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Abstract—IEEE 802.11p based V2X communication uses
stochastic medium access control, which cannot prevent broad-
cast packet collision, in particular during high channel load.
Wireless congestion control has been designed to keep the channel
load at an optimal point. However, vehicles’ lack of precise and
granular knowledge about true channel activity, in time and
space, makes it impossible to fully avoid packet collisions. In
this paper, we propose a machine learning approach using deep
neural network for learning vehicles’ transmit patterns, and
as such predicting future channel activity in space and time.
We evaluate the performance of our proposal via simulation
considering multiple safety-related V2X services involving het-
erogeneous transmit patterns. Our results show that predicting
channel activity, and transmitting accordingly, reduces collisions
and significantly improves communication performance.

I. INTRODUCTION

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)

communications are being deployed with a goal to improve

traffic safety and transport efficiency. Initially a majority of the

vehicular safety applications were only based on improving

a vehicle’s awareness of its vicinity by exchanging with

its neighbors its position, speed, heading through periodi-

cally broadcasting Cooperative Awareness Messages (CAM)

or Basic Safety Messages (BSM). Further along the road,

V2X communication will be used for cooperative driving and

navigation, when a variety of messages will be transmitted,

as intelligent vehicles will negotiate and coordinate their ma-

neuvers. This will require more reliable V2X communication

mechanisms.

Among several potential wireless communication technolo-

gies, the technology being currently commercially available

is called ITS-G5 in Europe and DRSC in the USA, with

standardized PHY and MAC layers based on IEEE 802.11p.1

In the ad-hoc mode of IEEE 802.11p, no centralized channel

resource management is available. Each node is granted access

in a stochastic way using a CSMA/CA mechanism. However,

advanced applications such as Autonomous Driving and other

Safety-V2X services will need highly reliable communication,

which CSMA/CA-based medium access of IEEE 802.11p

1The 3GPP LTE-V2X mode 4 is a promising alternative technology. Due
to its ad-hoc nature, it bears similarities regarding the challenges discussed
in this paper, and is expected also to benefit from the approach proposed in
this paper.

is not capable of providing. As the channel load increases,

the communication performance of CSMA/CA also rapidly

degrades, further affecting the performance of critical V2X

services.

Wireless congestion control has been designed to prevent

channel saturation, enabling each node to periodically monitor

the channel load and adjust its transmit rate and power.

However, collisions still occur due to the stochastic nature

of CSMA/CA and near-far effects. As safety-V2X services

mostly rely on broadcast traffic, packet collisions due to

probabilistic channel access or due to hidden terminals can

neither be detected nor fully avoided. Yet, what if an intelligent

vehicle could precisely anticipate and predict neighboring

vehicles’ transmission, and accordingly orchestrate its own

transmissions?

We address the possibility for a vehicle to learn, predict and

transmit channel activities in order to avoid packet collisions.

Assuming a vehicle can learn the transmit patters from 1-

hop neighbors, it can precisely know the channel activity

rather than sensing it. Thus, each node will know much better

when to transmit and to avoid collisions with its neighbors.

Moreover, if such a vehicle further shares such predicted chan-

nel activity with its 1-hop neighbors, it would enable farther

away vehicles to learn the transmit patterns of hidden nodes.

Accordingly, this would let each vehicle better orchestrate its

transmissions, not only based on the slots used by its 1-hop

neighbors, but also considering slots initially sensed ‘idle’ via

carrier sense, but actually being occupied by hidden neighbors.

In a static and highly synchronous system, this can be

easily optimized by coordinating the transmissions from dif-

ferent nodes. However, safety V2X communication scenarios

are far from synchronous. They are rather highly dynamic,

with aggressive node mobility, a varying neighbor density, a

fluctuating channel load and subject to events triggered packet

transmissions. In this regard, machine learning can be a useful

tool for an intelligent vehicle to learn and predict its neighbors’

transmit patterns for an optimized resource orchestration.

