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Abstract

Demand-Response (DR) programs, whereby users of an electricity network are
encouraged by economic incentives to re-arrange their consumption in order to
reduce production costs, are envisioned to be a key feature of the smart grid
paradigm. Several recent works proposed DR mechanisms and used analytical
models to derive optimal incentives. Most of these works, however, rely on a
macroscopic description of the population that does not model individual choices
of users.

In this paper, we conduct a detailed analysis of those models and we argue
that the macroscopic descriptions hide important assumptions that can jeopar-
dize the mechanisms’ implementation (such as the ability to make personalized
offers and to perfectly estimate the demand that is moved from a timeslot to
another). Then, we start from a microscopic description that explicitly models
each user’s decision. We introduce four DR mechanisms with various assump-
tions on the provider’s capabilities. Contrarily to previous studies, we find that
the optimization problems that result from our mechanisms are complex and
can be solved numerically only through a heuristic. We present numerical sim-
ulations that compare the different mechanisms and their sensitivity to forecast
errors. At a high level, our results show that the performance of DR mecha-
nisms under reasonable assumptions on the provider’s capabilities are signifi-
cantly lower than those suggested by previous studies, but that the gap reduces
when the population’s flexibility increases.
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1. Introduction

Demand Response (DR hereinafter) programs are envisioned to be a key fea-
ture of the Smart Grid paradigm [1]. By means of economic incentives (discounts
or penalties), DR schemes encourage users to rearrange their consumption in
response to the network state, thus mitigating the grid overload and driving
wholesale prices down.

Several analytical models are available in the literature, which describe and
quantify the effects of DR mechanisms. Whatever their specifics are, these
schemes need to model how users react to the incentives. Ideally the models
should capture the most realistic features of a practical DR mechanism while
maintaining tractability.

Among these contributions, the authors of [6] study how an energy provider
should select time-dependent discounts to minimize its production costs. They
assume that the percentage of users who shift their consumption from slot i to
slot j is a decreasing function of the temporal distance between slots i and j
and a concave and increasing function of the discount offered in slot j (Rj),
independent from discounts in other slots. The paper claims that, under these
assumptions along with the requirement of piecewise linearity of energy pro-
duction costs, the problem of finding the set of discounts that minimize the
provider’s cost is convex and therefore simple to solve. Under similar modeling
assumptions, however, we find that the optimization problem can be non-convex
even in such a simple scenario (see Sec. 4). The same user’s model as in [6] is
adopted also in [7], where the optimization problem is extended in order to
account for battery storages and distributed renewable sources available into a
specific microgrid. Authors of [8] propose a day ahead pricing scheme which
maximizes the provider’s profitability and capacity utilization. Users are as-
sumed to reschedule their consumption by comparing the utility vi they get by
scheduling a task in each timeslot i; therefore they allocate their consumption
proportionally to these utilities, i.e., they consume a fraction vi∑T

j=1 vj
of their

total energy demand in timeslot i. The resulting optimization problem is non
convex but some relaxation techniques are introduced, which allow one to cal-
culate a solution within a reasonable amount of time. In [9], a more realistic
model is proposed where each user first calculates the welfare (defined as utility
minus time-dependent cost) she gets from consuming electricity in each of the
possible timeslots, and then allocates all the consumption to the slot return-
ing the largest welfare. As we show below (see Sec. 4.4) this model can lead
to a much more complex optimization problem than the one presented in [9].
Finally, the authors of [10] propose a full-fledged game theoretical model, but
their results hold only if users experience a large number of interactions without
any change in the system.

We claim that these studies rely on too strong assumptions, which jeopardize
their usability for practical purposes. Interestingly, we observe that the assump-
tions are sometimes hidden in the macroscopic models the papers start from. In
particular in this paper we focus on [6] and show that its model requires person-
alized offers and a very precise forecast of the baseline consumption of each user.
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The implementation of these features may require potentially significant costs in
terms of communication, measurement and computation infrastructure. Besides
highlighting these implicit requirements in the analytical framework in [6] (and
then also in [7]), we explore their potentials considering four DR mechanisms
with different levels of complexity:

1. the base mechanism corresponds to an optimization problem similar to
the one considered in [6], it requires personalized offers and individual
consumption forecasts; the energy production cost is optimized over the
discount values, each of which is offered to a given fraction of the popula-
tion,

2. the optimized mechanism takes full advantage of personalized offers and
consumption forecasts by minimizing the cost over both the discount val-
ues and the population fractions to which the discounts are offered,

3. the robust mechanism relies on personalized offers, but does not need
individual consumption forecasts,

4. finally the broadcast mechanism (analogous to that in [9]) needs neither
of the two features.

Interestingly, contrarily to prior studies, we find that the cost-minimization
problems resulting from our DR mechanisms are not convex (even for the base
mechanism). Nevertheless, simple heuristics can identify (potential) minima in
a reasonable amount of time in realistic scenarios. Then, our numerical results
show that the simpler robust and broadcast mechanisms achieve significantly
lower cost reductions than the optimized mechanism, which is difficult to im-
plement, but that the gap reduces when the population’s flexibility increases.

The paper is organized as follows. In Sec. 2 we discuss how the macroscopic
models considered in [6, 7, 8] hide some implicit assumptions about the user
rationality or about the interactions between the provider and the user. We
define our microscopic model in Sec. 3 and then describe different DR mech-
anisms and their corresponding optimization problems in Sec. 4. We evaluate
their performance numerically in a realistic scenario in Sec. 5. Finally in Sec. 6
we discuss how our models can be tuned and which other psycological and social
insights should be taken into account to explain users’ decisions.

