Probabilistic Modeling for Novelty Detection with Applications to Fraud Identification

Rémi Domingues

PhD Defense EURECOM - Sorbonne University January 29th 2019

Advisor: Maurizio Filippone Co-advisor: Pietro Michiardi

Motivations - The Amadeus use case

Motivations - Fraud detection

Compromised user accounts

Fraudulent bookings

Payment frauds

Malicious bots

- Supervised learning The class imbalance problem
- Unsupervised learning Novelty detection
 - Recognition of anomalies in test data which differ significantly from the training set
 - Estimate the distribution of nominal samples
 - · Similar to a one-class classification problem

Novelty detection

Novelty detection

Proactive, unlabelled data Novelty detection Robustness Anomalies in training data Continuous scoring Probabilistic method Numerical & categorical data Variational learning of joint distributions Scalable and distributed Mini-batch learning White-box model Interpretable Little tuning Nonparametric

Dirichlet Process Mixture Model

Dirichlet Process Mixture Model (DPMM)

- Weighted mixture of multivariate distributions in the exponential family
- Nonparametric Bayesian method: infinite-dimensional parameter space
- Dirichlet Process as nonparametric prior

- A product of exponential-family distributions is in the exponential-family
- Probabilistic, mini-batch training, categorical support, clustering

Dirichlet Process

- Bayesian nonparametric model
- Distribution over distributions
- Consider a Gaussian G₀:

• $G \sim DP(\alpha, G_0)$

Stick-breaking process

- Constructive way of forming G
- Weights $\pi_k(\mathbf{v}) = \mathbf{v}_k \prod_{j=1}^{k-1} (1 v_j)$, with $\mathbf{v}_k \sim \text{Beta}(1, \alpha)$
- $G \sim DP(\alpha, G_0) \Leftrightarrow G = \prod_{k=i}^{\infty} \pi_k \delta_{\theta_k}$
 - $\theta_k^* \sim G_0$
 - δ_{θ_k} is the indicator function which evaluates to zero everywhere, except for δ_{θ_k}(θ_k) = 1

Dirichlet Process Mixture Model

Dirichlet Process Mixture Model

- 1. Draw $\alpha | s_0, r_0 \sim \Gamma(s_0, r_0)$
- 2. Draw the stick length $\mathbf{v}_k | \alpha \sim \text{Beta}(1, \alpha)$, yielding the mixing weights $\pi_k(\mathbf{v}) = \mathbf{v}_k \prod_{j=1}^{k-1} (1 - v_j)$
- 3. Draw **component** $\eta_k^* | \lambda \sim G_0$, with G_0 conjugate prior in the exponential family, e.g. $p(\boldsymbol{X}|\eta^*)$ multivariate normal, G_0 Normal-wishart
- 4. **Assign** the data to the components: $z_n | \mathbf{v} \sim \text{Mult}(\pi(\mathbf{v}))$ Generate the observations: $\mathbf{x}_n | z_n \sim p(\mathbf{x}_n | \eta_{z_n}^*)$

- Predictive density: $p(\mathbf{x}_{N+1}|\mathbf{X}, \theta) = \int p(\mathbf{x}_{N+1}|\mathbf{W}) p(\mathbf{W}|\mathbf{X}, \theta) d\mathbf{W}$
- Intractable posterior over the latent variables $p(W|X, \theta)$
- Approximate inference
 - Markov Chain Monte Carlo techniques, e.g. Gibbs sampling
 - Variational Inference
 - Variational inference is that thing you implement while waiting for your Gibbs sampler to converge. David Blei

Variational inference

- Approximate the posterior p by a tractable approximation q with variational parameters
- *q* is from a family of simpler distributions

 $q(\mathbf{v},\eta^*,\mathbf{z},w) = q_{\alpha,\beta}(\mathbf{v}) \cdot q_{\tau}(\eta^*) \cdot q_{r}(\mathbf{z}) \cdot q_{g_1,g_2}(w)$

- $q_{\alpha,\beta}(\mathbf{v})$: product of **Beta**
- $q_{\tau}(\eta^*)$: product of distributions in the **exponential family**
- q_r(z): product of multinomials on cluster assignment variable z
- $q_{g_1,g_2}(w)$: Γ distribution
- Hyperparameters: λ , α , s_0 and r_0
- Latent variables: v, η^* , z and w
- Variational parameters: α_k , β_k , τ_k , r_{nk} , g_1 and g_2

