between this
value and a parameter that can be learned, ofter called a weight. Gathering all the fully
connected layer weights in a matrix, the operation performed on the whole inputs is a
matrix multiplication. The ReLU layer takes as input a matrix and performs element-
wise the operation x 7→ max(0, x). We will denote X 7→ ReLU(X). The max pooling
layer takes as input a matrix and return a matrix with smaller dimensions. This layer
applies a max function on sub-matrices of the input matrix, which can be considered as
sliding a window over the input matrix and taking the max of all the values belonging
to the window. The size of the window and the number of inputs skipped between
two mapping of the max function (called stride) are parameters of the layer but do not
change during the training phase nor on the classification phase. Usually the stride value
and the filter size are set to 2, therefore a 2×2 window slide over the input matrix, with
no overlapping over the inputs. For a window size of f and a stride of s, we will denote
MaxPool the function taking as input a n × n matrix and returning a m × m matrix
such that: m = (n− f)/s+ 1 and applying the max function to the f × f window.

Denoting by W1 and W2 the matrix holding the parameters of the fully connected
layers, X the input matrix and Y the output of the NN computation, the whole com-
putation can be described as:

Y = W2 ·MaxPool(ReLU(W1 ·X)) (4.5)

The equation (4.5) can also be rewritten as a sequence of operations:

X → T1 = W1 ·X → T2 = ReLU(T1)→ T3 = MaxPool(T2)→ Y = W2 · T3 (4.6)

4.6 Cost evaluation

Regarding the embedded proofs protocol, we seek efficiency gains over the execution of
the complete function evaluation using the GVC system. The GVC system used as part
of the concrete instance in the cost study is Pinocchio and the main cost factor in this
protocol is the number of multiplicative gates of the arithmetic circuit to verify. The
main focus of the cost evaluation is thus the number of multiplications performed by
the GVC prover P .

Matrix multiplication cost.

For the example we developed in Section 4.4.2, we need to compare the cost of executing
a matrix multiplication in the Pinocchio system with the cost of implementing the
verification of the Sum-Check protocol inside Pinocchio. QAP encodes the constraints
of all multiplication gates of the circuit to verify, hence the last operation performed

58 CHAPTER 4. PROOF COMPOSITION

in the circuit cannot be an addition. In a matrix multiplication C = A · B, each
component ci,j of the product is the result of an operation ∑k ai,k · bk,j. Multiplications
between components are first performed and the product component ci,j is the addition
of the latter multiplications. The representation as a circuit has thus to add an extra
multiplication gate, which is a multiplication by 1, to enable the verification of the last
addition in the circuit constraints. Consequently, in the multiplication between n × n
matrices, the computation of each of the n2 component requires n + 1 multiplicative
gates in the corresponding arithmetic circuit.

To sum up, a circuit implementing matrix multiplication between two n×n matrices
requires (n+ 1)× n2 = n3 + n2 multiplication gates.

Sum-check verification cost.

The verification algorithm of the Sum-Check protocol has three parts. The first one
is the consistency checks for the received univariate polynomials, the second one is the
computation of multilinear extensions to perform the last check of the protocol while the
last one is the hash computation of the challenge in the serialized proof. In the sequel,
we assume that the sub-prover P has received a proof πEVC1 = (P1, r1, P2, r2, . . . , Pd, rd)
from sub-prover P1, where d = log n. The same reasoning would apply for P2.
Consistency checks. Recall that the verifier has to check if:P1(0) + P1(1) is equal to the
claimed value and if Pi(0) + Pi(1) = Pi−1(ri−1) for i = 2, . . . , d. If sub-prover P1 sends
the coefficient of the degree 2 polynomials Pi, which we will denote by ai, bi, ci, then the
check becomes:

ai + bi + 2ci = ai−1r
2
i−1 + bi−1ri−1 + ci−1

= (ai−1ri−1 + bi−1)ri−1 + ci−1. (4.7)

The cost of this check is 3 multiplicative gates for the equality testing (see [PHGR13])
and, using Horner algorithm, 2 multiplication gates for the Pi−1(ri−1) evaluation, the
computation of the left hand side being free. Adding the first check, which is only an
equality check, we obtain a cost of 5 · log n+ 3 multiplicative gates for (4.7).
Multilinear extension computation. For the final check, sub-prover P has to compute
the multilinear extension of the input matrices that we will denote by A,B,C for con-
venience. Suppose that A is a (n, n) matrix and denote d = log n. A can be interpreted
as a function A : {0, 1}d×d → F, associating to each index (i, j) value written in binary
form the value A(i, j). In the last step of the Sum-Check protocol, the verifier has to
compute Ã(rL, r1, . . . , rd), where rL = (rL1 , . . . , rLd

) ∈ Fd is the randomness sent to
the prover. Cormode et al. [CTY11] describe an algorithm to compute this multilin-
ear extension, using O(n × d) time and O(d) space. Vu et al. [VSBW13] proposed an
optimization of the previous algorithm, provided that the input data are not streaming
data. At the expanse of O(n) space, the multilinear extension computation decreases
to O(n) time. For convenience, we rewrite the randomness (r1, . . . , r2d). The algorithm
computes a table T which contains the values χ(w1,...,w2d)(r1, . . . , r2d). Denoting T (j) the
2j new values of the table that are computed at stage j, T (j)[(w1, . . . , wj)] is computed
using the fact that:

T (j)[(w1, . . . , wj)] = T (j−1)[(w1, . . . , wj−1)] · (wj · rj + (1− wj) · (1− rj)) (4.8)

Therefore, each stage of the table computation requires 3 multiplications, for a total

4.7. IMPLEMENTATION AND PERFORMANCE EVALUATION 59

of ∑2d
j=1 3 · 2j = 6n2 − 6 multiplications. As a comparison, using the Cormode et al.

algorithm would require 6n2 log n multiplications.
Challenge computations in the proof serialization. The Sum-Check protocol, as per-
formed for the matrix multiplication (Section 4.4.2), involves d rounds. The verifier
need to compute a hash value to check the challenge of the next round is correct.
Using Ajtai hash function with the parameters m = 1524, n = 3 (see Section 4.3.3),
the challenge at round i + 1 is computed as the product of the n = 3 components of
H(ai ‖ bi ‖ ci ‖ ri). The computation of each component is a linear combination of the
Ajtai matrix coefficients and since multiplication by constants are free in QAP-based VC
schemes, only three constraints are required to verify the hash computation and three
constraints to check the equality between the computed hash and the given challenge.
Therefore all the challenges are verified using 6d gates.

Gathering all the sub-costs, the overall cost to verify the Sum-Check protocol for
matrix multiplication is 18n2 + 11 log n− 15 gates.

4.7 Implementation and Performance Evaluation

We ran two sets of experiments to compare the cost of execution between our embedded
proof scheme and a baseline scheme using the GVC scheme. The first set focuses only on
the cost of a matrix multiplication since these are a relevant representative of complex
operations whereby the embedded proof scheme is likely to achieve major performance
gains. The second set takes into account an entire application involving several opera-
tions including matrix multiplications, namely a small neural network architecture see
Section 4.7.2 for an overall description.

4.7.1 Matrix multiplication benchmark

We implemented our embedded proof protocol on a 8-core machine running at 2.9 GHz
with 16 GB of RAM. The GVC system is Groth state of the art zk-SNARK [Gro16]
and is implemented using the libsnark library [lib] while the EVC system is our own
implemention of Thaler’s special purpose matrix multiplication verification protocol
[Tha13] using the NTL library [Sho].

The proving time reported in table 4.1 measures the time to produce the proof using
the EVC system and to verify the result inside the GVC system. For values of n higher
than 256 the proof using the GVC is not feasible (denoted unr. in the table) whereas
the embedded proof approach still achieves realistic performance.

Table 4.2 compares the key generation time using the embedded proof system with
the one using the GVC. Table 4.3 states the sizes of the proving key (PK) and the
verification key (VK) used in the previous scenarios.

Table 4.1 – Matrix multiplication proving time

n 16 32 64 128 256 512
Baseline (GVC only) 0.25 s 1.76 s 16.24 s 145.39 s unr. unr.

Embedded proofs 0.41 s 1.52 s 7.36 s 31.41 s 127.27 s 538.45 s

60 CHAPTER 4. PROOF COMPOSITION

Table 4.2 – Matrix multiplication key generation time

n 16 32 64 128 256 512
Baseline (GVC only) 0.48 s 3.17 s 20.05 s 150.48 s unr. unr.

Embedded proofs 0.56 s 1.67 s 5.96 s 25.52 s 77.35 s 284.82 s

Table 4.3 – Matrix multiplication key generation size

n 16 32 64 128 256 512
Baseline (GVC only) PK 984 Ko 7.33 Mo 56.5 Mo 443 Mo unr. unr.

Embedded proofs PK 1.14 Mo 3.29 Mo 11.4 Mo 43.4 Mo 171 Mo 680 Mo
Baseline (GVC only) VK 31 Ko 123 Ko 490 Ko 1.96 Mo unr. unr.

Embedded proofs VK 32 Ko 124 Ko 492 Ko 1.96 Mo 7.84 Mo 31.36 Mo

4.7.2 Two-Layer Verifiable Neural Network Experimentations

We implemented the verification of an example of 2-layer neural network, which can be
seen as one matrix multiplication followed by the application of two non-linear func-
tions, namely a ReLU and a max pooling function as described in Section 4.5. For our
experiments, the max pooling layers have filters of size 2×2 and no data overlap. Thus,
setting for instance the first weight matrix to 64× 64, the second weight matrix size is
32× 32; we denote by NN-64-32 such a neural network. Table 4.4a reports experiments
on a 2-layer neural network with a first 64×64 matrix product, followed by a ReLU and
a max-pooling function, and ending with a second 32×32 matrix product. Experimental
times for a NN-128-64 network (with the same architecture as above) are reported in
table 4.4b.

KeyGen PK size VK size Prove Verify
Baseline (GVC only) 59 s 148 MB 490 kB 25.48 s 0.011 s
Embedded proofs 44 s 123 MB 778 kB 16.80 s 0.016 s

(a) NN-64-32

KeyGen PK size VK size Prove Verify
Baseline (GVC only) 261.9 s 701.5 MB 1.96 MB 149.5 s 0.046 s
Embedded proofs 162.7 s 490 MB 3.1 MB 66.96 s 0.067 s

(b) NN-128-64

Table 4.4 – Experiments on 2-layer networks

Experiments show a proving time twice better than using the baseline proving system.
The overall gain is lower than for the matrix product benchmark because the other
operations (ReLU and max pooling) are implemented the same way for the two systems.
It should be noted that the goal of the implementation was to achieve a proof of concept
for our scheme on a complete composition scenario involving several functions rather
than putting in evidence the performance advantages of the scheme over the baseline,
hence the particularly low size of the matrices used in the 2-layer NN and an advantage

4.8. SECURITY EVALUATION 61

as low as the one in table 4.4a and table 4.4b. The gap between the embedded proof
scheme and the baseline using a realistic scenario with larger NN would definitely be
much more significant due to the impact of larger matrices as shown in the matrix
product benchmark.

4.8 Security Evaluation

Our embedded proof system has to satisfy the correctness and soundness requirements.
Suppose that we have a GVC and n EVC systems to prove the correct computation of
y = gn◦fn◦. . .◦g1◦f1(x). We will denote by EVCi, i = 1, . . . , n the EVC systems. We also
keep notations defined in Section 4.4: the value ti, i = 0, . . . , 2n represents intermediate
computation results, t2i−1 being the output of the fi function, t2i being the output of the
gi function, t0 := x and t2n = y. The above systems already satisfy the correctness and
soundness requirements. Let denote by εGVC the soundness error of the GVC system and
εEVCi

the soundness error of the EVCi system. Note that while the EVCi systems prove that
t2i−1 = fi(t2i−2) have been correctly computed, the GVC system proves the correctness of
2n computations, namely that the verification of the EVCi proofs has passed and that the
computations t2i = gi(t2i−1) are correct. Furthermore, the GVC system proves the correct
execution of the function F that takes as input the tuple (x, y, r, (ti)i=1,...,2n, (πi)i=1,...,n)
and outputs 1 if for all i = 1, . . . , n, VerifyEVCi

(πi, t2i−1, t2i−2) = 1 and t2i = gi(t2i−1). F
outputs 0 otherwise. For convenience, we denote by compn the function gn◦fn◦. . .◦g1◦f1.

4.8.1 Correctness

Theorem 6. If the EVCi and the GVC systems are correct then our embedded proof system
is correct.

Proof. Assume that the value y = compn(x) has been correctly computed. It means
that for i = 1, . . . , n, the values t2i−1 = fi(t2i−2) and t2i = gi(t2i−1) have been correctly
computed. Since the GVC system is correct, it ensures that the function F will pass the
GVC verification with probability 1, provided that its result is correct. Now, since the
EVCi systems are correct, VerifyEVCi

(t2i−1, t2i−2, πi) = 1 with probability 1.
Therefore, if y = compn(x) has been correctly computed, then the function F will

also be correctly computed and the verification of the embedded proof system will pass
with probability 1.

4.8.2 Soundness

Theorem 7. If the EVCi and the GVC systems are sound with soundness error respectively
equal to εEVCi

and εGVC, then our embedded proof system is sound with soundness error at
most ε := ∑

εEVCi
+ εGVC.

Proof. Assume that a p.p.t. adversary Aemb returns a cheating proof π for a result y′
on input x, i.e. y′ 6= comp(x) and π is accepted by the verifier Vemb with probability
higher than ε. We then construct an adversary B that breaks the soundness property
of either the GVC or of one of the EVC systems. We build B as follow: Aemb interacts
with the verifier Vemb of the embedded system until a cheating proof is accepted. Aemb
then forwards the cheating tuple (x, y, r, (ti)i=1,...,2n, (πi)i=1,...,n) for which the proof π
has been accepted. Since y′ 6= comp(x), there exists an index i ∈ {1, . . . , n} such that

62 CHAPTER 4. PROOF COMPOSITION

either t2i−1 6= fi(t2i−2) or t2i 6= gi(t2i−1). B can thus submit a cheating proof to the GVC
system or to one of the EVCi system, depending on the value of the index i.

Case t2i−1 6= fi(t2i−2)

By definition of the proof π, this means that the proof πi has been accepted by the
verification algorithm of EVCi implemented inside the GVC system. Aemb can then forward
to the adversary B the tuple (t2i−1, t2i−2, πi). Now if B presents the tuple (t2i−1, t2i−2, πi)
to the EVCi system, it succeeds with probability 1. Therefore, the probability that the
verifier Vemb of the embedded proof system accepts is:

Pr[Vemb accepts π] = Pr[VEVCi
accepts πi | Vemb accepts π]

× Pr[Vemb accepts π]
= 1× ε
> εEVCi

Thus B breaks the soundness property of EVCi.