2. Pitfalls when Starting from Macroscopic Models

In this section, we describe in more detail the macroscopic models proposed
in the literature for day-ahead price optimization. Consider a finite time horizon
discretized in a set T of N timeslots and a large population S of users. The
baseline aggregate energy consumption in slot j is denoted by E0

j .
The energy provider charges a flat rate B, but it can offer discount rates

to incentivize the users to move some of their consumption so as to reduce
the energy production cost. Due to consumption shifts, the actual aggregate
consumption in time slot j is E1

j . Observe that a usual assumption in the
literature (including the papers mentioned above) is that the introduction of a
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DR scheme neither reduces nor increases users’ demand; it merely rearranges
users’ consumption in a more cost effective way, so that

N∑
j=1

E0
j =

N∑
j=1

E1
j . (1)

We denote the amount of consumption shifted from slot j to slot i 6= j as Ej→i,
and the amount of consumption the users refuse to shift away from j as Ej→j .
Then we have

E1
i = E0

i +

N∑
z=1

Ez→i −
N∑
k=1

Ei→k.

We now start to further detail the model considering some specific assump-
tions made in previous works. In [6] and [7], the electricity provider offers an
energy price discount Ri ≥ 0 in each slot i. The users are assumed to react to
these incentives by shifting a fraction of their baseline consumption from slot j
to slot i (|j − i| slots away) according to the following formula:

Ej→i = E0
jSj(Ri, |j − i|). (2)

Sj(Ri, |j− i|) is called the aggregate sensitivity function and is increasing in the
discount Ri and decreasing in the temporal shift |j − i|, in order to take into
account the user discomfort.

The provider selects the vector of discounts R in order to minimize its total
cost, equal to the sum of the electricity generation costs and the loss of revenues
due to the discounts. In particular the optimization problem considered in [6]
is the following:

min
R

∑
i

∑
j 6=iRiEj→i +

∑
i ci
(
E1
i

)
(3)

s.t. 0 ≤ Ri ≤ B ∀i = 1, . . . N, (4)

where ci(·) is the cost of electricity production in slot i. Eq. (4) guarantees
that discounts R are non negative and smaller than the flat rate B, so that the
money stream goes toward the provider.

As it often happens, the devil is hidden in the details, and in this case in
Eqs. (2) and (3). Our first remark is that the cost of lost revenues

∑
i

∑
j 6=iRiEj→i

in Eq. (3) implicitly assumes the possibility to reward only the consumption
actually shifted from j to i, i.e., Ej→i, but this quantity cannot be directly
measured. The actual consumption E1

i can be measured, and then Ej→i can
be quantified provided that we have good estimates of the sensitivity function
Sj(Ri, |j− i|) and of the baseline consumption E0

i . Let us assume for a moment
that Sj(Ri, |j − i|) is known from historical data and that the aggregate base-
line consumption may be predicted with a reasonably high level of accuracy on
a large set of users. Then it seems possible to solve the macroscopic problem
in Eqs. (3) and (4), but we need to consider also what should happen at the
microscopic scale. While the estimates for the aggregate baseline consumption
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can be adequately precise, finally the billing is done at the user’s granularity
and each user expects to receive the price discount corresponding to the energy
consumption she actually moved. If the energy bill’s reduction does not corre-
spond to her forecast, the user is likely to opt out of the program (in particular
if she has experienced underpayments) or to reduce her efforts and milk occa-
sional discounts. It appears then that Eq. (3) implicitly requires very precise
predictions of individual consumptions.

We now observe that the form of the sensitivity function Sj(Ri, |j − i|) in
Eq. (2) indicates that the amount of energy shifted from j to i depends on the
discount Ri but not on the other discounts. We can then ask ourselves which
individual decisions may lead to this aggregate behavior, an issue ignored both
in [6] and [7]. As long as a rational individual is offered two different discounts
Ri and Rk, it seems natural that her decision to move some consumption from
j to i or from j to k or to keep it in j will take into account both the discounts.
To stress the point, consider a case when both Sj(Ri, |j− i|) and Sj(Rk, |j−k|)
are positive, but moving the consumption from i to k is both less inconvenient
(i.e., |j − k| < |j − i|) and more rewarding (i.e., Rk > Ri). There is then no
reason why the user would move consumption to i. The conclusion is the same
for all the users and then we should have Ej→i = 0 at the aggregate level, in
contradiction with Eq. (2). We can then conclude that the expression of the
sensitivity function in Eq. (2) is not suited to model the situation when a user is
offered two or more rewards, but it can capture the case when the user decides
between moving from j to i in exchange of a discount Ri or staying in j. If every
user is offered a single discount to move to a given slot, but different users can
receive different offers, then Eq. (2) can reasonably describe the macroscopic
effect of such personalized offers. The details are described in Sec. 4.1, here we
only highlight that Eq. (2) requires then that the electricity provider i) calculates
an offer for each user, ii) communicates individually to the user, iii) considers
the individual offer when billing the user. This is clearly more demanding than
simply advertising to the whole population the same set of discounts.

We observe that the equivalent sensitivity function considered in [8] poses
similar problems. Using our notation, we have Ej→i = vi∑

k∈T vk
E0
j , where vi

is the net utility a user gets by consuming electricity in slot i and can be a
function of the timeslot itself and of the discount Ri. This formula tries to
capture the effect of the whole set of discounts, but it is not clear again what is
the underlying user’s model: if slot i has a larger utility than slot k (vi > vk),
why should the user consume in k?

