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Motivation



Quantification of Uncertainty with Expensive Models

e Climate modeling

Schematic for Global
Atmospheric Model

‘ Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

Kennedy and O'Hagan, J-RSS-B, 2001



Quantification of Uncertainty with No Models

e Classification and progression of neurodegenerative diseases

Healthy?

Needs
treatment?

Filippone et al., AoAS, 2012 — Lorenzi, Filippone et al., Neurolmage, 2017 — Lorenzi and Filippone, ICML, 2018



A Unified Framework

A model might be expensive to simulate/inaccurate

e Emulate model/discrepancy using a surrogate
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Probabilistic Deep Models for Accurate Modeling and
Quantification of Uncertainty



Probabilistic Deep Nets



Learning from Data — Function Estimation

e Take these two examples
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e We are interested in estimating a function f(x) from data

e Most problems in Machine Learning can be cast this way!



Deep Neural Networks

e Implement a composition of parametric functions

f(x) = £ (f(H) ( D () - ))

with




Back-propagation — Probabilistic Interpretation Loss

o X ={x1,...,%xn}
L . :{yla"‘vyN}
o Weights : W = {w®, . .. wb}

Quadratic Loss p(Y|X, W) o exp(—Loss)

Il

e Back-propagation minimizes a loss function

e ... equivalent as optimizing likelihood p( Y| X, W)



Bayesian Inference

. : X ={x1,...,%Xn}
. :Y ={y1,-..,yn}
o Weights : W = {wW® ... wb}

p(WV) p(W]Y, X)

—>
—>
—>

p(Y|X, W)p(W)

p(W]Y, X) =
[ ptyix. wyp(wyaw




Bayesian Deep Neural Networks

e Regression example
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Bayesian Deep Neural Networks

e Classification example
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Stochastic Variational Inference

e Bayesian inference is intractable due to this integral

og (1)) = tog | [ o1, W)p(w)aw ]
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Stochastic Variational Inference

e Bayesian inference is intractable due to this integral

og (1)) = tog | [ o1, W)p(w)aw ]

e Lower bound for log [p(Y|X)]

Eqw) (log [p (Y[X, W)]) — KL [q(W)||p (W)],

where q(\V) approximates p(IW/|Y, X).
e Kullback-Leibler divergence KL — “distance” between g and p
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Stochastic Variational Inference

e Bayesian inference is intractable due to this integral

og (1)) = tog | [ o1, W)p(w)aw ]

e Lower bound for log [p(Y|X)]

Eqw) (log [p (Y[X, W)]) — KL [q(W)||p (W)],

where q(\V) approximates p(IW/|Y, X).
e Kullback-Leibler divergence KL — “distance” between g and p

Optimize the lower bound wrt the parameters of g(//)

Graves, NIPS, 2011 12



Stochastic Variational Inference

e Assume that the likelihood factorizes

p(Y|X, W) Hp(yk\xk,
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Stochastic Variational Inference

e Assume that the likelihood factorizes

p(Y|X, W) Hp(yk\xk,

e Doubly stochastic unbiased estimate of the expectation term
e Mini-batch

w) (log [p (Y|X, W)]) ~ — ZEq(W (log [p(yk|xx; W)])

e Monte Carlo

22

Eqw) (log [p(y«|xk, W Z log[p(y«|xk, Wr)]
=il

with W/, ~ q(W).

13



Stochastic Variational Inference

e Assume a factorized Gaussian approximate posterior:

Hq( )HN(MS”, P) )

14



Stochastic Variational Inference

e Assume a factorized Gaussian approximate posterior:

Hq( )HN(MS”, P) )

e Reparameterization trick

(D) 1)

(1)
(Wr )U = UU rij

with enj ~ N(O, 1)()
/

e Optimization wrt p;

i ,(02)I(-jl) with automatic differentiation

Kingma and Welling, ICLR, 2014 14



Stochastic Gradient Optimization

E {%LowerBound} = Vpar, LowerBound

Robbins and Monro, AoMS, 1951 .



Stochastic Variational Inference - Simple lllustration

o= 2t are (LowerBound 0
par, = parq + il parg (LowerBound) o —
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Form of Approximating Distribution

Approximating distribution g(1//) can have the following forms:

e Fully factorized
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Form of Approximating Distribution

Approximating distribution g(1//) can have the following forms:

e Fully factorized

e Full covariance ¥ = LLT

e Normalizing Flows, Real NVPs, Stein VI - change of measure
determined by det(Jacobian)

Rezende et al., ICML, 2015 — Dinh et al., ICLR, 2017 — Liu and Wang, NIPS, 2016 y



Initialization of SVI matters

e [nitialization can be an issue
e We proposed a novel way to initialize SVI well

AFTER POOR INITIALIZATION AFTER OUR INITIALIZATION
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Rossi, Michiardi and Filippone, arXiv, 2018
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Is There an Easier Way?

e Dropout is Variational Inference with Bernoulli-like g(//)
e At training time, apply dropout
Iteration 1 Iteration 2 Iteration 3 ...

O

e At test time, “sample” networks with different dropout masks

Gal and Ghahramani, ICML, 2016
19



Gaussian Processes as Infinitely-Wide Shallow Neural Nets

Take W) ~ N(0, a;1)
Central Limit Theorem implies that F

is Gaussian

F has zero-mean
cov(F) = Epyo, ww)y[@XWOY WO whTe(x wO)T]

Neal, LNS, 1996 — Rasmussen and Williams, 2006 20



Gaussian Processes as Infinitely-Wide Shallow Neural Nets

e Take W) ~ N(0, a;l)
e Central Limit Theorem implies that F
is Gaussian

e [ has zero-mean

e cov(F) = a1E oy [O(X W) (X W) T]

e Some choices of ® lead to analytic expression of known
kernels (RBF, Matérn, arc-cosine, Brownian motion, ...)