In this paper, we propose a novel approach to avoid packet

collisions by learning and predicting neighboring transmis-

sions using Recurrent Neural Networks (RNN) with Long

and Short Term Memory (LSTM). Our contributions are

threefold: (i) we highlight the challenges of ITS-G5 to sense



idle resources in time and space. (ii) we propose a machine

learning mechanism using deep neural network for learning

and predicting neighbors’ transmissions. (iii) using simulation

based evaluation, we demonstrate that resource orchestration

according to predicted channel activities can significantly

reduce packet collisions and improve communication perfor-

mance of safety V2X applications.

The rest of the paper is organized as follows: Section II

discusses resource management and corresponding issues in

IEEE 802.11p based vehicular networks. Section III presents

our intelligent orchestration via machine learning. Section IV

provides performance evaluation results, followed by a brief

review of the state of the art in Section V. The conclusion and

future work are discussed in Section VI.

II. RESOURCE MANAGEMENT IN IEEE 802.11P BASED

VEHICULAR NETWORK

Medium Access: The medium access of ITS-G5 and DSRC

is based on IEEE 802.11 standards, where there is no

centralized channel resource scheduler and each node acts

in a decentralized way to contend for channel access. It

employs a CSMA/CA listen before talk approach, i.e. if the

channel is sensed free for a certain time the node transmits

directly, otherwise the node chooses a random back-off

window, which decreases each time the channel is sensed

free. Transmission occurs when the countdown reaches zero.

The random back-off value between 0 and CW is chosen to

avoid simultaneous channel access by multiple nodes.

Transmit Rate Control: In CSMA/CA, when a unicast

packet in not acknowledged, the contention window is in-

creased. This reduces channel congestion by distributing the

transmission attempts over a longer period. However, safety

related vehicular communications involve packet broadcast

without acknowledgments, so this contention window increase

mechanism is not possible. To counter this problem, on top

of CSMA/CA, there is additional flow control to limit the

transmit rate of each node and reduce channel congestion.

This mechanism is also known as Decentralized Congestion

Control, or DCC in European Standards. Similarly in the USA,

SAE has standardized a channel congestion control algorithm

in SAE J2945/1 [1].

A. Issues with existing Approaches

Stochastic Medium Access: CSMA/CA attempts to

minimize concurrent channel access by several nodes using a

random back-off window, usually of a size between 0 to 15

slots. However, it is still probable for two nodes to obtain the

same back-off window or same remaining back-off. Identical

back-off results in simultaneous transmissions and collisions.

Lack of Spatial Resource Reuse: The presence of hidden

nodes beyond the Carrier Sense range cannot be detected

via Carrier Sense. This results in packet collisions and

significantly deteriorates the communication performance as

the node density increases. CSMA/CA cannot rely on spatial

Fig. 1. Transmission deferred to period of low channel activity

channel usage information beyond the Carrier Sense range.

For example, if hidden nodes could transmit during different

time slots, it could mitigate the problem of hidden node

collisions.

Lack of a notion of Orchestration:The goal of CSMA/CA

is to attribute channel access in a stochastic way to avoid

concurrent transmissions by several nodes. Additionally

during high channel load, transmit rate control limits the

transmit rate of each node to prevent channel saturation.

However, neither CSMA/CA nor transmit rate control aim

to schedule or uniformly distribute the nodes transmissions

along the time axis in a coordinated manner.

Channel Load calculation Granularity: Along the time

axis, there can be periods of higher channel footprint during

transmission bursts, when more nodes will contend for channel

access. Although most transmissions are periodic or quasi-

periodic during initial vehicular network deployment, some

vehicles will have more advanced capabilities in the future.

These vehicles will transmit multiple packets with different

transmit patterns, which will result in variations of the channel

footprint. This is impossible to observe by the present channel

load measurement mechanisms. In the standards, the average

channel load is calculated and smoothed using a FIR filter

[2] over a 100ms window, while the vehicle is unaware of the

granular channel activity during this window. This will degrade

communication performance for future deployment scenario,

involving heterogeneous and multiple safety applications per

vehicle.

III. INTELLIGENT ORCHESTRATION VIA MACHINE

LEARNING

In this section, we present a learning node, which learns

the channel activity during an observation window of 100ms

and predicts neighbors’ packet transmissions, packet size, type

and the channel footprint for the next few windows of 100ms.