3. Starting from a Microscopic Model

In the previous section we made the point that, while aggregate population
models may be convenient, it is necessary to explicitly consider the microscopic
level: how the user takes the decisions and how the provider and the user are
supposed to interact. In this paper we follow the opposite path in comparison
to the existing works mentioned: we move from the microscopic level to the
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macroscopic one. In particular, in this section, we start from a clear model of
rationality for the single user and then move to describe how aggregate quantities
can be derived.

Each user u ∈ S has a baseline energy consumption

{e0uj }j=1,...N , (5)

that leads to the aggregate baseline consumption E0
j =

∑
u∈S e

0u
j for j =

1, . . . N . This baseline consumption corresponds to the consumptions with-
out any incentive mechanism and is completely arbitrary. We assume in what
follows that users are homogeneous, i.e.,

∀ u, e0uj = e0j j = 1, . . . N. (6)

In section 5.1 we show how the DR mechanisms perform when this assumption
does not hold.

User u is characterized by a private type Du = {duj→i}j,i=1,...N where duj→i
indicates the discomfort due to shifting one unit of consumption from timeslot
j to timeslot i. We assume that discomforts are expressed in monetary units;
and that, ∀u ∈ S,

duj→j = 0 and duj→i > 0, ∀j, i 6= j, (7)

i.e., there is a strictly positive discomfort if and only if consumption is shifted
from its original timeslot. The provider does not know the private type Du

of each user u: from its point of view, each discomfort duj→i is drawn from a
known, continuous distribution Fj→i on [0, αj,i] (where possibly αj,i = +∞).
Discomforts of distinct users are independent but note that we do not assume
that, for a given user, the discomforts {duj→i}j,i=1,...N are mutually independent.

3.1. Rational Users
We assume that a user simply chooses the option that maximizes her utility.

In particular let T uj be a set of timeslots the user could move the baseline
consumption e0uj to in exchange for different discounts Ruj = {Ruj→k ≥ 0, k ∈
T uj }. The set pair (T uj ,Ruj ) defines the offer user u receives for timeslot j. The
set of options includes the possibility to keep the consumption in j, i.e., j ∈ T uj .
A rational user maximizes her utility by scheduling her consumption e0uj to a
timeslot

i∗ ∈ argmax
k∈T uj

{
Ruj→k − duj→k

}
. (8)

We assume that if two or more timeslots are equally palatable, the whole con-
sumption is shifted to only one of them, picked at random with equal probability.

3.2. Aggregation
We observe that the quantities duj→k in Eq. (8) are random variables, then

two different users could take different decisions while confronted with the same
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offers. The aggregate consumption E1
i , for i ∈ T , would then be a random

variable. Here we assume (as it is implicit in the other works) that we always
work with large sets of the population so that the variability can be neglected
by approximating actual random quantities with their expected values. In par-
ticular, if a subset Q containing a fraction q of the population receives an offer
(Tj ,Rj), the corresponding consumption shifted from j to a time slot i, denoted
as EQj→i will be

EQj→i = qE0
j Prob

(
i ∈ argmax

k∈Tj

{
Ruj→k − duj→k

})
, (9)

if the probability that a user has two or more equally palatable timeslots is
zero. When discomforts are continuous random variables (as we consider in
this paper), this is always the case if each user receives only one offer (the first
three mechanisms introduced below) or if the discomforts {duj→i}j,i=1,...N are
mutually independent. In Sec. 4.4, we discuss how Eq. (9) should be modified if
this probability is not zero. We denote Prob

(
i ∈ argmaxk∈Tj

{
Rj→k − duj→k

})
simply as Pj→i(Ruj , Tj).

4. DR mechanisms

Under different assumptions on the provider’s capabilities, we introduce dif-
ferent demand response mechanisms based on the microscopic model above,
which are therefore practically implementable. We introduce and study the
corresponding optimization problems.

We start by the base mechanism that leads to the same aggregate optimiza-
tion problem considered in [6, 7].

4.1. Base mechanism
This mechanism requires that the energy provider can manage personalized

offers to its customers and moreover that it has perfect knowledge (or very
precise estimates) of the baseline consumption of each user.

The population is segmented into N2 disjoint subsets Qj→i, for j, i ∈ T ,
respectively including a fixed fraction qj→i of the population. Each user in
Qj→i is simply offered to move her baseline consumption in slot j (e0j ) to slot i
in exchange for a price discount Ri.

The total consumption that is shifted from j to i is then

Ej→i = qj→iE
0
j Prob

(
Ri − duj→i > 0

)
as it can be obtained from Eq. (9), taking into account that in this case Tj =
{j, i} and Rj − duj→j = 0. We observe that the probability appearing on the
right-hand side only depends on the reward Ri and on the random variable
duj→i. If the discomfort is only a function of the temporal distance |j − i|, then

7



the sensitivity function (the ratio of people who move from j to i) has the same
properties than in [6], in particular:

Sj(Ri, |i− j|) = qj→iPj→i(Ri),

where for Pj→i(·) we have made explicit the only variable it depends from.
As we discussed in Sec. 2, because the provider knows exactly the consump-

tion shifted from each user, it can formulate the optimization problem (3-4). In
[6] it is stated that the problem is convex if i) the productions costs cj(·) are
continuous piecewise linear and increasing and ii) the discomfort distributions
Fj→i(·) are continuous and concave. We show in Appendix A that this is not the
case by providing a counterexample. Stronger hypotheses are required for the
problem to be concave, as for example the linearity of the discomfort functions.