Case t2i 6= gi(t2i−1)

This means that the proof π computed by the GVC system is accepted by Vemb even if
t2i 6= gi(t2i−1) has not been correctly computed. We proceed as in the previous case:
Aemb forwards B the cheating tuple and the cheating proof π. The tuple and the proof
break the soundness of the GVC scheme because we thus have:

Pr[Vemb accepts π] = ε ≥ εGVC

4.9 Conclusion

We designed an efficient verifiable computing scheme that builds on the notion of proof
composition and leverages an efficient VC scheme, namely the Sum-Check protocol
to improve the performance of a general purpose VC protocol, Pinocchio, in proving
matrix multiplications. As an application, our scheme can prove the correctness of a
neural network algorithm. We prove that our scheme is sound and give an efficiency
evaluation. We stress that the composition technique described in the article can be
extended to other efficient VC schemes and to an arbitrary number of sequential function
evaluations, provided that they respect the requirements defined in Section 4.3.2.

Chapter 5
Verifiable Computation and Zero-knowledge
Proofs

5.1 Motivation: short ZK proofs for NP computations

Some use-cases require that the prover hides parts of his inputs. One can think for exam-
ple of the Naor-Yung protocol [NY90] that turns an encryption scheme secure against
chosen plaintext attack into a scheme secure against ciphertext attack by encrypting
the same message under two different keys and proving that the resulting ciphertexts
encrypts the same message. Here the prover obviously cannot reveal the key used for en-
cryption to the verifier. Zero-knowledge (ZK) seems to be an adequate property for such
requirement, as long as the time to produce the proof does not degrade the efficiency
of the protocol. The first practical zero-knowledge proofs were designed for algebraic
statements, such as Schnorr’s identification protocol [Sch89] that is a zero-knowledge
proof of knowledge of a discrete logarithm and that leverages the algebraic structure
of multiplicative groups in its design. From discrete logarithm several other practical
ZK-proofs were designed, such as discrete logarithm equality [CP92] or proofs that a dis-
crete logarithm lies in a given interval [Bou00]. These protocols also leverage algebraic
structure and they have found practical applications due to their efficiency. While ZK
proofs for algebraic statements have efficient instantiations, there have been for a long
time few practical proposals of ZK proofs for generic statements. Yet, a zero-knowledge
proof of knowledge of a hash function pre-image or a zero-knowledge proof of knowledge
of an AES key are interesting and useful examples of such generic statements.

The lack of structure in such computations prevents from designing an ad hoc efficient
ZK proof and generic transformations, as proposed e.g. in [GMW86], are too inefficient
to be implementable in practice. Using secure two-party computation, Jawurek et al.
[JKO13] designed the first efficient ZK proofs for non-algebraic computations. Despite
an efficient proof computation, the drawback of their construction is the proof size and
the necessity of communication between the prover and the verifier to establish the
proof. Several state of the art VC schemes also achieve a zero-knowledge property that
ensures the proof does not leak information about the prover’s private inputs. QAP-
based VC schemes like Pinocchio [PHGR13] or Buffet [WSR+15] notably require few
extra work for the prover to get a zero-knowledge proof, turning the SNARK scheme
into a zk-SNARK scheme. Some other state-of-the-art schemes such as Groth’s scheme
[Gro16] are zk-SNARKs by design. Compared to generic transformations, the relative

63

64 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

efficiency of zk-SNARKs enables to compute zero-knowledge argument of knowledge
for computations that do not have a particular algebraic structure. And compared
to Jawurek et al.’s proof system, the size of zk-SNARKs proofs is way shorter and
require no communication. Moreover, when the prover can provide private inputs for a
computation, the efficiency requirement described in chapter 1 makes no longer sense
because the complete computation could not have been run by the sole verifier.

As a consequence of the above properties, zk-SNARKs schemes enable to design
practical protocols based on the commit and prove paradigm, where a party first commits
on a value and then proves that the committed value satisfies some property. Indeed,
since zk-SNARK schemes can prove in zero-knowledge non-algebraic computations, the
commitment can be instantiated with a hash function and a zero-knowledge proof that
a private value hashes into the committed value can be computed. Such a proof avoids
to reveal the committed value while providing guarantees that it indeed corresponds to
the commit. In the sequel, we present two contributions we made, building primitives
thanks to zk-SNARK schemes. Both contributions exploits the zero-knowledge property
of zk-SNARKs to provide privacy for some inputs of the prover and build on the commit
and prove paradigm.

The first zk-SNARK application we propose addresses the following problematic:
is it possible to perform modifications on an authenticated document while keeping a
notion of authenticity regarding the final document? Redactable signatures [JMSW02,
SBZ01, BBD+10] address this problem but they do not scale well regarding the signature
size. Indeed, redactable signatures consider a message as a set of blocks that can be
redacted separately and if the message has n blocks, then the signature is of size at
least O(n). In our proposal, we attach a proof generated by the mean of a zk-SNARK
scheme to the modified document. By the succinctness property of zk-SNARKs, the
proof has constant size, no matter the size of the document to modify. Hence, if the
document we want to redact is a large image for which each pixel can potentially be
redacted, the difference with redactable signatures is significant. In our protocol three
parties are involved: a document issuer who is in charge of generating and authenticating
the initial document, the client who receives the document from the document issuer
and can perform modification on this document. The last party is the service provider
who receives a redacted document and verifies its validity. In detail, the document
issuer produces the original document, computes a hash value from the document and
a random value and signs the hash. Then he passes the document, its signed hash and
the random value used in the hash computation process to the client. The client can
then redact some parts of the original document and keeps track of each modification
performed as a set of blocks that have been modified. Once this operation is done, the
client computes a proof that will be attached to the redacted document and that provides
authenticity. Finally, the client passes the redacted document, the hash value and the
set of locations of modification to the service provider. To verify the authenticity of the
redacted document, the service provider checks that the hash value is authentic thanks
to its signature; if the verification passes, the hash value and the redacted document are
given as inputs to the proof verification algorithm. If the signature of the hash and the
proof verification both pass, the service provider can be confident that the document is
authentic. The proof is computed thanks to a zk-SNARK scheme and proves that:

• there exists a document that hashes into the given hash,

• the only differences between the original document and the redacted one lie in the

5.2. VERIFIABLE DOCUMENT REDACTING 65

set of modification locations.

The public verifiability of existing zk-SNARKs schemes facilitate the possibility that
multiple service providers adopt our verifiable redaction scheme. The zero-knowledge
property guarantees that the proof will not reveal any information about the original
document. Finally the zk-SNARK knowledge soundness property along with the un-
forgeability property of the signature scheme provide an unforgeability property to the
scheme: an adversary not in possession of the original message cannot create a redacted
document and a proof that will be accepted by the verifier.

Our second zk-SNARK application is a privacy-preserving biometric authentication
protocol where, thanks to zk-SNARK, the user performs self-authentication and proves
that the authentication process was correctly done. The protocol builds on the ’commit
and prove’ paradigm: the user commits to biometric templates and later proves that
these committed values match. Thanks to the expressiveness of zk-SNARK schemes, it
is possible to instantiate the commitment with hash functions and to recompute the hash
value from the template. The proof of knowledge property of zk-SNARKs guarantees
that if the proof is accepted, not only there exists matching templates but also the user
is indeed in possession of them. Leveraging the zero-knowledge property of zk-SNARKs,
the computation for which we prove correctness provides a privacy-preserving authenti-
cation: if an authentication is successful, the authentication server learns nothing except
the fact that there exists two biometric templates – one that has been registered in front
of a trusted authority and another one that has been freshly captured – that match and
never gets any templates in clear. As a byproduct of self-authentication, the architecture
of our authentication process is simplified compared to most of the privacy-preserving
authentication schemes that split the traditional authentication server into a computa-
tional and an authentication server. The succinctness property of zk-SNARKs limits the
communication cost with the authentication server: the user initializes the communica-
tion by sending his identification number, the server then only needs to reply by sending
a nonce to avoid replay attacks and finally receives a proof of correct authentication and
a commitment to a fresh template.

5.2 Verifiable Document Redacting

5.2.1 Problem Statement

People are frequently asked for information such as their place of residence, a source
of income or a proof of employment in order to get e.g. a traveling visa or an identity
card. They can provide a document, called a breeder document, which will be accepted
as a proof as long as the document provider is trusted by the service which needs
the paper. Nevertheless, these documents might contain private information that the
owner does not want to share with the service provider asking for a justification. The
problem addressed in this paper is to determine whether it is possible to keep sensitive
information private on a document while giving a third party assurance that the redacted
document was built from an authentic one.
To illustrate the relevance of the latter problem, we give below some examples where a
document contains private information useless for the required justification:

• giving a pay stub to justify employment indeed gives the name and address of the
employer but also reveals a sensitive and useless information for this goal, namely

66 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

the salary amount,

• someone can prove he has earnings by providing the balance of his bank statement
(in order to get a visa for instance) but the detail of all the transactions written
in the statement does not concern the entity needing a revenue justification,

• in some countries, for the issuance of documents like driver license or identity card,
an individual has to prove his place of residence with a bill (e.g. an electricity bill)
where his name is written. However, the bill can also mention the name of the
partner, which has no connection with the original request.

Even if removing the sensitive information from the document looks as a natural and
efficient solution to our problematic, service providers fear fraudulent document forgery
and often ask to bring the original document.

In the sequel, we argue that documents digitization opens the possibility to use
cryptographic techniques such as signature to guarantee integrity and authenticity of
the document issued by the trusted provider. Still, a problem remains: if the user makes
redaction on a signed document, the signature cannot be verified with the new modified
document. The client could ask the document issuer to edit a new redacted and signed
version of the original document but this reveals which information is sensitive and thus
is a privacy loss.

5.2.2 Related work: Redactable Signatures and Photoproof

In France, the most recent proposition to secure breeder document is called 2D-DOC
[2dd]. It is a protocol to secure physical breeder document such as electricity bill, bank
statement or phone bill. The most relevant information of the document are gathered
and form a blob that is digitally signed. The blob and its signature are represented
as a 2D bar-code and printed on the document.This guarantees the authenticity and
integrity of the document. However, if the document is redacted the signature is no
longer valid with the information left. Moreover, since the 2D bar-code contains the
most relevant information of the document, private data appear on the bar-code and
redacting the bar-code destroys the authenticity proof of the document.

Photoproof [NT16] is a recent protocol enabling the authentication of images that
have been modified from an original one as long as the transformations belong to a
well defined set. It builds on the notion of proof carrying data (PCD) [CT10] which
are data along with a proof of some property satisfied by the data. PCD enable a
data to be sequentially modified, the proof containing a proof of the current property
and also a proof that all the previous data modifications have satisfied the required
properties. PCD can be instantiated but the computational overhead for the prover is
consequent: for example in Photoproof [NT16], limiting the set of transformation to
cropping, rotating, transposing, bit flipping and modifying the brightness of the image,
the authors report 300 seconds to build a proof for a 128× 128 (pixels) image. The size
of the public key used to build the proof is 2 GB; in contrast the verification is less than
half a second long. So, even if the requirement of integrity and of confidentiality are
satisfied, there is a need to simplify the above scheme in order to reach some efficiency
and to be able to deal with larger images. Indeed, an A4 format bill scanned at 100 dpi
produces a 1169× 827 image. Our scheme also enables image authentication, but since
we only allow redaction, we obtain much better proving time. Our scheme can therefore
more easily scale on image size. See Sect. 5.2.3 for implementation results.

5.2. VERIFIABLE DOCUMENT REDACTING 67

Redactable signatures are strongly related to our proposal. A redactable signature
allows a party to remove parts of a signed document and to update the signature without
possession of the signer’s secret key. Moreover, the validation of the updated signature is
still possible with the signer’s public key. Redactable signatures have been independantly
introduced by [SBZ01] and [JMSW02]; there has been a large body of work since, e.g.
[BBD+10, SR10, DPSS15]. Our proposal shares some security goals with redactable
signatures such as privacy of the redacted content and unforgeability of the signature.
A notable difference is that everyone can redact a document in redactable signatures
schemes while in our protocol only the owner of the document can perform redaction.
Indeed some private inputs of the proof computed by the redactor cannot be supplied
unless being in possession of both the original document and some value used to compute
the hash. Our protocol enables redacting an image, a use case for which the existing
redactable schemes would be impractical due to the length of the obtained signature or
the time to generate the signature. Indeed in redactable signature schemes the length
of the signature depends on the number of message blocks n and has at best a length of
O(n). In the redaction of an image each pixel can be potentially redacted and therefore
a block for an image to redact is a pixel. In contrast, our redacted signature has constant
size. We finally note that our scheme cannot satisfy the transparency property as defined
in [BBD+10], which states that it should be unfeasible to decide whether a signature
directly comes from the signer or has been generated after some redaction. Indeed, we
give places where redaction happened to the verifier and thus transparency cannot be
reached. This fits however to our use case since the redacted document is given to the
verifier and redacted places are thus visible to the verifier.

5.2.3 Our Solution

We propose a protocol to issue a redacted document from an original and authenticated
document. Our protocol involves three parties: the issuer of the original document, the
client that wants to redact the document and the document user who makes a request to
the client. The protocol gives strong guarantees that nothing has been modified from the
original document except the redacted parts. Moreover it links the redacted document
to the original one while keeping the original one private. It should also be noticed that
the issuer of the document has minimal work to do: after generating a document, he
only has to compute a hash value and a signature. No further work is needed during the
redaction or the verification of the document. The main tool for building this protocol
is verifiable computation, see Chapter 3 for background and details.

Basically, our protocol is the following: the issuer first generates a document, signs
a hash computed from the original document and sends the document, the hash and
its signature to the client. The client then redacts some parts of the document and
computes a non-interactive zero-knowledge proof, proving that only the redacted parts
have been modified from the original document. The signature of the redacted document
consists of the original signature and the proof. This signature has constant size and
thus does not depend on the proportion of the document that has been redacted. The
zero-knowledge property of the proof ensures that no information about the original
document is contained in the proof. The client can then send the redacted document
and its signature to the document user, along with some other elements needed to verify
the proof. If the proof is correct, the document user can accept the redacted document
with confidence. We stress that the document is publicly verifiable: the scheme produces

68 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

verification keys and anyone with access to these keys can verify the validity of the proof.
Moreover since the proof has a constant short size, the verification is quick.

Let the document issuer (DI), the client (CL) and the service provider (SP) be the
three parties involved in the scheme. The document issuer first generates a document D,
computes a hash value C from D and a random value r. DI then signs the hash value to
authenticate it and sends the client D, C, r and the signature of C. To give the possibility
to redact the document to the client while keeping a link with the original document,
we use a verifiable computation scheme to produce a proof of the statement below. In
the statement, MOD is a set describing all the redacted places of the document D. In
our motivating example, MOD would be the coordinates of all the pixels of the image
that are turned black.