The goal is to use the learned patterns of neighbors’ packets

to schedule one’s own packets, depending on the application

deadline, during periods of low or no channel activity, as

shown schematically in Fig. 1.

The figure shows a typical prediction pattern of a learning

node, predicting the time instances when neighbors will trans-

mit during the next 100ms. The dotted arrow indicates that an

application of the learning node needs to generate a packet at

a certain point. However, according to the prediction pattern, a

period of low channel footprint will be available in the current



Fig. 2. Learning Distance of Intelligent Node

prediction window. Consequently, the application defers the

packet generation and eventually generates and transmits the

packet during a period of lower channel activity.

The tolerated delay of deferring a packet depends on the

application requirement. The goal is to decrease the probability

of concurrent transmissions, and avoid interfering with visible

and hidden neighbors, while remaining within the packet

transmission deadline requirement of the application.

The learning node monitors all received packets from visible

neighbors and uses the packet reception history to predict

its neighbors’ future transmissions. Furthermore, each node

piggybacks the packet reception pattern of its own neighbors,

i.e. Neighbor ID, type of packet and reception time, inside

the packets it transmits. Thanks to this piggybacking, the

awareness of the learning node is extended and it becomes

aware of the transmit patterns of hidden nodes as well.

Although piggybacking adds extra transmission overhead in

each packet, it is out of the scope of this paper. In future work

we intend to analyze this overhead and increase the efficiency

and scalability of such piggybacking.

Nevertheless, the number of neighbors a learning node can

keep track of and predict their transmissions is limited. If a

leaning node has to keep track of a large number of neighbors,

such as in a scenario of high vehicle density, it becomes

difficult to find vacant slots to schedule is own transmissions.

The set of 1-hop visible and 2-hop hidden neighbors that a

learning node can keep track of has to be chosen optimally.

Figure 2 shows a schematic scenario of learning during a

high node density. In the figure, the green point indicates

the learning node, the red points indicate the nodes visible

to the learning node and the black points are the hidden

nodes. In such scenario, the learning node prioritizes learning

and predicting the transmit patterns of hidden nodes 2-hops

away. As detailed in the next section, collisions due to hidden

nodes play a more significant role in degrading communication

performance, while potential collisions due to visible nodes are

largely prevented by CSMA/CA.

A. Machine Learning for Predicting Neighbors’ Transmis-
sions

For predicting vehicular message transmissions, we use

time-series prediction using RNN with LSTM. There are many

algorithms for predicting sequential data, the earliest algorithm

being AutoRegressive Integrated Moving Average (ARIMA).

For most use cases, ARIMA or Hidden Markov Models

(HMM) have become deprecated and have been replaced by

RNN, for reasons outlined in [3].

The algorithms used to train HMM and vanilla RNN strug-

gle to deal with many different inputs and to capture long

term dependencies. For predicting messages from neighboring

vehicles, the consequence would be that the influence of older

messages on the current prediction would be ignored. LSTMs

were designed to overcome this issue as discussed in [4]. For

these reasons, we decided to use RNN with LSTM.

In terms of performance, deep learning is not an overkill

in this use case, as the neural network is not that big and

does not generate a large overhead. In this paper, we look at a

simplified approach of using a time-series prediction for packet

transmit patterns, for which other simpler machine learning

technique could be enough. However, for future work, we will

consider more advanced features, such as the impact of the

CSMA/CA back-off window or cellular V2X slot allocation

pattern, realistic node mobility model, signal propagation and

channel model, or even the impact of wireless congestion

control. Deep learning will be required to learn the complex

interactions between these features.

B. Design of the Predictor

In order to predict messages from neighboring vehicles, the

learning vehicle uses a divide and conquer approach. It main-

tains a sub-predictor instance for each neighbor, and predicts

the neighbor’s future packets based on the previous ones. The

predictor is trained off-line, using the typical communication

pattern of a vehicle. The sub-predictor uses one RNN for each

type of packet.

The organization of the prediction program can be seen in

Fig. 3. The main predictor keeps an active instance of the sub-

predictor for each of the current neighbors. The sub-predictor

handles all the packets received from a particular neighbor. It

uses them to predict the next packet of each type from that

neighbor. When a new packet is received by the sub-predictor,

it pre-processes the packet to obtain the information used by

the neural network and then feeds it to the corresponding

neural network.