- 1. Initialize the model parameters
- 2. Optimize the **variational parameters** to minimize $D_{KL}(q(W)||p(W|X, \theta)) = \mathbb{E}_q[\ln q(W)] - \mathbb{E}_q[\ln p(W, X|\theta)] + \ln p(X|\theta)$ Equivalent to maximizing $\ln p(X|\theta) \ge \mathbb{E}_q[\ln p(W, X|\theta)] - \mathbb{E}_q[\ln q(W)]$
- 3. Compute the **expectation** of $p(\boldsymbol{W}|\boldsymbol{X}, \boldsymbol{\theta})$ under $q(\boldsymbol{W}|\boldsymbol{X})$, e.g. $\ln q^*_{\alpha,\beta}(\boldsymbol{v}) = \mathbb{E}_{\eta^*, \boldsymbol{z}, \boldsymbol{w}}[\ln p(\boldsymbol{X}, \boldsymbol{v}, \eta^*, \boldsymbol{z}, \boldsymbol{w})] + \boldsymbol{c} = \prod_{k=1}^{K-1} \text{Beta}(\alpha_k, \beta_k)$
- 4. Compute the geometric means
 - $\mathbb{E}[\ln \mathbf{v}_k], \mathbb{E}[\ln(1 \mathbf{v}_k)], \mathbb{E}[\eta^*], \mathbb{E}[-a(\eta^*)], \mathbb{E}[z_{nk}], \mathbb{E}[w] \text{ and } \mathbb{E}[\ln w]$
 - Update the model parameters to maximize the expectation of p(W, X|θ) under q(W|X)

• Nondecreasing, used for convergence monitoring

$$\begin{split} &\ln p(\boldsymbol{X}|\boldsymbol{\theta}) \geq \mathbb{E}_{q}[\ln p(\boldsymbol{W}, \boldsymbol{X}|\boldsymbol{\theta})] - \mathbb{E}_{q}[\ln q(\boldsymbol{W})] \\ &\geq \mathbb{E}_{q}[\ln p(\boldsymbol{X}, \boldsymbol{z}, \boldsymbol{\eta}^{*}, \boldsymbol{v}, \boldsymbol{w}|\boldsymbol{\theta})] - \mathbb{E}_{q}[\ln q(\boldsymbol{z}, \boldsymbol{\eta}^{*}, \boldsymbol{v}, \boldsymbol{w})] \\ &\geq \mathbb{E}_{q}[\ln p(\boldsymbol{X}|\boldsymbol{z}, \boldsymbol{\eta}^{*})] + \mathbb{E}_{q}[\ln p(\boldsymbol{z}|\boldsymbol{v})] + \mathbb{E}_{q}[\ln p(\boldsymbol{\eta}^{*}|\boldsymbol{\lambda})] \\ &\quad + \mathbb{E}_{q}[\ln p(\boldsymbol{v}|\boldsymbol{w})] + \mathbb{E}_{q}[\ln p(\boldsymbol{w}|\boldsymbol{s}_{0}, r_{0})] - \mathbb{E}_{q}[\ln q_{\alpha,\beta}(\boldsymbol{v})] \\ &\quad - \mathbb{E}_{q}[\ln q_{\tau}(\boldsymbol{\eta}^{*})] - \mathbb{E}_{q}[\ln q_{r}(\boldsymbol{z})] - \mathbb{E}_{q}[\ln q_{g_{1},g_{2}}(\boldsymbol{w})] \end{split}$$

Predictive distribution

$$p(\boldsymbol{x}_{N+1}|\boldsymbol{X},\boldsymbol{\theta}) = \int \sum_{k=1}^{\infty} \pi_k(\boldsymbol{v}) p(\boldsymbol{x}_{N+1}|\boldsymbol{\eta}_k^*) dp(\boldsymbol{v},\boldsymbol{\eta}^*|\boldsymbol{X},\boldsymbol{\theta})$$

$$\approx \sum_{k=1}^{K} \mathbb{E}_q[\pi_k(\boldsymbol{v})] \mathbb{E}_q[p(\boldsymbol{x}_{N+1}|\boldsymbol{\eta}_k^*)].$$
(1)