There exists a document D and a set of coordinates MOD such that the redacted
document Dred only differs from D in places defined by the set MOD.

In the proof, the original document D stays private using a property of verifiable
computing schemes: the prover can supply a private input in the computation and build
a zero-knowledge proof of the computation. The verifier thus cannot infer information
about the prover’s input by examining the proof. To ensure that the proof has been
built with the original document, a hash computed from the original document is added
to the computation. Since this hash will be sent to the verifier of the redacted document
it cannot be only the hash of the document, otherwise this would give an oracle for the
verifier to test the redacted parts of the document. This is why the random value r is
computed by the document issuer and concatenated to the document before the hash
computation. Using the same notations, the statement to be proved now becomes:

There exists a document D and a value r such that the hash of D ‖ r equals C and
such that Dred only differs from D in places defined by the set MOD.

Denoting by π the proof, the client thus passes π,Dred,MOD,C and its signature σ to
SP. The service provider first verifies that the signature σ of C is correct to be sure that
the hash of the original document is authentic. He then uses C,Dred and MOD to verify
the proof π. We stress that π ties the hash value computed and authenticated by the
document issuer to the original document because it proves (in zero-knowledge) that this
document, concatenated with the value r hashes into C. Thus, the correct verification of
the signature of C and of the proof π guarantees that the original document is authentic.
In the next section, we give a more formal description of the scheme.

The verifiable document redacting protocol

In this section we define the syntax and the security of our scheme. As it was mentioned
in the introduction, the security goals of our scheme are close to the redactable signatures
goals [SBZ01].

Protocol syntax. Let (Gen, Sign, Ver) be a signature scheme [BS], H be a hash func-
tion and let the triple of algorithms (Setup, Prove, Verify) be a zk-SNARK [BCG+13].
See Sect. 3.3.3 for details on the zk-SNARK algorithms.
The protocol participants are the Document Issuer (DI), the Client (CL) and the Service
Provider (SP). Let M = (m1, . . . ,mn) be a message composed of n sub-messages. We
use a special symbol # to denote the redaction of a sub-message. When a message M

5.2. VERIFIABLE DOCUMENT REDACTING 69

is redacted, the resulting message is denoted Mred = (mred
1 , . . . ,mred

n). Our verifiable
document redacting (VDR) scheme is a tuple of four polynomial time algorithms:

KeyGen(1λ,F) : this probabilistic algorithm takes a security parameter λ and runs the
Gen algorithm to output a secret/public signing key pair (SK,PK). It then takes
λ and an arithmetic circuit over a finite field Fp, runs the Setup algorithm and
outputs a pair of public proving and verification keys (EKF , V KF) for the circuit
F .

Authent(M,SK) : this probabilistic algorithm, run by DI, takes a document M , a
secret signing key SK and computes:

• r $← {0, 1}128

• C ← H(M ‖ r)
• σ ← Sign(C, SK)

Output: (C, r, σ)

Redact(M,C, r, σ, EKF) : this probabilistic algorithm, run by CL, takes a document
M , the output (C, r, σ) computed by Authent and the evaluation key EKF and
computes:

• d← Ver(C, σ, PK)
• If d = 0, then abort.
• Else:
• define the set MOD of the redacted sub-messages, MOD is a subset of
{1, . . . , n},
• define Mred such that: ∀i ∈MOD,Mred(i) = #
• π ← Prove(([M, r] , C,Mred,MOD), EKF), where the value between brack-
ets, namely the original document and the randomness used to compute
C, are privately supplied by the prover and the circuit F used in Prove
is built to verify the following statement:

∃M, r such thatH(M ‖ r) = C

∀j ∈MOD,mj = #
∀j /∈MOD,mj = mred

j

Output: (Mred,MOD,C, σ, π) – the signature of Mred is the pair (σ, π).

DocVerif(Mred,MOD, σ, π, V KF , PK) : this deterministic algorithm, run by SP, takes
a redacted documentMred, a set of redacted sub-messages indexMOD, a signature
σ, a proof π and the signing public key and the verification key. It outputs a bit
d such that:

• d← Ver(C, σ, PK)
• d← d× Verify(π, (Mred, C,MOD), V KF)

70 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

Protocol security. We now define the security goals of our scheme, adapting security
notions defined in [BBD+10]. Our first goal is to reach privacy of the redacted document,
informally meaning that no PPT adversary only in possession of the redacted message
and its proof can recover information about the redacted parts of the message. Our
second goal is unforgeability of the proof: a PPT adversary not being in possession
of the original message cannot create a redacted document and a proof that will be
accepted by the verifier. We formalize these goals below.

Privacy : a VDR scheme (KeyGen, Authent, Redact, DocVerif) is private if for all
PPT adversaries A, the probability that the experiment Leak evaluates to 1 is
negligibly close to 1

2 .

The Leak experiment:

• b← {0, 1}
• (M0,M1, i)← A
with (M0,M1, i) such that ∀j 6= i, M0

j = M1
j and M0

i 6= M1
i

• (M b
red, Cb, σb, πb)← OAuth/Redact

• b? ← A(PK,EKF , V KF ,M b
red, Cb, σb, πb)

• Return 1 if b? = b

The adversary’s advantage is defined as: AdvALeak =
∣∣∣Pr[LeakExp = 1]− 1

2

∣∣∣
A VDR scheme is private if AdvALeak is negligible for all PPT adversaries.

Unforgeability : a VDR scheme (KeyGen, Authent, Redact, DocVerif) is unforgeable
if for all PPT adversaries A, the probability that the experiment Forge evaluates
to 1 is negligible.

The Forge(λ) experiment:

• (SK,PK,EKF , V KF)← KeyGen(λ)
• For i = 1, . . . , q: (M i

red,MODi, σi, πi)← OAuth/Redact

• (Mred,MOD, σ, π)← A
• Return 1 if:
• DocVerif(Mred,MOD, σ, π, V KF , PK) = 1 and
• (Mred,MOD, σ, π) 6= (M i

red,MODi, σi, πi), ∀i ∈ {1, . . . , q}.

We define the advantage of the adversary as: AdvAForge = |Pr[ForgeExp = 1]| The
VDR scheme is unforgeable if AdvAForge is negligible for all PPT adversaries.

Definition 15. A VDR scheme is secure if it is private and unforgeable as defined
above.

Theorem 8. If the signature scheme is existentially unforgeable under chosen message
attack (EUF-CMA), the verifiable computing scheme is secure and the hash function is
such that H(., r) is a secure PRF then the VDR scheme is secure.

Proof. For the sake of exposition, the proof details are given in Section 5.2.4.

5.2. VERIFIABLE DOCUMENT REDACTING 71

H r D MOD Dred

H(D ‖ r) ?
= H redact(D,MOD)

?
= Dred

×

0/1 0/1

0/1

Figure 5.1 – Arithmetic circuit computing the proof in Redact. A dashed arrow means that
the input is private (and supplied by the prover).

An instantiation of the VDR scheme

We now introduce a possible instantiation of the VDR scheme, keeping in mind that we
seek efficiency for the prover. We consider that documents are represented as gray-scale
images, modeled as matrices of n × n pixels. Pixels values vary between 0 (black) and
255 (white). Redacting a part of the document thus means that pixels of the redacted
area are turned black, so the symbol # defined in Sect. 5.2.3 is the pixel value 0. The
set MOD of redacted parts of the image is therefore a set of coordinates, which locates
the redacted pixels positions.

We consider implemented verifiable computation schemes to instantiate our scheme,
more specifically the scheme base on Parno et al. protocol [PHGR13, BCG+13]. The
verification is efficient and the schemes based on QAPs (see Sect. 3.3.2 for details)
have a short, constant-length proof that is quick to verify. The difficulty is the prover’s
computational overhead, which is linked to the number of multiplication gates in the
arithmetic circuit representing the function to verify. More precisely, the prover’s work
has complexity O(N log2 N), where N is the circuit size [PHGR13]. Therefore an ef-
ficient arithmetic circuit has first to be designed to limit the number of multiplicative
gates.

The arithmetic circuit design.

To build the proof used in the Redact algorithm of the VDR scheme (Sect. 5.2.3), an
arithmetic circuit representing the computation to verify has to be designed in order to
apply the Parno et al. protocol [PHGR13] (the description of this protocol can be found
in Sect. 3.3.3). A high level view of this circuit is described in Fig. 5.1. It contains two
sub-circuits verifying respectively the value of the hash passed by the document issuer
to the client and the comparison between the original and the redacted documents. The
operations involved in the sub-circuits are crucial for the prover efficiency. The circuit
has to be carefully designed to be able to redact several document on different places
and to amortize the key generation cost over several proof computation. Moreover, if
the circuit which verify the correct redaction in the Redact algorithm is changed for
some document, the evaluation and verification keys will change and have thus to be

72 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

exchanged with the service provider. We designed a circuit able to prove the correct
redaction for every document modeled as an image of size n×m.

The verification of the hash signature used by the document issuer is not part of
the proof for efficiency reasons. Backes et al. [BBFR15] present a verifiable computing
scheme suited for working with authenticated data but, even if the performance are
better than verifiying signature with the Pinocchio scheme [PHGR13], the verification
of the signature is way more efficient if it is done outside the proof. Besides, since the
proof requires the hash of the document there is an explicit link between the redacted
document and the original one. The addition of the hash to the proof only slightly
increases the length of the proof. The verifier thus first verify the signature of the hash
value to test whether it indeed correspond to a value generated by the document issuer.
If the verification passes, the verifier can use this hash value as input for the proof
verification.

Document Redaction Since the document to redact is modeled as a matrix, the proof
described in Sect. 5.2.3 can be represented as an arithmetic circuit using a boolean
matrix for the MOD set. The function in the verifiable computing scheme for which
we compute a proof takes as input a redacted document Dred, a hash value H and a
set MOD. We denote by di,j (resp. dredi,j) the pixel in position (i, j) of D (resp. Dred).
The prover supplies as private input the document D and the value r, the function
f returns the value d ∈ {0, 1} which is the product of the following boolean tests:
∃r,D such that: C

?= H(D ‖ r)
∀(i, j) ∈MOD : dredi,j

?= 0
∀(i, j) 6∈MOD : di,j − dredi,j

?= 0
Using a boolean matrixM as a mask, we can rewrite the two last set of tests in a more

uniform way. We define the matrixM = (mi,j) as: mi,j = 0 if pixel (i, j) is redacted and
mi,j = 1 otherwise. The tests can thus be rewritten as: ∀(i, j) ∈ {1, . . . , n}2, di,j×mi,j

?=
0. This leads to a small arithmetic sub-circuit to check if the redacted document has
not been modified in other places that the given ones.

Hash function. The proof computed by Redact contains the verification of the hash
value computed from the original document so we need to choose a hash function ef-
ficiently verifiable i.e. a function which can be represented as an arithmetic circuit
with few gates. Hash function building on the subset sum problem are well suited for
arithmetic circuits [BFR+13b, BCTV14a]. We also used another finite field in our ex-
periments with a lower security level of 80 bit for the associated elliptic curve. Following
the method of [KZM+15], we obtained the following parameters:

n = 2,m = 724, q = p ≈ 2181.

Few gates are needed to implement an arithmetic circuit for this hash function: to
hash m bits, n × m multiplicative gates are needed. With the parameters selected in
[KZM+15], this means that 4572 gates are needed to hash 1524 bits. As a comparison,
Ben-Sasson et al. designed a hand-optimized arithmetic circuit to verify the compression
function of SHA-256 [BCG+14]. Their arithmetic circuit can therefore hash 512 bits and
has about 27000 gates.

5.2. VERIFIABLE DOCUMENT REDACTING 73

Table 5.1 – Benchmark of verifiable computation in the VDR scheme (128 × 128 images,
machine 1)

Security Hash fct Constraints EK size V K size KeyGen Redact.Prove DocVerif

128 bit Ajtai 19435 7.1 MB 1.3 MB 5.6 s 3.4 s 0.07 s
128 bit SHA256 43920 13.7 MB 1.3 MB 9.2 s 4.7 s 0.07 s
80 bit Ajtai 17834 5.4 MB 1.0 MB 5.5 s 2.4 s 0.07 s
80 bit SHA256 43920 10.8 MB 1.0 MB 9.7 s 3.5 s 0.07 s

Experimental results

We implemented our protocol and benchmarked the verifiable computing part of the
scheme since time consumption of the other parts is negligible compared to this one.
Verifiable computation is implemented using the libsnark library [lib]. The tests were
run on a two different machines. The first one, denoted by machine 1 in the tables,
is running at 3.6 GHz with 4 GB of RAM, with no parallelisation. The second one,
denoted machine 2, is more powerful: it has 8 cores running at 2.9 GHz with 16 GB
of RAM and uses parallelisation. We first implemented our scheme for images of size
128 × 128 and chose elliptic curves at a 128 bit and 80 bit security level [BCTV14b].
The size of the proof is constant and short (less than 300 bytes) and thus the verifi-
cation is fast. Table 5.1 summarizes the implementation results with machine 1. The
column Constraints reports the number of constraints needed to check the satisfiability
of the circuit implementing the proof redaction. For each security level of the proof,
we implemented our scheme with the SHA256 hash and the Ajtai hash functions for
comparison.

Table 5.2 reports implementation of the proving scheme using Ajtai hash function
and a soundness security of 80 bit with variation on the image size. Table 5.3 reports
the same implementation running on machine 2, with parallelisation. Note that even if
the proof has constant size, the verification time increases with the image size. This is
due to the time to parse the input redacted image to compute some elements to verify
the proof. We continued our experiments until we reached approximately the size of an
A4 document scanned at 100 dpi: we tested a 1200 × 800 image while the true size of
an A4 document scanned at 100 dpi would be 1169× 827.

The prover has most of the computational work to do with the Redact algorithm.
However, this does not affect the practicality of the VDR scheme in the case of image
redaction. Indeed, the proof is non-interactive and the client can prepare its redacted
document, compute the related proof and submit both later to a service provider. On
the service provider side, the verification is fast and does not require to share any secret
with the client. The time to verify the signature of the hash value C has to be added
to the verification time given in Table 5.1. Using a simple benchmark on OpenSSL, the
time reported for signature verification is less than 1 ms for RSA signatures and ECDSA
signatures with the same computer. We conclude that the VDR scheme is compatible
with a practical use.