Periodically, every 100 milliseconds, the learning node

inquires the predictor for the predicted packets for the next

100ms. The main predictor iterates through all the active

instances of the sub-predictors to fetch packet predictions,

and returns a complete list of future packet transmissions and

the packet air time. After a time-to-live, if no more packets

are received from a neighbor, the corresponding sub-predictor

instance is deleted. This means that the neighbor has moved

out of the learning node’s communication range and is no

longer relevant.

Although the learning node feeds the predictor and inquires

future packet pattern every 100ms, the sub-predictors also

consider older messages during prediction. The sub-predictors

do not explicitly save the older messages, but the LSTMs have
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Fig. 3. Predictor Architecture

an internal state that acts as a memory, and the information

needed for future predictions are saved in this state.

C. Features selection and preparation

The learning node predicts three types of packets transmit-

ted by each neighbor, i.e. motion-event triggered and peri-

odic Cooperative Awareness Messages (CAM), event triggered

bursts of Cooperative Perception Message (CPM) and periodic

exchange of High Definition Maps between vehicles, using a

message called Local Dynamic Map (LDM). These packets

are further explained in the next section.

For each type of packet, a separate neural network is

used. Each neural network receives as input the time interval

between the currently received packet and the previous packet

of the same type from a particular neighbor. Conceptually, this

means that the interval to the next packet is predicted using

the interval between the two previous packets.

CAMs are triggered by a change in a vehicle’s speed,

direction or position, and the values of speed, direction and

position of the CAM sender are contained inside the CAM.

Values of vehicle dynamics and their gradients are also fed

into the neural network. All these input features are normalized

before being fed to the RNN. We use feature scaling to map

the values between -1 and 1.

IV. EVALUATION

We perform a simulation based evaluation to demonstrate

the communication performance improvements achieved by

learning and predicting neighbors’ transmissions, and orches-

trating transmissions during periods of low channel usage.

We analyze the effectiveness of our machine learning

method in reducing collisions through the transmissions of

visible nodes within 1-hop distance, and hidden nodes beyond

the range of carrier sense (i.e. within 2-hop range). The Packet

Reception Ratio (PRR) by all neighbors of the learning node

as function of the distance is the primary metric of our

performance evaluation.

A 10km long dense highway scenario is used, consisting

of 50 vehicles/lane/km and 3 lanes in each direction. Vehicles

move at speeds between 20 to 45 m/s, following a Gauss-

Markov mobility model. The simulator used is called iTETRIS

[5], which has a full ITS-G5 protocol stack implemented on

top of NS-3.

We consider 3 types of packets (i) CAM (periodic 10Hz and

motion triggered), (ii) CPM (bursts) and (iii) LDM (periodic).

The European standard ETSI EN 302 637-2 [6], specifies

that CAMs are generated as a function of changes in vehicle

dynamics, either a 4m variation in position or a 4 degree

change in heading or a 0.5m/s difference in speed. We also

consider CAM transmitted at 10Hz, as a comparison point to

Basic Safety Messages (SAE J2735 [7]) transmitted in the US

at 10Hz.The CAM size is fixed to 300 Bytes.

CPMs are being standardized in ETSI TS 103 324 [8], and

are triggered upon detection of new sensor data or road objects.

In our simulation, CPMs are triggered following an uniform

TABLE I
SIMULATION PARAMETERS

Parameter Value

Transmit Rate
CAM: 10 [Hz] & Triggered
CPM: 5 [Hz], LDM: 1 [Hz]

Transmit Power 20 dBm

Packet Size
CAM: 300 Bytes, CPM 500 Bytes
LDM: 750 Bytes

EDCA Packet Priority
CAM: Best Effort,
CPM & LDM: Background

DataRate 6 Mbps

Mobility

3 by 3 lane 10 km highway
Speed 20 to 45 [m/s]
Gauss Markov, Memory level 0.95
Sampling period 0.1 [s]

