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Abstract

Tterated Function Systems (I.F.S.) have been recently studied in the field of image
coding. In addition to compression, I.F.S. possess some properties of fractals which
can be used to sub/oversample an image. In this paper, we review how LF.5. can be
used for image zooming, directly from basic algorithms of still image compression.
This study shows that results obtained in such a way do not produce better results
than those obtained by using classical spatial interpolators such as the linear one.
However, in this paper we also show that modified versions of the basic approach
provide a better use of I.F.5.’s coding for zooming.

1. INTRODUCTION

Since 1990, I.F.S. have been studied in the field of image coding. The reference algorithm,
from Arnaud Jacquin, is briefly reviewed in section 3. Since then, several relevant papers
_proposed some improvements. Moreover, some authors indicate that the fractal code built
during the coding stage is independent of the size of the original image, and then this code
can be used to reconstruct an image at any level of resolution without a major loss of
definition. This mechanism is detailed in section 4.

Currently, in several fields, oversampling is often needed. In aerial or satellite imaging,
zoom is used in order to facilitate the image interpretation, or just to obtain a more comfort-
able visualization environment. In some multimedia applications, such as image databases
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consultation, sub/oversampling tools are often required in order to deliver a reduced (i.e.
icon) or an enlarged (i.e. zoom) version of a given image. Available software realizes zooms
using some classical interpolators, such as nearest-neighbor (duplication), linear or cubic
interpolation. These interpolators are briefly presented in section 2.

In the last section, a comparison shows that images obtained by the classical fractal zoom
do not give better results than those obtained by using classical interpolators. Nevertheless,
improvements and modifications of the basic algorithm using LF.S., proposed in section 3,
allow to define an effective alternative to classical interpolators for image zooming,.

Tlustrations on the wel-known image “Lenna” are presented in section 6, as well as a
diagram (Fig. 13) which shows, in a subjective way for the visual criterion and rigorously
for the others, the global classification of some methods.

2. CLASSICAL INTERPOLATORS

The following interpolators are particular oversamplers. An interpolator (or interpolation
function) is a function which is equal to another function for some points (interpolation
nodes). That is the main difference between the fractal oversamplers, described in the
following sections, which do not necessarily keep the original luminance values. Each inter-
polator used in this work is a polynomial function. '

The simplest oversampling is the Nearest-Neighbor Interpolation (N.N.L). It consists
in duplicating the original pixels’ values. For example, when zooming by a factor two,
each original pixel is duplicated four times. So, the degree of the polynomial function of
interpolation is zero.

In practice, the most frequently used oversampling is the Linear Interpolation (L.1.). This
interpolator is based on a local hypothesis of luminance signal continuity and calculates, by
averaging!, a value at a subpixel position.

The last interpolator we used as a reference is a modified version of the cubic one, the
Cubic Convolution Interpolation® (C.C.L).

Nearest-neighbor, linear and cubic convolution interpolators, which are approximations
of the first, second and third orders respectively, are based on local continuity hypothesis
of the luminance signal and use a set of pixels located in a neighborhood (of resp. 1, 4 and
16 pixels) around the position to be interpolated.

3. FRACTAL CODING STAGE (GENERALITIES)

Fractal coding of a still image piorig consists in building a code 7 (ie. aparticular transforma-
tion) such that pi,,i, is approximately self-transforming under T (i.e. forig & T(torig))-
Then, if 7 is a contractive transformation, forip is approximately the attractor of 7 (i.e.
Borig & T°°(po) for some initial image po, if we write 7 = limg_7°%). This code 7
is built on a partition of the original image. Fach block R; of this partition is called a
range block and is coded independently of the others by a matching (local code ;) with
another block D; in the image, called a domain block. According to the J acquin’s cod-
ing algorithm3, let us note T(iorig; R, 7, Pr, Py, @m) the fractal code obtained by using the
parameters :

R the range blocks’ size {in case of squared range blocks)
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Fig. 1 7 behavior.

e 7 the scale factor used for the local self-similarity search. If D is the domain block’s
size, then D =n - R. _

e p; (respectively p,) the horizontal (resp. vertical) step which defines the domain pool
(set of all the domain blocks) for an exhaustive research. The coordinates of each
domain block’s upper left corner are expressed by (J * ps.t - py), where i and j are
integers.

e a,, the upper boundary on the scales (of the massic transforms). More precisely,
T = Uf\;l 7; where 7; : D; — Riand 7 = Mjoliorin with M;(z) = a;-z+b; an affine
operator with a scale a; and a shift b; on the luminance of the pixels, I; a transformation
selected from eight discrete isometries and ry, a reduction by a factor n using an
averaging (see Fig. 1). So, during the coding stage, 0 < a; < am, Vi€ {1,..,N}.