74 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

Table 5.2 – Scaling experiment of the proving part in the VDR scheme (machine 1 + no
parallelisation)

Image size Constraints EK size V K size KeyGen Redact.Prove DocVerif

128× 128 17834 5.4 MB 1.0 MB 5.6 s 2.4 s 0.07 s
400× 400 161450 47.9 MB 9.9 MB 38.8 s 20.7 s 0.51 s
500× 500 251450 74.0 MB 15.5 MB 58.2 s 32.8 s 0.89 s
600× 600 361450 106.0 MB 22.3 MB 81.1 s 50.8 s 1.3 s
1200× 800 961450 286.4 MB 59.5 MB 201.3 s 124.5 s 3.3 s

Table 5.3 – Scaling experiment of the proving part in the VDR scheme (machine 2 + paral-
lelisation)

Image size Constraints EK size V K size KeyGen Redact.Prove DocVerif

128× 128 17834 5.4 MB 1.0 MB 1.9 s 0.8 s 0.07 s
400× 400 161450 47.9 MB 9.9 MB 12.4 s 5.9 s 0.5 s
500× 500 251450 74.0 MB 15.5 MB 19.7 s 9.9 s 0.82 s
600× 600 361450 106.0 MB 22.3 MB 26.2 s 14.5 s 1.17 s
1200× 800 961450 286.4 MB 59.5 MB 66.8 s 39.7 s 3.3 s

5.2.4 Security Proofs

We prove Theorem 8 in this section. We will prove that our VDR scheme is private
(Lemma 2) and unforgeable (Lemma 3), which will imply Theorem 8.

Lemma 2. If the VC scheme provides (statistical) zero-knowledge proofs and the hash
function H is such that Hr := H(., r) is a secure PRF then the VDR scheme is private.

Proof. We will bound the advantage of a PPT adversary attacking the privacy of the
scheme using a sequence of games. More precisely we will show that AdvALeak is negligible.

Game 0 This is the original Leak game.

Game 1 Same as Game 0 but here the oracle OAuth/Redact picks a random value h,
signs it and returns the couple h, σ, instead of Cb, σ. Let S1 be the event that
b? = b in Game 1. Since H(., r) is assumed to be a secure PRF, we have that:
Pr [S0]− Pr [S1] 6 εPRF , where εPRF is the PRF advantage.

Game 2 Same as Game 1, but the part of the oracle OAuth/Redact computing the proof
is replaced by the simulator. Let S2 be the event that b? = b in Game 2. We have
that Pr [S2] = Pr [S1]

Game 3 Same as Game 2, but the simulator of the oracleOAuth/Redact outputs its proof π
without having knowledge of the messagesMc, c ∈ {0, 1}. Let S3 be the event that
b? = b in Game 3. Since the VC scheme is assumed to be zero-knowledge, we have
that there exists a negligible function εSZK such that: Pr [S3] − Pr [S2] 6 εSZK .
Since the signature is now only composed of random elements, we have Pr [S3] = 1

2 .

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 75

Gathering the results of all the games, we finally conclude that:

|Pr [S0]− 1
2 | 6 εPRF + εSZK (5.1)

Therefore the VDR scheme is secure.

Lemma 3. If the VC scheme is sound and the signature scheme is EUF-CMA, then
the VDR scheme is unforgeable.

sketch. We show if there exists an efficient adversary succeeding in the Forge exper-
iment, denoted by AForge, we can build an efficient adversary AEUF−CMA breaking the
EUF-CMA property of the signature or an efficient adversary AVC breaking the sound-
ness of the verifiable computing scheme. These adversaries are built by forwarding the
queries made by AForge. At the end, AForge outputs a redacted forged document, which
is not part of the queries made before. This redacted forged document is also a forgery
for the signature scheme or for the verifiable computation scheme.

5.3 Privacy-preserving Biometric Commitments

5.3.1 Introduction

Biometrics and Authentication

Biometrics are a convenient way for a user to authenticate because, unlike password-
based authentication, they do not require to remember any secret. A biometric authen-
tication system usually proceeds with the steps described below.
During the enrollment phase, a user presents a biometric trait in front of a sensor. Then
a signal processing algorithm (also named feature extraction algorithm) extracts useful
information from the biometric reading, this information is gathered in a vector called
a biometric template and the extracted template is stored as the reference template for
future comparison.
During the authentication phase, a sensor (possibly different from the one that per-
formed the enrollment) extracts information from the biometric trait presented. The
feature extraction algorithm that was used during the enrollment then produces a fresh
template, which is compared with the reference template. Depending on the result of
the comparison, the system decides if the fresh biometric trait comes from the same
individual.

It is important to note that repeating the acquisition of the same biometric trait
with the same feature extraction algorithm may end with different templates. These
variations can be explained by the way the trait is presented in front of the sensor
and environment conditions (e.g. moisture or light conditions). As a consequence, two
templates cannot be compared with a simple equality check. Therefore, a score has to be
computed between the two templates to decide if they come from the same individual.
This score is often the result of a distance computation and the definition of the distance
is dependent of the feature extraction algorithm that processed the biometric trait.

To assess the performance of a biometric authentication system, the capacity to
discriminate between individuals is a major factor. This capacity depends mainly on

76 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

the choice of the biometric modality and on the quality of the related feature extraction
algorithm. A distance threshold τ is set and the system considers that two templates
for which the distance is inferior to that threshold belong to the same individual, while
the ones for which the distance is superior to τ are considered not to belong to the same
individual. This raises two kind of errors regarding the system:

• Two templates coming from different individuals for which the distance is inferior
to τ generate a false accept.

• Two templates coming from the same individual for which the distance is superior
to τ generate a false reject.

The overall performance of a biometric system is thus measured through the false accep-
tance rate (FAR), which is the probability that a wrong template is accepted as genuine
and the false rejection rate (FRR), which is the probability that a genuine template is
rejected. Note that the two rates are linked: if a system threshold is modified to de-
crease the FAR, the FRR increases at the same time. Examples of biometric modalities
that have been extensively studied and that perform well are iris, fingerprint and face.
The associated distances are Hamming distance for iris recognition, Euclidean distance
for facial recognition and for some fingerprint recognition (e.g. FingerCode) while other
fingerprint recognition algorithms may use of a more complicated comparison function.

Biometric authentication systems are basically composed of several clients and of
an authentication server. In the enrollment phase, a client registers by sending to the
authentication server an identifier along with a reference template. Then, in the au-
thentication phase, a user claiming to be a registered client sends an identifier and a
fresh biometric template. The authentication server subsequently retrieves the reference
template corresponding to the identifier and computes a biometric matching between
the two templates. If they match, the server considers that the user is indeed who he
claims to be. The inconvenient of such systems is that they store biometric templates
in clear although biometrics are sensitive data: they might reveal information about the
individual health, they are not revocable and some biometric data such as face images
or fingerprints might be easily collected. Therefore privacy-preserving biometric au-
thentication (PPBA) systems aims to protect the biometric templates of users from the
server and from malicious outsiders. To protect against honest but curious servers, the
authentication server is sometimes split into several parts, e.g. in [SBCS12, AAAM16].
A database thus stores the (encrypted) biometric templates, a computational server
performs the biometric comparisons and an authentication server takes the decision
whether the user is indeed who he claims to be or not. More details about existing
PPBA, threats and challenges can be found in the comprehensive survey [PM17].

Inspired by the storage of passwords in Unix-like systems, Juels and Wattenberg
[JW99] proposed a scheme to store a data computed from a biometric template that
still allows for authentication. Their scheme that they call fuzzy commitment. Fuzzy
commitments are similar to commitment schemes, where one player, called sender, first
“commits” by submitting a value b in a concealed fashion to another player, called
receiver. Later, the sender “opens” the committed value by proving the receiver that
the value stored by the latter is a hidden version of b. Commitment schemes fulfill two
basic properties: they are concealing in the sense that the receiver cannot guess the
value of b prior to its opening by the sender; they are binding in the sense that the
sender cannot succeed in “opening” with a value other than b. A simple analogy is

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 77

with a safe including the value b and that is locked by the sender. The receiver cannot
disclose the value of b before the sender agrees to open the lock and the sender cannot
substitute the value b stored in the safe with another one since the safe is kept by the
receiver. Syntax and security definitions are given in Section 2.2.1. Unlike classical
commitments, in fuzzy commitment schemes the value b committed by the sender and
the value disclosed during the opening of the commit do not have to be exactly identical:
a value close enough to the committed one also results in a successful opening. This
property is achieved by leveraging error-correcting codes. Hence, fuzzy commitments
are well suited to deal with the inherent noise of biometric data.

As an application of fuzzy commitments, Juels and Wattenberg propose a biomet-
ric authentication scheme, where the user sends a fuzzy commitment on his biometric
template to the authentication server. The user sends his fresh biometric template and
if the server obtains a successful decommitment with this biometric template, the user
is authenticated. However, even if the data stored by the server does not permit to
retrieve the biometric data that was used initially, the user has to send its fresh bio-
metric template in clear to authenticate and if the authentication succeeds, the fuzzy
commitment scheme construction enables the server to retrieve the biometric data that
was initially concealed. Therefore, the biometric authentication system proposed by
Juels and Wattenberg is not privacy-preserving.

Contribution

Going beyond Juels and Wattenberg’s fuzzy commitment scheme, we design a scheme
that enables to commit to a reference biometric template and later prove that there
exists a freshly captured biometric template that matches the reference one without
disclosing neither the reference nor the fresh template. The main tool for our scheme is
verifiable computation (VC), a cryptographic scheme where a prover computes a proof
of correctness for a given computation and provides it to a verifier who can check that
the result of the computation is correct by inspecting the proof. Besides protecting the
verifier against a cheating prover, several VC schemes offer additional properties. A
notable one is the possibility for the prover to hide some of the inputs he provides in the
computation, the hiding being obtained thanks to a zero-knowledge proof of knowledge
property. The VC scheme we will leverage for our scheme are zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs) [BCCT12].

Building on the biometric commitment scheme, we design a biometric authentication
protocol where the user performs self-authentication and proves to the authentication
server that he correctly followed the process. To verify the proof of correct authentica-
tion, the user’s biometric templates are not required, commitments on these templates
are enough. Our biometric authentication protocol is privacy-preserving, requires little
communication between the user and the authentication server and enjoys a simpler
architecture than several privacy-preserving biometric authentication protocols, that
usually split the authentication server into multiple parts to ensure control on data
leakage.

A critical reader could be tempted to think that biometric authentication could have
been addressed by simpler mechanisms. Such a solution would for instance consists of a
biometric matching where the reference template is authenticated by digital signatures
issued by the flight company. In this scenario, the user would present his reference tem-
plate and the fresh one and a device owned by the company would verify the signature

78 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

of the template and perform the matching. This straightforward solution would have
the disadvantage of revealing both the reference and the fresh templates as opposed to
our solution whereby the fresh and the reference templates are not revealed. Another
alternative could be envisioned that would require the user to generate a public/private
key pair, to publish the public key and to prove in zero-knowledge that he indeed is in
possession of the private key associated with the published public key. This solution
in turn would allow some authentication but the drawback is that it would require the
deployment of a heavy infrastructure to authenticate all the public keys. In contrast,
our solution relies on a unique public verification key for all users and is thus easier to
deploy.

Related work.

Our biometric commitment scheme borrows some goals to Juels and Wattenberg’s fuzzy
commitments [JW99], namely the scheme has to be hiding: a commitment should not
reveal any information about the concealed biometric template and and strongly biding:
any template that is close enough of the committed reference template should lead to
a valid decommitment. However, in our scheme the decommitment is done by the
user and does not require to send any template in clear to the receiver of the commit.
This difference enables us to get a privacy-preserving biometric authentication scheme
from the biometric commitment scheme. A drawback of our scheme is that it requires
to store the reference template and some randomness that was used to conceal the
reference template until the end of the authentication phase. We nonetheless stress
that our biometric commitment scheme and hence our privacy-preserving biometric
authentication scheme keep the convenience of biometrics: the user does not need to
remember a password to authenticate, he only needs to present his biometric trait to
authenticate while respecting his privacy regarding his biometric template.

Privacy-preserving biometric authentication (PPBA) protocols aims to protect infor-
mation regarding the user’s biometric templates from the authentication server. Several
solutions have been proposed to achieve this goal. Cancellable biometrics [RCB01]
schemes apply a non- invertible and repeatable transformation to a biometric template.
The resulting objects is still compatible with biometric matching, often with the same
comparison methods. The drawback of cancellable biometrics is the performance of the
resulting authentication system: the FAR is worse than the FAR of the original system.
By comparison, our PPBA scheme does not modify the underlying biometric system
and the accuracy of the system is not degraded.

Another attempt is to encrypt templates but the inherent noise of biometric data
prevents from computing a matching over the encrypted templates unless using homo-
morphic encryption. Several proposals [BCP13, BCI+07, YSK+13] leverage such en-
cryption schemes but they are not able to perform the last step of the matching, which
is a comparison to a threshold. Hence, they leak information about the result of the
distance computation and attacks called hill-climbing [SBCS12] can be mounted against
such systems. The strategy of hill-climbing attacks consists of recovering the reference
template by successive trials, the next presented template being built by leveraging the
last submitted template and the previous attempt score. Our PPBA scheme does not
reveal the result of the distance computation but only the output of the authentication
process and is therefore immune against such attacks. Fully homomorphic encryption
[Gen09] theoretically solves the problem and enables to perform a complete matching

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 79

over encrypted data but state of the art schemes are too inefficient for a practical ap-
plication. Secure multiparty computation (SMC) and more specifically two-party com-
putation (2PC) are also relevant to achieve privacy-preserving authentication schemes.
We note however that most proposals [BCF+14, HMEK11] are designed in the honest-
but-curious model where the server is supposed to follow the protocol but tries to learn
information about the user’s data. The more restrictive but more realistic malicious
model, where the server can arbitrarily deviate from the protocol, incurs computation
and communication overheads: as reported in [BCF+14], even in the honest but curious
model several MB of communication are required to perform an authentication. In our
PPBA scheme, the communication is very low: except the commitments, only a proof is
sent and zk-SNARK schemes produce very short proofs (less than 150 bytes for Groth’s
state of the art scheme [Gro16]).

5.3.2 Biometric Commitment Scheme

High level description

We describe hereafter our biometric commitment scheme. From a high-level view, the
goal is to allow a party to commit to a biometric reference template and to later prove
that another biometric template, that we will call fresh template, is close to the commit-
ted one without revealing any of those. We stress that both the fresh and the reference
templates are known by the prover but are kept secret from the verifier, who only sees
commitments on these values. As depicted in Figure 5.2, the protocol takes place be-

A B

tref ← GetTemplate()

r1
$←− {0, 1}n,

c1 = Commit(tref, r1)

c1

“open”

tf ← GetTemplate()

r2
$←− {0, 1}n

c2 = Commit(tf , r2)
compute proof of correct matching π

Verify π
c2, π

Figure 5.2 – Biometric commitment scheme high level description

tween a prover called A and a verifier called B. First, A commits to a reference biometric
template tref that will be kept secret, sends that commitment to B and stores tref and
the randomness involved in the commitment computing. When B wants the opening of
the biometric commitment, he sends A an open request, say the message “open”.Upon
receiving the “open” message, A proceeds to the opening of the biometric commitment:
he provides a biometric template, denoted by tf , and computes the matching between
tf and tref. Since tf and tref are biometric templates, the matching function, which is
often a distance computation, is designed such that the templates can match even if they
are not identical. Since the verifier B has no control on the freshly captured biometric
template, we require that the prover A commits on that fresh value and sends B the
resulting commitment.