Node Density 50 vehicles/lane/km

PHY and MAC
ITS-G5 802.11p in 5.9 GHz
(10 MHz Control Channel)

Attenuation Log Distance Path Loss
Preamble Detection Threshold - 95 dBm

Neural Network
4 layers: 40, 50, 60 neurons &
LSTM unit layer

Training
Off-line, ADAM algorithm
Stochastic gradient descent

Performance Indicators
Packet Reception Ratio
50 runs, 95% Confidence Interval



TABLE II
AVERAGE CHANNEL LOAD FOR DIFFERENT TRANSMIT PATTERNS

Transmit Pattern Average Channel Load
10 Hz CAM 65.35 %
Triggered CAM Higher Speed 50.74 %
Triggered Lower Speed 35.47 %
CAM + CPM 52.10 %
CAM + CPM + LDM 66.90 %

random distribution, where 5 messages are emitted in burts

within 500ms. Unlike CAMs, CPMs are not mandatory and

only vehicles with appropriate object detection capability will

generate them. Thus, in our simulation, we only consider 50%

of the nodes to emit CPMs with a fixed size 500 Bytes.

Lastly LDM as described in ETSI TR 102 863 [9], are

messages intended to exchange HD maps data between cars.

In our simulations, we considered LDMs to be emitted at 1 Hz

with a fixed size of 750 Bytes. Each node starts transmission

following an uniform random distribution, including a small

jitter of 500μs during transmission of each packet. The results

are averaged over 50 simulation runs with 95% Confidence

Interval.

For machine learning and prediction, the LSTM with RNN

have been implemented in tensorflow. The neural network

consists of 4 hidden layers, with 40, 50 and 60 neurons and a

LSTM unit layer. Without loss of generality, the configuration

of the the neural network has been chosen empirically for this

use case, to keep it large enough to capture the complexity of

the data, and small enough to be trained efficiently.

The training is done using the ADAM Optimizer, with

stochastic gradient descent. The batch size is 1 in order to cap-

ture the time dependencies between the packets. The training

is done off-line using packets logged during simulation runs on

highway scenarios. The prediction is done on-line during the

run time as the learning node receives transmissions from its

neighbors. Table I summarizes the main simulation parameters.

Figure 4 shows the Packet Reception Ratio (PRR) on the y-

axis by the neighbors of the learning node when vehicles emit

10Hz CAMs, producing an average channel load of 65.35%

as shown in Table II. The x-axis corresponds to the distance

between the learning node and the receiving nodes.

As it can be seen, the case with no learning performs worse

compared to when a node transmits according to predicted

transmissions of its visible and hidden neighbors. The recep-

tion performance is improved a bit by predicting and avoid-

ing concurrent transmissions with 1-hop visible neighbors.

However, the performance improvement is the highest, when

the learning node predicts the transmissions of hidden nodes.

This indicates that collisions with hidden nodes play a more

significant role than visible nodes in performance degradation

.

Nevertheless, when the learning node predicts the trans-

missions of both 1-hop visible and 2-hop hidden nodes, the

performance reduces a bit compared to the case with learning

only hidden nodes. In the simulations, within a distance of a

2-hop signal propagation range, approximately 280 nodes in

total are spread across 500m in both directions. In an attempt

to avoid concurrent transmissions with such a high number of

nodes, the learning node cannot find enough vacant periods

to schedule its own transmissions before the packet TTL, and

thus transmits immediately. Nevertheless, transmitting to avoid

concurrent transmissions with only hidden nodes, produces an

improvement of respectively 10% and 25% PRR at distances

of 100m and 200m.

Figure 5 shows the PRR when CAMs are triggered accord-

ing to vehicle dynamics. Compared to 10Hz transmission, the

PRR is higher, as a velocity between 35 to 45 m/s triggers

CAMs between 5 and 10Hz creating a lower channel load

of 50.74% compared to a 65.35% channel load produced by

the earlier 10Hz periodic CAMs scenario. A lower channel

load results in lesser collisions, giving a better PRR. The
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trend is similar, i.e. learning only hidden nodes’ transmissions

performs the best, followed by learning both hidden and visible

nodes, then learning only visible nodes. As expected, the no

learning case performs the worst.