In particular in [6] the numerical evaluation considers

Sj(Ri, |i− j|) =
1∑N

k=1
1

(|k−j|+1)

Ri
B · (|i− j|+ 1)

,

that leads us to consider

qj→i =

1
|i−j|+1∑N
k=0

1
|k−j|+1

, Pj→i(Ri) =
Ri
B
. (10)

This particular expression for Pj→i can be obtained if duj→i is a uniform random
variable with support in [0, B]. The numerical results for the base mechanism
in Sec. 5 are obtained considering the same expression for the fractions qj→i.

Due to the non-convexity of the optimization problem (3-4) we cannot use
one of the classic algorithms for convex optimization. For the results shown in
section 5 we have adopted instead a multi start approach: we have generated
random starting points uniformly distributed in the problem domain and we
have run per each point a descendent algorithm which converged on a local
minimum; the optimal offers are therefore those returning the smallest cost
among these minimizers. This approach does not guarantee convergence to the
global optimum but its reliability can be improved by increasing the number of
starting points.

4.2. Optimized Mechanism
We have now understood which DR mechanism can lead to the optimization

problem (3), but now that we look at its implementation at the microscopic level
and the need for personalized offers, some specifics of the base mechanism look
arbitrary and unjustified. For example, given that discounts are not broadcast
but each user receives an individual offer, why should the discounts offered to
the two disjoint sets of users Qj→i and Qk→i be equal to the same value Ri? It is
clear that the energy provider can further reduce the cost if it can independently
choose Rj→i and Rk→i. Moreover, there is no reason to think that the size of
the sets {Qj→i} should be fixed, the fractions {qj→i} can also be optimization
variables.
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We allow the provider to take advantage of these additional degrees of free-
dom that—we repeat—do not impose any additional requirement to the system.
We call this new DR mechanism optimized. The load Ej→i(Rj→i, qj→i) resched-
uled from j to i is now

Ej→i(Rj→i, qj→i) = qj→iPj→i(Rj→i)E
0
j (11)

and the cost minimization problem becomes:

min
R,q

costopt.(R,q) =
∑
i

∑
z 6=iRz→iEz→i +

∑
i ci
(
E1
i

)
(12)

s.t. 0 ≤ Rz→i ≤ B ∀z, i = 1, . . . N (13)
0 ≤ qz→i ≤ 1, z, i = 1, . . . N (14)∑

i qz→i ≤ 1, ∀z = 1 . . . N. (15)

Eq. (13) guarantees that discounts R are non negative and smaller than the
flat rate B, Eq. (15) is a consequence of the fact that each user receives at most
one offer for its baseline consumption in a given slot.

The optimization problem (12-15) can be solved with the same heuristic
proposed for problem (3-4).

4.3. Robust Mechanism
The optimization problems (3-4) and (12-15) assume that the provider has

perfect knowledge of each user’s baseline consumption, so that it can correctly
identify the consumption shifted and reduce accordingly the energy bill. This
assumption is probably unrealistic. If the provider does not have such capability,
then it can offer the user a discount for all the consumption in a given timeslot
i and not just for the consumption moved to i. The population is then divided
into N subsets Qi, each containing a fraction qi of the users. All users in Qi
receive one and only one offer: they are encouraged to shift their consumption
from any timeslot in the time horizon to timeslot i and they get the discount
Ri for all the electricity consumed in i, including the one originally in i.

We call this scheme robust, because it does not rely on estimates of individual
consumption. It is clearly simpler than the previous two, because the provider
needs only to measure the amount of consumption in i for the users who got
the offer and to bill them accordingly.

The load Ej→i(Ri, qi) shifted from j to i is Ej→i(Ri, qi) = qiPj→i(Ri)E
0
j .

Note that users in Qi have no interest to move their baseline consumption
away from i, then Ei→i = qiE

0
i . The robust mechanisms leads to the following

optimization problem:

min
R,q

costrob.(R,q) =
∑
i,z RiEz→i +

∑
i ci
(
E1
i

)
(16)

s.t. 0 ≤ Ri ≤ B i = 1, . . . , N (17)
0 ≤ qi ≤ 1, i = 1, . . . , N (18)∑N

i=1 qi ≤ 1. (19)
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Note that in Eq. (16) the first sum includes also Ei→i because all the final
consumption in i from the users in Qi is paid at a discounted price. The term
does not appear in Eq. (3) and Eq. (12).

The optimization problem (16-19) can be solved with the same heuristic
proposed for problem (3-4).

4.4. Broadcast Mechanism
In the three mechanisms introduced above, the provider makes personalized

offers to users in selected fractions of the population. This may not always be
possible (due to the complexity it introduces for instance in billing) or desirable
(for perceived fairness issues). Our last mechanism, which is the simplest (in its
definition), does not assume personalized offers. The provider selects a single
vector R of discounts for every time slot and broadcasts these discounts to
all users (hence the name broadcast mechanism). Users then re-arrange their
demand and pay the discounted price for their demand in each slot (hence this
mechanism also does not rely on the need to estimate shifted demand).

As explained in Sec. 3.1, each individual user moves her demand from slot
j to a slot (potentially j itself) that maximizes her net utility (discount minus
discomfort). Recall that if several slots give equal net utility, the user chooses
one of them randomly.

Until now, we have not made any assumption on the possible correlation of
a given user’s discomforts. This is because, in the previous three mechanisms,
each user was receiving only one offer. In the broadcast mechanism, each user
has several offers to compare to decide on his new demand schedule, we therefore
need to describe the discomfort correlations.

