
HetExchange: Encapsulating heterogeneous CPU–GPU
parallelism in JIT compiled engines

Periklis Chrysogelos† Manos Karpathiotakis‡ Raja Appuswamy§ Anastasia Ailamaki†¶

†EPFL, ¶RAW Labs SA
{firstname}.{lastname}@epfl.ch

‡Facebook
manos@fb.com

§EURECOM
raja.appuswamy@eurecom.fr

ABSTRACT
Modern server hardware is increasingly heterogeneous as hardware
accelerators, such as GPUs, are used together with multicore CPUs
to meet the computational demands of modern data analytics work-
loads.Unfortunately, query parallelization techniques used by ana-
lytical database engines are designed for homogeneous multicore
servers, where query plans are parallelized across CPUs to process
data stored in cache coherent shared memory. Thus, these tech-
niques are unable to fully exploit available heterogeneous hard-
ware, where one needs to exploit task-parallelism of CPUs and
data-parallelism of GPUs for processing data stored in a deep, non-
cache-coherent memory hierarchy with widely varying access la-
tencies and bandwidth.

In this paper, we introduce HetExchange–a parallel query execu-
tion framework that encapsulates the heterogeneous parallelism of
modern multi-CPU–multi-GPU servers and enables the paralleliza-
tion of (pre-)existing sequential relational operators. In contrast to
the interpreted nature of traditional Exchange, HetExchange is de-
signed to be used in conjunction with JIT compiled engines in order
to allow a tight integration with the proposed operators and gener-
ation of efficient code for heterogeneous hardware. We validate
the applicability and efficiency of our design by building a proto-
type that can operate over both CPUs and GPUs, and enables its
operators to be parallelism- and data-location-agnostic. In doing
so, we show that efficiently exploiting CPU–GPU parallelism can
provide 2.8x and 6.4x improvement in performance than state-of-
the-art CPU-based and GPU-based DBMS.
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1. INTRODUCTION
The past few years have witnessed the transformation of Graph-

ics Processing Units (GPU) from niche processors used in the gam-
ing and visualization industry to more general-purpose accelera-
tors used in various analytical, data-intensive applications. Mod-
ern General-Purpose GPUs provide massive parallelism as they are
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equipped with thousands of cores organized in a Single-Instruction-
Multiple-Thread execution model. Due to the use of tightly in-
tegrated high-bandwidth memory, GPUs also provide an order of
magnitude faster access to local memory than CPUs. Thus, GPUs
are being used in several deployment scenarios ranging from su-
percomputers used for HPC applications, through on-premise en-
terprise servers equipped with multiple GPUs, to Platform-as-a-
service offerings that provide GPU-accelerated virtual machines.
As a result, database engines are being increasingly deployed on
heterogeneous hardware equipped with both CPUs and GPUs. Un-
fortunately, even state-of-the-art database systems fall short in fully
exploiting available heterogeneous processing capacity.

Traditionally, analytical DBMS have operated solely over CPUs.
For several decades, the Exchange infrastructure introduced by the
Volcano interpreted query execution framework has been the stan-
dard way of parallelizing query execution. By using a family of
Exchange operators that can be injected into the query plan to con-
nect unmodified sequential producer and consumer operators using
queues, Volcano made it possible to achieve horizontal, vertical,
and bushy parallelism both within and across servers. However,
the interpretation overhead of traditional Volcano-style query exe-
cution has been shown to be a performance bottleneck in modern
in-memory database engines. Thus, over the past few years, JIT
compilation has regained popularity as a way of avoiding such over-
heads, and new approaches for parallelizing query execution based
on JIT compilation that expose, rather than encapsulate, operators
to parallelism have been adopted by in-memory analytical engines.
Unfortunately, these new techniques fundamentally rely on homo-
geneous task parallelism of CPUs to parallelize single-threaded,
compiled pipeline tasks across multiple CPUs, and cache-coherent
shared memory provided by multicore CPUs for performing atomic
operations on shared data structures. Thus, they are not applicable
in the GPU context due to the differences in the type of parallism
across CPUs and GPUs, and a lack of system-wide cache coherence
for implementing global atomics.

Given these issues, a number of recent research and industrial
DBMS have explored design alternatives for parallelizing analyti-
cal queries on GPUs [1, 5, 13, 14, 16, 27, 34, 28, 2], yet they ap-
ply numerous simplifying assumptions. First, several GPU DBMS
typically support execution over a single GPU instead of multiple
ones [9, 5, 13, 14, 27, 34, 2] as they lack the abstractions to express
cross-GPU execution. Second, they typically assume that data is
partitioned and pre-loaded in GPU device memory [27] in order to
avoid the cost of data transfers during query execution via the PCI
Express interconnect. Such assumptions severely limit the range
of query plans that can be supported [1, 16]. Third, most GPU
engines cannot execute queries on multicore CPUs. Thus, these
engines leave substantial amount of processing capacity under uti-
lized when deployed on modern heterogeneous servers. Fourth,
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heterogeneity-aware analytical engines parallelize queries on CPUs
or GPUs [14, 28] and not across CPUs and GPUs. Thus, state-of-
the-art lacks a single, unifying mechanism that can combine the
efficiency of JIT compilation with the ability to encapsulate paral-
lelism like Exchange across heterogeneous processors.

This paper presents HetExchange–a framework to encapsulate
the heterogeneous parallelism in modern servers to enable analyt-
ical query execution across multiple CPUs and GPUs. Similar to
traditional Exchange [10], HetExchange encapsulates parallelism
and provides a uniform interface to connect producers and con-
sumers in a pipelined plan together with the memory infrastruc-
ture. However, unlike traditional Exchange, which dealt only with
homogeneous parallelism across CPUs, HetExchange encapsulates
heterogeneous parallelism across CPUs and GPUs. Additionally,
unlike Exchange, which connects individual operators in an inter-
preted execution environment, HetExchange connects subpipelines
in a JIT compiled execution environment. Thus, HetExchange pro-
vides a framework that can be used by JIT compiled engines to
parallelize sequential, single-threaded code on multiple CPUs and
single-GPU kernels across multiple GPUs, or even a single query
plan across both CPUs and GPUs in a coprocessing fashion. In do-
ing so, HetExchange shares the benefits of the two popular paral-
lelization techniques without the disadvantages. By encapsulating
heterogeneity, HetExchange proposes a single abstraction that can
be used to encapsulate heterogeneous parallelism without making
assumptions about hardware characteristics, like the availability of
globally cache-coherent shared memory. Furthermore, by integrat-
ing tightly with JIT compilation, HetExchange eliminates the over-
head of interpretation and enables register pipelining optimizations
that have been pioneered by JIT engines.

Contributions. The contributions of this work are the following:

• We introduce HetExchange–a novel parallel query execution
framework that encapsulates heterogeneous parallelism to en-
able query plan deployment across i) CPUs, ii) GPUs and iii)
mix of CPUs and GPUs

• We detail the design of a HetExchange augmented JIT com-
piled engine, and present an evaluation of our prototype en-
gine against state-of-the-art CPU-based and GPU-based en-
gines; our prototype is up to 1.5x and 5x faster when re-
stricted to the same compute units and up to 5.1x and 11.4x
faster, respectively, when utilizing the whole machine, while
at the same time achieves linear scalability.

2. BACKGROUND AND RELATED WORK
In this section, we provide an overview of the hardware setup that

is typical in today’s heterogeneous compute servers and summarize
related work on parallelizing query execution in order to set the
context for our work.

2.1 Heterogeneous parallelism in modern servers
Modern servers incorporate numerous accelerator devices – typ-

ically multiple GPUs, connected to each CPU socket via a PCIe
(3.0) interconnect. When more than one GPU device is attached
to CPU socket, the server can utilize a PCIe switch to increase the
number of PCIe connections per socket. Overall, the modern server
is becoming increasingly heterogeneous: It is equipped with di-
verse processors, organized in non-uniform memory access topolo-
gies.

CPUs experience additional memory access latency overhead
when a core accesses memory that is attached to a socket different
than the one that the core is attached on – a phenomenon dubbed
NUMA (non-uniform memory access) [20]. Introducing GPUs as
additional processors exacerbates NUMA effects. When a GPU

accesses CPU memory, it transfers data through the PCIe intercon-
nect, whose bandwidth (∼16GB/s for PCIe 3.0) is limited com-
pared to the bandwidth of a CPU’s local DRAM (∼ 80GB/s) and
to the bandwidth of a GPU’s device memory (up to 900GB/s). In
addition, if the server relies on PCIe switches to connect multiple
GPUs to a CPU socket, then the per-switch GPUs have to share the
PCIe bandwidth if both of them trigger PCIe traffic.