- Analytically, we obtain $\mathbb{E}_q[\pi_k(\mathbf{v})] = \frac{\alpha_k}{\alpha_k + \beta_k} \prod_{i=1}^{k-1} \left(1 \frac{\alpha_i}{\alpha_i + \beta_i}\right)$
- Monte Carlo sampling is used to estimate the density
 - 1. Draw *m* samples from $q_{\tau}^*(\eta^*)$
 - 2. Compute each $p(\mathbf{x}_{N+1}|\boldsymbol{\eta}^*)$
 - 3. Average the resulting *m* likelihoods

Experimental survey

Algorithms

Gaussian Mixture Model Dirichlet Process Mixture Model Probabilistic Robust Kernel Density Estimation Least-Squares Anomaly Detection Probabilistic PCA Mahalanobis Distance-based Local Outlier Factor Angle-Based Outlier Detection > Nearest neighbors Subspace Outlier Detection One-class SVM Domain-based Grow When Required network Neural networks Kullback-Leibler Divergence Information theoretic Isolation Forest | Isolation

Results

Algorithm	GMM	DPGMM	DPMM	RKDE	PPCA	LSA	MAHA	LOF	ABOD	SOD	KL	GWR	OCSVM	IFOREST
PR AUC	6	12	9	2	5	14	7	11	10	4	8	13	3	1
ROC AUC	11	4	5	1	7	9	6	10	13	8	12	14	3	2

Results - No classification datasets

Algorithm	GMM	DPGMM	DPMM	RKDE	PPCA	LSA	MAHA	LOF	ABOD	SOD	KL	GWR	OCSVM	IFOREST
PR AUC	5	4	3	2	6	14	9	12	11	1	8	13	10	7
ROC AUC	13	5	2	1	6	9	7	10	14	4	12	11	3	8

Area under the ROC and Precision-Recall curves

- 10 frauds, 990 normal transactions (i.e. 1% positives, 99% negatives)
- *Prediction 1*: 5 frauds correctly labelled, all normal transaction correctly labelled
- *Prediction 2*: 5 frauds correctly labelled, 20 normal transactions incorrectly labelled

AUC	ROC	PR
Prediction 1	0.75	0.50
Prediction 2	0.74	0.10

• The ROC AUC downplays the impact of false positives when negative observations are over-represented

Scalability

- Runtime and memory scalability
- Stability, robustness, resistance to the curse of dimensionality
- Datasets of increasing size, dimensionality and noise

	Training/prediction	on time	Mem. usage		Robustness			
Algorithm	າ <i>i</i> ≯ Samples in ≯ Features		>> Samples		>> Noise	High dim.	Stability	
GMM	Low/Low	Medium/Medium	Low	Medium	High	Medium	Medium	
BGM	Low/Low	Medium/Medium	Low	Medium	High	Medium	High	
DPGMM	Medium/Low	High/High	Low	High	High	High	High	
RKDE	High/High	High/High	High	Low	High	High	High	
PPCA	Low/Low	High/Low	Low	Low	High	Medium	Medium	
LSA	Low/Medium	Low/Low	Medium	Low	Low	Low	Medium	
MAHA	Low/Medium	Medium/Low	Low	Medium	Medium	Low	High	
LOF	High/High	Low/Low	High	Low	Medium	High	High	
ABOD	Low/High	Low/Medium	Low	Low	Medium	Low	Medium	
SOD	High/High	Low/Medium	High	Low	Low	High	Medium	
KL	Low/Medium	Low/Medium	Low	Medium	High	Medium	High	
GWR	Medium/Medium	Medium/Low	Low	Low	Low	High	Medium	
OCSVM	High/High	Low/Low	Low	Low	Low	High	High	
IFOREST	Low/Medium	Low/Low	Medium	Low	High	High	Medium	

Contours - Old Faithful dataset

Deep Gaussian Process autoencoder

- Unsupervised and probabilistic
- Suitable for any type of data
- Training only requires tensor products
- Inference through stochastic variational inference
- Mini-batch learning

Autoencoders

 Learn a compressed representation of the training data by minimizing the error between the input data and the reconstructed output