Let us consider now the particular case when two slots, say h and k may
appear equally attractive to a user, i.e., Rh−dj→h = Rk−dj→k. If we assumed
that, for each user, the discomforts {dj→i}{i,j=1,··· ,N} were mutually indepen-
dent, this event would have probability zero according to our assumption on
Fi→j , and therefore it would not appear at the aggregate level. As a result, the
aggregate demand moved from j to i would be

Ej→i(R) = Pj→i(R)E0
j , (20)

where
Pj→i(R) = Pr

(
Ri − dj→i ≥ max

k 6=i
{Rk − dj→k}

)
. (21)

However, rather than making the above independence assumption, we prefer
to assume that the discomforts have the form dj→i = βj |i − j|tj , where tj is
a constant independent of the user and βj is a random variable with concave
Cumulative Distribution Function (CDF) Fj(·). This model describes a sym-
metric delay sensitivity of users (users are indifferent between moving two hours
earlier or two hours later) while keeping the flexibility of users having a different
flexibility of demand of different times (since β and t are indexed by the origin
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timeslot j); but it also introduces correlations between the discomforts of a user.
As a result, the fraction of demand shifting from j to i is

Pj→i(R)=
Pr (Ri − dj→i ≥ maxk 6=i {Rk − dj→k})

1 + 1R2j−i=Ri

, (22)

rather than (21). The denominator in (22) accounts for cases when a slot other
than i (which has to be 2j−i) gives equal net utility for all users. The broadcast
mechanism then leads to the following optimization problem:

min
R

costbrd.(R) =
∑
z

∑
iRiEz→i +

∑
i ci
(
E1
i

)
(23)

s.t. 0 ≤ Ri ≤ B ∀i = 1, . . . N. (24)

Unfortunately, due to indicator function in Eq. (22), the cost function (23) of
the broadcast mechanism is not continuous, even in very simple scenarios with
continuous production costs; see Appendix B for details. Discontinuity arises
also in the macroscopic model in [9], but it seems to have been ignored.

In practice, we solve problem (23-24) using the same heuristic proposed for
the previous problems, but we work on a continuous and smooth approximation
of the cost function.

4.5. Ranking DR mechanisms
Under certain assumptions, the DR mechanisms introduced above can be

partially ranked in terms of the cost savings they generate.

Proposition 4.1. Assume that the discomforts have the form dj→i = βj |i−j|tj ,
where tj is a constant independent of the user and βj is a random variable with
concave CDF Fj(·); and assume that the production costs cj(·) are piecewise
linear, continuous and increasing. Then, for a given initial demand E0, the
final cost generated by the optimized scheme is smaller than the cost of the
robust and base mechanism.

The proof of Proposition 4.1 is provided in Appendix C. As we show in Ap-
pendix C, the ranking cannot be extended further. In particular, the broadcast
and robust mechanisms cannot be compared (one or the other is more efficient
depending on the scenario).

5. Numerical Results

In this section we evaluate the performance of the different DR mechanisms
in the realistic scenario considered in [6] and based on energy data about the On-
tario province in Canada. We extracted from [6] the baseline consumption E0,
reported in Fig. 1, the flat rate B = 110$/MWh and the timeslot-independent
cost function c(·) is piecewise linear with derivative:

c′(E) =

 $10 E ≤ C1,
$72.46 E ∈ (C1 , C2),
$91 E ≥ C2,

(25)
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Figure 1: Initial consumption E0 extracted from [6].The red lines represent the capacities C1

and C2.

where {
C1 = 16.3 GWh,
C2 = 17.9 GWh, (26)

represent respectively the base to intermediate load capacity and intermediate
to peak load capacity. Baseline consumption E0 and the cost functions are
estimated from the IESO energy portfolio [15], consisting of nuclear plans, hydro
gas powered stations and renewable and from typical costs associated to these
energy sources. We assume that discomforts take the form:

dj→i = βj |i− j|, (27)

where βj is an exponential random variable with CDF

Fj(β) = 1− e−
β
µ , (28)

where µ is a parameter representing the population’s flexibility. The larger it
is, the smaller (in a stochastic order sense) the discomfort of the users to shift
their consumption.

In Figs. 2 and 3 we respectively show final load distributions E1 and opti-
mal discounts and segment sizes of the four DR mechanisms, for the flexibility
parameter µ = 1

10 . Since production costs c(·) are constant across the horizon,
provider’s costs are cut by flattening the load; this is mostly clear in the opti-
mized scheme where the peak of 19 GWh in E0 is reduced to 17.9 GWh which
is exactly the intermediate to peak capacity C2, as can be seen in Fig. 2.

In Fig. 4, we report the cost savings of the DR schemes, normalized to the
initial cost, for four different values of the µ parameters: 1

10 ,
1
6 ,

1
3 , 1. The

dashed line represents the saving which could be achieved if users’ demand
could be rearranged at the provider’s will without providing any discount (we
indicate it as the dictatorial solution). Consistently with Proposition 4.1, the
optimized mechanism returns larger savings than the robust and the base ones.
Interestingly, the robust mechanism performs consistently better than the base
one despite the fact that it does not require the ability to estimate the demand

12



Figure 2: Final consumption in GWh for the four DR mechanisms (µ = 1
10

). The black lines
represents respectively C1 and C2.

Figure 3: Minimizers for the four DR mechanisms (µ = 1
10

).
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Figure 4: Cost savings normalized to the initial cost, for various flexibility parameters µ.

shifted and it therefore “wastes” some discount by giving it to demand that
was already scheduled in a given timeslot in the baseline demand. Moreover,
as the population flexibility increases, the savings gap between the optimized
scheme and the robust mechanism reduces, the latter being effectively close to
exploiting all the population’s flexibility.