At the end of the protocol the verifier is in possession of two commitments that he
cannot open. Consequently, the prover leverages the proof scheme to prove that the

80 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

commitments open to two values tref and tf that match. The proof should therefore not
reveal any information about the opened values except that i) the opening was computed
following a protocol on which the verifier and the prover have agreed upon and that ii)
these opened values match. A finally returns the commit on the fresh value along with
the proof mentioned above to answer the open request and B checks the validity of the
proof. If the proof passes, the biometric commitment opening is successful and B can
assume with overwhelming probability that the fresh biometric template matches with
the reference template that has been committed in the beginning of the protocol.
Some points of the previous description require further clarification. Indeed, in the
opening phase of the biometric commitment, a proof system is necessary to implement
the proof that there exists two templates concealed by the sent commitments and that
these templates match. We assume that the related matching function will perform a
distance computation and a comparison to a threshold (see Section 5.3.1 for more details
on biometrics). We thus target an efficient proof scheme that is expressive enough to be
able to prove that the matching has been correctly performed. The proof system must
therefore be able to prove the correctness of a distance computation but also to prove
a correct comparison. Moreover, the proof itself should not reveal information to the
verifier about the values tref and tf . Since the verifier only gets commitments on these
values, the proof system should also prove that there exists two values tref and tf that
match and that are the openings of the given commitments. Additionally, the proof
system should not only ensure that the values tref and tf exists but also that the prover
is in possession of these. Such property is called zero-knowledge proof a knowledge (zk-
PoK), a formal definition is given in Section 3.3.4. As a building block meeting these
requirements, verifiable computing (VC) seems very suitable: it proves that a function
has been correctly computed and some VC schemes enable the prover to supply inputs
in the computation about which the proof will not reveal any information and have the
zk-PoK property. A notable example of such schemes are zk-SNARKs [BCCT12], see
Sections 3.3.4 and 3.3 for background on zk-SNARKs.

Protocol details.

In VC schemes, a function to be verified is agreed upon the prover and the verifier. Then,
receiving an input from the verifier, the prover runs the computation and produces a
proof of correctness. Here, the function to be verified, denoted by f , implements the
biometric matching and the commitment scheme openings. The correct execution of this
function proves that the value captured after the open request phase has a distance to the
committed reference value inferior to the threshold of the biometric system, denoted by
τ , and that the commits sent to the verifier open to the reference and the fresh biometric
templates. zk-SNARKs schemes offer the possibility for the prover to hide inputs of the
computation to verify: the proof of correctness is zero-knowledge regarding these inputs.
Therefore, supplying the reference value tref and of the fresh one tf as private values in
f enables to convince the verifier that they match without disclosing them. Existing
practical general-purpose zk-SNARKs schemes [PHGR13, BCG+13, WSR+15] produce
public keys to compute and verify the proof of correct computation. The evaluation
and verification keys computation is heavy but has only to be run once, the key can be
reused for multiple instances of the computations. Even if the verification of the proof is
always efficient in these systems, the proof computation is computationally demanding
[WB15]. As a consequence, carefully choosing the functions involved in the scheme

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 81

instantiation can drastically reduce the burden of the prover.
Let f be the function defined as: f : (tref, tf , r1, r2, c1, c2, pk) 7→ d1 × d2 × d3, with:

d1 ← Com.Verif(pk, c1, r1, tref) ?= 1
d2 ← Com.Verif(pk, c2, r2, tf) ?= 1
d3 ← d(tref, tf)

?
< τ

(5.2)

The function f verifies in d1 that tref indeed opens to the commit c1, in d2 that tf opens
to c2. Finally, d3 verifies that the two templates tf and tref match. The four values
tref, tf , r1 and r2 should be private inputs in the computation of f , we leverage the
zero-knowledge argument of knowledge property of zk-SNARKs schemes to achieve this
goal.

We assume that there exists a function GetTemplate that outputs a template when
called. Denoting by Π the zk-SNARK scheme and by Comm the commitment scheme,
the protocols proceeds that way:

• In the setup phase, the Comm.KeyGen algorithm of the commitment scheme is run
to get the public key pk later used in the commit function. Then, the Π.KeyGen
algorithm of the zk-SNARK scheme is run and the evaluation key ekf and the
verification key vkf are generated. The function f is defined in formula (5.2). The
distance and the threshold are algorithm dependent and are set once the function
is defined. The commit verification function Comm.Verif is also set in the circuit.
The public keys pk, ekf and vkf are thus supplied to A and B.

• In the commit phase, A calls GetTemplate and obtains a template from her bio-
metric trait, picks a random value r1, computes c1 = Comm.Commit(pk, tref, r1) and
sends c1 to B.

• In the open request phase, B sends a message “open” to A.

• After receiving the “open” message, A calls the GetTemplate function and gets a
fresh biometric template tf .

• In the opening phase, A performs a biometric matching between tref and the fresh
template tf . Then, A picks a random value r2 and computes a commit c2 =
Comm.Commit(pk, tf , r2). Using the evaluation key ekf , A computes a proof π of
correctness for the function f defined in (5.2). In this computation, tref, tf , r1and
r2 are private inputs supplied by the prover. The correct evaluation of the function
f guarantees the existence of two templates that open to the commits c1 and c2
and that additionally match. The argument of knowledge property of the zk-
SNARK guarantees that not only such templates exists but also that the prover is
in possession of tref and tf when he computes the proof. A then sends B the proof
π and the second commit c2. Note that π contains the result of the matching since
the function checks that the computed distance is inferior to the threshold. The
values c1 and c2 are public inputs in function f and the verifier can supply them
in the zk-SNARK verification algorithm Π.Verify.

• Using the verification key vkf and the inputs c1 and c2, B checks the validity of
the proof. If the proof verification passes, B can conclude that A is in possession
of a fresh template tf that matches with the initially committed template tref.

82 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

Setup:
(ekf , vkf , pk)← Setup(1λ, f),

where:
{

(ekf , vkf) ← Π.KeyGen(f, 1λ)
pk ← Comm.KeyGen(1λ)

BioCommit:
c1 ← BioCommit(pk, tref), where:

• r1
$← {0, 1}n

• c1 ← Comm.Commit(pk, tref, r1).

OpenRequest:
• Send the message “open”

BioCommitOpen:
(c2, π)←BioCommitOpen(ekf , pk, tf , tref, c1, r1) where:

• r2
$← {0, 1}n

• c2 ← Comm.Commit(pk, tf , r2)
• π ← Π.Prove(ekf , tref, tf , r1, r2, c1, c2).

Verify:
out← Verify(vkf , pk, π, c1, c2),
where: out = Π.Verify(vkf , pk, π, c1, c2).

Figure 5.3 – Biometric commitment syntax

Let f be the function defined above in formula (5.2), the syntax of the protocol is given
in Fig. 5.3.

Security

The security properties required for our scheme are related to the security properties of
Juels and Wattenberg fuzzy commitment scheme [JW99], namely the scheme has to be
correct, hiding and strongly binding. The correctness guarantees that a legitimate user
that follows honestly the protocol will always pass the verification. The hiding property
protects the user’s templates from the server by asserting that the commitment he sends
do not provide any useful information to the server regarding his template. Finally,
the strong biding property states that the commitment sent in the first part of the
protocol (the BioCommit phase) cannot be opened successfully unless the user possesses
a biometric template that is close enough to the committed reference template (more
precisely that belongs to the ball of radius τ , the system threshold, centered in the
reference template). In the following, we keep the notations of Section 5.3.2 and we
assume the existence of an algorithm GetTemplate that outputs a biometric template
when called.

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 83

Correct. Assume that A ran the BioCommit algorithm honestly and received an “open”
message from B. The scheme is correct if Verify returns 1 each time A runs the
BioCommitOpen algorithm honestly with a biometric template whose distance from the
reference one is inferior to the threshold.
More formally, let denote by τ the threshold of the biometric system, by tref the reference
template of A and by tf a fresh template such that: d(tf , tref) < τ . Suppose that A runs
the BioCommit algorithm and gets a commit c1. He then receives the “open” message
from B and runs the BioCommitOpen algorithm to get a proof π and a commit c2. The
scheme is correct if: Verify(vkf , pk, π, c1, c2) = 1.

Hiding. The scheme is hiding if no useful information about A’s templates can be
extracted from the information possessed by the receiver B. This is formalized by two
attack games hide_attack1 and hide_attack2, in which the attacker first sees the two
commitments and the proof computed by the sender and then tries to distinguish be-
tween two possible pairs of reference (resp. fresh) templates. Let A be a PPT adversary,
the hiding properties are formalized by the mean of the following games:

hide_attack_1(1λ)
(ekf , vkf , pk)← Setup(1λ, f)
(t0, t1)← GetTemplate()
with t0 6= t1

d
$← {0, 1}

c1 ← BioCommit(pk, td)
tf ← GetTemplate() with d(tf , td) < τ
(c2, π)← BioCommitOpen(pk, ekf , td, tf , c1, r1)
d∗ ← A(c1, c2, π, t0, t1)
if d = d∗:
return 1,

otherwise:
return 0

hide_attack_2(1λ)
(ekf , vkf , pk)← Setup(1λ, f)
tref ← GetTemplate()
c1 ← BioCommit(pk, tref)
tf,1 ← GetTemplate() with d(tref, tf,1) < τ
tf,2 ← GetTemplate() with d(tref, tf,2) < τ

d
$← {0, 1}

(c2, π)← BioCommitOpen(pk, ekf , tref, tf,d, c1, r1)
d∗ ← A(c1, c2, π, tf,1, tf,2)
if d = d∗:
return 1,

otherwise:
return 0

The scheme is hiding if for every PPT adversary and for i = 1, 2:

Pr
[
hide_attack_i(1λ) = 1

]
6

1
2 + negl(λ)

84 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

Strongly Binding. The strongly biding property captures a notion similar to the bid-
ing property of commitment schemes in the case of biometric commitments that deal
with inherently variable data. A scheme is strongly binding if the biometric commitment
cannot be opened successfully by the sender A except if the template captured after the
open request belongs to the ball centered in tref of radius τ . This is formalized by the
bind_attack game given below. In the bind_attack game, the adversary first commits
to a reference value tref and gets a commit c1. Then it generates a value tf that is out of
the ball centered in tref of radius τ . The adversary wins if it is able to compute a proof
π and a commit c2 such that the Verify algorithm, on inputs π, c1 and c2 returns 1.
Let A = (A1,A2) denote such an adversary.

bind_attack(1λ)
(pk, ekf , vkf)← Setup(1λ, f)
tref ← GetTemplate()
c1 ← A1(pk, 1λ, tref)
tf ← GetTemplate() with d(tref, tf) > τ
(π, c2)← A2(pk, 1λ, tref, c1, tf)
if Verify(vkC, pk, π, c1, c2) = 1 :
return 1

else:
return 0

A biometric commitment scheme is binding if for every PPT adversary A:

Pr
[
bind_attack(1λ) = 1

]
6 negl(λ)

The security of the scheme is defined as follows,

Definition 16. The biometric commitment scheme is secure if it is correct, hiding and
strongly biding.

And we have the following result:

Theorem 9. The biometric commitment is secure if the underlying commitment scheme
is secure and if the zk-SNARK scheme is secure.

Proof. The correctness of the biometric commitment scheme is a direct consequence of
the correctness of the commitment scheme and of the zk-SNARK scheme.

Proof. We prove that the scheme is hiding with a sequence of games.

Game 0 is the hide_attack_1 game.

Game 1 is the same as game 0, except that the result c1 of BioCommit is replaced by a
random value. The hiding property of the underlying commitment scheme ensures
that the adversary has negligible advantage to be able to discriminate between a
legitimate commitment on tref and a random value.

Game 2 is the same as game 1, except that the commitment c2 is also replaced by
a random value. The same argument that the one given in game 1 holds: the
advantage in distinguishing a random value from a commitment is negligible.

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 85

Game 3 is the same as game 2 except that the user makes a call to the zk-SNARK
simulator to replace the proof pi by a random value that will still be accepted by
the zk-SNARK verification algorithm. The zero-knowledge property of zk-SNARK
schemes ensures that the advantage of an adversary to distinguish that random
string from a legitimate proof is negligible.

The probability that A wins game 3 is now 1/2 because all the information the adversary
receives is random.
Since the transition between each game being negligible, the probability of winning
game 0 is therefore: 1/2 + negl(λ), where negl(λ) is the sum of the negligible functions
involved in the transitions. The same arguments apply for hide_attack_2.

Proof. We prove that the scheme is strongly biding by directly evaluating the winning
probability of an adversary. To win the bind_attack game, the adversary should be able
to forge a proof that d(tref, tf) < τ . Since the proof system verifies that the distance
is indeed inferior to the threshold and also that the templates are concealed in the
commitments passed to the verification algorithm, the adversary should either be able
to forge a proof of a false statement or to open a commitment to a wrong value. Since the
zk-SNARK scheme is secure and therefore sound, it is impossible except with negligible
probability to forge a proof of a false statement. Since the commitment scheme is secure
and hence biding, it is impossible except with negligible probability to open a commit
to a wrong value. The probability that a PPT adversary wins the bind_attack game
is the sum of the two previous probabilities and is therefore negligible.

5.3.3 Privacy-preserving Biometric Authentication Protocol

Leveraging the biometric commitment scheme we described in Section 5.3.2, we build
a privacy-preserving biometric authentication (PPBA) protocol. Using the biometric
commitment protocol as a building block for a PPBA scheme is not straightforward
and several challenges remain. Indeed applying the commitment scheme with a user
as the commitment sender and an authentication server as the commitment receiver
provides guarantees to the server that a user is in possession of two biometric templates
that match and that correspond to the commitments that it received. However, since
the server never sees the reference template, it has no guarantees on that value and a
malicious user could commit to a pathological template such as e.g. a vector with zeros
for each component. Moreover, the biometric commitment gives no guarantees that the
second biometric template has been freshly captured, i.e. after the open request sent
by the server. We tackle the reference template issue by enjoining the user to extract
his template and to commit on it in front of a trusted party that signs the commit to
authenticate it. This not only ensures that the reference biometric template has been
extracted by means of a trusted sensor but also that the commit on the template is tied
to a legitimate user. We thwart replay attacks by requiring that, in the open request
phase of the biometric commitment protocol, the server sends a nonce that the user
must integrate in the computation of the second commitment and therefore in the proof
computation. This requires a slight modification of the function f that was defined in
formula (5.2) in Section 5.3.2 and for which the zk-SNARK scheme computes a proof
of correctness: we need to add some constraints to ensure that the nonce sent by the
server is indeed integrated in the second commitment computation. In detail the new
function f that implements the verification is now:

86 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

f : (tref, tf , r1, r2, c1, c2, pk, NB) 7→ d1 × d2 × d3 × d4, with:
d1 ← Com.Verif(pk, c1, r1, tref) ?= 1
d2 ← R

?= r2 ‖ NB

d3 ← Com.Verif(pk, c2, R, tf) ?= 1
d4 ← d(tref, tf)

?
< τ

(5.3)

Here the intermediate constraint R ?= r2 ‖ NB is added to check that the nonce provided
by the authentication server to the user has indeed been supplied to compute the com-
mitment on the fresh template. The protocol is fully described below, it takes places
between a trusted party, denoted by TP , an authentication server, denoted by S, and
a user denoted by Ui. The zk-SNARK algorithm is denoted by Π and the commitment
algorithm is denoted by Comm. The signature algorithm is denoted by Sgn.