2.2 Parallel query execution on CPUs
Volcano and Exchange. When a query is posed in a database

system, it is processed by a query planner / optimizer, resulting in
an algebraic plan. This plan, expressed in the form of a tree, was
traditionally interpreted using the Volcano iterator model [10]. Ev-
ery operator of the plan exposes a general API, consisting of open(),
next() and close() functions. When an operator’s next() method is
called, a request for a new tuple is sent to the operator’s children.

Exchange operator introduced in Volcano has been the standard
approach for parallelizing a query plan. The Exchange operator en-
capsulates all three different types of parallelism (horizontal, ver-
tical, and bushy) by exposing the same (iterator) interface as other
operators in an interpreted query plan. Inserting an Exchange oper-
ator in a query plan splits it into two parts, with the sub-plan above
the Exchange becoming the consumer and the sub-plan below be-
ing its producer. The Exchange operates as an asynchronous queue
between the producer and the consumer. The producer inserts its
results into the queue, while the consumer removes them and pro-
cesses them. Both the producer and the consumer are not aware
of the queue and they interface to the Exchange operator with the
same interface as with any other operator. As both producer and
consumer can execute in parallel on different processors, Exchange
enables vertical parallelism. In addition, the Exchange controls the
degree of parallelism of the consumer and producer by spawning
multiple instances of them and routing packets between the differ-
ent instances, introducing this way horizontal parallelism. Produc-
ers’ results are either routed based on a policy to exactly one con-
sumer or broadcasted to all of them. Lastly, introducing Exchange
operators in both sides of a join creates bushy parallelism.

JIT compilation and exposing parallelism. Although Exchange
makes it possible to parallelize sequential, single-threaded operator
implementations without any code changes, it has certain draw-
backs that limit its applicability as the mechanism of choice for
parallelizing query execution in the modern in-memory data pro-
cessing context. Interpreted query execution penalizes performance
as the next() function is called for every tuple, resulting in frequent
branch misprediction and poor code locality [26, 18].

State-of-the-art in-memory analytical engines avoid such inter-
pretation overhead by eschewing intepreted execution in favor of
JIT compilation. JIT-based in-memory database engines split the
query plan into non-blocking pipelines and use a compiler frame-
work to translate a sequence of operators into straight-line code
that loops over data one tuple at a time. Thus, these systems en-
able register-pipelining, as a collection of non-blocking operators
can be applied in one shot to a tuple stored in CPU registers. CPU-
based JIT compilation techniques also do not use the traditional
Exchange-based parallelism where operators, other than Exchange,
are essentially sequential in nature. Instead, the typical approach,
as exemplified by Hyper’s morsel-driven parallelism [21] is to com-
pile and generate parallelization-aware operators by using atomic
instructions in generated code for synchronizing access to shared
data structures. Such code can then be executed in a task-parallel
manner across multiple CPUs by using a thread pool.

CPU parallelism in heterogeneous servers. Unfortunately, the
aforementioned approaches for parallelism can not be used in mod-
ern heterogeneous servers to parallelize queries across CPUs and
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GPUs. The traditional Exchange was not designed to work in het-
erogeneous parallel processing environments, as pipelining across
different processors requires the asynchronous queues of the opera-
tor to be placed such that they can be efficiently accessed by all pro-
cessors. Both Exchange and JIT compilation require system-wide
cache coherence as they rely on atomic operations for synchro-
nizing access to producer–consumer queues, or other shared data
structures like the hashtable used during the build phase. While
these assumptions hold in a homogeneous multicore CPU server,
the same cannot be said about heterogeneous servers with CPUs
and GPUs due to a lack of global cache coherence or system-wide
shared memory.

Further, unlike CPUs, executing an operator on the GPU requires
moving the input data to GPU memory, launching a kernel to pro-
cess the input, and potentially moving out the output data. As mov-
ing data is an expensive operation, it is important to move enough
data so that the benefit gained from processing data on the GPU
outweights data movement cost. Similarly, since kernel launches
are expensive and slow, it is also important to minimize the num-
ber of kernel launches. Unlike a CPU-based JIT compiler, which
has to generate executable code for just one processor, GPU-based
JIT compiler should generate both kernels that are executed on the
GPU and host code that runs on CPUs that invokes GPU kernels.
Thus, modern servers with heterogeneous CPU–GPU parallelism
require rethinking traditional query execution strategies.

2.3 Parallel query execution on GPUs
Operator-at-a-time execution. The inability of the commod-

ity CPU to achieve unconditional scalability has led numerous re-
search and industrial efforts that utilize GPU co-processors for the
acceleration of analytical database workloads [5, 13, 14, 16, 27, 34,
28]. Most GPU-powered DBMS operate as follows: The DBMS
expresses the query plan as a sequence of (micro-)operators [5, 13,
14, 16, 34], and then translates each operator into a kernel – a data-
parallel function. The DBMS then executes the kernels, one after
the other, on a GPU, fully materializing intermediate results in or-
der to provide them as input to the next kernel.

Initially, such “operator-at-a-time” GPU DBMS [5, 14] required
every kernel to have its input available at operator invocation time,
and thus complicated the overlap of (GPU) computation and (CPU-
to-GPU) data transfer. Subsequent systems thus introduce the fol-
lowing optimizations. First, they overlap data transfer with com-
putation to mask the data transfer cost as much as possible. For
example, GPUDB [34] uses Universal Virtual Addressing (UVA),
an NVIDIA CUDA feature that allows a GPU to directly access
memory of the CPU side, while the authors of [29] use CUDA
memory copies and CUDA streams for a similar purpose. The au-
thors of [31] propose CPU-GPU co-processing to accelerate sort-
ing tasks; their approach parallelizes the production of sorted runs,
which it interleaves with data transfers to and from the GPU. Sec-
ond, modern GPU DBMS have followed the MonetDB/X100 [4]
paradigm to reduce the materialization overhead [26] between ker-
nel invocations; every kernel operates over a subset (i.e., a vector)
of the input, and likewise produces a vector as its output. The inter-
mediate result vector thus fits on GPU memory for the next kernel
to read, and the DBMS avoids unnecessary data transfers of in-
termediate results to the CPU host. Still, result materialization –
even if it involves vectors – between kernel invocations is wasteful
in terms of memory bandwidth [9]; the GPU DBMS has to flush
GPU registers and shared memory between kernel invocations, thus
hurting locality. In addition, the vector-at-a-time paradigm requires
multiple passes, thus further wasting (GPU) memory bandwidth.

Pipelined GPU execution. An alternative to vector-at-a-time
processing is performing as much work as possible over data that

already resides in GPU registers / shared memory. Such pipelined
query execution typically reduces the number of kernels per query
plan. GPL [27] pipelines operators by having each one of them run-
ning on a separate kernel, and having the kernels communicating
and transferring data through OpenCL 2.0 pipes [12]. HAWK [7]
is a query compiler that generates OpenCL code; the produced code
can execute on a variety of parallel processors, such as CPUs and
GPUs; the focus of HAWK is on having the generated code execute
entirely on a single of these platforms (i.e., on a CPU or a GPU).
HorseCQ [9] departs from the use of data-parallel algorithms for
operations such as reductions, and instead implements pipelined
versions of said algorithms using GPU atomic instructions. Kernel
Weaver [33] is a compiler that automatically tries to fuse multi-
ple relational operations together into a single kernel, in order to
i) reduce data movement and ii) enable additional compiler opti-
mizations over the fused operators. Finally, MapD [1] ports the
paradigm of CPU-based query compilation [23] in the context of
GPU DBMS. MapD uses the LLVM compiler infrastructure to gen-
erate the code for its kernels just in time; the kernels contain code
which is specialized for the current query, and try to minimize the
amount of intermediate results per query.

GPU engines on heterogeneous servers. The majority of
GPU-powered DBMS adopt one point in the design spectrum and
make one or more of the following simplifying assumptions: First,
they rely on the input dataset being GPU-resident or copartitioned
to avoid the PCIe transfer overhead for input and intermediate data [1].
Second, many support query execution on a single GPU instead of
multiple ones [13]. Third, the mechanisms they use for paralleliz-
ing queries is strictly tailored for GPUs. This leaves a substan-
tial amount of CPU-based processing capacity under utilized when
used on heterogeneous servers, and misses out on potential co-
processing opportunities where a query can be parallelized across
CPUs and GPUs simultaneously. The few engines that do support
splitting a query and executing it on both CPUs and GPUs [16] rely
on wasteful full materialization.

In summary, to our knowledge, there is no abstraction today that
makes it possible to parallelize compiled query plans across GPUs
and CPUs in heterogeneous servers.

3. THE HETEXCHANGE FRAMEWORK
To fully utilize the capabilities of heterogeneous servers, DBMS

must be able to exploit both intra-device data parallelism offered
by GPUs, inter-core task-parallelism offered by CPUs, and cross-
device heterogeneous parallelism across multiple CPUs and GPUs.
In addition, it must exploit fast node-local memory available in
CPUs and GPUs while simultaneously working around the limi-
tation of global, cache-coherent shared memory.