In Fig. 5, we focus on the case µ = 1
3 and analyze the components of the cost

for each DR mechanism. Fig. 5 confirms that the optimized scheme provides
the largest savings as it can minimize the production cost while paying the
smallest amount of discounts. We indicate with wasted discounts the amount of
discounts paid to consumption that would in any case have been scheduled in
that timeslot. The base and optimized mechanisms do not waste any discount,
while the robust mechanism and the broadcast scheme do, as they provide the
discount Ri to all the electricity consumed in i, including the part of E0

i that
remains in i.

5.1. The effect of noise
In this section we evaluate how sensitive the DR mechanisms are to the

following two different sources of randomness: 1) the number of users who
accept an offer is a random variable and 2) baseline consumption forecasts can
be more or less accurate.

Let U be the total number of users. Under the base mechanism, if qj→iU
users (or better dqj→iUe) are offered the discount Ri to move their consump-
tion from i to j, Eq. (9) assumes that qj→iUPj→i(Ri) of them accept. In
reality the number of those who accept is a Binomial random variable Uai→j ,
Bin(dqj→iUe, Pj→i(Ri)). Similar considerations hold for all the mechanisms.

14



Figure 5: Analysis of the components of the cost savings. All the quantities are normalized
to the initial cost.

About the second aspect, we consider that the energy utility solves any of
the specific optimization problems introduced above, starting from the forecast
E0
i of the aggregate baseline consumption for i = 1, · · ·N . Let e0i = E0

i /U be
the forecast of the individual baseline consumption. We assume that the ac-
tual baseline consumptions (ẽ0i ) are i.i.d. random variables with expected value
E[ẽui ] = e0i (i.e. the energy utility forecasts are unbiased) and coefficient of vari-
ation δ. The actual aggregate baseline consumption is then a random variable
Ẽ0
i =

∑U
u=1 ẽ

0
i with expected value the forecast E0

i and coefficient of varia-
tion δ/

√
U . This coefficient captures the uncertainty of aggregate consumption

forecasts.
We have then evaluated how the performance metrics change if these two

sources of randomness are present, but are ignored by the energy utility in the
optimization phase. For the base and optimized mechanisms we maintain that
the energy utility can estimate the exact amount of energy shifted between two
slots, even if this value is different from what predicted the day ahead.

We considered U = 13.6 millions users (equal to the current estimate of
Ontario’s population). Simulating the behaviour of each user would have been
very time-demanding because we would have had to generate NU random con-
sumptions and roughly NU random choices for the offers. Instead we have
approximated by matching the first two moments: i) the Binomial random vari-
ables Uj→i as gaussian ones and ii) the aggregate consumption of a group of
U ′ users as a lognormal random variable as suggested in [13]. We need then to
generate only O(N2) random variables.

We report in Figs. 6 and 7 respectively the final total costs and the cost
savings achieved by the DR mechanisms for µ = 1/3 and different values of the

15



Figure 6: Global cost versus relative uncertainty δ√
U

(%).

aggregate relative forecast uncertainty δ√
U
. Usually the consumption forecast

errors over large populations are evaluated to be of a few percents. Results
are averaged over 105 realizations of the set of random variables. Fig. 6
indicates that costs increase with uncertainty for both the DR mechanism and
the idealized schemes. This feature is explained by the Jensen’s inequality as
the cost functions (16), (3), (12) and (23) are convex in the aggregated forecast
E0. The figures confirm the relative ranking of the DR mechanisms shown in
Fig. 4, but for the base mechanism that appears to be the most sensitive to the
effect of noise and becomes worse than the broadcast mechanism already for
values of δ/

√
U as small as 0.2%.

6. Discussion

The models in this paper are based on the microeconomic theory of utility
maximization and consumer rationality: users weigh expected costs and benefits
and choose the most beneficial actions. This assumption is quite common in
the field (see for example the literature overview in [2, 16]). In this framework,
the possibility to draw quantitative conclusions depends on the availability of
accurate aggregate sensitivity functions characterizing how users react to given
economic incentives. Experiments have been carried on to this purpose in many
countries, like in U.S.A. (Carolina and California), Germany, Switzerland, In-
dia [3]. In particular, some of these studies measure the elasticity of substitution,
that has indeed been introduced to quantify load shifting. It is defined as the
relative change of the ratio of the peak to off-peak demand, divided by the rel-
ative change of the peak to off-peak price. Elasticity varies significantly from
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Figure 7: Savings versus relative uncertainty δ√
U

(%). Savings are normalized by the initial
cost.

one region to another and from one season to another, but in most of the cases
the measured values suggest the possibility of major cost reductions, achievable
through demand response mechanisms. These empirical studies can be used to
start tuning more accurate models like those we consider in this paper. More-
over, once similar pricing schemes are deployed, the system could learn over
time better users’ models.

At the same time, experimental work has shown that individuals often do
not act as the rational users envisaged by microeconomic theory. In particular
many cognitive biases affect human decisions and many choices are not consis-
tent with utility maximization forecasts [5]. These observation lead to the rise
of the field of behavioral economics. As regards energy use, the authors of [17]
show how users’ choices exhibit time inconsistency, framing and reference depen-
dence, bounded rationality and the (unconscious) adoption of different decision
heuristics. In general the influence of psychological factors should be considered
in the design of new energy policies and pricing schemes. For example, [12]
advocates that decentralised energy generation and control can transform the
users from simple energy consumers to energy citizens and simultaneously make
them more responsive to demand response mechanisms. These conclusions are
based on data from focus groups in Great Britain, and they are also supported
by a similar investigation in Croatia [14]. Another survey in New Zeland [4]
confirms that users are not only price driven: their response is equally sensitive
to supply security considerations (power grid congestion can increase the black-
out risk) and slightly less to CO2 emissions (from diesel generators activated to
face peak demand). Overall, we see that this line of works suggests solutions
that are complementary to ours: once users are sensitised to safety and envi-
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ronmental issues and are made aware of the large picture and involved as much
as possible in all the phases of the energy cycle—as suggested by [4, 12, 14],
economic incentives have still an important role and our work can contribute to
correctly design them.