Setup

• TP runs the setup algorithm of the biometric commitment protocol and the
key generation algorithm of the signature scheme:

(ekf , vkf)← Π.KeyGen(1λ, f),
cpk ← Comm.KeyGen(),

(pk, sk)← Sgn.KeyGen(1λ)

• TP distributes the keys to the participants:
– S receives vkf , cpk, pk.
– Ui receives ekf , cpk.

Enrollment

• Ui’s biometric template tref,i is extracted by the mean of a sensor that belongs
to TP and Ui picks an identifier idi.
• TP runs the BioCommit algorithm, gets the commitment c1,i and the random-
ness r1,i, signs the pair (commit,id) by running σ ← Sgn.Sign((c1,i, idi), sk).
• TP gives c1,i, idi, r1,i, σ to Ui.
• Ui sends (c1,i, idi, σ) to S.
• S verifies the signature σ: Sgn.Verif((c1,i, idi), σ, pk). If the verification passes,
S stores the pair (c1,i, idi) in its database.

Authentication

• Ui sends S his claimed identifier idi.
• S generates a nonce NB,i ∈ {0, 1}` and sends it to Ui.
• Using his own device, Ui extracts a fresh template tf,i.

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 87

• Ui runs the BioCommitOpen algorithm with inputs: c1,i,r1,i, tref,i, tf,i. During
the execution of the algorithm, Ui picks a random value r2,i

$← {0, 1}n−` and
concatenates it with NB,i to compute the commitment c2,i on tf,i. He also gets
a proof πi and sends (c2,i, πi) to S.

Verification

• S runs the biometric commitment Verify algorithm with inputs NB,i, c1,i,c2,i
and πi.
If the verification passes, Ui is correctly authenticated, otherwise the server
returns ⊥.

Security Goals

We adapt the security goals of Abidin et al. [AAAM16] to our scheme by requiring our
PPBA scheme to be correct and private.

Correctness: for all enrolled user under the identity id with a corresponding template
tref, the authentication phase with a fresh template tf is successful if and only if
d(tref, tf) < τ .

Privacy: we define the attack game private_attack below, which basically models a
malicious server that would run the authentication process and try to distinguish
between two pairs of templates. In this game, a PPT adversary tries to distinguish
between two pairs of matching templates he has chosen after being given the out-
puts of the protocol, which are the two commitments and the proof. Let A be a
PPT adversary. Here, the Enroll algorithm represents the enrollment process as
run by the trusted party TP. This algorithm therefore outputs a commitment on
the reference value tref and its signature.

private_attack(1λ)
(pk, ekC, vkC)← Setup(1λ, f)
tref1 , tf1 , tref2 , tf2 ← A(pk, ekf , vkf , 1λ)
with d(tref1 , tf1) < τ and d(tref2 , tf2) < τ

b
$← {0, 1}

(c1, σ)← Enroll(trefb)
(c2, π)← Authenticate(ekf , pk, tfb

, trefb , c1, r1, NB)
b∗ ← A(c1, σ, c2, π, tref1 , tf1 , tref2 , tf2 , NB)
If b = b∗, return 1
else return 0

The scheme if private if for every PPT adversary:

Pr
[
private_attack(1λ) = 1

]
6

1
2 + negl(λ)

Theorem 10. The PPBA scheme is private and correct if the signature scheme, the
commitment scheme and the zk-SNARK scheme are secure.

88 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

Proof. The correctness of the PPBA scheme is a consequence of the correctness of the
biometric commitment scheme: a legitimate user, enrolled under identity id with the
reference template tref that honestly authenticates with a fresh template tf will run the
BioCommitOpen algorithm with the nonce NB provided by the server. The correctness
of the Biometric Commitment scheme guarantees that the proof will be accepted in the
verification phase and therefore that the user will be successfully authenticated.
We prove the privacy of our PPBA scheme with a sequence of games.
Game 0 is the private_attack game.

Game 1 is the same as game 0 except that the result c1 of BioCommit is replaced
by a random value and a signature of that random value is asked to the trusted
party. Since the commitment scheme is hiding, the advantage in distinguishing
a commitment from a random value is negligible. The signature of the replaced
value is still valid.

Game 2 is the same as game 1 except that in Authenticate, the commitment c2 is
replaced by a random value. Again, the hiding property of the commitment scheme
gives a negligible advantage to the adversary in distinguishing a random value from
a commitment.

Game 3 is the same as game 2 but the proof is replaced by a random string generated
by the simulator of the zk-SNARK scheme, that random string being accepted by
the verification algorithm. The zero-knowledge property of the zk-SNARK scheme
gives negligible advantage to an adversary in distinguishing a random proof from
a legitimate one.

From now, the probability that A wins game 3 is 1/2 because all the information it
gets excepts the pairs of template is random. Since all the transition between the
games have negligible probabilities, the probability to win private_attack is therefore
1/2 + negl(λ).

5.3.4 PPBA Protocol Instantiation

To instantiate the protocol described in Section 5.3.3, we need to specify a zk-SNARK
scheme and a commitment scheme. The choice of the commitment scheme is crucial since
the scheme is somewhat embedded in the verifiable computation scheme: the function
f specified in equation (5.3) computes a commitment from a biometric template and
the proof that the user joins to the commitments is a proof of correct execution for f .
All the zk-SNARK schemes based on Gennarro et al.’s quadratic arithmetic programs
[GGPR13] produce a proof of size independent of the computation to verify. The proof
verification is fast but the drawback is the prover’s work which is the bottleneck of such
schemes. The efficiency of the prover is quasi-linear in the size of the arithmetic circuit
(see Section 3.3) that represents the function to verify. More precisely, the efficiency is
quasi-linear in the number of multiplicative gates of the arithmetic circuit, the addition
gates are free in this setting because their contribution is taken into account in the next
multiplicative gate of the circuit. We choose Groth’s state of the art zk-SNARK scheme
[Gro16] because it is the most efficient of existing schemes and besides, it produces the
shorter proof of zk-SNARK protocols.

We first assume that the biometric face recognition system is Schroff et al.’s Facenet
[SKP15]. This state of the art convolutional neural network algorithm takes as input

5.3. PRIVACY-PRESERVING BIOMETRIC COMMITMENTS 89

a face image and outputs a vector with 128 floating-point numbers components. To
decide if two vectors come from the same individual an Euclidean distance is computed.
Since minimizing the size of the circuit that represent the function to verify improves
the performance of the zk-SNARK scheme, we implement a squared euclidean distance
to avoid an expensive square root computation. We also convert the floating-point
numbers into a fixed-point representation on 32 bit integers, the resulting biometric
template is thus 4096 bit long. We study the impact of such transformation in Section
5.3.5. Regarding the commitment scheme, we choose Kawachi et al.’s commitment
scheme [KTX08], which is built from Ajtai hash function [Ajt96]. Ajtai hash function
is provably secure and is efficiently implementable in the zk-SNARK efficiency model
[KZM+15] (recall that a computation to be verified has to be expressed as a circuit over
a finite field and that addition in this circuit are free). Kawachi et al. prove that the
resulting commitment scheme is statistically binding and computationally binding. Let
q be the prime number equal to the cardinality of the prime field where the computations
of the zk-SNARK scheme take place. Let (n,m) be two integers such that: m > n log q.
We denote the Ajtai hash function family, that has been defined in Section 2.2.2, by
fA(x) = A · x mod q, where A ∈ Mn,m(Fq). Let B and C be two randomly chosen
(n,m)-matrices inMn,m(Fq). Denoting by A the matrix defined by A = [B C] and by
ρ a randomly chosen value in {0, 1}m, the commitment of an input string s ∈ {0, 1}m is
thus:

ComA(s; ρ) := fB(ρ) + fC(s) (5.4)

Using Merkle-Damgård construction, Kawachi et al. extend this commitment scheme
to arbitrary length strings in [KTX08]. Based on Kosba et al. [KZM+15], we choose q
to be the 254-bit prime where arithmetic circuits are defined, m = 1524 and n = 3.

5.3.5 Experimental Results

On the impact of using integer templates instead of float templates

Most of the VC systems deal with computations that are described over a large finite
field. This enables to naturally emulate computations over integers as defined in the
majority of programming languages, the extension to signed integers being also natural.
Setty et al. [SVP+12] design circuits that allow for floating-point rational computations
at the expanse of overhead costs in proving time. State of the art biometric feature
extraction algorithms perform operations over floating point numbers to turn a biometric
trait into a template. This enters in conflict with VC schemes that can only deal
efficiently with integers. Even if there were some trials to design feature extraction
algorithms that only deal with integers, the accuracy of the latter is not satisfying
compared to the state of the art (see for example [WLCS18] and the reference therein).
Hence a natural question arises: what is the impact on a biometric system accuracy to
convert templates with floating point numbers into templates with integers by scaling
and truncating each floating point value of the same factor ?

Using a face database of our laboratory and a feature extraction algorithm, we com-
pared the accuracy between the floating point numbers templates and the integers tem-
plates obtained by scaling. Note that we kept the threshold of the original system and
scaled it according to the scaling factor. The results are shown in Table 5.4. We con-
clude that the use of integers does not significantly change the accuracy of the biometric
system and that our method could be used in real life.

90 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

Float templates Int templates Int templates Int templates
(scale = 103) (scale = 104) (scale = 105)

FAR (%) 0.1 0.1 0.1 0.1
FRR (%) 4.3 5 4.3 4.3

Table 5.4 – Benchmarks between templates with decimal values and scaled and truncated
integer templates deduced from the original ones

Biometric Commitment Implementation

We now report some figures about the implementation of our biometric commitment
scheme. The experiments were performed on a 8-core machine running at 2.9 GHz with
16 GB of RAM, using no parallelization. The verifiable computation system is Groth’s
state of the art zk-SNARK [Gro16] and its implementation within the libsnark library.
1 Afterwards, we also experiment the scalability of our scheme by letting the number
of components of the templates increase.

Template component numbers EK size VK size Keygen Prove Verify Proof size
128 4.5 MB 61 kB 1.91 s 0.66 s 0.0015 s 120 B
256 8.2 MB 61 kB 3.37 s 1.32 s 0.0015 s 120 B
384 11.7 MB 61 kB 4.90 s 1.75 s 0.0015 s 120 B
512 15.9 MB 61 kB 6.46 s 2.57 s 0.0015 s 120 B

Table 5.5 – Experimental results on the Biometric Commitment Scheme.

Table 5.5 reports benchmarks on the implementation of the Biometric Commitment
Scheme proving part, i.e. the proof that two templates match and that they are con-
cealed within the two given commitments. Note that the key generation algorithm,
besides being efficient, has only to be run once: the evaluation and verification keys can
be used for every biometric commitments. The proving time is low enough to imagine
the integration within a customized boarding gate. The next section details a scenario
where our privacy-preserving commitment scheme is relevant.

5.3.6 Use case: privacy-preserving boarding check

Let us consider a scenario where a flight company, denoted by C, proposes a privacy-
preserving boarding check for its flights, leveraging our privacy-preserving biometric
authentication protocol. We assume that users who want to benefit of this scheme are
in possession of a smartphone, which is equipped with a face recognition algorithm.
Any user A in possession of a smartphone will proceed in two steps to board. First, a
trusted party, e.g. the International Civil Aviation Organization (ICAO), runs the setup
algorithm of the privacy-preserving authentication algorithm. Then, at the enrollment
phase, user A extracts a template from her face by means of a sensor that belongs to
the trusted party. As in Section 5.3.3, the trusted party computes the commitment on
the reference template and signs it. Since many countries require flight companies to
provide personal information about the passengers they carry, the trusted party can
perform some background checks on user A before signing the commitment, for instance

1Libsnark, a C++ library for zkSNARK proofs, available at https://github.com/scipr-lab/libsnark

https://github.com/scipr-lab/libsnark

5.4. CHAPTER’S CONCLUSION 91

that user A does not belong to a blacklist. A then gets the reference template, the
randomness used in the process and the signed commitment. A can then sends the
signed commitment to the flight company that first verifies the validity of the signature.
If the signature verification passes, the flight company builds a flight ticket containing the
commit and additional information such as the flight number, the seat number and the
validity duration of the ticket. This ticket is signed by the flight company and sent back
to A. In a second phase, when A arrives at the airport, she enters in a specific boarding
corridor equipped with a device that embeds the verification keys of the zk-SNARK
algorithm and signature verification key of the flight company. The device is assumed
to be able to communicate with A’s device. It first generates a nonce and sends it to A’s
smartphone. Using her smartphone, A extracts her face biometric template, performs
the matching and proves it was correctly done, integrating the nonce as described in
Section 5.3.3. She presents the proof, the freshly computed commitment and the ticket
to the device, which checks the authenticity and the validity of the ticket and verifies the
proof, with inputs the commitments and the nonce. If they all pass, the corridor opens
and A can board the airplane. Because the template extraction happens in a closed
corridor, A cannot authenticate and then give her smartphone with the commitment
and the proof of correct authentication to someone else. We assume that the user’s
mobile is able to perform liveness detection to detect spoofing attacks [MNL14]. Hence,
A cannot be impersonated by an individual that would present a picture of A’s face in
front of the smartphone camera. The experiments reported in Section 5.3.5 show that
the boarding corridor we envision is of practical interest. Indeed, the measurements
reported in Table 5.5 show that the time for the user to produce a proof that the
reference and fresh templates open to the given commitments and match will last no
more than 2.5 seconds. This time can even be inferior to one second if the template has
128 components. At the end of the corridor, the user can finally present the proof and
the signed ticket. The device only has to embed the verification keys of the zk-SNARK
and the signature schemes. These keys are small enough (61 kB for the zk-SNARK
scheme, 265 bits to 4 kB for the signature scheme) to fit in an embedded device. The
device can then verify the authenticity of the ticket and the validity of the proof. The
verification is really quick and should not represent any bottleneck in the process.