HetExchange redesigns the classical Exchange operator to par-
allelize pipelines on multicore CPUs, multiple GPUs, and across
CPUs and GPUs. In a heterogeneous parallel query execution en-
gine, execution has to be routed between different devices. Tra-
ditionally, analytical query engines use the Exchange operator to
perform such control flow routing between consumers and produc-
ers running on CPUs. On heterogeneous platforms, producers and
consumers are not guaranteed to be of the same nature: for ex-
ample, they may be CPU cores, GPUs, or a mix of CPUs and
GPUs. In order to enable heterogeneous control flow transfers,
HetExchange uses two control flow operators: device crossing and
router operators. In addition to control flow, an Exchange operator
should also deal with data flow, to ensure that data is transferred
between producers and consumers in a pipelined fashion. HetEx-
change enables cross-device data flow transfers by using two oper-
ators, namely, mem-move and pack.
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Figure 1: Step by step introducing of HetExchange’s operators.

3.1 Control flow operators
HetExchange decomposes control transfers into two types: tran-

sitions between exactly one producer and one consumer of different
types, and transitions between an arbitrary number of homogeneous
producers and consumers. HetExchange uses two different opera-
tors, a device-crossing operator and a router, to handle each type of
transfer separately. Such a separation provides a modular division
of labor across the two control flow operators. Transitions between
arbitrary numbers of heterogeneous units involve a combination of
both operators.

Device-crossing operators enable pipelined execution across het-
erogeneous hardware. Except from these operators, all other op-
erators are oblivious to hardware heterogeneity and always exe-
cute on a single device type. More specifically, HetExchange uses
two device-crossing operators for CPU-GPU co-processing, called
cpu2gpu and gpu2cpu. Cpu2gpu copies the CPU context to the
GPU and transfers the control flow by launching a GPU kernel,
while gpu2cpu transfers the GPU context to the CPU and starts a
CPU task. In contrast with launching a GPU compute kernel from
the CPU, GPU programming frameworks do not support launch-
ing CPU tasks in the middle of the execution, which prevents fully
pipelined execution across devices. HetExchange implements this
functionality by breaking the gpu2cpu operator into two parts, one
that runs on each device. These parts communicate using an asyn-
chronous queue. When a GPU kernel is ready to send a task to the
CPU, the gpu2cpu operator inserts the task into the queue. On the
CPU side, the second part of the operator receives it and executes
it.

Router operators are used to encapsulate parallelism across mul-
tiple processors. Similar to the classical Exchange, for vertical
parallelism, router operates as an asynchronous queue between a
producer and a consumer. For horizontal parallelism it instanti-
ates multiple instances of the consumers and asynchronously routes
packets between the producers and the consumers. In contrast to
traditional Exchange, a parallel query plan consisting with routers
is essentially a directed acyclic graph. The router may have mul-
tiple parents, each of them targeting different devices. Each of the
parents is instantiated multiple times to achieve the necessary de-
gree of parallelism in each device type. The same holds for its
children. The router implements various routing policies: hash-

based routing for use in hash joins, round-robin/range routing for
partitioning inputs to multiple consumers, and union routing for
merging inputs from multiple producers.

In contrast with the classical Exchange, router only operates on
the control plane. A task description refers to the target input data
via a block handle. The router transfers the block handle from the
producer to the consumer but not the actual data. When needed,
the data flow operators handle the block creation and its transfer, as
described in Section 3.2. This division of labor between the router
and data-flow operators enables the router to connect producers and
consumers without making assumptions about data location or ac-
cessibility.

While the router avoids data transfers by operating with block
handles, in some cases, the router itself needs access to the values
of each tuple. An example of such a case is the hash-based routing
policy that uses the hash value of input tuples to determine the tar-
get consumer. Due to the heterogeneous nature of memory access
in CPU–GPU servers, such data might not be directly accessible by
the router, as would be the case for a router running on the CPU
that attempts to access a GPU resident block of data. Thus, per-
forming routing would force the router to either transfer the data
to evaluate the routing policy, or operate on multiple device types
to run locally with respect to the target block of data. None of the
solutions is modular, as they would duplicate data movement in the
router and data flow operators.

HetExchange uses an approach tailored to the heterogeneous
servers to handle such cases. Instead of having the router access
tuples for determining policies, HetExchange pushes the policy
mechanism down to the data flow operator (described in Section
3.2) that has visibility to the data. For example, in order to use
a hash-based routing policy over blocks of tuples, we require each
block to have only tuples with the same hash value. This is achieved
by enforcing the data flow operator that produces these blocks to
maintain this invariant during the creation of each block. Each
block handle provided by the data flow operator is then forwarded
to the router operator with the corresponding hash value. Thus, the
hash-based routing policy decides without having access to indi-
vidual tuples.

Another difference between the router and classical Exchange is
that the router does not perform broadcasts. Efficiently executing
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a broadcast dependents on both the memory topology and the ini-
tial location of the data. For example, it may be possible to just
share data between the targets or use some multi-cast capability of
the interconnect. In addition, broadcasts are inherently data flow
operations, as they duplicate data flow inside the plan. On the con-
trary, assigning the different flows to different execution streams is
a control flow operation. Thus, broadcast, in the sense of data dupli-
cation, is left to the mem-move, described in Section 3.2. For this
case, the mem-move operator produces as output one block han-
dle per broadcast target and a value, the target id. Then the router
routes the block based on the target id, without caring about how
the data were actually broadcasted. From the router’s perspective,
this is similar to a hash-based policy.

Encapsulating heterogeneous parallelism: example. Combin-
ing the router with the device crossing operators creates all the nec-
essary control flow manipulations to enable all three types of paral-
lelism across multiple heterogeneous compute units. Device cross-
ing operators are placed between heterogeneous producers and con-
sumers to move execution across device types. Routers are placed
at strategic points before device crossing operators to parallelize
query plans. We use a reduction over the results of an equijoin of
two filtered tables as a running example to illustrate how control-
flow operators work. Figure 1(a) depicts a physical plan for such a
query, generated for sequential CPU-only execution.

In the running example, placing three device crossing operators
is enough to move the execution of the hash-join to the GPU. An
example of such a plan is shown in Figure 1(b). A cpu2gpu operator
is placed on the left to kick-start the execution of the left-hand scan
and filtering pipeline on the GPU. This cpu2gpu operator transfers
execution from the CPU to the GPU and as a result, feeds the hash-
join build phase on the GPU. The scan and filter operations for
the probe table are executed on the CPU in this example. As the
filter selects some tuples, it forwards them to the cpu2gpu operator
above it which then transfers it to the probe phase of the GPU join.
Similarly, the cpu2gpu above the hash-join transfers the execution
back to the CPU side for the final reduction.

Figure 1(c) extends 1(b) with router operators. The example
shows five routers in order to parallelize the hash-join over all the
CPUs and GPUs of the system. In the left-hand side, the seg-
menter will split the input file into small block-shaped partitions,
that are treated as normal blocks. The block handles to these parti-
tions will be propagated to the router, which instantiates the scan-
filter-gpu2cpu consumer multiple times and routes partitions to the
consumers in a load-balanced way.

Each of the GPU scans will read the partitions which are prop-
agated to it by the router, via the cpu2gpu operator. The filter per-
forms predicate evaluation and propagates passing tuples to its cor-
responding gpu2cpu operator, which in turn forwards them to the
router. This router unions the results from the GPU filtering and
distribute them to its consumers. This router has two parents in the
plan, one of them to execute the hash-join on GPUs and the other
to execute it on CPUs. Each parent is instantiated multiple times,
for example, the first one as many times as the number of available
GPUs, and the second as many times as the number of available
CPU cores. As the results are routed between the consumers, the
join ends up running in a mix of CPUs and GPUs. After the joins, a
local reduction happens in each device and the output of each local
reduction is send to the union router which gathers all of them into
a single thread in order to produce a final global aggregation.

3.2 Data flow operators
As a heterogeneous server usually has multiple memory nodes,

the query execution has to deal with issues regarding the accessi-
bility of each operator’s input. For example, GPU memory is not

accessible in hardware by the CPU and in some cases, might not
be accessible by other GPUs. While the control flow operators
enable parallel and pipelined execution across multiple heteroge-
neous devices, none of them actually considers whether the input
data are accessible by their consumers. HetExchange encapsulates
memory-access heterogeneity using two operators, namely, mem-
move and pack.

Mem-move operator. The mem-move operator is responsible
for moving data between node-local memory of producers and con-
sumers. It receives a block handle from its child, a data producer, in
the query plan that contains information about the sources and tar-
gets for each data block that it must move. Using this information,
the mem-move is responsible for ensuring that the data is transfered
and accessible before its client, the data consumer, is executed.