This trend continues when the channel load gets even

lower at 35.47% for a velocity of 20-30m/s as shown in

Fig. 6. However, at a low channel load of 35.47%, collisions

with visible nodes are almost negligible, therefore learning

transmissions of visible nodes only, provides no improvement.

At a distance of 200m, learning induced PRR improvements is

around 30% and 35% for channel loads of 50.74% and 35.47%

respectively (i.e. for CAMs triggered at high and low speeds).

In addition to a single CAM application, we analyze the

packet reception performance when 50% of the nodes emit

Cooperative Perception Messages (CPM) to broadcast their

Distance between Sender-Receiver [m]
0 50 100 150 200

Pa
ck

et
 R

ec
ep

tio
n 

Pe
rc

en
ta

ge

0

20

40

60

80

100

Motion Triggered CAM Without Learning
Motion Triggered CAM Learning hidden nodes
Motion Triggered CAM Learning visible nodes
Motion Triggered CAM Learning hidden & visible

Fig. 6. Packet Reception Ratio of Triggered CAMs for vehicle speed of 20-30
m/s

Distance between Sender-Receiver [m]
0 50 100 150 200

Pa
ck

et
 R

ec
ep

tio
n 

Pe
rc

en
ta

ge

0

20

40

60

80

100

2 Applications CAM CPM Without Learning
2 Applications CAM  CPM With Learning

Fig. 7. Packet Reception Ratio of Two Applications CAM and CPM

Distance between Sender-Receiver [m]
0 50 100 150 200

Pa
ck

et
 R

ec
ep

tio
n 

Pe
rc

en
ta

ge

0

20

40

60

80

100

3 Applications Without Learning
3 Applications With Learning

Fig. 8. Packet Reception Ratio of Three Applications CAM, CPM, LDM

sensor information. The PRR is shown in Fig. 7, when the

learning node predicts the pattern of its hidden neighbors only

and transmits accordingly. CPM being larger than CAMs, the

combined CAM and CPM transmissions generate an average

channel load of 52.1%.

However the reception performance improvement due to

learning and predicting is less than the case with only CAMs.

Unlike CAMs, CPMs are triggered randomly and 5 packets

are emitted in a burst, making it difficult to predict the

first packet of the burst. The prediction error degrades the

orchestration performance, thus affecting the packet reception

ratio. Nonetheless, the learning induced PRR improvements is

5% at 100m, and 18% at 200m respectively.

Lastly, Fig. 8 shows the PRR, when the nodes transmit 750

Bytes LDM packets along with CAMs and CPMs, producing

a higher average channel load of around 66.9%. However, as

the channel load increases, the performance improvement due

to learning is less compared to the previous scenarios at lower

channel loads. As mentioned before, at high channel loads, the

learning node cannot find sufficient vacant windows of low

channel activities to orchestrate its own packets before the ap-

plication TTL, and thus transmits immediately. Nevertheless,

at high channel load, the transmit rate control mechanism of

the ETSI DCC is supposed to be activated to prevent such

channel saturation, which has not been considered in this work.

As part of our future work, we will investigate the behavior

of the learning node along with transmit rate control at high

channel loads.

V. RELATED WORK

A. Medium Access Control for V2X Communication

Over the years a plethora of medium access control pro-

tocols for vehicular communication have been proposed in

literature. It can be broadly categorized as contention based

and contention free [10]. Contention based algorithms involve



Carrier Sense Multiple Access (CSMA), random back-off and

retransmission. The PHY and MAC layers of ITS-G5 and

DSRC are based on IEEE 802.11p, involving contention-based

medium access.

A promising alternative to DSRC/ITS-G5 is 3GPP LTE-

V2X, which involves contention free medium access. It has

been officially standardized in 2016 for safety-critical V2X

communications, as described by Gallo & Härri [11]. It

supports infrastructure-based (mode 3) and ad-hoc (mode 4)

resource allocations.