In this study, n = 2, so D = 2R and r; is a reduction by a factor two.

4. FRACTAL ZOOM (¥.Z.)

4.1 Classical Fractal Decoding Stage

The decoding stage, based on a continuous theory (LF.S.), consists in an iterated process.
1t needs an arbitrary initial image po and the fractal code 7 (see Fig. 2). Throughout this
paper, the initial image fto has black pixels. Then, the 7’s attractor 7%°(uo) gives an ap-
proximation of the original image orig. By denoting €. the coding error, the reconstruction
error ¢, is bounded, according to the Collage theorem, by the following expression :

£
e,gl_fs (1)

where €. = d2(Morig, T(Horig))s &r = da(Horig, T(ti0)) and s the contractivity of the trans-
formation 7. In this context, the contractivity constraint is expressed as : for all images u
and v, da(7(p), 7(v)) < s - da(p, v) with s € [0,1[ (dz is the Fuclidian metric).

4.2 Decoding With Zoom

The main idea of the fractal zoom is rather simple. It is based on an important property
of the fractals. If we assume that fractal coding is really a fractal process, then the fractal
code’s attractor is a fractal object. In fact, by iterating a determinist transformation on
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Fig. 2 Classical coding/decoding stage.

some initial image, a determinist fractal image is obtained. Therefore, this process must
be independent of the resolution required. The original image p,ri; has a fixed size defined
by the number of its pixels. But the fractal code 7 has no intrinsic size, because it is a
transformation which can be theoretically applied on any images.

Hence, we can assume that :

e The coding error is rather “small” (i.e. 7 is a representative approximation of the
original image forig)-

¢ Self-similarities (i.e. matchings between areas with different sizes, in the original
image) are scale-independent (i.e. remain true at any level of the image’s resolution).

Then, the fractal code enables to zoom. In practice, this operation (see Fig. 3) consists in
increasing the range blocks’ size, and therefore the domain blocks’ size (becanse D = 2- R).
For a zoom by a factor z, the new sizes will be R’ = z- R and D' = z- D during the decoding
stage, but the fractal code 7 (i.e. all the local codes 77) will be unchanged.

A point which is not taken into account in this study is the coding error. As a matter
of fact, the fractal coding is a lossy process, and the coding error is magnified during
the decoding stage when zooming. So, a special treatment of this error would have been
necessary to really compete with the classical interpolators.

5. IMPROVEMENTS USING OVERLAPPED RANGE BLOCKS

5.1 Introduction

When using the classical fractal zoom, the main problem is an important block effect (see
Fig. 11i(c)) i.e. some disturbing discontinuities along the range blocks’ sides. Within
the framework of the classical decoding process, some improvements have been done to
perform a good visual quality. Emmanuel Reusens? uses overlapped range blocks instead
of a partition and averages the two (or four) common areas of the range blocks.

In this case, the purpose is the fractal compression of a still image. That is why he must
use a “weak” overlapping of the range blocks, in order to keep the compression aspect of
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Fig. 4 Covering up of the image using (a) a partition and (b} overlapped range blocks with half of their
side’s size.

the method. As a part of oversampling, we do not care about compression and that allows
us to keep an important redundancy of the information in the fractal code. In this study,
the overlapping used is shown on Fig. 4(b).

The case described on figure 4(b) is equivalent to take four partitions Pl Yo PO of the
entire image and the other partitions of a part of the image as shown on Fig. 5, with the
same cells’ size. _

So, in order to encode the image pisrig, we need to know the code of each part (see Fig.
5(a),(b),(c) and (d)) of the original image independently. Let us note (7} the fractal code
of the image Horigy (i-e. the restriction of the image p,.iq to the partition PU)), Then,

the fractal code of the image jioy;, is now defined by the formula :

4
7(-) = $[[] 7)) (2)

i=1

where 9 is a transformation used to “stick back” together the different codes 79 (see Fig.
6) according to the original image.
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Fig. 7 Behavior of the function C.