Mem-move encapsulates the logic to drive the transfers over the
interconnects as well as to take decisions based on the topology
and the initial location of the data. In case the data are already
local to the consumer, it only forwards the block handle, without
doing any data transfers. In situations where a CPU producer must
be connected to a GPU consumer, or vice versa, it is responsible for
launching the necessary DMA transfers over the PCIe to move data
from CPU host memory to GPU device memory. As the mem-move
abstracts away memory heterogeneity issues, all other operators
can be data-location agnostic. Thus, other operators do not have
to be programmed to perform explicit data transfers or data acces-
sibility checks. Based on the information mem-move has regarding
the data flow from the query plan, it automatically prefetches data
to consumer’s local memory before the consumer accesses them.

Memory transfers happen asynchronously to computation. Mem-
move is internally consisted of two parts, one that resides on the
producer and one that resides on the consumer. When the pro-
ducer’s part of mem-move receives a block handle from the pro-
ducer, it schedules the transfer and returns back to the producer, to
allow it to generate the next block. The consumer part of mem-
move waits for transfers to complete. When a transfer completes,
it pushes the block to the consumer. As a result, both the consumer
and the producer execute asynchronously with respect to the mem-
ory transfer. Mem-move is also responsible for multi-casting. For
certain operations, like a broadcast-based hash-join, it is common
that copies of the same chunk of data should be sent to multiple
consumers. Multi-casting is essentially a special case of data trans-
fer and multiple interconnects support it. Thus, in HetExchange,
mem-move bears the responsibility of broadcasting and implemen-
tations can potentially exploit the capabilities of the underlying in-
terconnects to do it efficiently.

Pack/unpack operators. Moving data is expensive and is of-
ten the bottleneck in GPU query processing. HetExchange amor-
tizes data transfer cost by executing transfers at block granularity,
instead of tuples. However, as we described in Section 2, block-at-
time execution of operators on the GPU is suboptimal due to mate-
rialization overhead compared to fusing operators into few kernels
using JIT compilation, and having each GPU thread perform tuple-
at-a-time execution with register pipelining [9].

HetExchange uses the pack operators to encapsulate the differ-
ence between block-at-a-time data movement and tuple-at-a-time
execution. The two basic operators of this set are pack and un-
pack. The pack operator groups tuples into a block and flushes it to
the next operator whenever it fills up. The unpack operator takes a
block of tuples as input and feeds them one tuple at a time to the
next operator. HetExchange also uses the pack operator to create
blocks with interesting properties. When used to pack/unpack data
for a consumer that is a GPU operator, these operators ensure that
the grouping of tuples enables different GPU threads to read data
in a coalesced manner. When used to pack/unpack data for a hash
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join, the pack operator generates blocks whose tuples have the same
hash value by maintaining one block per hash value, that is flushed
to the next operator whenever it’s full. As all the tuples in a block
have the same hash value, consumer operators, like the router, can
operate over the whole block, without accessing individual tuples.

Encapsulating heterogeneous memory access example. We
extend the running example shown in Figure 1(c) by placing mem-
move operators in order to move the data to the point of their con-
sumption. Figure 1(d) shows a plan that is distributing the data
based on their hash values for the join. In the left-hand side of the
plan, a mem-move is placed after the router responsible for dis-
tributing the input segments. As input segments are pushed from
the segmenter to the router and routed to the different GPUs, the
mem-move after the router will make sure that the data are acces-
sible by the target GPU. For example, if a block is routed to a GPU
but residents on another one or on the CPU, mem-move will trans-
fer it to this GPU. If it is already on the destination node, it will
propagate the block handle, without transferring data.

Figure 1(e) extends 1(d) by adding pack/unpack operators. No-
tably, the scan operators of Figure 1(d) are replaced by unpack op-
erators in Figure 1(d) to highlight the fact that each unpack operator
processes multiple blocks of input. In addition, as the data shuffling
between the filtering and join phases is in blocks, unpack operators
are placed in each device to translate between blocks and tuples.
For the same reason both filters are followed by packing operators.

As the query plan uses a hash join, the packing after the filter is a
hash-pack. Each time the hash-pack outputs a block, it also outputs
the hash value of the block elements. In the left-hand side of the
plan, the hash-pack will push the block handle and the hash value
to the gpu2cpu operator, which will propagate both of them to its
CPU side and then to the router, which will route the block based
on the hash-value.

In this specific plan, all the consumers start with a mem-move.
Thus, when a mem-move receives a block handle, it transfer the
block data to the target device if necessary. Then, mem-move for-
wards the handle to the cpu2gpu operator. Cpu2gpu will launch a
kernel to consume this block, which will start by distributing and
scanning the block to the different GPU thread using the unpack.

3.3 Integration with the query optimizer
Query execution on heterogeneous hardware has four fundamen-

tal traits: target device, degree of parallelism, data locality and data
packing (whether chunks of data can be sequentially accessed).
Each of the four operator of the HetExchange framework changes
one of these traits on its output, without modifying its input. The
device crossing operators change the target device trait and the
router changes the degree of parallelism while the mem-move oper-
ators change the data locality and the pack/unpack operators change
the packing. Existing work [3, 11] has already focused on support-
ing physical properties/traits and converters: operators that do not
modify their data, but only guarantee specific properties for their
output, such as the sort operator which does not modify its input
but guarantees an order for its output. The proposed operators are
essentially new converters and thus compatible with such systems.
From the query optimizer perspective, the relational operator will
then require their input to have two traits: be local and unpacked.

The same separation of concerns assists in cost modeling the new
operators. The cost of the device crossing operators is the cost of
spawning a task from the source device to the target one. The router
has the cost of routing the packets, without transferring any data.
Data transfers over the interconnects are modeled as the cost of
the mem-move operators and lastly the pack/upack operators mea-
sure the cost of scanning and materializing intermediate results in
blocks. Due to the heterogeneous hardware, the cost of the rela-
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Figure 2: Pipelines and affinities of a hybrid plan.

tional operators depends on the target device, similarly to how the
cost of relational operators depend on whether their input is sorted.

The router-related transformation rules resemble the ones of the
classical Exchange; the rules differ only in terms of the use of
broadcast/hash-based Exchange, which HetExchange replaces with
a broadcast mem-move/hash-pack, respectively, before the router.
As for operator placement in the query plan, device crossing oper-
ators can be placed anywhere in the plan and pushed up or below
any other operator, with the exception of mem-moves and routers.
On the other hand, while pack/unpack operators can be placed any-
where, they can only be pushed up or below other HetExchange
operators. In addition, pack/unpack operators can be used as stag-
ing points, similarly to [22], in order to improve vectorization in
the CPU side and re-convergence in the GPU side. Mem-moves
are inserted to fix data locality before the flow reaches relational
operators, but usually they run on the CPU side. Assuming an op-
timizer that can represent the different traits, such as the one of
Apache Calcite, these rules are straightforward to integrate.

4. HETEROGENEOUS JIT COMPILATION
While HetExchange is a general abstraction, in this section we

present its interaction with code generation in order to enable a JIT
DMBS to parallelize query execution on heterogeneous hardware.

This section discusses the lifetime of a query in a HetExchange
augmented JIT DBMS and uses an aggregation over a filtered ta-
ble as a running example. Figure 2 depicts the different stages in
the lifetime of the query. When the query is submitted, it is first
converted into a physical plan, agnostic to the heterogeneity and
parallelism of the server, shown in 2(a). The physical plan is then
augmented with the HetExchange operators, described in the pre-
vious section, in order to produce a heterogeneity-aware plan. The
resulting plan is shown in Figure 2(b) and it parallelizes the query
over the mix of CPUs and GPUs available on the system. Then,
through JIT compilation the DBMS produces machine code spe-
cialized to the server’s devices as described in 4.1. When invoked,
the generated code controls the number of instances of its differ-
ent parts and cooperates with the memory subsystem in order to
efficiently utilize the server, described in 4.2 and 4.3.

4.1 Generating heterogeneous pipelines
During code generation the query plan is split into pipelines, and

specialized code is generated for each pipeline. Operators that force
materialization of intermediate results are typically called pipeline
breakers [23], and produce code that i) materializes results emit-
ted by the pipeline before the breaker operator, and ii) triggers re-
sult iteration in the pipeline after the breaking point. As HetEx-
change operators are handling execution over multiple devices and
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Device Provider Methods
allocStateVar get/releaseBuffer #threadsInWorker
freeStateVar malloc/free threadIdInWorker
storeStateVar convertToMachineCode loadMachineCode
loadStateVar workerScopedAtomic<T, Op>

Table 1: Methods overwritten for each targeted device by the
device crossing operators

memories, they are inherently pipeline breakers: they have to ma-
terialize the results out of the registers into memory. Still, they emit
output in batches, without having to first process the entire input.

The code generation phase outputs a set of pipelines, where each
pipeline is the result of fusing the operators between pipeline break-
ers into tight segments of code. Pipelines corresponding to the
leaves of the query plan trigger the entire generated code; every
other pipeline is invoked as a result of invoking these ones.