For mode 3 LTE-V2X, no open specification exists for

resource management, whereas a Listen-before-Talk (LBT)

and Semi-Persistent scheduling mechanism has been stan-

dardized by the 3GPP for mode 4 (ad-hoc). Several works

investigated its performance [12]–[15], compared it against

ITS-G5/DSRC [16], or evaluated wireless congestion control

mechanisms [17]. All these studies showed that the LTE-

V2X mode 4 (ad-hoc) is subject to similar challenges as ITS-

G5/DSRC, due to its distributed channel access control and

near-far effects.

Similarly, other variations of medium access have been

proposed in the literature, such as via Space Division Multiple

Access (SDMA) or clustering nodes in geographic proximity,

to handle mobility, limit channel contention, and implement

spatial reuse of channel resource. The goal is to reduce

interference among hidden nodes by allocating same slots to

nodes sufficiently far apart [18].

Most of these aforementioned works have intended to

optimize the MAC layer scheduling for a single type of

packet, mainly single hop periodic broadcast of CAM/BSM,

using a fixed packet frequency, packet size and traffic pattern.

However, is future there will be heterogeneity of network

traffic pattern. For example a highly autonomous vehicle will

communicate more compared to a human driven vehicle. Some

works have analyzed multiple packet types considering strict

IEEE 802.11 EDCA priority [19]. However other works have

found the limitations of MAC layer EDCA prioritization, in

the ETSI ITS stack during scarce channel resource [20], [21].

In this work, our goal is not to introduce a new MAC

protocol. Based on the standardized ITS-G5 MAC, we rather

propose a multi-service/application resource orchestration at

a higher layer in order to optimize packet generation and

transmission effectively increasing the reception probability at

the receivers.We propose a novel approach to reduce collisions

and improve packet reception performance, by increasing a

node’s awareness of the channel usage via machine learning.

We do not focus on the LTE-V2X technology in this work,

but will evaluate the benefit of the proposed mechanism on it

in future work.

B. Machine Learning for V2X Communication

Recently machine learning is being implemented for pre-

dicting various aspects of vehicular networking, such as node

mobility, network connectivity, network congestion control,

wireless resource management etc. Ide et al. [22] use Poisson

regression trees to predict LTE network connectivity and

vehicular traffic. Authors in [23] use deep reinforced learning

to jointly optimize network resource allocation, caching and

edge computing. In the domain of network congestion control,

authors in [24] present a centralized controller to manage chan-

nel congestion at urban intersections using k-means clustering.

A survey of machine learning for vehicular network is

presented in [25]. The survey highlights the challenges of

adapting the existing ML methods to these new type of net-

works that are highly dynamic. Besides, the survey indicates

the use of RNN with LSTM as an open issue to be solved,

which we precisely address in this paper with a machine

learning approach using RNN with LSTM.

Moreover, existing machine learning approaches for vehic-

ular networking do not consider a fully decentralized ad-hoc

network, which we analyze in this paper. Lastly, most road

safety related communications in vehicular networks involve

broadcast transmissions, which has not been sufficiently ad-

dressed in existing studies on machine learning for vehicular

communication.

VI. CONCLUSION

In this paper, we have shown that using recurrent neural

network, a intelligent vehicle can learn and predict the trans-

mit patterns of its neighbors. This knowledge can then be

used to orchestrate its own transmissions during periods of

low channel activity, leading to improved packet reception.

In particular, our deep learning aided resource orchestration

showed to be able to perform best on detecting and avoiding

collisions with hidden nodes. We further showed that recurrent

neural networks can also learn the transmit patterns of multiple

V2X messages, such as CAM, CPM and LDM altogether, and

are able to provide a more efficient resource orchestration than

a plain CSMA/CA scheduler.

Quite a few open challenges yet remain ahead. Firstly,

piggybacking creates redundancy and extra transmission over-

head, which has not been analyzed in this paper. Moreover,

in a scenario with multiple learning nodes, the intelligence of

each learning node has to be coordinated with other learning

neighbors, also in a decentralized manner. Similarly, the global

performance in a hybrid scenario consisting of a varying

percentage of learning nodes, i.e. some nodes having learning

capability, while other nodes do not, has to be investigated.

Last but not the least, transmit rate control has to be incor-

porated with learning, which with no doubt will impact the

learning efficiency. These are left to future work.
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