To define completly the transformation %, we must include the image’s sides processing.
The image is divided into four areas’ categories, as shown on the figure 5(e), in keeping
with the figures 5(a),(b),(c) and (d). Let p be a pixel, (k,I) its coordinates and V(p) the
function which gives the value of the pixel p. Let us take five images with the same size:

v and, v19) with the partition PU) for 1 € j € 4. Let us write U = ['[jﬂ Vl(jz') “and
Pl
C:U — R*:p+r— (k,I) the function which gives the coordinates, in the corresponding

image, of a pixel belonging to U. In this case (Fig. 7), we obtain :

b (kal) € CI = C-I(ksl) = {pl:p25p31p4}
o (k,)eCyuUCy=> C-1(k,1) = {p}, Py}
L] (k,l)ECW -‘-?‘C—l(k,l)= {pg}

So, we can write :

v=9(U)= | ((CHCM] (3)
peudl) '
and ¢ is given by the function ¢ (which depends on the method used).
Therefore, in order to know the global code 7, we only have to take Vj(J()_) = 7D () for
PUI

some image p, and then, using Eq. (2) and Eq. (3), the result is v = 7(x).

5.2 Fractal Zoom With Crushing (F.Z.C.)

This method shows how the overlapping of the range blocks can reduce by half the block
effect. For example, it consists in putting each transformed domain block, by the corre-
sponding (), without taking the others into account (see Fig. 8).
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Fig. 8 “Crushing” of the range blocks.

5.3 Fractal Zoom With Total Averaging (F.Z.T.)

This method is the first and most natural improvement of the technigue F.Z.C. It allows
to take into account easily the redundancy of the coding. Most of the pixels are coded
four times (area C; of the image). So, in order to find the value of the transformed pixel,
we only have to average the four values obtained with the codes 7). 1 < j < 4. In the
area Cy; (resp. Cur) the averaging is only done on the two values obtained with the codes
1) and 7®) (resp. 71} and 7®)). In the area Ciy, we take the pixel obtained with 7(1).
Hence, ¢ is defined by V{¢{({pn})] = 1 * Lope{pny V{(p) for r pixels {p1,-pr} (r € {1,2,4})
and (({p,}) is a pixel belonging to v such that the coordinates of (({ps}) are equal to
C(p1) = ... = C(pr)-

The main problem with this technique is that a “total averaging” smoothes the image
too much. The following method preserves a sharpener aspect of images.

5.4 Fractal Zoom With Adaptive Averaging (F.Z.A.)

This method is a variant of the technique F.Z.T. based on the following consideration : if
the fractal coding was perfect, the four independent codes 70) would give the same results.
But in practice, this seldom happens. So usually, we must choose between the four possible
values given by the transformations 7). There is no strict way to do this because, with
the oversampling of an image, nothing about the original continuous bidimensional signal is
known. Therefore, it is not possible to rigorously find the value of new sampled points. Qur
intuitive approach is the following : it is reasonable to suppose that the fractal coding has
a rather stable behavior, and then, we have to rule out the “bad” artifacts of the method.
Therefore, as the possible values should have been equal, it is reasonable to assume that
the “best” ones are given by the two closest values.

For example, if the possible values a.2 3, 7, 9 and 21, the choosen value will be '&22 =8,
because 7 and 9 are the two closest values in the sequence {3,7,9,21}. The value obtained
with the method F.Z.T. would have given iﬁfﬂ = 20.

Hence, ( is defined by :

e (k,D)eCw = VI¢(po)] = V(po) Ve VLV (0!
o (k1) € CiU Cru = VI((p}, pp)] = LY

Thus, ¢ is the same function as that of the previous sub-section, if the coordinates belong
to Cy U Cip U Chy.

If the coordinates (k,!) belong to Ci, let us write z; = V{p,) the value of the pixel p;
for 1 € j <4 and d,;m = |#n — Tm|. Therefore, the computation of six distances dy 2, dy 3,



Zooming Using [terated Function Systems 119

Fig. 9 Image of Lenna : (a} A and (b) J2.

dy 4, d2;3, d2,4 and ds 4 (because dpm = Gmn and dnn = 0) is required. Then, there exists
at least one couple (ng, mo) such that : dnyme = MiNyem{dnm}- Hence, let us define :

o (k)€ Cr = VI((p1,p2,p3,pa)] = 957

In this case, ¥ is an “adaptative averaging” which realizes the average computation from
only two values, instead of four as seen in the previous sub-section.