Neal, LNS, 1996 — Rasmussen and Williams, 2006
21



Random Feature Expansions for DGPs - Bochner’s theorem

e Continuous shift-invariant covariance function

kixi = 10) = o* [ plwl0)exp (s(xi = x)Tw) doo
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Random Feature Expansions for DGPs - Bochner’s theorem

e Continuous shift-invariant covariance function

kixi = 10) = o* [ plwl0)exp (s(xi = x)Tw) doo

e Monte Carlo estimate
k(xi —x;|0) = =— Y z(xi|@,) T 2(x;|@,)

with
&p ~ p(wl|0)

z(x|w) = [cos(xTw),sin(xTw)]T

Rahimi and Recht, NIPS, 2008 - Lazaro-Gredilla et al., JMLR, 2010 2



Random Feature Expansions for DGPs

e Define
o) = [— [cos <F(’)Q(’)> ,sin (F(’)Q(’))]

and
FU+1) — o)y ()

e We are stacking Bayesian linear models with

p(W) =~ (0.1

28



Random Feature Expansions for DGPs

e Define

o) = NTRII): [cos <F(’)Q(’)) ,sin (F(’)Q(’))]

and
FU+1) — o)y ()

e We are stacking Bayesian linear models with

p(W) =~ (0.1

e Expansion of arc-cosine kernel yields ReLU activations!

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
23



Random Feature Expansions make Deep GPs become DNNs

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017

24



Some Results




Results - Model (Depth) Selection

Airline dataset

(n=5M+, d =8)

05 Ervor rate 06 MNLL _ .10Neg. Lower Bound
{1 055 1 271 % % |
| ol | -
0.45 7T 3 29 E_LT:' |
2 3 4 5 2 3 4 5 2 10 20 30
log;o(sec) log1o(sec) Layers
‘— 2 layers —— 10 layers —— 20 layers —— 30 layers =--- SV’DKL‘

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017 25



Convolutional Nets

e Convolutional nets are widely used. ..
e ...but they are known to be overconfident!

Convolution
+RelU

Convolution

+ RelLU
5

Pooling Pooling Fully connected layers Output

Guo et al., ICML, 2017
26



Calibration as a Measure of Quantification of Uncertainty

e Reliability diagrams

Fraction positives

0 01 02 03 04 05 06 0.7 08 09 1

0 01 02 03 04 05 06 0.7 08 09 1
Predicted value
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Calibration as a Measure of Quantification of U

e Reliability diagrams - Under-confident predictions

X

Fraction positives
0 01 02 03 04 05 06 0.7 08 09 1
4

// x
< %
0 01 02 03 04 05 06 07 08 09 1

Predicted value

e We can extract the Expected Calibration Error (ECE) score

e The BRIER score is another measure of calibration
29



Calibration as a Measure of Quantification of Uncertainty

e Reliability diagrams - Overconfident predictions

Fraction positives
0 01 02 03 04 05 06 0.7 08 09 1
4
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Predicted value
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Calibration as a Measure of Quantification of Uncertainty

e Reliability diagrams - Overconfident predictions

Fraction positives
0 01 02 03 04 05 06 0.7 08 09 1
4

0 01 02 03 04 05 06 0.7 08 09

Predicted value

Reliability diagrams of modern Deep CNNs look like this!
Bayesian treatment of filters fixes it! "



Bayesian CNNs are calibrated

e Inferring parameters of convolutional filter recovers calibration

e Example with Monte Carlo Dropout

cifarl0-resnet cifarl0-lenet

cifar100-resnet

1.0

0.5

RELIABILITY DIAGRAM FOR MCD

predictive output

Tran et al., AISTATS, 2019

predictive output
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Performance Evaluation of Bayesian CNNs

e Bayesian CNNs are calibrated and achieve better performance
than post calibrated CNNs
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Knowing When the Model Doesn’t Know

e Training on MNIST and test on not-MNIST

MCD I-BLM INITIALIZATION
8000 7: —— Average = 0.026 E000M] : —— Average = 0.035
| Average = 0.383 | Average = 0.526
6000 g 6000 | | s
| |
| |
4000 i 4000 —§
i i
2000 |} 2000
i i
0 === T T T 0 = T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
[[7] Test on MNIST Test on NOT-MNIST

Tran et al., AISTATS, 2019 — Rossi et al., arXiv, 2018 — Lakshminarayanan et al., NIPS, 2017 33
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e Inference for Deep Nets is hard

e Scalable stochastic-based approximate inference but...
e ... it is difficult to assess the impact approximations on
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Conclusions

e Inference for Deep Nets is hard
e Scalable stochastic-based approximate inference but...
e ... it is difficult to assess the impact approximations on
quantification of uncertainty
e The connection between Deep Nets and Deep Gaussian
processes can have implications on
e Understanding Deep Learning
e Deriving sensible priors for Deep Learning
e Improving inference borrowing algebraic/computational tricks
from kernel literature

e Cool stuff

e New hardware
e Bayesian compression
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We are hiring PhDs, Post-docs and Assistant Professors
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