7. Conclusions

In this paper, we have shown that macroscopic descriptions of DR mech-
anisms can hide important assumptions that can jeopardize the mechanisms’
implementation. For this reason, our proposal moved from a microscopic de-
scription that explicitly models each user’s decision. We have then introduced
four DR mechanisms with various assumptions on the provider’s capabilities.
Interestingly, contrarily to previous studies, we find that the optimization prob-
lems that result from our mechanisms are complex and can be solved numerically
only through a heuristic. Moreover, our results show that the performance of
DR mechanisms under reasonable assumptions on the provider’s capabilities are
significantly lower than those suggested by previous studies, but that the gap
reduces when the population’s flexibility increases.
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Appendix A. Problem (3-4) is not convex

We prove the problem is not convex by providing the following counterex-
ample:

• N = 3 slots.

• Initial consumption in each slot: E0
1 = 1, E0

2 = 1, E0
3 = 2.

• Sensitivity functions to rewards: S2(Ri, |2 − i|) = 1−e−Ri/α2

|2−i| , S3(Ri, t) =

1−e−Ri/α3

|3−i| , concave in Ri and decreasing in |j − i|. Consider α2 = 1,
α3 = 1/10.

• Cost functions: ci(x) = βix. Consider β1 = 1, β2 = 11, β3 = 1/2.
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The derivative versus R1 of the cost in R = 0 is

∂costbase

∂R1

∣∣∣
R=0

=R1E
0
2S
′
2(R1, t) + E0

2S2(R1, t) +R1E
0
3S
′
3(R1, t) + E0

2S3(R1, t)

+ β1(E
0
2S
′
2(R1, t) + E0

3S
′
3(R1, t))− β2E0

2S
′
2(R1, t)− β3E0

3S
′
3(R1, t) =

= β1E
0
2

e−R1/α2

α2|2− 1|
+ β1E

0
3

e−R1/α3

α3|3− 1|
− β2E0

2

e−R1/α2

α2|2− 1|
− β3E0

3

e−R1/α3

α3|3− 1|
=

=
β1
α2

+
β1
α3
− β2
α2
− β3
α3

= −5 < 0,

then it is convenient for the energy provide to increase the reward R1.
The second derivative (in R = 0) is

∂2costbase

∂R2
1

∣∣∣
R=0

=E0
2S
′
2(R1, t) +R1E

0
2S
′′
2 (R1, t) + E0

2S
′
2(R1, t)

+ E0
3S
′
3(R1, t) +R1E

0
3S
′
3(R1, t) + E0

3S
′
3(R1, t)

+ β1E
0
2S
′′
2 (R1, t) + β1E

0
3S
′′
3 (R1, t)− β2E0

2S
′′
2 (R1, t)− β3E0

3S
′
3(R1, t) =

= 2
e−R1/α2

α2
+ 2

e−R1/α3

α2
− β1

e−R1/α2

α2
2

− β1
e−R1/α3

α2
3

+ β2
e−R1/α2

α2
2

+ β3
e−R1/α3

α2
3

=

=
2

α2
+

2

α3
− β1
α2
2

− β1
α2
3

+
β2
α2
2

+
β3
α2
3

= −18 < 0,

then the function is not convex.
Moreover, this non-convexity is at a point where the derivative of the total

cost is negative.

Appendix B. Proof of discontinuity of Broadcast mechanism cost func-
tion

Suppose the provider broadcasts discount rates R such that

Rz =

{
R > 0 if z = j − k, j + k

0 otherwise. (B.1)

The consumption shifted out of j will then be equally divided between the slots
j + k and j − k. In formulas, from (22) follows:

Pj→(j−k)(R) = Pj→(j+k)(R) = Pr (R− βjk ≥ 0) =
1

2
Fj

(
R

|k|tj

)
(B.2)

Consider now another discount R∗ such that

Rz =

 R+ ε if z = j + k
R if z = j − k
0 otherwise.

(B.3)
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where ε is a positive.
Then all the consumption shifted out of j will be moved to j+ k. From (22)

follows
Pj→(j+k)(R) = Fj

(
R
|k|tj

)
Pj→(j−k)(R) = 0.

(B.4)

A positive arbitrary small ε generate a finite change in probabilties Pj→i. Hence
Pj→i(R) are discontinuous in R which is why the final cost (23) is discontinu-
ous.

Appendix C. Mechanisms ranking

We start proving proposition 4.1, i.e. that the optimized mechanism achieves
a lower cost than the robust and the base mechanisms.

We first observe that the base mechanism solves the same problem solved
by the optimized mechanism, but with the additional constraint that fractions
qj→i have to be constant as indicated in Eq. (10). The feasibility set of the
base mechanism’s optimization problem is then a subset of the feasibility set of
the optimized mechanism’s optimization problem. It follows that the optimized
mechanism achieves a lower cost.

We now consider the robust mechanism, and assume that the pair (Rrob.,qrob.)
is an optimizer of ((16)-(19)). Choose the pair (Ropt,qopt) such that:

∀(j, i) s.t. j 6= i

{
Rj→i = Ri
qj→i = qi

which implies that

∀(j, i) s.t. j 6= i, Pj→i(Ri)qi = Pj→i(Rj→i)qj→i

and set
(Rj→j , qj→j) = (0, 0) ∀ j = 1, . . . , N

The two configurations (Rrob.,qrob.) and (Ropt,qopt) generate the same final
distribution E1.