Deep Gaussian Process autoencoders

- Deep probabilistic models
- Composition of functions

$$f(\mathbf{x}) = \left(\mathbf{h}^{(N_{h}-1)}\left(\boldsymbol{\theta}^{(N_{h}-1)}\right) \circ \dots \circ \mathbf{h}^{(0)}\left(\boldsymbol{\theta}^{(0)}\right)\right)(\mathbf{x})$$

$$\mathbf{h}^{(0)}(\mathbf{x}) \qquad \mathbf{h}^{(1)}(\mathbf{x}) \qquad \mathbf{h}^{(1)}\left(\mathbf{h}^{(0)}\left(\mathbf{x}\right)\right)$$

$$\mathbf{h}^{(0)}(\mathbf{x}) \qquad \mathbf{h}^{(1)}\left(\mathbf{h}^{(0)}\left(\mathbf{x}\right)\right)$$

• Inference requires calculating the marginal likelihood:

$$p(\boldsymbol{X}|\boldsymbol{\theta}) = \int p\left(\boldsymbol{X}|F^{(N_{L})},\boldsymbol{\theta}^{(N_{L})}\right) \times p\left(F^{(N_{L})}|F^{(N_{L}-1)},\boldsymbol{\theta}^{(N_{L}-1)}\right) \times \dots \times p\left(F^{(1)}|F^{(N_{0})},\boldsymbol{\theta}^{(0)}\right) dF^{(N_{L})} \dots dF^{(1)}$$

DGPs with Random Features

 GPs are single-layered Neural Nets with an infinite number of hidden units

• Weight-space view of a GP

 $F = \Phi W$

• The priors over the weights are

 $p(W_{i}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$

Random Feature Expansion of Kernels

- Low-rank approximation of GP covariance functions
- The **RBF kernel** can be approximated using **trigonometric functions**

$$\Phi_{\mathsf{RBF}} = \sqrt{\frac{\sigma^2}{N_{\mathsf{RF}}}} \left[\cos\left(F\Omega\right), \sin\left(F\Omega\right) \right] \quad \text{with} \quad p\left(\Omega_{j} \middle| \theta\right) = \mathcal{N}\left(\mathbf{0}, \mathbf{\Lambda}^{-1}\right)$$

• The first order Arc-Cosine kernel can be approximated using Rectified Linear Units (ReLU)

$$\Phi_{\mathsf{ARC}} = \sqrt{\frac{2\sigma^2}{N_{\mathrm{RF}}}} \max\left(\mathbf{0}, F\Omega\right) \quad \text{with} \quad p\left(\Omega_{j} \middle| \boldsymbol{\theta}\right) = \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Lambda}^{-1}\right)$$

Approximated multivariate GPs are Bayesian linear models

DGP-AEs with RFs (2 layers)

DGP-AE with RFs - Stochastic Variational Inference

• Define
$$\Psi = (\Omega^{(0)}, ..., \Omega^{(L)}, W^{(0)}, ..., W^{(L)})$$

• Lower bound on the marginal likelihood:

 $\log \left[p(\boldsymbol{X} | \boldsymbol{\theta}) \right] \geq \mathbb{E}_{q(\Psi)} \left(\log \left[p\left(\boldsymbol{X} | \Psi, \boldsymbol{\theta} \right) \right] \right) - \mathrm{D}_{\mathrm{KL}} \left[q(\Psi) \| p\left(\Psi \right) \right]$

where $q(\Psi)$ approximates $p(\Psi|X, \theta)$

- D_{KL} computable analytically if *q* and *p* are Gaussian
- We assume an approximate factorized Gaussian distribution $q(\Psi)$

DGPs with RFs - Stochastic variational inference

- Stochastic unbiased estimate of the expectation term
 - Mini-batch

$$\mathbb{E}_{q(\Psi)}\left(\log\left[p(\boldsymbol{X}|\Psi,\boldsymbol{\theta})\right]\right) \approx \frac{n}{m} \sum_{\mathsf{k} \in \mathcal{I}_m} \mathbb{E}_{q(\Psi)}\left(\log[p(\mathbf{x}_{\mathsf{k}}|\Psi,\boldsymbol{\theta})]\right)$$