5.4 Chapter’s Conclusion

In this chapter, we presented two schemes that build on the properties of zk-SNARKs.
Both of these schemes leverage the commit-and-prove paradigm by first requiring the
prover to commit on a data that should be kept secret and then proving some property
that is inherent to this committed data. The two proposed schemes do not depend on
the choice of the underlying zk-SNARK scheme but rather rely on the succinctness and
zero-knowledge argument of knowledge properties. Except for these two properties, the
only requirement is that the scheme is expressive enough to be able to produce a proof
of a correct commitment computation. We chose the Ajtai hash function to implement
the commitments because this hash function is well suited for computation expressed
as arithmetic circuits. Choosing the underlying zk-SNARK scheme to implement the
protocols leads to variations in the efficiency of the prover (and the key generation
algorithm) and in the proof size that is succinct but whose size can be slightly different
depending on the selected scheme. As a consequence, any improvement on the state
of the art zk-SNARK schemes would lead to an improvement of the proof size and of

92 CHAPTER 5. VERIFIABLE COMPUTATION AND ZERO-KNOWLEDGE PROOFS

the schemes’ efficiency. We implemented the two proposed schemes using the libsnark
library and the experiments we ran showed that, using these schemes, the prover’s
running time is adapted to a practical use.

Conclusion

In this thesis, we studied verifiable computation (VC) along two different directions. A
first direction adopts a theoretical point of view: starting from the conflict between the
expressiveness and the efficiency that is inherent to all existing VC systems, we pro-
posed a new VC system that moves the trade-off point toward efficiency while keeping
the original expressiveness. We achieved this by leveraging proof composition between
an outer VC scheme that is general-purpose and an inner VC scheme that is specialized.
The outer scheme provides expressiveness while the inner scheme provides efficiency
each time the operation for which it is designed is called in the computation to verify.
As acknowledged by experimental results we measured, our contribution brings verifi-
able computation closer to practicality: compared to a matrix multiplication operation
verified by a general purpose scheme, we report a proving time improvement by a fac-
tor of 10. We were also able to implement a verifiable neural network example and to
verify it for parameter sizes that could not be reached if the same network is verified
in the general purpose VC scheme. Additionally, our scheme allows for the composition
of several different inner VC schemes. In our contribution we focused on the matrix
multiplication problem but other specialized and efficient VC schemes could fit our em-
bedded proof framework. Thanks to our proof composition technique, using efficient
sub-protocols suited for each class of computation, complex sequences of computations
can be verified in a single VC system. Our contribution therefore paves the way to a
new modular design of practical oriented VC schemes.

The second direction of research adopted by this thesis leverages on privacy properties
of existing VC schemes along a practical approach. Several VC schemes provide a zero-
knowledge property for their resulting proof and the expressiveness of such schemes
enables to build practical zero-knowledge proofs for predicates that were previously
impossible to prove in practical time, such as knowledge of hash function pre-images.
Moreover, the proof is short and the associated cryptographic guarantees make it a good
candidate as a token for authentication. Hence, we designed a scheme that enables
to modify an authenticated document while keeping some authenticity on the final
document by adding a proof that no unauthorized modification has been performed.
The scheme is close to redactable signatures but is more space efficient, especially when
the document is an image for which each pixel could be redacted. This space efficiency
is obtained by the succinctness of zk-SNARK schemes, the VC scheme we consider
generates a proof of constant size (less than 300 bytes) regardless of the computation
under verification. We also proposed a biometric authentication scheme where, thanks
to the zero-knowledge property, the privacy of the biometric templates involved in the
authentication is preserved. The overall idea of the scheme is to let the user perform self-
authentication and to prove to the authentication server that the process was performed
correctly. The scheme builds on the commit-and-prove paradigm to achieve privacy of

93

94 CONCLUSION

the templates based on a model inspired by Juels and Wattenberg’s fuzzy commitments
[JW99]. Those two applications highlight the capabilities of existing VC schemes beyond
the basic setting of computational verifiability by managing to meet two conflicting
requirements, that is, authentication and privacy.

About verifiable biometric matching

The initial focus of this thesis was to study how verifiable computation could bring con-
fidence in the biometric matching process. Biometric matching includes liveness detec-
tion, feature extraction, distance computation and comparison to a threshold, therefore,
each of these operations have to be verified to get a verifiable biometric matching and
we made several steps toward this goal. The distance computation and the comparison
to a threshold can be verified with the state of the art VC schemes and we implemented
them. Moreover, leveraging the zero-knowledge property of zk-SNARK schemes, not
only did we manage to achieve a verifiable distance computation and comparison to a
threshold but also our scheme preserves the privacy of the biometric templates involved
in the matching process. We note that unlike distance comparison and threshold com-
parison operations, liveness detection and feature extraction algorithms are way more
complex to verify and several obstacles remain mainly for two reasons:

• The current VC schemes that are expressive enough to verify feature extraction
algorithms have limitation in terms of the size of the computation they can deal
with. Wahby et al. [WSR+15] report experiments showing that existing imple-
mented QAP-based VC systems have a limited gate budget: such systems are not
able to verify a function whose representation as an arithmetic circuit has more
than ten million gates. As a consequence, complex functions that come from signal
processing and that involve large computations require either a new and efficient
circuit representation or significant improvements in the efficiency of the overall
VC schemes.

• Feature extraction algorithms inherently deal with floating point numbers while VC
schemes verify computations defined over a finite field: designing neural networks
that only perform computations over integers is an active research area [WLCS18]
but for now, the accuracy of the resulting schemes is not as good as the accuracy
of state of the art schemes. And verifying floating-point operations incurs non-
negligible overheads, as measured by Setty et al. [SVP+12].

The latter points highlight that significant progress is required to achieve a practical
verifiable feature extraction scheme. Our contribution on proof composition makes a
step toward this goal because such algorithms involve large matrix multiplications and
our embedded proof scheme improves the proving time of computations that include
matrix multiplications. In addition, our embedded proof scheme is flexible enough to
integrate further advances in VC schemes, especially because any improvement on the
general VC scheme would help to decrease the proving time since the protocol design
is agnostic of the underlying GVC scheme. Another improvement possibility would be
to select a specialized matrix multiplication VC scheme that would be more efficient
than the one based on Thaler’s specialization of the sumcheck protocol [Tha13]. A
candidate is Freivalds’s matrix multiplication verification scheme [Fre77], which could
lead to a very efficient embedding, the drawback is that this scheme requires verifiable

95

randomness. We explain the reason of this requirement and propose a possible solution
as a future work in the next section.

Future directions

Embedded Proofs

In our embedded proof contribution, we embedded the sumcheck protocol in a general
purpose VC scheme. We leveraged the sumcheck protocol to verify matrix multiplica-
tion, as described by Thaler. We note that the sumcheck protocol is initially a protocol
that efficiently checks the evaluation of a multivariate polynomial. As mentioned above,
Freivalds’ algorithm is another good candidate as a specialized an efficient matrix mul-
tiplication verification scheme. In Freivalds’ protocol, to check that a n × n matrix C
is indeed the result of the product of two n× n matrices A and B, the proof is simply
the matrix C. The verifier then selects a random vector x and performs the comparison
between the matrix-vector products A · (B · x) and C · x. If the products are equal,
the verifier accepts C as the result of A×B, otherwise he rejects. The probability that
the verifier accepts a false product is inferior to 1/2. To decrease the soundness error,
the verifier can repeat the process several times. The scheme is very efficient because
three matrix-vector products are enough to check the correctness of the result for a cost
of O(n2) operations while performing the matrix product costs O(n3) operations. The
drawback of this scheme is that it requires a lot of randomness: to get a 2−k soundness
error, nk random values are required. Hence, to embed Freivalds’ scheme into a general
VC scheme there is a need for verifiable randomness. Apart from matrix multiplication
algorithms, different specialized protocols that deal with other kind of operations and
that embed well in VC schemes remain to be found. Besides, it could be interesting
to implement such sub-protocols inside the open-source libsnark library, concretely
realizing the modular design we sketched in the beginning of the conclusion.

Commit and prove

In the commit and prove schemes we designed in our contributions, the decommitment
phase is implemented inside the VC scheme: the function for which a proof of cor-
rectness is produced recomputes the commitment. The efficiency metric in QAP-based
VC schemes is directly linked to the number of multiplicative gates of the circuit that
implements the function to verify. Therefore, some commitment schemes that are not
considered efficient in unverified schemes can be particularly relevant regarding efficiency
when implemented in VC schemes. The commitments we consider in our contributions
are built from the Ajtai hash function, which has an efficient circuit representation. A
possible improvement would be to replace such commitments by Pedersen commitments,
implemented with an elliptic curve. This curve would be defined over the underlying
field of the zk-SNARK scheme and its point multiplication implemented in the arith-
metic circuit from which the QAP is defined. Kosba et al. [KZM+15] proposed and
implemented such elliptic curve, the circuit they obtain has about 6 multiplicative gates
per bit of the multiplication scalar. Bowe et al. [BGM17] later improve the latter result,
obtaining about 4.2 multiplicative gates per bit of the scalar. Such commitments are
not only efficient but also rely on a well studied cryptographic assumption, namely the
discrete logarithm assumption.

96 CONCLUSION

Verifiable randomness

We already mentioned Freivalds’ algorithm as a possible efficient matrix multiplication
verification algorithm that could be embedded inside a general VC scheme based on our
technique. We also mentioned that the drawback of this algorithm is that it requires
randomness and hence the new requirement for verifiable randomness to be embedded
in a VC scheme. We envision two possible directions for providing such randomness:
the first approach is external and would leverage verifiable random functions [MRV99]
to provide a source of randomness for the prover that the verifier could verify. However,
the drawback is that such schemes require a secret key for verification and the general
VC scheme relying on such verifiable random function would no longer keep its public
verifiability property. Another direction is internal and would leverage an elliptic curve
point multiplication implemented inside the circuit of the general VC scheme. The idea
would be to build on the scheme suggested by Chevalier et al. [CFPZ09] who prove that
the least signifiant bits of a random point abscissa of an elliptic curve is indistinguishable
from an uniform bit-string. Hence, after receiving a seed from the verifier, which would
be the scalar in the elliptic curve point multiplication, the prover could verifiably extract
randomness by computing an elliptic curve point multiplication and verifiably selecting
bits of the resulting point abscissa.

Linear Interactive Proof Framework

QAPs are very efficient objects to check correct circuit evaluation. Bitansky et al. gave
a framework that abstracts the way to obtain a secure protocol from the QAP objects,
namely the linear interactive proof (LIP) framework. In this framework, Groth’s zk-
SNARK scheme is quasi-optimal: there are 3 group elements in the proof while a proof
with one group element is impossible. Hence, new ideas are required to go beyond the
LIP framework. A possible idea would be to leverage two-party computation to perform
the polynomial divisibility check in QAPs that proves circuit correctness. Firstly, the
prover-verifier setting fits well the two-party computation setting. Moreover, the security
is information-theoretic and two-party computation is very efficient because it mostly
rely on symmetric key cryptography while the LIP framework requires an homomorphic
asymmetric scheme.

Bibliography

[2dd] 2D-Doc. https://ants.gouv.fr/Les-solutions/2D-Doc. Accessed:
2017-01-10.

[AAAM16] Aysajan Abidin, Abdelrahaman Aly, Enrique Argones-Rúa, and Aikaterini
Mitrokotsa. Efficient verifiable computation of XOR for biometric authen-
tication. In Cryptology and Network Security - 15th International Confer-
ence, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings, pages
284–298, 2016.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: an experiment in public-resource computing. Com-
mun. ACM, 45(11):56–61, 2002.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24,
1996, pages 99–108, 1996.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of NP. J. ACM, 45(1):70–122, 1998.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles.
In Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, pages 56–73, 2004.

[BBD+10] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin
Franz, Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Pe-
ter, Bertram Poettering, and Dominique Schröder. Redactable signatures
for tree-structured data: Definitions and constructions. In Applied Cryp-
tography and Network Security, 8th International Conference, ACNS 2010,
Beijing, China, June 22-25, 2010. Proceedings, pages 87–104, 2010.

[BBFR15] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk.
ADSNARK: nearly practical and privacy-preserving proofs on authenti-

97

https://ants.gouv.fr/Les-solutions/2D-Doc

98 BIBLIOGRAPHY

cated data. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, pages 271–286, 2015.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012, pages 326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 111–120, 2013.

[BCF+14] Julien Bringer, Hervé Chabanne, Mélanie Favre, Alain Patey, Thomas
Schneider, and Michael Zohner. GSHADE: faster privacy-preserving dis-
tance computation and biometric identification. In ACM Information Hid-
ing and Multimedia Security Workshop, IH&MMSec’14, Salzburg, Austria,
June 11-13, 2014, pages 187–198, 2014.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. Snarks for C: verifying program executions succinctly and
in zero knowledge. In Advances in Cryptology - CRYPTO 2013 - 33rd An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, pages 90–108, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474,
2014.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero knowl-
edge proofs. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, pages 287–304, 2015.

[BCI+07] Julien Bringer, Hervé Chabanne, Malika Izabachène, David Pointcheval,
Qiang Tang, and Sébastien Zimmer. An application of the goldwasser-
micali cryptosystem to biometric authentication. In Information Security
and Privacy, 12th Australasian Conference, ACISP 2007, Townsville, Aus-
tralia, July 2-4, 2007, Proceedings, pages 96–106, 2007.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs. In
Theory of Cryptography - 10th Theory of Cryptography Conference, TCC
2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 315–333, 2013.

[BCP13] Julien Bringer, Hervé Chabanne, and Alain Patey. SHADE: secure ham-
ming distance computation from oblivious transfer. In Financial Cryptog-
raphy and Data Security - FC 2013 Workshops, USEC and WAHC 2013,

BIBLIOGRAPHY 99

Okinawa, Japan, April 1, 2013, Revised Selected Papers, pages 164–176,
2013.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scal-
able zero knowledge via cycles of elliptic curves. In Advances in Cryptology
- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, pages 276–294, 2014.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von neumann architecture. In
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014., pages 781–796, 2014.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Check-
ing computations in polylogarithmic time. In Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 21–31, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 103–112, 1988.

[BFR13a] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delega-
tion of computation on outsourced data. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 863–874, 2013.

[BFR+13b] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying computations with
state. In ACM SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP’13, Farmington, PA, USA, November 3-6, 2013, pages 341–357,
2013.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an
untrusted CRS: security in the face of parameter subversion. In Advances
in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part II, pages 777–804, 2016.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kil-
ian, Silvio Micali, and Phillip Rogaway. Everything provable is provable in
zero-knowledge. In Advances in Cryptology - CRYPTO ’88, 8th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 21-25, 1988, Proceedings, pages 37–56, 1988.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation
for zk-snark parameters in the random beacon model. IACR Cryptology
ePrint Archive, 2017:1050, 2017.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable del-
egation of computation over large datasets. In Advances in Cryptology -

100 BIBLIOGRAPHY

CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, pages 111–131, 2011.