Traditionally, in a JIT DBMS, operators are code generation mod-
ules that expose two functions [23, 17]: produce() and consume().
Produce() is called recursively by every operator in top-down fash-
ion (i.e., starting from the root of the query plan): every operator
asks its children to produce their result tuples. Consume() is called
recursively by every operator in bottom-up fashion: every operator
asks its parent to consume the tuples just pushed to it, essentially
asking the parent to generate its physical implementation.

In the running example, when the router at the bottom of the plan
is about to generate code, it will call the produce() method of the
segmenter, so that the latter generates its code first. The segmenter
is a leaf operator, so it will proceed with code generation without
further produce() calls. Instead, the segmenter will generate code
similar to lines 1–3 of Listing 1: The segmenter’s generated code
comprises a nesting of two loops, which gather the list of mem-
ory segments of relation T, and break them into blocks. Then, the
segmenter will call the router’s consume() method, triggering the
router to produce its physical implementation. The router will then
produce its implementation (lines 4–5), evaluating the policy on
each block, and based on the result sending the block handle to a
specific consumer that is either an instance of pipeline 5 or 11.
JIT on multiple devices: The missing pieces. Directly map-
ping traditional JIT techniques to the case of heterogeneous servers
would require having multiple implementations of the same high-
level operators, with each implementation targeting a different de-
vice. Such a design is inconvenient and inflexible, causing in-
creased programming and maintenance effort. For example, a re-
lational select operator would require a different implementation
and code generation procedure per device, thus hindering the ex-
tensibility of such an architecture. In addition, in order to achieve
inter-device task-parallelism, the JIT infrastructure has to be able to
handle transitions between different device type targets; otherwise,
the generated code will target only one device type.
JIT on multiple devices with HetExchange. HetExchange sim-
plifies multi-device code generation in three steps: First, it decom-
poses the query plan into multiple parts, each of which is specific
to a device type. Second, the aforementioned device crossing op-
erators of HetExchange also encapsulate the transitions between
compilation targets. Finally, HetExchange redesigns the produce()
and consume() methods of each operator to enable them to generate
code that is device-specific, yet not specializing their implementa-
tion to a device. To achieve this generality, HetExchange parame-
terizes each method with a device-specific provider.
Device providers. Even if a JIT DBMS generates code for a sin-
gle device, it should ideally rely on a collection of utility func-
tions as building blocks for its implementation. These utility func-
tions should handle operations such as the following: i) Locating a
pipeline’s state, such as pointers to data structures ii) Acquiring/re-

1 d e f p i p e l i n e 6 ( )
2 f o r each segment in f i l e
3 f o r each b l o c k in segment
4 c ← e v a l u a t e p o l i c y on b l o c k
5 send h a n d l e o f b l o c k t o consumer c
6
7 d e f p i p e l i n e 1 1 ( )
8 f o r each r e c e i v e d b l o c k h a n d l e b
9 i f b n o t on d e s t i n a t i o n

10 d ← g e t b l o c k h a n d l e on d e s t i n a t i o n
11 s c h e d u l e DMA copy from b to d
12 send d t o i n s t
13 e l s e
14 send b t o i n s t
15
16 d e f p i p e l i n e 1 0 ( )
17 f o r each r e c e i v e d b l o c k h a n d l e b
18 w a i t DMA t r a n s f e r for b to f i n i s h
19 s c h e d u l e p i p e l i n e 9 ( b ) for GPU e x e c u t i o n
20
21 d e f p i p e l i n e 9 ( d a t a b l o c k [N] , s t a t e )
22 l o c a l a c c ← 0
23 f o r i = t h r e a d I d I n W o r k e r t o N − 1 wi th s t e p

# t h r e a d s I n W o r k e r
24 t ← d a t a b l o c k [ i ]
25 i f t . a > 42
26 l o c a l a c c ← l o c a l a c c + t . b
27 n h a c c ← n e i g h b o r h o o d r e d u c e ( l o c a l a c c )
28 i f t h r e a d n e i g h b o r h o o d l e a d e r
29 a t o m i c a d d ( s t a t e . acc , n h a c c )

Listing 1: Pseudo-code for pipelines 6 and 9-11.

leasing device memory iii) Acquiring/releasing locks, and perform-
ing atomic operations iv) Retrieving device-specific characteristics,
such as the grid and block size used by a GPU kernel.

HetExchange groups the collection of all the utility functions
into a device-independent interface, and offers a collection of de-
vice providers implementing said interface; a CPU- and a GPU-
specific handler at the moment. Device crossing operators are the
ones specifying which device handler every pipeline should use;
each pipeline’s operators then use the handler provided to them
when appropriate. Thus, if a pipeline targets, for example, a GPU
device, the methods of the pipeline’s operators will make calls to a
GPU provider in order to generate GPU-specific stubs. The same
pipeline could generate code for a CPU with no changes other than
being instantiated with a different handler as input. The overall im-
plementation of the produce() and consume() methods per operator
will thus remain agnostic to the device properties.

Aside from their other responsibilities, the device providers also
guide the final steps of the compilation in order to optimize the gen-
erated code and produce machine code for the target device. Upon
completing code generation of a pipeline, it is optimized, com-
piled down to machine code and loaded into the running instance
of the DBMS. The device provider of each pipeline is responsible
for specifying how each of these steps is achieved.

JIT code for heterogeneous servers example. As already de-
scribed in the running example of Figure 2(c), the segment and
the producer part of the bottom router will be fused into pipeline
6, that sends block handles to pipelines 5 and 11. Both of these
pipelines wait for handles from the router, as part of the code gen-
erated by the consumer part of the router. Then, mem-move will
generate code that checks for each received handle if the block is
on the target memory node. If it isn’t, the generated code requests
a new block on that node and spawns an asynchronous DMA trans-
fer to copy the data to it. In any case, mem-move propagates to the
next pipeline a block handle that is on the local-to-the-consumer
memory node together with information about which transfer the
consumer should wait for, if any. In the beginning of pipelines 10
and 4, the two mem-moves inject code to receive these handles and
wait for the transfer to complete (lines 16–18 of listing 1). Then,
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Figure 3: Providers specialize code to the target device type.

pipeline 4 will unpack the block, check the filter and update the
accumulator, based on the code generated by the unpack, filter and
consumer part of reduce respectively. On the other hand, pipeline
10 will schedule a GPU kernel of pipeline 9 with the received block
as argument, due to the code generated by the producer part of the
cpu2gpu operator.

Listing 1 shows, in pseudocode, a simplified version of the gen-
erated code for pipeline 9 of the running example. The four par-
ticipating operators are fused into a simple GPU kernel that scans
each block, evaluates the filtering predicate and increments the ac-
cumulator accordingly. The consumer part of the cpu2gpu operator
specifies the arguments of the pipeline and the unpack generates
the scanning. For each tuple, the code generated by the filter and
the reduce in lines 25–29 is executed.

Pipeline 8 will read the final result of the aggregation and insert
it in the queue of the gpu2cpu operator. On the consumer side,
the gpu2cpu operator generates code to wait for input in the queue
and when values are written, it reads them and propagates them to
the router, which will send them to its single consumer, the single
instance of pipeline 2. Similarly pipeline 3 reads the result of the
CPU reduction and sends it to the same instance of pipeline 2 via
the router’s queues. Pipeline 2 waits for the partial aggregations to
arrive via the router and accumulates them. Pipeline 1 will read the
final aggregation that is the results of query.

In the running example, pipeline 9 is associated with the GPU
provider, as it targets GPU execution. The provider will trans-
late threadIdInWorker into the id of the thread inside the kernel,
while #threadsInWorker will be translated to the number of GPU-
threads used by the kernel. When memory is allocated for the
global acc accumulator in the state, the provider will generate a
call to the GPU memory allocator in order to allocate the state
in GPU memory. In addition, the neighborhood considered by
neighborhood reduce will be a GPU thread-block and the worker-
scoped atomic add will be translated into the corresponding GPU
atomic instruction. Lastly, the provider will optimize the pipeline
after its generation, then compile it down to machine code for the
GPU and load it into the GPUs. Pipelines 9 and 8 target GPU ex-
ecution and thus are associated with the GPU provider. All other
pipelines are associated with the CPU provider.