However while the robust mechanism awards with a discount Ri a fraction
qi of the consumption E0

i originally scheduled in i, the optimized scheme does
not. So the optimized scheme can achieve the same distribution provided by the
robust mechanism paying less rewards. It follows that the total cost achieved
by the optimized mechanism is never larger than that of the robust mechanism.
This last point completes the proof.

The ranking cannot be extended further as we show through the following
examples.

Example Appendix C.1. We show first a case where the broadcast scheme
(23-24) provides larger savings than the optimized one (12-15). Consider a three
timeslots scenario with initial consumption

E0 =

{
10 j = 1
0 j = 2, 3
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Figure C.8: Initial and final consumptions in example Appendix C.1.

Figure C.9: Optimized and broadcast schemes minimizers in example Appendix C.1.

timeslot-dependent costs cj(·)

cj(E) =

 100E j = 1
10E j = 2
1E j = 3

and a maximum discount rate B = 20; finally assume discomforts are formulated
as in (27) with

Pr(βj ≤ R) = 1− e−R6 (C.1)

Electricity provider can reduce the cost it carries by shifting consumption in
timeslots 2 and 3 where there are zero demands and lower marginal production
costs. We report in figures C.8 and C.9 respectively the rearranged consump-
tions and the minimizers of the optimized and broadcast schemes. We observe
that the optimized mechanism offer to all the users to move in to slot 2, while
the broadcast mechanism is able to have some of them moving to the more con-
venient slot 3. The final cost of the optimized scheme (12-15) is 311 and is
larger than the final cost of the broadcast one (23-24), 286.
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Figure C.10: Initial and final consumptions in example Appendix C.2.

The broadcast scheme is able to outperform the optimized scheme, because
users can choose between two different offers and then the more flexible ones
move to slot 3 and the less flexible ones to slot 2. On the contrary, in order
to move some consumption to slot 3, the optimized mechanism should offer to
a fraction q1→3 to move, but those who do not accept the offer would stay in 1
with corresponding elevated costs. Observe that this example has been built in
such a way that the broadcast mechanism does not “waste” rewards paying for
consumption that does not move.

Note that, due to Proposition 4.1, in this scenario the broadcast scheme
allows larger savings than the robust mechanism and the base scheme.

Example Appendix C.2. We show here that the robust mechanism (16-19)
can perform better than the broadcast scheme (23-24). Consider the following
three timeslots scenario:

E0 =

 6 j = 1;
24 j = 2;
30 j = 3;

a timeslot independent cost c(·), such that

c′(E) =


1 E ≤ 9
9 E ∈ [9 , 18]
36 E ∈ [18 , 27]
78 E ≥ 27

and a maximum discount B = 10. Discomforts as formulated in (27) with

Pr(βj ≤ R) =
R

B

We report in figures C.10 and C.11 respectively the rearranged consumptions
and the minimizers of the robust and broadcast schemes. The final cost of the
robust mechanism (16-19), 580.75 is smaller than the final cost of the broadcast
scheme (23-24), 594.

The broadcast scheme assigns only a reward R1 to the first timeslot. Flex-
ible enough consumption will be moved from timeslots 2 and 3. Notably, the

22



1 2 3
0

5
R

Robust mechanism

1 2 3
0

0.5

1
Q

1 2 3
0

5
R

Broadcast mechanism

1 2 3
−1

0

1

Figure C.11: Robust mechanism and broadcast scheme minimizers in example Appendix C.2.

fraction of consumption shifted from timeslot 2 is twice larger than the fraction
of consumption shifted from 3 because the discomfort is linear in the distance
(see Eq. (27)). The broadcast scheme cannot alter this proportion, though it
could be beneficial as in timeslot 3 there is a larger demand. It then achieves an
unbalanced consumption in slot 1 and 2

On the contrary the robust mechanism can equalize consumption in slots 1
and 2 by offering to a small fraction of the population to move to slot 2.

Observe that, because of Proposition 4.1, in this scenario also the optimized
mechanism returns larger savings than the broadcast one.

Example Appendix C.3. In this final example, we show that the base scheme
can perform better than the robust mechanism and broadcast scheme. Consider
a two timeslots scenario with initial consumption

E0 =

{
10 j = 1
4 j = 2

a timeslot independent cost c(·), such that

c(E) =

{
10E E ≤ 7

15E − 35 E ≥ 7

a maximum discount rate B = 10 and discomforts formulated as in (27) with

Pr(βj ≤ R) =
R

B

In this scenario the robust mechanism and the broadcast one achieve a cost equal
to 154.75, larger than the cost of the base mechanism, 152.92. We report in fig-
ures C.12 and C.13 respectively the rearranged consumptions and the minimizers
of the three mechanisms.

In this scenario all the schemes the robust and broadcast mechanisms are
equivalent: they both shift the same amount of consumption to slot 2 and pay
the same amount of rewards. The base scheme performs better than the other
two since it does not waste any discount, i.e. it does not award discount to the de-
mand E0

2 originally scheduled in timeslot 2. The base and broadcast schemes do
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Figure C.12: Initial and final consumptions in example Appendix C.3.

Figure C.13: Robust mechanism, optimized and broadcast schemes minimizers in example
Appendix C.3.
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waste some discount and therefore offer smaller discounts than the base scheme,
rearrange smaller amount of demand and return a larger cost.
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