- Monte Carlo sampling

$$\mathbb{E}_{q(\Psi)}\left(\log\left[p(\boldsymbol{x}_{k}|\Psi,\theta)\right]\right) \approx \frac{1}{N_{\mathrm{MC}}}\sum_{r=1}^{N_{\mathrm{MC}}}\log[p(\boldsymbol{x}_{k}|\tilde{\Psi}_{r},\theta)]$$

with $ilde{\Psi}_r \sim q(\Psi)$

• The derivative of the estimate yields a stochastic gradient

• Reparameterization trick

$$\left(\tilde{W}_{r}^{(l)}\right)_{ij}=s_{ij}^{(l)}\epsilon_{rij}^{(l)}+m_{ij}^{(l)}$$

with $\epsilon_{rij}^{(l)} \sim \mathcal{N}(0, 1)$

Predictions

• Predictive distribution

$$p(\mathbf{x}_*|\mathbf{X}, \mathbf{\theta}) = \int p(\mathbf{x}_*|\Psi, \mathbf{\theta}) p(\Psi|\mathbf{X}, \mathbf{\theta}) d\Psi$$

• Approximation

$$p(\mathbf{x}_*|\mathbf{X}, \theta) \approx \int p(\mathbf{x}_*|\Psi, \theta) q(\Psi) d\Psi$$
$$\approx \frac{1}{N_{\rm MC}} \sum_{r=1}^{N_{\rm MC}} p(\mathbf{x}_*|\tilde{\Psi}_r, \theta)$$

- Model inference for mixed-type features
 - Normal: $p(\mathbf{x}_{[G]}|\mathbf{f}^{(N_{L})}) = \mathcal{N}(\mathbf{x}_{[G]}|f_{[G]}^{(N_{L})}, \sigma_{[G]}^{2})$

- Softmax:
$$p((\mathbf{x}_{[C]})_j | \mathbf{f}^{(N_L)}) = \frac{\exp[(f_{[C]}^{(N_L)})_j]}{\sum_i \exp[(f_{[C]}^{(N_L)})_i]}$$

- Combined likelihood: $p(\mathbf{x}|\mathbf{f}^{(N_L)}) = \prod_k p(\mathbf{x}_{[k]}|\mathbf{f}^{(N_L)})$

DGP-AE Evaluation

- Isolation Forest: IFOREST (Liu et al. 2008)
- Robust Kernel Density Estimation: RKDE (Kim and Scott 2012)
- Feedforward Autoencoders: AE-1, AE-5
- Variational Autoencoders: VAE-1, VAE-2 (Kingma and Welling 2014)
- Variational Auto-Encoded DGP: VAE-DGP-2 (Dai et al. 2016)
- Neural Autoregressive Distribution Estimator: NADE-2 (Uria et al. 2016)

Method comparison

- 11 datasets, mean area under the precision-recall curve (MAP)
- Some datasets contain over 3 millions samples and 100 features
- DGP-AE achieves the best results for novelty detection
- Softmax accurately models categorical variables

	DGP-AE	DGP-AE	DGP-AE	DGP-AE	VAE-DGP-2	AE-1	AE-5	VAE-1	VAE-2	NADE-2	RKDE	IFOREST
	G-1	G- 2	GS-1	GS-2								
MAMMOGRAPHY	0.222	0.183	0.222	0.183	0. 221	0.118	0.075	0.119	0.148	0.193	0.231	0.244
MAGIC-GAMMA-SUB	0.260	0.340	0.260	0.340	0.235	0.253	0.125	0.230	0.305	0.398	0.402	0.290
WINE-QUALITY	0.224	0.203	0.224	0.203	0.075	0.106	0.042	0.064	0.124	0.102	0.051	0.059
MUSHROOM-SUB	0.811	0.677	0.940	0.892	0.636	0.725	0.331	0.758	0.479	0.596	0.839	0.546
CAR	0.050	0.061	0.043	0.067	0.045	0.044	0.032	0.071	0.050	0.030	0.034	0.041
GERMAN-SUB	0.066	0.077	0.106	0.098	0.113	0.065	0.103	0.104	0.062	0.118	0.109	0.079
PNR	0.190	0.172	0.190	0.172	0.201	0.059	0.107	0.100	0.106	0.006	0.146	0.124
TRANSACTIONS	0.756	0.752	0.810	0.835	0.509	0.563	0.510	0.532	0.760	0.373	0.585	0.564
SHARED-ACCESS	0.692	0.738	0.692	0.738	0.668	0.546	0.766	0.471	0.527	0.239	0.783	0.746
PAYMENT-SUB	0.173	0.173	0.168	0.168	0.137	0.157	0.129	0.175	0.143	0.101	0.180	0.142
AIRLINE	0.081	0.079	0.081	0.079	0.060	0.063	0.059	0.068	0.074	0.064	-	0.069
AVERAGE	0.344	0.338	0.366	0.370	0.284	0.264	0.222	0.262	0.270	0.216	0.336	0.284