Figure 3 shows an example of how the same pipeline results into
different code depending on the provider it uses. The pipeline de-
picted on the left-hand side of the figure is provider-agnostic, and
generic enough to be specialized for a CPU or a GPU. The code
loops through thread workers with increments of a given step, eval-
uates a filtering condition, and increases the value of a thread-local
variable when the condition is successful. Once the loop has com-
pleted, the operator accumulates the thread-local variables into per-
warp variables, and then the leader of each warp updates a worker-
scoped accumulator atomically. If HetExchange was not using
device-specific providers, the code they will produce when special-
izing the left-hand pipeline into pipeline 4 and 9 will be similar, and

actually suboptimal for CPU execution, because it would be overly
complex. Instead, through the use of CPU and GPU providers, Het-
Exchange specializes code to the target device, while keeping the
operator “blueprints” the same for both devices: For example, the
threadIdInWoker will be set to 0 for the CPU provider, while it will
be set to the GPU grid-wide thread id for the GPU provider. Sim-
ilarly, the #threadsInWorker will be set to 1 for the CPU provider
and to gridSize for the other one. More importantly, as there is a
single thread in the CPU case, the worker-scoped atomic and the
neighborhood-local reduction will be optimized out.

4.2 Controlling parallelism and affinity
In a HetExchange augmented DMBS, the router controls the hor-

izontal degree of parallelism for the query plan operators above it.
At code generation time, depending on its policy (e.g. hash-based,
round-robin, etc.) and the intended degree of parallelism, the router
is responsible i) for producing multiple pipelines on its consumer
side, and ii) for triggering code generation for these pipelines. An
additional source of complexity is that while the classical Exchange
has one parent and one child that are instantiated multiple times, the
router has multiple parents and children in order to parallelize the
rest of the plan to a mix of compute units.

Given that the pipeline instances to be generated are almost iden-
tical, it would be inefficient to trigger code generation from scratch
for every one of them. Thus, the router generates a parameteriz-
able version of the pipeline in question per device (instead of per
thread), and then initializes multiple instances from this “pipeline
template” (i.e., performs state creation for each one).

As only the router controls parallelism, it is also responsible for
pinning pipelines to specific devices, based on pluggable policies.
When a router instantiates its consumers, it locks them to specific
devices. In order for policies to be able to control pipelines not at-
tached to a router (e.g. pipelines 9 & 4 of the running example),
HetExchange forces pipelines to inherit both degree of parallelism
and the affinity of their instantiator. Assigning both a CPU and
GPU affinity to all pipelines, but using only the appropriate one,
allows routers to control the affinity of pipelines even after multi-
ple device crossings (e.g. the bottom router controls the affinity of
pipeline 7; the information is not lost by the device crossings).

In its current form, the router specifies operator affinity, degree
of parallelism and routing policy statically at query time. Future
work involves making such decisions dynamically and integrating
existing work in this direction such as dynamic schedulers [32] and
opportunistic task stealing between different pipelines [21].

Parallelism and affinity example. As in the running example
of Figure 2(d), pipeline 6 is a leaf pipeline, it runs single-threaded.
The bottom router injects code in pipeline 6 to instantiate pipelines
11 and 5, two and four times respectively. In addition, the router
will affinitize the first instance of pipeline 11 to CPU core 1 and
GPU 1, and the second instance to core 4 and GPU 2. Each instance
of pipeline 11 will create an instance of pipeline 10 and the latter
will copy its instantiator’s affinity. Similarly, pipelines 7-11 will
have two instances with the corresponding instances affinitized to
the same compute units. The GPU affinities will be considered only
for pipelines 8 & 9, while all other pipelines use the CPU ones.

4.3 Memory management and data transfers
During query execution, memory is used either to store state of

operators, like the hash table of a hash-join, or to stage blocks of
intermediate results before transferring them between devices. Het-
Exchange distinguishes between the two and has a different man-
ager for each of them. State memory is served by memory man-
agers, while staging memory is served by block managers. Both
memory and block managers are organized as a set of indepen-
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2 × Intel Xeon CPU E5-2650L v3 @ 1.80GHz, 12 cores per CPU
256GB RAM (128GB per socket), 66% of memory slots populated
64KB L1 (32KB L1d, 32KB L1i) per core, 256KB L2 per core; 30MB L3 shared
2 x NVIDIA GeForce GTX 1080 with 8GB memory per GPU

Table 2: 2 Socket, 2 GPU machine used for the experiments.

dent, local components – one per memory node. Requests by the
pipelines are always served by their closest (appropriate) manager.

While memory managers only manage local memory, block man-
agers frequently handle data operations that involve remote devices.
In addition, block managers need to be thread-safe, yet existing
synchronization primitives are very expensive due to the absence of
global, cache-coherent shared memory. HetExchange tackles these
challenges in the following ways: Firstly, at system initialization
time, the block managers pre-allocate memory (block) arenas, to
avoid memory allocation costs at query execution time. Secondly,
to circumvent the absence of coherence, HetExchange allows only
local devices to acquire blocks from a block manager and opts for
device-local synchronization primitives. To serve requests for re-
mote blocks, the block managers launch small tasks to the corre-
sponding node to acquire blocks. As this can become expensive,
HetExchange accelerates the common cases by i) having each lo-
cal block manager maintain a cache of acquired blocks per remote
manager, and ii) batching requests for block acquisition and release
from remote nodes.

5. SYSTEM
We integrate HetExchange and its system architecture to Pro-

teus [17], an analytical query engine that utilizes LLVM-based code
generation. Proteus originally generated CPU-specific and single-
threaded code. Therefore, we extended Proteus’s infrastructure to
allow GPU-specific code generation, by introducing code gener-
ation components for single-GPU operators. Enabling Proteus to
operate over multiple CPUs and GPUs requires i) extending its
code generation infrastructure to produce code for parallel execu-
tion, and ii) coupling Proteus with HetExchange non-intrusively.

LLVM is capable of compiling code for multiple architectures by
using a different back-end for each target, like the x86 64 back-end
that is used by Proteus for code generation targeting Intel CPUs. In
addition, LLVM has back-ends for both NVIDIA and AMD GPUs.
For the evaluation of HetExchange we use the NVPTX back-end
to generate code for NVIDIA GPUs. While our methods are appli-
cable to AMD GPUs, we leave the implementation as future work.

During code generation, the operators generate code via the de-
vice providers. In Proteus, the providers use LLVM’s code gener-
ation interface for the low-level code generation, such as load and
store operations, while for the high-level functionality, like state
manipulation and memory allocations, they are emitting the rele-
vant code. The generated code is optimized using LLVM. The CPU
provider also uses LLVM to compile the IR down to machine code
and loads it in the running instance, while the GPU provider uses
LLVM to compile the IR down to PTX[24], an assembly language
for NVIDIA GPUs, and the CUDA driver API to compile PTX to
machine code and load it to the GPUs.

Similarly to Figure 2, upon receiving a query, the extended Pro-
teus parses and optimizes it in order to produce a single-threaded
CPU-only physical plan, like the one in Figure 1a. This plan is
then extended with the HetExchange operators to a heterogeneity-
aware plan like the one in Figure 1e. The heterogeneity-aware plan
describes which devices will be used in each part of the gener-
ated code. Then, based on the heterogeneity-aware plan, Proteus
generates code for the query and start executing it. In our imple-
mentation, part of the query optimization is handled by Apache
Calcite[3]. We opted for this three step query optimization process

(logical→ physical→ heterogeneity-aware plan) as a proof of con-
cept, but integrating the two last steps into a single one is also pos-
sible. Selecting between this two options should yield a trade-off
between plan optimality and query optimization times. While pro-
ducing heterogeneity-aware plans is a topic worth as much research
as enforcing them, we leave it as future work and for this evaluation
we heuristically add the HetExchange operators. For this work, we
opted for the three step process, as between these two options, it
creates the smallest overhead to the query optimizer.

6. EXPERIMENTAL EVALUATION
Experimental Setup. We compare Proteus against state-of-the

art commercial analytical engines DBMS C and DBMS G for CPU
and for GPU execution. DBMS C is a columnar database that uses
SIMD vector-at-a-time execution, similar to MonetDB/X100 [4],
and supports multi-CPU execution. DBMS G uses JIT code gen-
eration, operates over columnar data and supports multi-GPU exe-
cution. We use various configurations of Proteus (i.e., CPU-only,
GPU-only, and hybrid execution) to showcase its versatility and
its ability to execute queries efficiently regardless of where data is
originally located – i.e., the CPU or the GPU memory. We warm
up each system by executing multiple queries before the measure-
ments. The experiments run on the machine described in Table 2.
Each socket has one GPU attached via a dedicated PCIe 3.0 x16
connecting it to the local socket. We measure a maximum band-
width of ∼12GBps on each interconnect, on an idle server.

Similar to prior work on GPU DBMS [5, 34], we use the Star
Schema Benchmark [25] to compare three configurations of Pro-
teus against DBMS G and DBMS C. Proteus GPU and DBMS G use
the two GPUs of the server, Proteus CPU and DBMS C use the two
CPU sockets and Proteus Hybrid uses both the GPUs and the CPU
sockets. For Proteus Hybrid we select plans that parallelize all the
relational operators across all the CPUs and GPUs available. While
is possible to pin parts of the plan to specific processors, we leave
optimizer-driven plan generation with different parts of a plan run-
ning on different processor sets as future work.