6. COMPARISON BETWEEN FRACTAL ZOOMS AND CLASSICAL
INTERPOLATORS

In this section, using three criteria, different oversamplers are compared : fractal zooms
described previously and classical interpolators. Of course, those comparisons are difficult
to establish because neither criterion is better than the other for a classification of the
oversamplers and it depends on what we want to measure.

Tet us note A(+, z) an oversampling by a factor z with the method A, chosen from among
the following ones : NNI, LI, CCI, FZ, FZC, FZA and FZT. Those techniques are tested
on the images A\; which is the 128 by 128 image of the Lenna’s face and A; which is the 256
by 256 image of the Lenna’s face as well (see Fig. 9).

Let us note E3(-,-) = [da(+,*)]? the squared error and ex(:,-) the Mean Squared Error
(M.S.E.).

6.1 M.S.E. Criterion

It is an analytical criterion which gives some information about the oversampler’s guality.
While this criterion is sometimes in contradiction with the visual quality of results, it allows
an objective classification, counter to a visual one.

To work out this classification, we use the image Ay which is in this study the image Ay
subsampled by a factor two by taking one pixel over four. Let us encode this image with
7(A154,2,1,1,1.3) which gives the largest domain pool (set of the 8§ by 8 domain blocks in
this case). Let us write ea = e2(Ag, A(A1,2)). In this case, the reconstruction M.5.E.s are:
exns = 179, eus = T6, €coy = 75, €py = 217, epge = 216, epza = 172 and epzr = 146.
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Fig. 10 Lenna’s shoulder zoomed by a factor six with (a) A = NNI; (b) A = LI ; (c) A = FZ ; (d)
A =FZC; (e) A=FZA and (f) A =FZIT.

6.2 Visual Criterion

Using a zoom by a factor six of the image Ag, some typical behaviors can be easily ob-
served. The fractal codes are obtained with 7(A;;4,2,1,1,1.3). Some interesting areas of
the corresponding oversampled images are shown on Fig. 10 and Fig. 11.

6.3 “Original Luminance Values Respect” Criterion

This criterion is based on intuitive reasoning in order to validate an oversampler in another
way. An optical subsampling can be well modeled, as opposed to oversampling, by a simple
operation : an averaging. So, in order to show that the oversampler used is a good approx-
imation of an optical zoom, the oversampling should be an inverse transformation of that
subsampling.

Let us note sub(-,z} the subsampling, by a factor z, of an image by using a simple
averaging. Let us take an original image poriy. Then, we can say that the oversampling
must “respect the original luminance values”. More precisely, if vorig = sub[A(forig, 2), 2],
we want that voriyy & piorig. Let us write porig = {21, ..., %} and verig = {¥1,-.., ¥x}, where
z; (tesp. ¥), 1 <4 < k, are the pixels’ values of the image porig (Tesp. vorig). Let us note
¢; = |lo; — y;| for 1 < 7 < k. Then, the distribution of ¢; must be concentrated near the
value 0.

Of course, in this case, the technique N.N.I. is the best because sub[NNI(g, 2), z] = u for
all images p and all zoom factors z (see Fig. 12(a)). But it is interesting to compare the
other oversamplers with this criterion. The corresponding distributions are shown on Fig.
12, using the image p;rip = A2 and z = 6.
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()]
Lenna’s left eye zoomed by a factor six with (a) A = NNI;
A =TZC; (e) A=FZA and (f) A =FIT.

Fig. 11
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Fig. 12 Probabilties distribution

; (¢) F.Z.A. and (f) Z.F.T.

of ¢ values with the methods (a) N.N.I; (b} L.L. ; (¢) F.Z. ; (d) F.Z.C.
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Fig. 13 Roughly domne classifications of some oversamplers.

7. CONCLUSION

In this paper, after a review of image coding using I.F.S., we have presented how to use
this coding in order to realize a zoom. A comparison with some spatial interpolators has
shown that results obtained from the basic algorithm, used just as it is, are not better.
Nevertheless, using some improvements to the classical method, we yield results on digitized
images which show that the proposed versions put forth that LF.S. (as an oversampler based
on local spatial similarities) are an effective alternative to classical interpolators (based on
spatial continuities) for image zooming.

But it is difficult to evaluate this oversampler versus others. As seen in section 6, several
criteria can be used, and according to them results differ. Moreover, basic zoom can be de-
fined from a coding scheme using I.F.S. Unfortunately, improvements of zoom functionality
are done to the detriment of the compression aspect.
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