[Blu81] Manuel Blum. Coin flipping by telephone. In Advances in Cryptology: A
Report on CRYPTO 81, CRYPTO 81, IEEE Workshop on Communications
Security, Santa Barbara, California, USA, August 24-26, 1981., pages 11–
15, 1981.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an inter-
val. In Advances in Cryptology - EUROCRYPT 2000, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding, pages 431–444, 2000.

[BR05] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography.
In UCSD CSE 207 Course Notes, page 207, 2005.

[BS] Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
Version 0.3. http://cryptobook.us Accessed: 2017-07-25.

[BSSC05] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic
Curve Cryptography. London Mathematical Society Lecture Note Series.
Cambridge University Press, 2005.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Ver-
satile verifiable computation. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270,
2015.

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien
Zimmer. Optimal randomness extraction from a diffie-hellman element. In
Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, pages 572–589, 2009.

[CGGN17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-
zardo. Zero-knowledge contingent payments revisited: Attacks and pay-
ments for services. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 229–243, 2017.

[CHK17] Hervé Chabanne, Rodolphe Hugel, and Julien Keuffer. Verifiable document
redacting. In Computer Security - ESORICS 2017 - 22nd European Sympo-
sium on Research in Computer Security, Oslo, Norway, September 11-15,
2017, Proceedings, Part I, pages 334–351, 2017.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical
verified computation with streaming interactive proofs. In Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,
2012, pages 90–112, 2012.

http://cryptobook.us

BIBLIOGRAPHY 101

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings, pages 89–105, 1992.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of
computation using multiple servers. In Proceedings of the 18th ACM Con-
ference on Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, October 17-21, 2011, pages 445–454, 2011.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 23-27, 1998, Proceedings,
pages 13–25, 1998.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay ar-
guments from signature cards. In Innovations in Computer Science - ICS
2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings,
pages 310–331, 2010.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with
streaming interactive proofs. PVLDB, 5(1):25–36, 2011.

[DPSS15] David Derler, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig. A gen-
eral framework for redactable signatures and new constructions. In Informa-
tion Security and Cryptology - ICISC 2015 - 18th International Conference,
Seoul, South Korea, November 25-27, 2015, Revised Selected Papers, pages
3–19, 2015.

[FG12] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In the ACM Con-
ference on Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012, pages 501–512, 2012.

[Fis01] Marc Fischlin. Trapdoor commitment schemes and their applications. PhD
thesis, Goethe University Frankfurt, Frankfurt am Main, Germany, 2001.

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. Advances in
Computing Research, 5:327–343, 1989.

[Fre77] Rusins Freivalds. Probabilistic machines can use less running time. In IFIP
Congress, pages 839–842, 1977.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, pages
186–194, 1986.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge snarks. In Public-Key Cryp-
tography - PKC 2018 - 21st IACR International Conference on Practice and
Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,
2018, Proceedings, Part I, pages 315–347, 2018.

102 BIBLIOGRAPHY

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology, Proceedings of CRYPTO
’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings,
pages 10–18, 1984.

[GDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural net-
works to encrypted data with high throughput and accuracy. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pages 201–210, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178,
2009.

[GGG17] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifi-
able execution of deep neural networks on an untrusted cloud. CoRR,
abs/1706.10268, 2017.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing
from lattice problems. Electronic Colloquium on Computational Complexity
(ECCC), 3(42), 1996.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive veri-
fiable computing: Outsourcing computation to untrusted workers. In Ad-
vances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 465–482,
2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-snarks. IACR Cryptology ePrint Archive, 2018:280, 2018.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegat-
ing computation: interactive proofs for muggles. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 113–122, 2008.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 291–304, 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-
statements in zero-knowledge, and a methodology of cryptographic protocol

BIBLIOGRAPHY 103

design. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, Califor-
nia, USA, 1986, Proceedings, pages 171–185, 1986.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive
zero knowledge for NP. In Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, pages 339–358, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Advances in Cryptology - ASIACRYPT 2010 - 16th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings, pages 321–340, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326,
2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 99–108, 2011.

[HMEK11] Yan Huang, Lior Malka, David Evans, and Jonathan Katz. Efficient
privacy-preserving biometric identification. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2011, San Diego, Cal-
ifornia, USA, 6th February - 9th February 2011, 2011.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments
without short pcps. In 22nd Annual IEEE Conference on Computational
Complexity (CCC 2007), 13-16 June 2007, San Diego, California, USA,
pages 278–291, 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements efficiently. In
2013 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS’13, Berlin, Germany, November 4-8, 2013, pages 955–966, 2013.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner.
Homomorphic signature schemes. In Topics in Cryptology - CT-RSA 2002,
The Cryptographer’s Track at the RSA Conference, 2002, San Jose, CA,
USA, February 18-22, 2002, Proceedings, pages 244–262, 2002.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In CCS
’99, Proceedings of the 6th ACM Conference on Computer and Communi-
cations Security, Singapore, November 1-4, 1999., pages 28–36, 1999.

104 BIBLIOGRAPHY

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada,
pages 723–732, 1992.

[KMC18] Julien Keuffer, Refik Molva, and Hervé Chabanne. Efficient proof compo-
sition for verifiable computation. In Computer Security - 23rd European
Symposium on Research in Computer Security, ESORICS 2018, Barcelona,
Spain, September 3-7, 2018, Proceedings, Part I, pages 152–171, 2018.

[KPS18] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A
framework for efficient verifiable computation. In 2018 IEEE Symposium
on Security and Privacy (SP), volume 00, pages 543–560, 2018.

[KSC09] Ghassan Karame, Mario Strasser, and Srdjan Capkun. Secure remote ex-
ecution of sequential computations. In Information and Communications
Security, 11th International Conference, ICICS 2009, Beijing, China, De-
cember 14-17, 2009. Proceedings, pages 181–197, 2009.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice prob-
lems. In Advances in Cryptology - ASIACRYPT 2008, 14th International
Conference on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008. Proceedings, pages
372–389, 2008.

[KZM+15] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C∅c∅:
A framework for building composable zero-knowledge proofs. Cryptology
ePrint Archive, Report 2015/1093, 2015. http://eprint.iacr.org/2015/
1093.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. In 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume I, pages 2–10, 1990.

[lib] libsnark. Available at https://github.com/scipr-lab/libsnark. Ac-
cessed: September 2018.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Theory of Cryptography - 9th
Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy,
March 19-21, 2012. Proceedings, pages 169–189, 2012.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology - CRYPTO ’87, A Conference on
the Theory and Applications of Cryptographic Techniques, Santa Barbara,
California, USA, August 16-20, 1987, Proceedings, pages 369–378, 1987.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput.,
30(4):1253–1298, 2000.

http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093
https://github.com/scipr-lab/libsnark

BIBLIOGRAPHY 105

[MNL14] Sébastien Marcel, Mark S. Nixon, and Stan Z. Li, editors. Handbook of
Biometric Anti-Spoofing - Trusted Biometrics under Spoofing Attacks. Ad-
vances in Computer Vision and Pattern Recognition. Springer, 2014.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 120–130, 1999.

[Nat15] Secure Hash Standard (SHS). Federal Information Processing Standard
180-4, 2015. National Institute of Standards and Technology.

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authen-
tication for any set of permissible transformations. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 255–271, 2016.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Mary-
land, USA, pages 427–437, 1990.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 223–238, 1999.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings, pages 129–140, 1991.

[pep] The Pepper Project - toward practical verifiable computation. Available at
https://github.com/pepper-project. Accessed: Spetember 2018.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity
measures. J. ACM, 26(2):361–381, 1979.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
238–252, 2013.

[PM17] Elena Pagnin and Aikaterini Mitrokotsa. Privacy-preserving biometric au-
thentication: Challenges and directions. Security and Communication Net-
works, 2017:7129505:1–7129505:9, 2017.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to dele-
gate and verify in public: Verifiable computation from attribute-based en-
cryption. In Theory of Cryptography - 9th Theory of Cryptography Confer-
ence, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings,
pages 422–439, 2012.

https://github.com/pepper-project

106 BIBLIOGRAPHY

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signa-
tures and blind signatures. J. Cryptology, 13(3):361–396, 2000.

[RCB01] Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. Enhancing secu-
rity and privacy in biometrics-based authentication systems. IBM Systems
Journal, 40(3):614–634, 2001.

[SBCS12] Koen Simoens, Julien Bringer, Hervé Chabanne, and Stefaan Seys. A frame-
work for analyzing template security and privacy in biometric authentica-
tion systems. IEEE Trans. Information Forensics and Security, 7(2):833–
841, 2012.

[SBV+13] Srinath T. V. Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg,
Bryan Parno, and Michael Walfish. Resolving the conflict between general-
ity and plausibility in verified computation. In Eighth Eurosys Conference
2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013, pages 71–84,
2013.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction sig-
natures. In Information Security and Cryptology - ICISC 2001, 4th Inter-
national Conference Seoul, Korea, December 6-7, 2001, Proceedings, pages
285–304, 2001.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, pages 239–252, 1989.

[Sha90] Adi Shamir. IP=PSPACE. In 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume
I, pages 11–15, 1990.

[Sho] Victor Shoup. NTL: a library for doing number theory. Available at http:
//shoup.net/ntl. Accessed: September 2018.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz, Ger-
many, May 11-15, 1997, Proceeding, pages 256–266, 1997.

[Sho06] Victor Shoup. A computational introduction to number theory and algebra.
Cambridge University Press, 2006.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, pages 815–823, 2015.

[SMBW12] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael
Walfish. Making argument systems for outsourced computation practical
(sometimes). In 19th Annual Network and Distributed System Security Sym-
posium, NDSS 2012, San Diego, California, USA, February 5-8, 2012, 2012.

http://shoup.net/ntl
http://shoup.net/ntl

BIBLIOGRAPHY 107

[SR10] Daniel Slamanig and Stefan Rass. Generalizations and extensions of
redactable signatures with applications to electronic healthcare. In Commu-
nications and Multimedia Security, 11th IFIP TC 6/TC 11 International
Conference, CMS 2010, Linz, Austria, May 31 - June 2, 2010. Proceedings,
pages 201–213, 2010.

[SSW10] Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy. Token-
based cloud computing. In Trust and Trustworthy Computing, Third Inter-
national Conference, TRUST 2010, Berlin, Germany, June 21-23, 2010.
Proceedings, pages 417–429, 2010.

[SVP+12] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, An-
drew J. Blumberg, and Michael Walfish. Taking proof-based verified compu-
tation a few steps closer to practicality. In Proceedings of the 21th USENIX
Security Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 253–
268, 2012.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
II, pages 71–89, 2013.

[TYRW14] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deep-
face: Closing the gap to human-level performance in face verification.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 1701–1708,
2014.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In Theory of Cryptography, Fifth Theory of
Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.,
pages 1–18, 2008.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish.
A hybrid architecture for interactive verifiable computation. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 223–237, 2013.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without
reexecuting them. Commun. ACM, 58(2):74–84, January 2015.

[WJB+17a] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler,
Michael Walfish, and Thomas Wies. Full accounting for verifiable outsourc-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 2071–2086, 2017.

[WJB+17b] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler,
Michael Walfish, and Thomas Wies. Full accounting for verifiable outsourc-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 2071–2086, 2017.

108 BIBLIOGRAPHY

[WLCS18] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and infer-
ence with integers in deep neural networks. In International Conference on
Learning Representations, 2018.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg,
and Michael Walfish. Efficient RAM and control flow in verifiable out-
sourced computation. In 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015, 2015.

[WTS+18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-
efficient zksnarks without trusted setup. In 2018 IEEE Symposium on Se-
curity and Privacy (SP), pages 975–992, 2018.

[YSK+13] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama,
and Takeshi Koshiba. Packed homomorphic encryption based on ideal lat-
tices and its application to biometrics. In Security Engineering and In-
telligence Informatics - CD-ARES 2013 Workshops: MoCrySEn and Se-
CIHD, Regensburg, Germany, September 2-6, 2013. Proceedings, pages 55–
74, 2013.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vsql: Verifying arbitrary SQL queries over
dynamic outsourced databases. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 863–880,
2017.

	Introduction
	Preliminaries: Proof Systems and Useful Tools
	Proofs systems
	Classical proofs and NP languages
	Interactive Proofs and Arguments
	Zero-knowledge Proofs
	Non-interactive arguments
	Proofs of knowledge

	Useful Tools
	Commitments schemes
	Ajtai hash function
	Bilinear pairings

	State of the Art in Verifiable Computation
	Verifiable Computation from Interactive Proofs
	A useful interactive proof for verifiable computation: the sumcheck protocol
	Arithmetic circuits
	Interactive Proofs for the Muggles (GKR)
	Implementation of the GKR protocol and later optimizations

	Verifiable Computation from Interactive Arguments
	Interactive Arguments
	Ishai et al. efficient arguments and later optimizations
	Interactive Arguments from CMT

	Verifiable Computation from Non-interactive Arguments
	Definition
	Main tool: Quadratic Arithmetic Programs (GGPR13)
	Pinocchio: a VC protocol from QAPs
	zk-SNARK formal definition
	Groth's zk-SNARK (Groth16)
	A remark on the setup phase

	Highlighting the Gaps

	Proof Composition
	Motivation: increase prover's efficiency in machine learning algorithms
	State of the Art in Proof Composition
	Ben Sasson et al.'s Recursive Composition of zk-SNARKs
	Costello et al.'s Geppetto

	Embedded Proofs
	Problem Statement
	Idea of the Solution: Embedded Proofs
	Building Blocks: Ajtai Hash Function

	Embedded Proofs
	High level description of the generic protocol
	Protocol instance using Pinocchio and Sum-Check
	Prover's input privacy

	Embedded proofs for Neural Networks
	Motivation
	A use-case where input privacy is not required
	A Verifiable Neural Network Architecture

	Cost evaluation
	Implementation and Performance Evaluation
	Matrix multiplication benchmark
	Two-Layer Verifiable Neural Network Experimentations

	Security Evaluation
	Correctness
	Soundness

	Conclusion

	Verifiable Computation and Zero-knowledge Proofs
	Motivation: short ZK proofs for NP computations
	Verifiable Document Redacting
	Problem Statement
	Related work: Redactable Signatures and Photoproof
	Our Solution
	Security Proofs

	Privacy-preserving Biometric Commitments
	Introduction
	Biometric Commitment Scheme
	Privacy-preserving Biometric Authentication Protocol
	PPBA Protocol Instantiation
	Experimental Results
	Use case: privacy-preserving boarding check

	Chapter's Conclusion

	Conclusion