We use two scale factors, SF100 and SF1000, in order to examine
the behavior of the two GPU-powered DBMS, Proteus GPU and
DBMS G, when the input data fits in the aggregate GPU memory
(SF100) and when it does not (SF1000).

6.1 GPU-fitting data (SF100)
Methodology. Proteus GPU and DBMS G fit the table columns

that the SSB queries touch in the aggregate device memory of the
two GPUs (16GB). DBMS C and Proteus CPU configurations op-
erate over columnar data that reside in the CPU memory.

The Proteus GPU configuration randomly partitions each table
between the two GPUs. We profiled DBMS G and noticed an ab-
sence of cross-GPU PCIe traffic during query execution, therefore
DBMS G either performs co-partitioning of the fact and the dimen-
sion tables, or broadcasts (dimension) tables to both GPUs a priori.
For all queries, the optimizer of Proteus opts for broadcast-hash-
join-based plans; the HetExchange operator broadcasts the neces-
sary columns of dimension tables involved in joins to both GPUs.
DBMS G opts for a star-join-specific join implementation: It con-
ceptually treats each dimension table as a dense array dimtable[],
where the value dimtable[keyi] corresponds to the tuple whose key
column value is keyi. DBMS G performs the (star) join by iterating
over the fact table’s values, and finding the corresponding values
from the dimension tables/arrays via array index lookup.

Figure 4 depicts results for SF100; the HetExchange operators
enable Proteus to seamlessly parallelize its execution across com-
putational units. Q1.1 - Q1.3 are the simplest SSB queries; they
perform a single join of the lineorder fact table with the dates table.
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Figure 4: SSB with GPU-fitting working sets. Data in GPU memory GPU systems.

Proteus GPU and DBMS G outperform the CPU-based systems,
because the GPU devices offer high memory bandwidth (320GB/s)
and number of hardware threads. Proteus GPU utilizes the re-
sources of the GPU devices more efficiently and thus outperforms
DBMS G. Specifically, every execution unit that DBMS G triggers
on the GPU devices allocates double the number of GPU registers
than Proteus GPU. As a result, DBMS G launches fewer simulta-
neous execution units, thereby underutilizing the large number of
available GPU hardware threads.

Q2.1 - Q2.3 increase the number of joins between the fact ta-
ble and dimension tables to three; the effect of hardware under-
utilization becomes more visible for DBMS G, thus its difference
from Proteus GPU increases, and its performance resembles that of
DBMS C. DBMS G fails to execute Q2.2’s string inequalities.

Q3.1 - Q3.4 also have three joins, with each consecutive query
being more selective than the previous; Proteus GPU is consistently
faster. For Q3.1 and Q3.2, Proteus CPU is faster than DBMS C be-
cause the operators of DBMS C have to either materialize a result
vector or a bitmap vector, whereas Proteus CPU attempts to oper-
ate as much as possible over CPU-register-based values to avoid
materialization costs. Q3.3 and Q3.4 are more selective, therefore
the gap between Proteus CPU and DBMS C becomes minimal. In
addition, although the star join implementation of DBMS G turns
joins into inexpensive array lookups, DBMS G also opts to apply
filtering predicates after the completion of the star join, so that the
dimension tables resemble sorted, dense arrays at join time, and
the star join turns into a sequence of array index lookups. Thus,
DBMS G’s benefit from selective filtering predicates is minimal.

Q4.1 - Q4.3 increase the number of joins to four, with each con-
secutive query being more selective, and are the most challenging
part of SSB. All systems except DBMS G benefit from queries be-
ing more selective. The Proteus configurations outperform their
CPU/GPU counterparts due to the minimal generated code that
comprises every query pipeline that Proteus executes and the better
utilization of GPU hardware resources.

Summary. HetExchange enables Proteus to parallelize queries
across multiple CPUs and GPUs and operate over different initial
data placements, in the same infrastructure, without loss of gener-
ality or performance. Proteus is comparable or outperforms state-
of-the-art DBMS that target CPUs or GPUs. When the working set
fits in the aggregate GPU memory, Proteus achieves up to 2x and
10.8x versus CPU- and GPU-based alternatives, respectively.

6.2 Non-GPU-fitting data (SF1000)
Methodology. We use SF=1000 for SSB which generates∼600GB

of data. For all the queries the working set exceeds the aggregate
device memory of the two GPUs. Thus, both Proteus GPU and
DBMS G transfer from CPU to GPU memory the working set, dur-
ing query execution. As a result, their throughput is upper bound
at the PCIe bandwidth (∼24GBps), represented by the dotted line
in Figure 5. Proteus Hybrid load balances the work between the
GPUs and CPUs and thus transfers only part of the dataset to the
GPUs. While Proteus supports datasets that are partially preloaded

in GPU memory, we disable this functionality for this experiment
to simulate worst-case transfer times. Figure 5 plots the results.

Proteus GPU achieves∼21GBps CPU-to-GPU bandwidth for all
the queries except Q3.1, efficiently utilizing the interconnects. In
Q3.1, the increased selectivity of the first joins of the query in-
creases the number of probes in the next joins and the random
accesses start to become a bottleneck, reducing the performance
to 16GBps. In addition, the HetExchange successfully pipelines
transfers and execution and, combined with the efficient generated
code, manages to completely overlap them.

In contrast, DBMS G does not reach the interconnect’s through-
put. DBMS G is not optimized for non-GPU resident datasets and
places the dataset into pageable memory, which limits the achiev-
able transfer bandwidth to less than half of the available for Q1.1 -
Q1.3. As a solution, DBMS G proposes to use enough GPUs to fit
the working set in GPU memory. For SF1000 and GPUs like the
ones used in the experiment, this translates to 9-15 more GPUs.

For Q2.1-Q4.2, the DBMS G underutilizes the GPUs for the
same reasons as in the previous section. For Q2.2, DBMS G re-
verts to CPU-only execution and takes more than 1 hour to com-
plete, while for Q4.3 it fails to perform a cardinality estimation that
is required to execute the query, due to insufficient GPU memory.

The two CPU-only systems achieve similar performance, and
their trends follow the ones of SF100. In contrast with the pre-
vious experiment, the GPU systems are bounded by the data trans-
fers. Thus the CPU systems outperform the GPU ones, whenever
they can achieve higher throughputs than the interconnects. For
SSB, both Proteus CPU and DBMS C only manage to overcome
the 24GBps mark for Q1.1-Q1.3 and Q3.4, thus in most queries
Proteus GPU prevails. The dimensional table joined in the single
join of queries Q1.1-Q1.3 is small enough to fit in the caches of
the CPU and thus the CPU systems achieve a throughput of 38-
72GBps, or 1.5x-3x the throughput the two GPUs can access the
CPU-resident datasets. Similarly, the very high selectivity of Q3.4
allows both DBMS C and Proteus CPU to exceed the 24GBps land-
mark and thus run faster than their GPU counterparts.

HetExchange allows Proteus Hybrid to parallelize its execution
across all the CPUs and GPUs of the system and benefit in each
case from using the most appropriate compute units. In queries
that Proteus CPU and Proteus GPU exhibit a significant perfor-
mance difference, Proteus Hybrid’s execution times are close to the
fastest one, as most of the load will be directed to the fastest com-
pute units. The highest speed-ups for Proteus Hybrid are achieved
when Proteus CPU and Proteus GPU exhibit similar performance,
as in Q4.3. In these cases HetExchange balances the load evenly
between the CPUs and GPUs of the server. In contrast with Pro-
teus GPU, Proteus Hybrid is not bounded by the transfer time, as
part of the load is served by CPUs.

In addition, we measure the throughput of the three configura-
tions of Proteus as the size of the working set over the execution
time. On average, Proteus Hybrid throughput is 88.5% of the sum
of the throughputs of Proteus CPU and Proteus GPU, showing that
HetExchange successfully manages to distribute and balance work
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Figure 5: SSB with non-GPU-fitting working sets that are pre-loaded in CPU memory for all systems.

between the heterogeneous compute units.
Summary. HetExchange allows Proteus to use the available

CPUs and GPUs efficiently, as well as combine them. In addition,
HetExchange allows efficient use of the interconnects while the JIT
compilation allows efficient code to be generated for each device.
Even for working sets that do not fit in GPU memory, when Pro-
teus is restricted to specific types of devices its performance is com-
parable or better than state-of-the-art DBMS specialized for these
devices, while, when running unrestricted, Proteus Hybrid outper-
forms both DBMS in all the queries of SSB SF1000. Specifically,
by using all the available devices Proteus Hybrid achieves 1.5-5.1x
and 3.4-11.4x speed-up against the CPU-based and GPU-based ho-
mogeneous DBMS respectively, and up to 5.6x and 3.9x against its
own CPU- and GPU-restricted configurations.