Convergence monitoring - Networks

• MAP and mean log-likelihood (MLL). The higher the better

- DGP-AE shows the best likelihood
- MAP quickly stabilizes while the likelihood is continuously refined

Convergence monitoring - Depth

- Correlation between a higher test likelihood and a higher MAP
- Moderately deep networks capture the complexity of data without an important convergence overhead

Convergence monitoring - GPs

• Dimensionality reduction capabilities of a DGP-AE-G-2

- Increasing the number of GPs results in a slower convergence
- 5 GPs achieve good novelty detection performance despite a significant dimensionality reduction

Latent representation

 Meaningful low-dimensional representations, comparable with state-of-the-art manifold learning methods

Conclusions

- Novel probabilistic models for novelty detection
 - DPMM
 - Interpretable, fast and accurate modeling of mixed-type features
 - Clustering, not suitable for numeric-only data
 - DGP-AE
 - Competitive with SoA and DNN-based novelty detection methods
 - Good dimensionality reduction abilities
 - Tractable and scalable inference
 - Suitable to model mixed-types features
- Experimental surveys for novelty detection
 - Numerical, mixed-type and temporal data
 - No clear winner
 - Metric comparison
 - Recommendations based on datasets' characteristics
 - Highlighted scalability pitfalls

- Generic benchmarking platform
- · Comparative study used internally
- Thousands of DPMMs running to raise alerts
- Recommendations for action sequences + integration ready

Research contributions

Journals

R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, A comparative evaluation of outlier detection algorithms: experiments and analyses, **Pattern Recognition**, vol. 74, pp. 406–421, 2018

R. Domingues, P. Michiardi, J. Barlet, and M. Filippone, A comparative evaluation of novelty detection algorithms for discrete sequences, Artificial Intelligence Review, vol. 52, no. 1, 2019 Under review

Journal & conference

R. Domingues, P. Michiardi, J. Zouaoui, and M. Filippone, Deep gaussian process autoencoders for novelty detection, Machine Learning, 2018 Presented at ECML-PKDD, 2018

Workshop

R. Domingues, F. Buonora, R. Senesi, and O. Thonnard, An application of unsupervised fraud detection to passenger name records, in 2016 46th Annual IEEE/IFIP International Conference on **Dependable Systems and Networks** 35/41 Workshop (DSN-W), 2016, pp. 54-59

- Mini-batch training for DPMM
- Generative DGP-AE
- Model discrete event sequences with structured DGP-AE
- Image-based novelty detection
- Distributed and GPU computing, streaming data

Thank you

Exponential family of distributions

- Density
 - *h*(**x**) function
 - η* natural parameter
 - T(x) sufficient statistics
 - $a(\eta^*)$ normalization factor

$$p(\boldsymbol{x}|\eta^*) = h_l(\boldsymbol{x}) \exp\left(\eta^{*T} T(\boldsymbol{x}) - a_l(\eta^*)\right)$$
(2)

Conjugate prior, based on the previous likelihood

$$p(\eta^*|\lambda) = h_p(\eta^*) \exp\left(\lambda_1^T \eta^* + \lambda_2(-a_l(\eta^*)) - a_p(\lambda)\right), \quad (3)$$

- Same dimensionality for λ and η^* , λ_2 is a scalar
- Posterior

$$p(\eta^*|\tau) = h_p(\eta^*) \exp\left(\tau_1^T \eta^* + \tau_2(-a_l(\eta^*)) - a_p(\tau)\right). \quad (4)_{46/45}$$

Dirichlet Process Mixture Model

- Mean-field variational inference
 - The optimal solution q_i^* for each of the factors q_j is:

 $\ln q_j^*(\boldsymbol{W}_j|\boldsymbol{X}) = \mathbb{E}_{i \neq j}[\ln p(\boldsymbol{X}, \boldsymbol{W})] + const$

- Truncated representation of a DP mixture
 - $\pi_k(\mathbf{v}) = \mathbf{v}_k \prod_{j=1}^{k-1} (1 v_j)$
 - $\pi_k(\mathbf{v}) = 0$ for k > K, which is achieved by setting $v_K = 1$
 - $q_{\alpha_K,\beta_K}(v_K=1)=1$

(5)