6.3 Scalability
Methodology. For SF=1000, we measure the total execution

time for each SSB query group and different configurations of Pro-
teus. Figure 6 plots the speed ups compared to the single threaded
execution for the same query group. For all the measurements, we
interleave the CPU cores between the two sockets and on the x-axis
we report the degree of parallelism on the main part of the query.

For the CPU-only configurations we observe almost linear scal-
ability up to approximately 20 CPU threads and a very limited
interference when reaching the number of physical cores, due to
lightweight threads like the segmenter at the bottom of the plan.

Group 1 has the best scalability for the CPU-only configurations
with an average coefficiency of 87.5% per CPU core, due to its sim-
plicity and the small cache-friendly size of its join’s build side. The
worst scalability is achieved by query group 2, with a coefficiency
of 65% per CPU core, due to the high selectivity of its joins. Groups
3 and 4 achieve a coefficiency of 74% and 77%, respectively.

In all the cases, enabling Proteus to use the GPUs, improves per-
formance. Query group 1 exhibits the smallest relative improve-
ments, as the GPUs provide a relatively limited support on its ef-
fective utilization of the CPU resources and its high throughput.
Two GPUs provide a speed up similar to 8-10 CPU cores. Query
groups 2-4, have a higher relative performance improvement when
adding the two GPUs. It provides the equivalent of adding 3.5 to 5
extra CPU sockets. The joins in groups 2-4 achieve a lower CPU
throughput than the interconnect and therefore these queries have a
greater benefit than the queries in group 1 from additional GPUs.

Summary. HetExchange improves performance across all query
groups almost linearly as the number of CPU cores assisting the
GPUs are increased, up to approximately 16 cores. For query groups
2-4, the benefit of adding more than 16 threads is offset by the in-
terference they cause to threads that handle memory transfers and
kernel launches. Using CPU cores is more efficient in query group
1, and therefore this group’s performance continues to scale.

6.4 Microbenchmarking
Methodology. In the rest of this section, we micro-benchmark

Proteus to evaluate the efficiency of HetExchange. Our evaluations
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Figure 6: Scalability of Proteus.

uses two queries: i) a sum over a column and ii) a count of the
results of a non-partitioned 1:N join. The first query is bandwidth
intensive and thus CPU-friendly, as the GPU is behind the much-
slower-than-memory-bus PCIe. The second query is GPU-friendly,
as the random accesses impact the CPU side more than the GPU
side. We use single-column inputs for the queries to stress out Het-
Exchange overheads. For all the cases, the dataset is loaded and
evenly distributed to the sockets. Non-HetExchange GPU Proteus
overlaps transfers and computations using UVA, as in [34].

Scale-up In the first microbenchmark we measure HetExchange’s
execution time for the two queries and plot the results for different
combinations of CPU and GPU degrees of parallelism in Figure 7.
For the sum query and the probing side of the join query we use
a single column of 23GB, while the build side of the join uses a
7.7MB column. We repeat the experiment and measure the execu-
tion time of Proteus without the HetExchange operators, using only
its JIT infrastructure and executing on a CPU and a GPU. The re-
sults are plotted presented using dashed lines that extend to all the
degrees of parallelism to emphasize the functionality provided by
the proposed operators: without them, Proteus does not scale up.

When executing on a single CPU or on a single GPU, Proteus
exhibits a very small overhead for using the operators. For the sum
query, the HetExchange augmented Proteus scales almost linearly
up until approximately 16 cores. At more than 16 cores, it oper-
ates with an input throughput of 89.7GBps which is very close to
the maximum theoretical memory bandwidth we obtain from the
machine (90.6GBps), given that only 66% of the memory slots are
occupied. When adding the two GPUs we observe an increase in
throughput of approximately 19GBps, which slowly diminishes as
we increase the number of CPU cores because we exhaust the avail-
able input memory bandwidth, yielding the same peak performance
when the Proteus is trying to use the whole server When using only
one GPU, the peak throughput is lower, as the routing policy sched-
ules some blocks residing on the remote-to-GPU socket to the GPU
and thus causes interference to the intermediate socket.

In the join query where the performance is bottlenecked by ran-
dom accesses, HetExchange scales better as CPU/GPU resources
are increased. Adding a single CPU core to the GPU-only configu-
ration causes a performance drop as GPUs have to wait for the CPU
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hash-join’s building phase, which is not replenished by the added
performance of a single core. Adding cores eventually pays back,
especially in the single-GPU Hybrid mode.

Size-up We repeat the experiment for the same queries, but this
time we zoom-in on the overheads of HetExchange in sequential
execution, to stress even more the framework. We compare Proteus
without HetExchange against itself with HetExchange enabled, and
vary the input size. For the HetExchange-enabled configuration, we
force the optimizer to add all the HetExchange operators, despite
that normally it would avoid routers for sequential execution. We
restrict the degree of parallelism for the routers to 1, to match the
sequential execution mode of the bare Proteus. For the join query
we keep the build table size fixed to 7.7MB as in the previous mi-
crobenchmark. We plot the results in Figure 8.

In both queries, the performance is almost identical (at most 10%
relative difference) for input sizes more than 512MB, as the over-
heads of the operators are amortized due to their block-at-a-time
nature. For smaller inputs sizes 512MB and below, the difference
is increased by up to 50% in the case of the summation query on
the GPU and an input size of only 64MB. In these small input sizes,
the high throughput of the generated code makes our current im-
plementation of router’s initialization and thread pinning (that take
∼10ms) to become a significant overhead. Allowing the optimizer
to remove the router as it would do normally for such a small input,
yields identical performance between the two Proteus flavors.

Summary. HetExchange allows Proteus to scale up and use the
available hardware resources and our microbenchmarks show that
it adds only a minimal overhead, visible only for small input sizes.

7. CONCLUSION & PERSPECTIVES
Designing HetExchange and incorporating it into a real system

required considering a number of seemingly orthogonal challenges,
related to i) encapsulation of parallelism, ii) encapsulation of hard-
ware heterogeneity, and iii) choice of execution model for analyti-
cal queries; tackling these challenges led us to a number of observa-
tions that can be useful as guidelines to database system architects.

Separation of concerns. The design space for a system that can
execute queries over both CPUs and GPUs is significantly wide.
Picking and changing the degree (and type) of parallelism, trans-
ferring data between processors, handling arbitrary data placement
across the memory of each processor, are few of the concerns to
be resolved. HetExchange deals with this design space explosion
by enforcing a clear separation of concerns: Explicit operators deal
with orthogonal issues such as cross-device transfers, parallelism
encapsulation, and memory affinity. Such compartmentalization
allows the overall system to be generic, but also extensible; extend-
ing HetExchange to support another type of heterogeneous proces-
sors in the future would be non-trivial had we chosen a monolithic
design. In contrast, the current design only requires an additional
device provider and two device crossing operators.

Vectorization vs. compilation. Despite being coupled with a
JIT compiled architecture in this work, the ability of HetExchange
to enable execution over heterogeneous processors are applicable
to any type of query execution engine, be it interpreted or com-
piled. Still, implementing a real-world system required considering
a type of execution engine to pick. Given the performance benefits
that they bring in analytical query processing, our two main consid-
erations were vectorized [4] and pipelined, compiled engines [18].
If HetExchange targetted CPU processors exclusively, vectorized
execution would have been a great fit as well, as there are families
of operations for which it can even outperform compiled execu-
tion [30, 19, 22]. In addition, implementing a vectorized engine
is more straightforward compared to implementing a JIT compiled
one. However, vector-at-a-time execution can be wasteful in the
context of GPU processing; the materialization overhead it entails
becomes more pronounced when (cache) memory is scarce. In ad-
dition, relying on code generation infrastructure allows the result-
ing system to have a single, unified code base of pipelined opera-
tors, instead of a CPU-family and a GPU-family of vectorized ones.
Lastly, the work of Menon et al. [22] to introduce SIMD vectoriza-
tion in a CPU-based JIT engine is compatible with our design.

The compiler (sometimes) knows better. Writing code to be
executed on a GPU can be a very subtle process [8, 6, 9, 15]. Con-
ventional knowledge has it that a developer needs to explicitly rea-
son about numerous low-level details, such as, among others, i) the
organization of GPU threads in thread blocks, and of thread blocks
in grids, ii) thread divergence within a thread warp, and iii) avoid-
ing atomic operations. When this source of complexity is coupled
with the complexity of implementing a code-generating engine, the
end result can be very burdening to a developer. An observation
that we made during the coupling of HetExchange with Proteus,
however, is that the CUDA compiler has been becoming signifi-
cantly better in optimizing code that has not been meticulously fine-
tuned to the device-specific “magic numbers” required for thread
block size, etc., to the degree that a lot of the conventional GPU
coding wisdom [8] has become obsolete for modern GPUs. Thus,
explicitly choosing to offload a part of the GPU code optimiza-
tion complexity to the CUDA compiler reduces developer effort
and focusing on the bigger system picture instead of on micro-
optimizations.
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